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Abstract
We investigate the use of joint-sequence multigrams to gener-
ate L2 mispronunciation lexicons for mispronunciation detec-
tion and diagnosis. In the joint-sequence framework, a pair of
parallel strings (namely, the input string of either graphemes
or phonemes of the canonical pronunciation and the pho-
netic string of the mispronunciation) are aligned to form joint
units for probabilistic estimation. We compare results on lex-
icons produced by phoneme-to-mispronunciation conversion
and those by grapheme-to-mispronunciation conversion. Re-
sults reflect the hypothesized advantage (1.1% reduction in ex-
pected miss rate) in unifying phonetic confusion due to L1 neg-
ative transfer with those due to grapheme-to-phoneme errors.
The impact of mispronunciation by mis-use of analogy is also
studied. Recognition results show the benefit of a lexicon with
proper priors.
Index Terms: mispronunciation detection and diagnosis, lexi-
con extension, joint-sequence multigrams

1. Introduction
Mispronunciation detection is an important problem in CAPT.
Previous approaches include: (1) ASR-based pronunciation
scoring, e.g. Goodness of Pronunciation [1]; (2) the use of
acoustic-phonetic classifiers based on specific features for tar-
geted mispronunciations [2]; (3) explicit modeling of mispro-
nunciations for pronunciation lexicon (or network topology) ex-
tension [3], etc. The first two approaches try to make a binary
decision - typically ”correct” or ”mispronounced”, for each in-
put L2 phone segment. Phone segments labeled as “mispro-
nounced” may correspond to a nonnative version of the same
phone, a deletion, an insertion, a substitution or even a non-
categorical change. However, these approaches usually suffer
from error propagation by performing a segmentation based on
canonical transcriptions in the first phase. The third strand of
approaches for mispronunciation detection and diagnosis are of-
ten adopted to alleviate the segmentation bias and provide addi-
tional local feedback. The idea is to model the common mispro-
nunciation pattern by heuristics or by learning from data. Thus
one can either align the L2 speech in the extended network by
state-of-the-art acoustic models in a one-shot manner, or use the
ASR confidence scores for further manipulation.

2. Previous Work
Our previous efforts on contrastive analysis of L2 speech are
strongly inspired by concepts from generative phonology. It

aims to model the L1 negative transfer effect by context-
dependent phonological rules (PR): λ[φ]ρ → ψ, which states
that the canonical phone string φ with left context λ and right
context ρ receives the corresponding phone string ψ. These
rules can either be specified by knowledge or automatically de-
rived from data [4] based on a phonetic alignment [3]. Yet we
found that the knowledge-based contrastive analysis paradigm
cannot properly handle many of the mispronunciations in prac-
tical situations, e.g. those caused by grapheme-to-phoneme er-
rors. In this case, even the rules extracted from data are some-
times hard to justify, bringing about a huge number of false
alarms in the mispronunciation lexicon.

Our recent work proposes to apply the grapheme-to-
mispronunciation (G2M) conversion as an alternative to PR
since it better copes with the L2 mispronunciation generation
process [5], instead of the phoneme-to-mispronunciation (P2M)
correspondence assumed by PR. The generative joint-sequence
multigram model (JSM) is trained on pairs of grapheme and
phoneme strings to construct mispronunciation lexicons. Re-
sults show that the lexicon derived by the G2M JSM covers
more mispronunciation variants than the PR under the same de-
coding network complexity [5]. Some of the aspects left un-
explored for this new paradigm includes whether the improved
performance is due to the joint sequence modeling of the ortho-
graphic form and their respective mispronunciations, or merely
better formulations and modeling techniques of the JSM. We
wish to explore the relative contributions of these two factors
(P2M and G2M) causing mispronunciations in terms of im-
proved coverage (if any) of possible learners’ errors in the mis-
pronunciation lexicon generated. Studies are needed to exam-
ine the extent to which the canonical pronunciations can lead to
mispronunciations.

The remainder of this paper is organized as follows: In the
next section, we review the JSM in the context of mispronunci-
ation modeling. In Section 4, we will take a detailed exposition
of the JSM for L2 segmental mispronunciations generation in
various settings. Finally, conclusions are drawn and directions
for future studies are proposed.

3. Joint-sequence Multi-gram Model
A joint-multigram (see Eq. (1))

q = (g, ϕ) ∈ Q ⊆ {{G{0,1,...,LG}×Φ{0,1,...,LΦ}}\{G0×Φ0}}
(1)

is the pair of a discrete input string g and a discrete output string
ϕ of possibly different lengths. LG and LΦ are upper limits of



the lengths of input and output strings and they control the size
of the joint-multigram inventory1. The joint-sequence multi-
gram model assumes that each pair of input and output strings
O = (g,ϕ) is generated by a common sequence of joint multi-
grams q which uniquely defines a co-segmentation (i.e. align-
ment), thus enabling the application of traditional n-multigram
language modeling techniques [7]. Due to the various possibili-
ties of co-segmentations between g and ϕ, the JSM determines
the joint probability by summing over all matching joint multi-
grams:

p(O) = p(g,ϕ) =
∑
σ∈{σ}

p(σ,O) =
∑

q∈S(O)

p(q), (2)

where σ is a co-segmentation of g and ϕ, and S(O) is the set
of all co-segmentations in terms of q:

S(O) = S(g,ϕ) = {q ∈ Q∗| q qg = g, q qϕ = ϕ}. (3)

Here, we use qg and qϕ to denote the sequences of q’s first and
second component, respectively, and “q” denotes string concate-
nation. For each possible q, the probability p(q) can be approx-
imated by a standardM-gram approximation:

p(q) =

|q|∏
j=1

p(qj |qj−1, . . . , qj−M+1), (4)

where |q| is the length of the joint multigram sequence q.

3.1. Model parameter estimation

Given N prompted words in the training corpus, with the Vn
different mispronunciations (where n = 1, . . . , N ), we denote
the frequency for the vth mispronunciation of the nth word by
p(ϕn,v), and enforce the constraint

∑N
n=1

∑Vn
v=1 p(ϕn,v) = 1.

Each un-aligned training sample of input-output pair serves
as an observation for the JSM and can be summarized by
On,v = (gn,ϕn,v) with probability p(ϕn,v). Maximum Like-
lihood training tries to obtain the set of parameters Θ which
maximizes the log-likelihood of the training samples:

Θ = arg max

N∑
n=1

Vn∑
v=1

p(ϕn,v) logL(On,v|Θ). (5)

Note that the co-segmentation σ is hidden, and its incorporation
provides the “complete-data” for EM training. As first shown
in [7]:

N∑
n=1

Vn∑
v=1

p(ϕn,v) logL(On,v|Θ)

=

N∑
n=1

Vn∑
v=1

p(ϕn,v) log
∑

σ∈{σn,v}

L(σ|On,v; Θ(i))
L(σ,On,v|Θ)

L(σ|On,v; Θ(i))

≥
N∑
n=1

Vn∑
v=1

p(ϕn,v)
∑

σ∈{σn,v}

L(σ|On,v; Θ(i)) logL(σ,On,v|Θ)

(6)

−
N∑
n=1

Vn∑
v=1

p(ϕn,v)
∑

σ∈{σn,v}

L(σ|On,v; Θ(i)) logL(σ|On,v; Θ(i)).

1We set LG = LΦ = 1 throughout the experiments in our paper,
because these parameters yield the best result.

Eq. (6) is the auxiliary function Q(Θ|Θ(i)) we wish to maxi-
mize, given Θ(i) in iteration i. The “expectation” step is to eval-
uate Q(Θ|Θ(i)), and the “maximization” step involves finding
the optimal Θ that maximizes Q(Θ|Θ(i)).

For a particular σ of On,v , the application of Eq. (4) can
decompose the log-likelihood logL(σ,On,v|Θ) into the sum of
a series of multigrams conditioned on the pastM− 1 history
for theMth order model:

logL(σ,On,v|Θ) = log p(q|Θ) =

|q|∑
j=1

p(qj |hj ; Θ), (7)

where we introduce the symbol h to denote the sequence of pre-
ceding joint multigrams, i.e. hj = (qj−M+1, . . . , qj−1). The
model parameters are {p(q|h)}, i.e. the probability of multi-
gram q given the history h.

To maximize Q(Θ|Θ(i)), one can formulate a Lagrangian
by imposing on the auxiliary function an equality constraint that
the model parameters {p(q|h; Θ)} sum up to one. By setting the
derivate of the Lagrangian with respect to p(q|h; Θ) equal to 0,
we have the re-estimation formulas:

L(σ|On,v; Θ) =
p(q|Θ(i))∑

q′∈S(On,v) p(q
′|Θ(i))

, (8)

e(q, h|Θ) =

N∑
n=1

Vn∑
v=1

p(ϕn,v)
∑

σ∈{σn,v}

L(σ|On,v; Θ(i))nq,h(q),

(9)

p(q|h; Θ(i+1)) =
e(q, h|Θ(i))∑
q′ e(q

′, h|Θ(i))
, (10)

where nq,h(q) is the number of occurrences of the M-gram
qj−M+1, . . . , qj in q. A forward-backward implementation can
be used to avoid explicit search through all co-segmentations in
Eq. (9) as shown in [7]. Absolute discounting with interpola-
tion and a marginal preserving back-off distribution is applied
when building higher-order models from lower-order ones, to
avoid over-fitting [6].

3.2. Mispronunciation lexicon generation

The topN variants can be retrieved in descending posterior or-
der by searching through a graph of p(q|h) [6]:

p(ϕ|g) =

∑
q∈S(g,ϕ) p(q)∑
qqg=g p(q)

. (11)

Since the resulting lexicon can possibly include canonical pro-
nunciations, but we are targeting mispronunciations, we ex-
clude the canonical pronunciations and ensure that the poste-
riors of the remaining entries sum to unity.

4. Experiments
4.1. Dataset

Model training and evaluation is based on the Cantonese subset
of the CHinese Learners Of English (CHLOE) corpus. This
dataset includes English recordings from 50 male and 50 female
native Cantonese speakers. Each speaker reads prompted text
from four categories: minimal pairs, confusable words, phone-
mic sentences and the AESOP’s fable, “The North Wind and
the Sun”. Each recorded utterance is transcribed by trained lin-
guists using the ARPABET, augmented with three additional
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Figure 1: Illustration of the search strategy in the FAR versus
MR curve.

symbols, namely /ax/ to denote the “schwa”, /axr/ to denote the
retroflexed schwa and /ix/ to denote the unstressed /ih/ accord-
ing to the TIMIT convention.

We randomly split the corpus into two halves by speakers
to form the training and test sets. This splitting aims to capture
the commonalities of mispronunciations across speakers. It is
noted that about 1449 mispronunciation patterns (about 44%)
in the training set are found in the test set.

4.2. Performance metrics

Given that our objective is mispronunciation detection through
modeling errors in the pronunciation lexicon, evaluation of the
generated lexicon for each word can be made in terms of the
expected false alarm rate (FAR) and expected miss rate (MR).
The expected false alarm rate is estimated by the sum of the
posteriors of mispronunciation entries which do not appear in
the test set; The expected miss rate is determined by the sum
of the frequencies of mispronunciations in the test set that are
missing from the lexicon.

Compared with the assumption on uniform distribution
with respect to the mispronunciations for each word in [5],
greater penalty will be incurred if the lexicon has missed a
highly frequent mispronunciation or has been too confident on a
potential mispronunciation without support. The setting is also
consistent with the training procedure where the frequencies of
mispronunciations are taken into account as in Eq. (5). In other
words, this training scheme makes common multigram patterns
more representable by the model than the less common ones.

For a particular model and a particular word, a scatter chart
suggesting the correlation between the two metrics can be plot-
ted by sliding the parameterN - the number of top ranking mis-
pronunciation entries by posterior. Conceivably, the curve has
a distinctive saw-tooth shape and shows a negative correlation
between the FAR and MR on the whole due to an intrinsic trade-
off between the two measures. For the sake of comparison, we
search for the “local optimum” in terms of simultaneously low
FAR and MR as the overall performance indicator. Our search
strategy (see Figure 1) starts from the point of 100% miss and
0% false alarm withN = 0, and incrementsN until either: (1)
MR is zero; or (2) the curve jags up and to the left in the first
local minimum.

Furthermore, the false alarm rate and miss rate measured on
individual words can be easily manipulated to indicate the per-
formance on the whole set by a weighted sum of these statistics,
where the weights are the frequencies of words. It is noted that
the lexicon consists of all mispronunciations in the training set
would give an FAR of 0.225 and an MR of 0.216 on the test set.

4.3. G2M vs. P2M

We claim in [5] that p(ϕ|g) is a more realistic formulation
to generate L2 mispronunciations in prompted speech than the
previous assumed p(ϕ|χ) in the data-driven phonological rule
approach, where χ is the canonical pronunciation. The depen-
dence of ϕ on g encapsulates both the grapheme-to-phoneme
errors and L1 negative transfer effect, which is less biased than
p(ϕ|χ).

To verify the claim on top of JSM, we first train P2M joint-
sequence multigram model on pairs of the canonical baseform
and mispronunciation, to emulate the behavior of phonological
rules. Since some of the words may have multiple canonical
pronunciations, we divide the p(ϕn,v) in Eq. (5) evenly among
the canonical baseforms. To compare fairly with P2M, G2M
models are trained on pairs of orthographic form and mispro-
nunciation. The results are depicted in Table 1. When the order
is low, the P2M out-performs the G2M, which shows that the
alignment between the orthographic form and the mispronunci-
ation transcriptions is less satisfactory than the phonetic align-
ment between the canonical baseform and the mispronunciation
transcription. As the model order grows, the long-span depen-
dency is captured by theM-multigram approximation and the
G2M lexicon reaches a better convergence than that of the P2M.

Another probabilistic way of explaining G2M model’s bet-
ter performance is that the implicit decomposition of p(ϕ|g)
better fits the training data, since p(ϕ|g) =

∑
ξ p(ϕ|ξ)p(ξ|g)

is more flexible than p(ϕ|χ) = 1
|{χi}|

∑
i p(ϕ|χi), where χ

may be only a subset of ξ.
It is also interesting to see that the number of unseen pat-

terns in the lexicon attains maximum when the order is low.
This might suggest how L2 learners decompose a grapheme
string, match a partial pronunciation locally and re-assemble to
yield a pronunciation.

Besides, in the learned joint-sequence inventory, the
grapheme-to-phoneme pair “R→[]” and the phoneme-to-
phoneme pair “r→[]” receive the highest unigram probabilities,
showing the universal ’r-deletion’ phenomenon in our data.

Table 1: Comparison of lexicons generated by P2M model with
those by G2M model on different M-multigram orders. The “un-
seen” column shows the fraction of generated lexicon that is not
seen in the training set

P2M G2M
order FAR MR unseen FAR MR unseen

1 0.118 0.555 158/523 0.096 0.873 44/125
2 0.078 0.328 161/990 0.099 0.407 187/809
3 0.045 0.270 76/1193 0.058 0.286 87/1115
4 0.035 0.254 35/1253 0.043 0.245 42/1283
5 0.036 0.252 29/1278 0.039 0.241 30/1295

4.4. Erroneous application of partial analogy

As implied in the previous section, the “mispronunciations
by analogy” can be derived by matching substrings of the
prompted orthographic form to substrings of known words, hy-
pothesizing a partial pronunciation for each matched substring,
and assembling the partial pronunciations. It is pointed out in
[5] that there can be two cases of mispronunciation by analogy
which constitute the majority of grapheme-to-phoneme errors:
one is the replication of mispronounced substrings, e.g. for the
same learner, the mispronounced substring of “WRATH” / w ao
th / can recur in the mispronunciation of “WRAPPED” / w ao
p t /; the other is the erroneous application of partial analogy,



or misuse of letter-to-sound rules, e.g. mispronouncing “ANA-
LYST” as / ae n ax l ay s ih s / by analogizing “ANALYZE”.
We devise the following two experiments to investigate the lat-
ter case.

Table 2 shows the performance of models trained on pairs
of orthographic forms and canonical pronunciations for the 435
words that we use in the training set. We find that the canonical
model can actually produce mispronunciations with high prob-
abilities, e.g. “ACHING” / ae ch ix ng /, “DOUBT” / d aw b t /,
“ZEALOUS” / z iy l ax s /, etc.

Table 2: FAR and MR on the mispronunciation lexicon gener-
ated by canonical models.

CHLOE canonicals
order FAR MR

1 0.038 0.937
2 0.061 0.795
3 0.100 0.786
4 0.104 0.787
5 0.099 0.788

We conduct another experiment by training a G2M model
on all grapheme-to-phoneme pairs in the training set, i.e. in-
cluding both the canonical pronunciations and mispronuncia-
tions, and we compare it with the G2M model in Section 4.3 as
shown in Table 3. The canonical pronunciations plays an active
role in generating additional mispronunciations, bringing down
MR.

Table 3: Comparison of G2M models trained on only mispro-
nunciations (G2Ma) with the ones trained on both canonical
pronunciations and mispronunciations (G2Mb).

G2Ma G2Mb

order FAR MR unseen FAR MR unseen
1 0.096 0.873 44/125 0.099 0.913 38/101
2 0.099 0.407 187/809 0.103 0.468 165/705
3 0.058 0.286 87/1115 0.065 0.277 97/1151
4 0.043 0.245 42/1283 0.045 0.243 44/1273
5 0.039 0.241 30/1295 0.039 0.238 32/1305

4.5. Recognition result

We normalize the phonetic transcriptions on TIMIT to match
the phonetic code in our L2 corpus and train mono-phone
HMMs as a seed and alignment model for the WSJ1 cor-
pus. The alignment is based on a CMU dictionary which is
also normalized in terms of phonetic symbols, e.g. /ah0/ and
/ah1/ are converted to /ax/ and /ah/ respectively based on syl-
lable structure analysis. Maximum Likelihood re-estimation on
WSJ1 yields triphone tied-state HMMs with 16 mixtures per
state. The native acoustic model is adapted on the training
set of CHLOE Cantonese subset using Constrained Maximum
Likelihood Linear Regression (CMLLR).

To construct the lexicon for recognition, we append not
only the mispronunciations from G2M JSM, but the canonicals
as well. Since the probabilities of the mispronunciation lexicon
entries should add up to one, we first compute the likelihood
of each entry according to Eq. (2) and Eq. (7) using the JSM
model, and normalize them to keep the total posterior unity.

The statistics on the result of mispronunciation detection
and diagnosis2 using the lexicons derived by P2M, G2Ma and

2We do not tune the weights of acoustic likelihood and dictionary
probability on a development set.

Table 4: Performance comparison of P2M, G2Ma and G2Mb

on mispronunciation detection and diagnosis.

model

canonicals mispronunciations

True
Acpt.

False
Rej.

False
Acpt.

True Rej.
Correct
Diag.

Diag.
Error

P2M 72.55% 27.45% 21.45% 54.38% 45.62%
G2Ma 72.58% 27.42% 21.30% 54.39% 45.61%
G2Mb 74.37% 25.63% 22.80% 54.55% 45.45%

G2Mb are shown in Table 4. The G2Mb model yields the best
performance in diagnosing mispronunciations, but is worse than
G2Ma in detecting mispronunciation simply because the model
tends to assign higher likelihood to the canonical pronuncia-
tions. This strong prior not only keeps the false rejection rate
low but also raises the false acceptance rate.

5. Conclusions and Perspectives
The paper has presented a framework for generating mispro-
nunciation lexicon used by ASR-based L2 mispronunciation de-
tection and diagnosis. Empirical studies show the grapheme-
to-mispronunciation conversion can be a better process than
the previous phoneme-to-mispronunciation transfer. Statistics
have confirmed the advantage of the former in low lexicon false
alarm rate and low miss rate, as well as better recognition per-
formance. More aggressive search strategy in the FAR-MR
plot combined with acoustic model discriminative training [4]
is worth studying to reveal the optimal operating point for di-
agnosis. Proper rejection mechanism can be applied to filter
those un-modeled or spurious mispronunciations to complete
this framework.
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