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ABSTRACT

In multi-talker cases, overlapped speech degrades the speaker
verification (SV) performance dramatically. To tackle this challeng-
ing problem, speech separation with multi-channel techniques can
be adopted to extract each speaker’s signals to improve the SV per-
formance. In this paper, a joint training framework of the front-end
multi-look speech separator and the back-end speaker embedding
extractor is proposed for multi-channel overlapped speech. To better
leverage the complementarity between the speech separator and the
speaker embedding extractor, several training strategies are proposed
to jointly optimize the two modules. Experimental results show that
the proposed joint training framework significantly outperforms the
individual SV system by around 52% relative EER reduction. Addi-
tionally, the robustness of the proposed framework is further evalu-
ated under different conditions.

Index Terms— Speaker verification, multi-channel, multi-look,
overlapped speech, speech separation

1. INTRODUCTION

In the last decade, rapid progress has been made in SV area with
the introduction of deep neural networks (DNNs) to extract distin-
guishable embeddings from speaker utterances, such as d-vectors
[1] and x-vectors [2]. With increasing larger datasets and deeper
networks, SV research is expanding from not only clean and single-
speaker conditions, but also more challenging far-field scenarios,
where noise, reverberation and overlapped speech are predominant.
Overlapped speech occurs frequently in multi-speaker scenarios,
where the information from different speakers is mixed, leading
to an undesirable degradation in many speech processing tasks,
such as automatic speech recognition (ASR) [3], speaker recogni-
tion/verification and diarization.

There are mainly two ways to alleviate the deterioration caused
by these factors: one way is to improve the robustness of the sys-
tems by data augmentation during training [2], which relies on the
powerful capacity of the DNNs; while the other is to introduce effec-
tive front-ends to pre-process the source speech, such as the speech
enhancement and separation. In the latter case, when a microphone
array is available, beamforming techniques can utilize spatial infor-
mation to extract the target speech signals and suppress the inter-
ference signals. There are various beamforming techniques, such
as delay and sum [4], Minimum Variance Distortionless Response
(MVDR) [5] methods and multi-look directions based methods [6],
which have been widely applied in the pre-possessing step for ASR
[7] and keyword spotting [8] tasks.

Several works have been proposed to investigate the SV systems
assisted with multi-channel techniques. In [9], to reduce the rever-
beration effect, mask-based neural networks with several beamform-
ers were proposed for GMM i-vector systems. In [10], a framework

Fig. 1. The integrated system of the speech separator and the speaker
embedding extractor.

employing generalized eigenvalue beamformer for x-vector extrac-
tor was proposed, which found that the system with the re-trained
beamformer outperformed the system with only independent train-
ing. Previous work that consider overlapped speech for the SV task
are limited. A single-channel front-end extractor was proposed in
[11] to extract the target speaker’s speech based on the enrollment
speaker information, which greatly improved the performance of the
GMM i-vector system in a pipeline mode.

However, there are few, if any, previous work on a tighter inte-
gration between a multi-channel front-end and a back-end network
via partial and/or full joint training for SV tasks, especially on the
overlapped speech. In this paper, we propose to jointly train a multi-
look separation network with a back-end SV network and several
joint training strategies are investigated. Different from prior, the
proposed approach focuses on the multi-channel overlapped speech
condition, where the utterances are mixed among up to two speakers.
To alleviate the objective function mismatch between the separation
front-ends and the SV back-end, multi-task loss functions are also
explored.

The rest of the paper is organized as follows: In section 2, each
module of the proposed framework is detailed. Section 3 describes
our experiment setup. The performance of the joint training frame-
work is analysed in section 4. The conclusions are drawn in section
5.

2. JOINT TRAINING FRAMEWORK

The joint training framework is shown in Figure 1, where the front-
end separation network is expected to have multiple outputs and each
output is corresponding to a single speaker. A back-end speaker em-
bedding extractor is then employed to extract discriminative speaker
embeddings. The embedding extractor, the separation modules, and
joint training strategies are described in the following.

2.1. Speaker embedding extractor

The DNN based speaker embedding extractors have been proven to
significantly outperform conventional i-vector based systems. With
softmax-like objective functions [12] , the networks are usually dis-
crimitively trained as a speaker classification [13]. A temporal av-



Fig. 2. Multi-channel speech separation network with look direction θ.

erage pooling (TAP) layer is used to aggregate the frame-level rep-
resentation into a fixed-length utterance-level representation, which
is further projected to a low-dimensional speaker embedding via a
fully connection layer [12]. Given the speaker embedding extractor,
cosine similarity is usually used as the back-end for evaluation.

The popular ResNet34 architecture [14] is employed as the
backbone of the speaker extractor in this paper. The residual con-
nections between the frame-level layers have been demonstrated to
enhance the representation learned by the network. To further im-
prove the discriminating power of the learned speaker embeddings,
additive angular margin softmax (AAM-softmax)[15] loss function
is used as the optimization objective.

2.2. Multi-channel speech separator

Figure 2 shows the diagram of the multi-channel speech separation
network with a specific looking direction θ. The waveform of each
channel is first converted into complex frequency-time domain us-
ing a STFT convolution encoder. Then, the logarithm power spec-
trum (LPS) can be obtained from the magnitude of the spectrograms.
Given the microphone pair m̄ = (m1,m2), we can compute the
inter-channel phase difference (IPD) as follows:

IPDm̄(t, f) = 6 Ym1(t, f)− 6 Ym2(t, f), (1)

where 6 Yi denotes the phase of the complex spectrogram obtained
from the i-th channel. To indicate the look direction θ of the micro-
phone array, the direction feature (DF) [16] is computed as follows:

dθ(t, f) =

M∑
m̄=1

cos( 6 vm̄θ (f)− IPDm̄(t, f)), (2)

where 6 vm̄θ (f) = 2πf∆m̄ cos(θm̄)/c denotes the phase differences
between the selected microphone pair for direction θ at frequency
f , ∆m̄ is the distance between the selected microphone pair, θm̄

is the relative angle between the look direction and the microphone
pair, and c is the sound velocity. By comparing the phase difference
between the steering vector and the IPDs, DF can be used to indicate
the sound intensity from the look direction – that is, if the dominant
source is from direction θ, then the components of dθ are close to
1. Finally, the LPS, IPD and DF are concatenated as the input to
the separation blocks, which consist of stacked convolution layers
with exponential growing dilation factors [17, 18]. At the output,
the masks are estimated to extract the complex spectrograms, and an
inverse STFT convolution layer is used subsequently to obtain the
separated waveforms.

2.3. Multi-look direction based speech separator

In the above method, the look direction needs to be used as the prior
information. However, in noisy environments, estimating the accu-

rate direction of arrivals (DOAs) of the speakers becomes challeng-
ing. To tackle this problem, a multi-look direction based method
proposed in our previous work [6, 8] can be applied for speech sep-
aration without the prior DOA information . As its name suggests,
several look directions {Θ} are selected to cover the panorama from
0 to 2π, where the network can be regarded as a set of beamformers
with different main lobe directions. In the following experiment, we
select 4 look directions in the horizontal plane to compute the DF,
that is, {d(θ)|∀θ ∈ {0, 0.5π, π, 1.5π}}.

Two separation networks are developed with the multi-look fea-
tures. The first separator has 2 outputs corresponding to the signals
from the target speakers and the interference speakers respectively.
If the input mixture has no interference speaker, the separator only
outputs the signals from target speaker. During training, permuta-
tion invariant training (PIT) is applied to compute the loss of speech
separation, that is,

lossss = 1
2

min(L(x̂1, xt) + L(x̂2, xi), L(x̂2, xt) + L(x̂1, xi)),
(3)

where xt, xi is the signals from the target speaker and interference
speaker, x̂i is the estimated signals from the i-th output, and L(·) is
the loss function to compute the difference between the signals. We
call this system as Multi-look PIT (MLPIT) separator.

The second separator has the same number of the outputs as that
of the look directions, where each output is expected to focus on the
closest speaker according to its look direction. The training loss can
be computed as:

lossss =
1

4

4∑
k=1

L(x̂k, xk̄), (4)

where the target signals xk̄ are selected from {xt, xi} based on the
look direction Θk. We call this system as ML enhancement network
(MLENet).

In Eq.(3) and Eq.(4), the scale-invariant signal-to-noise(SI-
SNR) is used as the loss function, which is defined as:

L(x̂, x) = 10 log10

‖xtarget‖22
‖enoise‖22

, (5)

where xtarget = <x̂,x>x

‖x‖22
and enoise = x̂− xtarget.

2.4. Joint training of speech separator and embedding extractor

To tightly integrate the speech separators and speaker embedding
extractors, a multi-task objective loss function is employed, which
can be expressed as:

loss = α ∗ lossss + losssv, (6)



where α is the weight of the speech separation loss lossss, and
losssv is the classification loss of SV. For measuring the similarity
between the enrollment speech and test speech, we select the maxi-
mum of the cosine similarity scores (CS) of each embedding pair as
the final score, that is,

score(xtest, xenroll) = max{CS(embtesti , embenrollj )|∀i, j},
(7)

where embi is the embedding extracted from the i-th ouput wave-
form.

3. EXPERIMENTAL SETUP

Individual speaker embedding extractor training: The individual
speaker embedding extractor in SV network is trained on Voxceleb2
development dataset [19] with 5994 speakers, where the utterances
are augmented with the noise from MUSAN [20] and reverberation
from simulated room impulse response (RIR). The noise and rever-
beration are added online to the original data, where the SNR range
for generic noise and music are set to 5-15dB, and for babble noise
set to 13-20dB. The margin in AAM-softmax loss function is set to
0.3. The inputs features are 40-dimensional log-Mel filterbanks, and
the instance normalization [21] is applied at the input layer. The
Voxceleb1 [22] test dataset is used for evaluation. With the Adam
optimizer (learning rate is set to 1e-3), the EER can reach 1.62%.
Individual speech separator training: Since the utterances in Vox-
celeb datasets are recorded in the wild, the simulated datasets on
Voxceleb may not be suitable to compute the SI-SNR for the speech
separation. The LibriSpeech training dataset [23] is used to simulate
the overlapped speech to train the speech separators, and its devel-
opment dataset is used to evaluate the SI-SNR performances. Each
utterance in the multi-channel datasets is mixed among up to two
speakers’ utterances and one kind of environment noise, where the
reverberation impulse responses with different DOAs are applied to
these components. The room reverberations are simulated based on
the image method [24] on a 6-element uniform circular array of ra-
dius 0.035m with different room configurations.1 257-dimensional
LPSs are extracted from the spectrograms with 512-length window
and 50% hop ratio. IPDs are computed from the 6 microphone pairs,
i.e., (1, 4), (2, 5), (3, 6), (1, 2), (3, 4) and (5, 6). The networks are
trained on short segments with fixed 3-second length. The ratio of
single-speaker utterances to two-speaker utterances is around 1:4. In
two-speaker cases, the signal-to-interference ratio (SIR) ranges from
-6 dB to 6dB. The signal-to-noise ratio (SNR) ranges from 12dB to
30dB across all the cases.
Joint training: The training dataset for joint training is simulated
from Voxceleb2 development set. For each speaker, we select 30 ut-
terances as the subset to simulate the mixtures, and the total number
of mixtures for training is around 178K. The test dataset for multi-
channel evaluation is simulated from the Voxceleb1 dataset, where
the segments of the interference speakers are selected from the Vox-
celeb1 development dataset, and the segments of the target speak-
ers are selected from the Voxceleb1 test dataset. Thus, the sets of
the target speakers and the interference speakers are completely dis-
joint. We adopt three strategies to perform joint training based on
the pre-trained models:
1. Re-train individual speech separator: freeze the embedding ex-

tractors and update the parameters of the speech separators.
2. Re-train individual embedding extractor: freeze the speech sepa-

rators and update the parameters of the embedding extractors.
3. Joint training: update the parameters of the whole framework.

1For more details, please refer to [8].

4. RESULTS AND ANALYSIS

4.1. Speech separation performance

In Table 1, we show the speech separation results of the individually
trained speech separators. Besides MLPIT and MLENet, we also
develop an upper bound separator using the oracle source DOAs to
compute the input spatial features DF, which is named direction-
aware network (DANet). The average SI-SNRs are computed as the
average performance from all output channels. Since the separators
can have multiple outputs, for fairness, we also compute the best SI-
SNRs by selecting the best one from the channels. The results show
that DANet with oracle DOAs can obtain the best performance for
speech separation, and MLPIT and MLNet can obtain the similar
performance .

Table 1. SI-SNR(dB) evaluation based on simulated the LibriSpeech
development dataset

Dataset Method Avg. Best
- Raw mixtures 2.20 -

LibriSpeech
MLPIT 11.48 13.14
MLENet 11.78 13.53
DANet with oracle source DOAs 12.36 14.08

4.2. Performance of the proposed joint training framework

The SV performance is evaluated in terms of EER and minimum De-
tection Cost Function (mDCF) [25] with Ptarget = 0.01. From the
results shown in Table 2, we first observe that the pipeline systems
without any re-training give the worst performance, which is even
worse than an individual SV system without any separator front-end.
However, after joint training, the integrated systems can achieve sig-
nificant performance improvement. Among the three joint training
strategies, we find that re-training speaker embedding extractors can
only give limited improvement compared with other two strategies.
Across all the separators, the best performance in EER is obtained
by joint training of the whole framework, where the relative EER
reductions of the joint training systems can reach around 52% and
61% compared to the individual SV system and pipeline systems
respectively. It is also interesting to find that only re-training the
separators can obtain the best performance in mDCF for MLPIT and
DANet, which implies that re-training the front-end network is more
effective than re-training the back-end networks in overlapped SV
tasks.

To attempt a deep investigation into joint training, Figure 3
shows an example of the separated speech spectrograms before and
after joint training, from which we can draw some inferences about
the worse performance of the pipeline systems. Figure 3(a) shows
the spectrograms of the overlapped speech from two speakers, and
Figure 3(b) shows the corresponding clean spectrogram for each
speaker respectively. The spectrograms of the separated speech
extracted from the mixture are shown in Figure 3(c) with the pre-
trained trained MLENet . Compared with Figure 3(b), some low-SIR
spectrogram bins are totally removed with leaving black-hole like
regions. Considering the pooling layer in the speech embedding
extractor, the mean and standard deviation computed from these
regions will diverge greatly from the normal distribution, which
may lead to significant degradation in SV performance. However,
after joint training, the holes are filled with noise-like spectrogram
with small energy in Figure 3(d), and the SV performance becomes
much better, which implies that the SV network is sensitive to the
whole spectrogram even though some regions do not contain the
target speaker information.



Table 2. The performance with different joint training strategies: the pipeline systems are the concatenations of the individual separators and
embedding extractors (for individual SV system, there is no separator front-end); and re-train separator/extractor only updates the parameters
of the separator/embedding extractor networks.

Speech separator
Pipeline Re-train separator Re-train extractor Joint train α = 0

EER% mDCF EER% mDCF EER% mDCF EER% mDCF
No separator (individual SV) 17.85 0.701 - - - - - -
MLPIT 22.11 0.976 8.76 0.532 10.15 0.605 8.52 0.542
MLENet 22.85 0.985 9.56 0.571 9.96 0.575 8.35 0.546
DANet with oracle target DOAs 19.73 0.955 7.65 0.484 9.26 0.593 7.28 0.520

(a) The overlapped speech mixed from two speakers.

(b) The clean speech of two speakers.

(c) The separated speech extracted by the individually trained MLENet.

(d) The separated speech extracted by the MLENet after joint training.

Fig. 3. The spectrograms of the overlapped speech and separated
speech from two speakers.

Table 3 shows the performance of the framework with varying
parameter α in Eq.(6), where the best mDCF performance of the all
three systems can be obtained with α = 0.5.

Table 3. System performance with different loss functions.
Speech α = 0 α = 0.5 α = 1
separator EER% mDCF EER% mDCF EER% mDCF
MLPIT 8.52 0.542 8.17 0.521 8.36 0.531
MLENet 8.35 0.546 8.68 0.546 9.07 0.581
DANet 7.30 0.520 7.34 0.497 7.43 0.504

We also set several evaluation cases considering different DOA
distributions, where the angle differences between the target speak-
ers and the interference speakers are limited in fixed ranges. The
results are shown in Table 4. When the interference speaker move
closer to the target speaker, the performance becomes worse due to
the poor separation quality. In the severest case, where the angle dif-
ferences are smaller than 30◦and the spatial information cannot be
fully exploited in 6-element microphone array, DANet with oracle
target DOAs cannot even beat the other two systems. When the an-
gle differences become larger than 30◦, the DANet system returns to
the best.

The results in different SIR cases are shown in Table 4, where
infinite SIR denotes no interference speaker. In this case, the in-
dividual SV system can obtain the best EER due to the noisy data
augmentation. When one or more speakers exist, the performance

Table 4. Results with various angle differences in EER(%) (α = 0).

Speech separator
Angle difference

<30◦ 30◦-90◦ 90◦-180◦ Avg.
No separator 17.74 17.49 17.43 17.56
MLPIT 9.58 7.54 7.73 8.28
MLENet 10.35 7.35 6.97 8.22
DANet 10.58 5.59 5.29 7.15

gets better as SIR becomes larger.

Table 5. Results with different SIRs in EER(%) (α = 0).
Speech separator -6 dB 0 dB 6 dB Inf.
No separator 27.83 15.77 7.13 3.06
MLPIT 11.80 7.62 5.79 3.32
MLENet 11.38 7.58 5.71 3.71
DANet 9.60 6.76 4.95 3.45

4.3. Robustness of the proposed joint training framework

In some applications, the enrollment speech may be stored in a re-
mote database and not in multi-channel format. In this section, we
construct another case to evaluate the robustness of the re-trained
embedding extractors in joint training framework (α = 0), where the
enrollment recordings are single-channel, while the test recordings
are multi-channel. The results are shown in Table 6. Compared with
the last columns in Table 5 and Table 2, the EERs in one-speaker and
two-speaker cases are very close, which means that the speaker em-
bedding extractors after joint training can still work in the original
single-channel cases.

Table 6. Performance evaluation when enrollment speech is single-
channel and test speech is multi-channel in EER(%).

Speech separator One speaker Two speakers
MLPIT 3.50 8.86
MLENet 3.67 8.44
DANet 3.72 7.53

5. CONCLUSION

In this paper, we present a joint training framework of multi-look
separator and speaker extractor for overlapped speech in the speaker
verification task. Several joint training strategies are investigated.
The experimental results show that joint training can significantly
improve the performance of the individual SV system by around
52% relative EER reduction and 23% mDCF reduction, and the re-
training of the separator is more effective than the re-training of the
embedding extractor.
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