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ABSTRACT 

We previously proposed a multi-pass framework for Large 

Vocabulary Continuous Speech Recognition (LVCSR).  The 

objective of this framework is to apply sophisticated linguistic 

models for recognition, while maintaining a balance between 

complexity and efficiency.  The framework is composed of three 

passes: initial recognition, error detection and error correction.  

This paper presents and evaluates a prototype of the multi-pass 

framework based on Mandarin dictation.  In this prototype, the 

first pass recognizes speech with a well-trained state-of-the-art 

recognizer incorporating an efficient language model; the second 

pass detects recognition errors by a new three-step error detection 

procedure; and the third pass corrects errors detected in those 

lightly erroneous utterances by a novel error correction approach.  

The error correction algorithm corrects recognition errors by first 

creating candidate lists for errors, and then re-ranking the 

candidates with a combined model of mutual information and 

trigram. Mandarin dictation experiments show a relative reduction 

of 4% in character error rate (CER) over the initial recognition 

performance based on those light erroneous utterances detected. 

Index Terms: speech recognition, error detection & correction 

1. INTRODUCTION 

Language modeling using statistical N-gram prevails in 

LVCSR systems for its computational efficiency.  Although more 

sophisticated linguistic models should benefit speech recognition 

[3, 4], the increased computational complexity hinders their wide 

application.  To utilize advanced linguistic knowledge while 

maintaining a balance between complexity and efficiency, we 

proposed a multi-pass framework [1, 2] which is composed of 

three passes: (1) use an efficient language model (LM) to perform 

an initial pass of decoding, (2) detect recognition errors, and (3) 

apply more complicated linguistic models to correct the errors.   

The main advantage of the multi-pass framework is that it relieves 

the efficiency problem by only applying the sophisticated models 

when an efficient LM decoding fails.  Another advantage is that, 

when applying advanced linguistic models, the framework can use 

both the left and the right context to correct a specific error, while 

for most recognizers, only the left context is utilized in decoding. 

This work presents and evaluates a prototype of the 

framework based on Mandarin dictation, described as below: 

First Pass: Initial Recognition – Decode speech utterances with a 

state-of-the-art recognizer using trigram model. 

Second Pass: Error Detection – Detect erroneous characters in the 

recognized utterances.  We propose an algorithm to identify errors 

incrementally. Various features for error detection are investigated. 

Third Pass: Error Correction – Correct each erroneous character 

detected by (1) creating a candidate list of character alternatives, 

and then (2) re-ranking the candidates with a combined model of 

mutual information (MI) and word trigram. For each specific error, 

we calculate the MI across all the words in the left/right context.  

It should be noted that we focus on erroneous characters 

instead of erroneous words when performing the error detection 

and error correction.  For Chinese text, a sentence is a character 

sequence without an explicit word delimiter.  Hence, the 

definition of a word is not as clear as that for the character.  By 

choosing the character as the basic unit for error detection and 

correction, the error correction pass will have more flexibility in 

choosing suitable word lexicon to model linguistic knowledge. 

We noticed that the main handicap of applying the multi-pass 

framework lies in the fact that the error detection is not perfect, 

causing various problems for the following error correction.  For 

example, some errors detected are actually correct, and the attempt 

to “correct” them may introduce new errors.  We designed a 

particular mechanism to handle the imperfection of error detection.  

The CER reduction observed proves that although all passes are 

imperfect, it is still possible to build an effective system.  

In the following, we will present this multi-pass framework 

in detail.  Section 2, 3 and 4 describe the three passes of initial 

recognition, error detection and error correction respectively.   

Section 5 evaluates the performance of the framework.  In this 

work, we train each pass of the framework on a separate training 

set, and evaluate the framework on a test set of 4,000 utterances. 

All speech corpora/sets utilized in this study are Mandarin 

dictation, and are balanced across the speaker gender and age.  

2. FIRST PASS – INITIAL RECOGNITION1 

The first pass of initial recognition uses a state-of-the-art 

recognizer.  The acoustic models contained in this recognizer are 

the cross-word triphones trained on a speech corpus of about 700 

hours.  The language model utilized is a word-based trigram 

model trained on a total of 28 giga-byte text corpora. These text 

corpora are balanced across a variety of different domains.  The 

first pass decodes all speech utterances utilized in the rest of this 

study and generates corresponding recognition lattices.  

3. SECOND PASS – ERROR DETECTION 

3.1 A Three-Step Error Detection Procedure 

This procedure aims to detect erroneous characters in the 

recognized utterances in an incremental way:  

Step 1. Detect erroneous utterances 

In this step, we classify each recognized utterance as 

error-free or erroneous by an Utterance Classifier (UC).  

Utterances labeled as erroneous are passed to the next step.  

Step 2. Detect erroneous words 

We classify each word in the erroneous utterances detected 

as either correct or erroneous by a Word Classifier (WC).  

Words labeled as erroneous are passed to the next step.  

                                                      
1 The work on initial recognition is conducted in Microsoft Research Asia. 



Step 3. Detect erroneous character 

We focus on the words that are deemed erroneous by Step 2, 

and assume all the characters contained in these words are 

erroneous.  This is because the decoding network in the 

recognizer uses the word as the smallest linguistic unit. 

We utilized a data set of 4,000 utterances (disjoint from the training 

set for the recognizer) to tune and train the error-detection process.  

In order to test the validity of the assumption in Step 3, we checked 

the recognition outputs from this data set and found that 88.4% of 

the characters in the erroneous words are in fact erroneous.  This 

proves the feasibility of this assumption. 

We further divided the 4,000 utterances evenly into two 

subsets.  The UC was trained on the first set.  The WC was 

trained on those utterances in the second set labeled as erroneous 

by the UC.  Details about UC and WC are described in sections 

3.2 and 3.3 respectively.  

To evaluate the performance of error detection, we define 

detection error rate for a specific unit (utterance/word/character) as: 

instances ofnumber  total

instances classifiedy incorrectl ofnumber  the
  rateerror detection =

 

All experimental results reported in 3.2 and 3.3 were obtained 

by ten-fold cross validation on the corresponding training data.  

For classification tasks with only one feature, we always adopt 

Naïve Bayes [5] as the classification algorithm.  For classification 

tasks with multiple features, we apply the Support Vector Machine 

algorithm [5]. 

3.2 Details on the Utterance Classifier  

To train the UC, we analyzed features based on the Generalized 

Word Posterior Probability (GWPP) and the N-best hypotheses.  

Combination of these two kinds of features is then investigated. 

1.  Feature based on GWPP 

We follow [6] to define GWPP as follows: 
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where a word hypothesis w starting at time s and end at time t is 

defined by [w; s, t], M is the number of words in a utterance 

hypothesis, t

sx  is the sequences of acoustic observations, T is the 

length of the complete acoustic observations.  α and β are 

acoustic and language model weights respectively. 

Given an utterance, we use the product of GWPPs of all 

words contained as the utterance’s feature [6].  We tuned α and β 

by grid search.  The optimal detection error rate is 16.0%.  

2.  Features based on the N-Best hypotheses 

For each utterance, we extract 30 features from the 20-best 

hypotheses of the corresponding recognition lattice.  These 

features are extracted based on the acoustic/LM scores and the 

purity information [1, 2, 7].  Experiments show that the 

classification performance of the combined features extracted from 

the N-best hypotheses is 15.1% in detection error rate. 

3.  Combination of the GWPP-based and N-Best-based features 

By incorporating the GWPP based feature into the N-best based 

feature set, we further reduced the detection error rate to 13.6%.  

The UC trained with this combined feature set will be used in the 

following experiments.  

3.3 Details on the Word Classifier 

For the word classifier, we use the GWPP of each word as its 

feature. We tuned α and β by grid search, and the optimal detection 

error rate is 19.0%.  In addition, for each word labeled as 

erroneous, the related confidence level is also assigned to the word 

as its confidence score. All the characters contained in the word 

share the word’s confidence score as their own confidence scores.  

4. THIRD PASS – ERROR CORRECTION 

4.1 A Six-Step Error Correction Procedure 

The basic idea for error correction is to first create a candidate list 

of alternatives for each erroneous character detected, and then 

re-rank these candidates with the aid of an advanced linguistic 

model in an attempt to correct the erroneous characters.  In view 

of the fact that linguistic models are usually based on the 

semantically meaningful word units instead of characters, we 

proposed below error correction procedure: 

Consider an utterance with some characters detected as erroneous: 

1. Expand each erroneous character into a candidate list of 

character alternatives (We will refer the list as Candidate 

Character List).  This forms a search network as below:  

       

              

 白       灰
 百       会
 拜       回在   新   闻   中   心                        议   长

 
Figure 1. An example of the search network 

2. All paths in the search network are considered as utterance 

hypotheses.  We use the LDC segmenter [10] to segment each 

hypothesized utterance into a word sequence.  

3. Apply an advanced linguistic model (e.g., the combined model 

of MI and trigram) to score each utterance hypothesis.   

4. Rank the utterance hypotheses.   

5. Candidate characters in the top hypothesis are selected as error 

correction results for the corresponding erroneous characters.  

In the above example, the hypothesis “在新闻中心拜会议长” 

(Meet the prolocutor at the news center.) is ranked at the top.  The 

two erroneous characters “白灰” (white ash) are corrected as “拜会” (meet) respectively. 

Since the second pass of error detection is not perfect, there 

exist a non-negligible number of correct characters that are 

incorrectly detected as errors.  Applying the third pass of error 

correction to these fake errors may introduce new errors.  

Therefore, we introduced an additional step to handle this problem: 

6. Compute the difference in scores (denoted as t) between the top 

hypothesis and the recognized utterance.  For each character 

detected as erroneous, the candidate character selected in step 5 

will be accepted only if t > f(x), where x is the confidence score 

of the erroneous character detected and f(x) is a threshold 

depending on x (Details will be elaborated in section 4.4). 

All the error correction experiments described in this section were 

conducted on a separate set of 8000 utterances. Details of the error 

correction procedure are given in the following sections. 

4.2 Creation of a Candidate Character List 

For each of the erroneous characters detected, we create a 

candidate character list based on the corresponding recognizer 

lattice.  The process is composed of two steps: 

1. Traverse the recognition lattice and select character hypotheses 

with starting and ending times similar to the erroneous character 

detected (i.e., when the mid-point of the starting and ending 

times of the erroneous character falls between starting and  



ending time of the character hypothesis).  Selected characters 

are included into the corresponding candidate character list. 

2. Rank the characters in the candidate list by their Generalized 

Character Posterior Probabilities (GCPP).  GCPP is defined in 

a similar way as GWPP [6]: GCPP is the summation of the 

posterior probabilities of all utterance hypotheses in the lattice 

bearing the focused character with similar starting/ending time. 

When computing the GCPP, we face a major problem that the 

lattice output from the initial recognition only includes 

starting/ending time of words.  Therefore, we assume that all the 

characters contained in one word have the same time duration and 

thus derived the starting/ending times of the constituent characters. 

We applied the candidate list creation approach described 

above to create candidate character lists for the 23,346 character 

substitution errors within the 8,000 utterance set. We define a 

coverage rate as the rate of inclusion of the reference character in 

the candidate character list, where reference characters are the 

correct characters given by the manual transcription. Our 

experiments show a coverage rate of 64.5% and the largest list 

contained 52 characters.  We further pruned the size of lattices to 

include top-20 candidates, and obtained a 64.4% coverage rate. 

Since the effect of this pruning level is minor while the 

computational complexity can be greatly reduced, we limit the 

candidate list size to 20 in the following experiments.  

4.3 The Error Correction Effect of Linguistic Models 

In this section, we analyze the error correction effect of mutual 

information (MI), trigram, and their combination. 

1.  Mutual Information 

Following [8], we define mutual information as the co-occurrence 

rate between two words within an utterance, shown as below: 
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N(x, y) refers to the times that both word x and word y appearing in 

an utterance.  Due to data sparseness, we smooth the MI model as:  
CyxNyxN +=′ ),(),(   

where C is a constant tuned by grid search. 

In a segmented utterance hypothesis obtained in step 2 of 

error correction, those words containing candidate characters are 

referred as target words.  For example, in the segmented 

hypothesis 在/新闻/中心/白/会议/长, the two candidate characters白 and 会 are included in two words 白 and 会议 respectively.   

Thus, 白 and会议 are the target words for this hypothesis.  To 

score a utterance hypothesis, the MI model first assigns each target 

word a score which is the average MI value of the word with all the 

other words in the hypothesis (Eqn. 1), and then assigns the 

average score of the target words as the hypothesis’s score (Eqn 2).  

 

 
 

where w1, w2, …wm is the word sequence of the utterance  
hypothesis; wk is a target word; n is the number of target words.  

2.  Trigram 

The word trigram model scores each utterance hypothesis as: 
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where w0 and wm+1 are the utterance beginning/ending symbols.  

3.  Combination of Mutual Information and Trigam 

We combine the MI and trigram models to score an utterance 

hypothesis by linear interpolation as shown below: 

)()1()()( hyporeTrigramScoahypoMIScoreahypoScore ∗−+∗=  

where hypo refers to the utterance hypothesis, a is the interpolation 

weight tuned by grid search.   

 We train both the MI and trigram models on the Mandarin 

Chinese News Text corpus from LDC, which contains about 250 

million characters.  The lexicon [10] utilized contains 44,402 

words.  To isolate the effect of error correction for performance 

evaluation, we assume that the error detection were perfect and 

apply the first 5 steps of error correction to the subset of utterances 

with only one substitution character error (1,003 out of the 8,000 

utterances). Among the 1,003 character errors, 660 characters have 

the reference characters contained in the candidate list, being 

possible to be corrected. For the 660 correctable character errors, 

the MI model corrects 48.0% of them, the trigram model corrects 

41.1%, and the combined model corrects 55.2%.  Hence, we adopt 

the combined model to score the utterance hypotheses.  

4.4 Error Correction in the Multi-Pass Framework 

This subsection investigates our proposed mechanism to handle the 

imperfection of error detection when applying error correction in 

the multi-pass framework. The main problem is that applying error 

correction after an imperfect error detection pass can convert a 

correct character incorrectly detected as error to a real error. We 

attempt to relieve this problem by introducing a threshold f(x).  

For each erroneous character detected with confidence score x, if 

the score difference between the corresponding top hypothesis with 

the recognized utterance is less than f(x), we will keep the character 

unchanged. 

 The threshold f(x) is obtained by a data-driven approach.  

We first apply the error detection procedure to the 8000-utterance 

set used in this section.  Then, we apply the error correction to the 

3,528 utterances considered as lightly erroneous, that is, with 1-4 

characters labeled as erroneous. We focus on these lightly 

erroneous utterances because both mutual information and trigram 

require reliable context to effectively correct errors.  While a 

character labeled as correct is 90% possible to be correct, the 

coverage rate of the candidate list for a character labeled as 

erroneous is only about 76%.  Thus, the more characters labeled 

as erroneous in one utterance, the less reliable the context will be.   

Within those 3,528 utterances error correction focused on, 

there are 8,443 characters labeled as erroneous.  We first divided 

them into several bins based on their confidence scores.  Then, for 

each bin with confidence score xi, we used grid search to find the 

threshold f(xi) which provides optimal error correction performance 

for errors in that bin.  After analyzing the relation between xi and 

f(xi), we adopt below formula for the 6th step of error correction: 
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f0 and f1 are tuned by grid search separately on those character 

errors detected with corresponding confidence scores.   

5. PERFORMANCE EVALUATION 

1. The First Pass of Initial Recognition 

We evaluated the performance of the multi-pass framework on an 

independent test set of 4000 utterances of Mandarin dictation 

speech.  The first pass decodes the utterances with 19.9% CER.   
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Characters detected as erroneous
4361

Erroneous characters

(i.e., correctly detected errors)
2813

Correct characters

(i.e., incorrectly detected errors)
1548

Corrected:   830

Not corrected: 1983

Corrected:   605

Not corrected: 2208

Remaining correct:         820“Corrected”into errors: 728

 Remaining correct:        1164“Corrected”into errors: 384

If apply the first 

5 steps of EC

If apply all the 

6 steps of EC  
Figure 2. The performance of error correction. EC refers to the error 

correction procedure 

The CER is relatively high since many utterances are in 

novel-domain and are hard to be handled by language models. 

2. The Second Pass of Error Detection 

The second pass labels each recognized character as correct or 

erroneous with a detection error rate of 14.5%, as shown below: 

 Classified as correct Classified as error 

Correct char. 47,042 3,412 [fake errors] 

Incorrect char. 5,610 6,324 

Table 1. The performance of error detection 

The results in Table 1 show that 53.0% of the erroneous 

characters can be detected.  Although only 6.8% of the correct 

characters are incorrectly labeled as erroneous, the percentage of 

fake errors among all errors is as high as 35.0%.  

We further divided the 4,000 test utterances into three subsets 

based on the number of characters labeled as erroneous: 1) The 

1,415 utterances with all words labeled as correct have 6.2% CER; 

2) The 1787 utterances with 1-4 erroneous characters labeled have 

20.1% CER; 3) The 798 utterances with more than 4 erroneous 

character labeled have 36.5% CER.  We labeled the three subsets 

as correct, lightly erroneous, and seriously erroneous respectively. 

3. The Third Pass of Error Correction 

We applied the third pass of error correction to the subset of lightly 

erroneous utterances.  In these 1,787 utterances, there are 4,361 

characters detected as erroneous. We attempted to correct these 

characters by the six-step error correction procedure.  The 

experiment results are illustrated in Figure 2.  We evaluated the 

performance of error correction in terms of accuracy of the 4361 

character set, since all other characters remain the same.  Here 

accuracy refers to the percentage of correct characters in the 

character set. Before error correction, there are 1548 correct 

characters in this character set. The accuracy is 35.5%. After 

applying the first 5 steps of error correction, we increase the 

accuracy to 37.8%, the number of correct characters being 1650 

(830+820).  Applying the 6th step further improves the accuracy to 

40.6%, the correct character number being 1769 (605+1164).  

This shows that the 6th step, which is designed for handling the 

confusion introduced by the imperfect error detection pass, benefits 

error correction significantly.  Although by applying the 6th step, 

less erroneous characters are corrected, the number of new errors 

introduced by “correcting” a correct character into real errors is 

greatly reduced. 

In order to further investigate the error correction performance 

in isolation, we assumed the error detection were perfect, and 

applied the first 5 steps of error correction on those utterances with 

one to four erroneous characters.  We found that by error 

correction, we can correct 29.9% errors contained. 

4. Overall Multi-Pass Framework 

We further evaluated the multi-pass framework in terms of CER.  

While the CER of 1st and 3rd sets of utterances remain unchanged, 

that of the 2nd set utterances reduces from 20.1% to 19.3%.  The 

relative CER reduction is 4.0%.  As an initial prototype of the 

multi-pass framework, this result is encouraging.  And there are 

many possible directions for further improvement.  Besides 

improving error detection, increasing the error correction ability 

may be especially worth our efforts. The better the error correction 

performs, the less the correct characters incorrectly detected will be 

turned to new errors.  Thus, the influence of the error detection 

defect will be reduced. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we present a prototype of the multi-pass (initial 

recognition, error detection, and error correction) framework [1, 2] 

based on Mandarin dictation.  The second pass of error detection 

introduces a new 3-step error detection procedure.  The character 

detection error rate is 14.5%, or 53.0% of the erroneous characters 

can be detected.  The third pass of error correction involves a 

novel correction algorithm employing a combined model of mutual 

information and trigram.  Around 29.9% of erroneous characters 

can be corrected in those utterances with 1-4 errors when the error 

detection procedure is error-free.  By combining the three passes 

in the multi-pass framework, our Mandarin dictation experimental 

results show that this framework can achieve a 4% relative 

reduction in CER over the initial recognition performance on the 

lightly erroneous utterances.  This result is encouraging, proving 

the feasibility of the multi-pass framework. In the near future, we 

plan to incorporate more linguistic models, such as the 

discriminative trained model [9], into the multi-pass framework, 

and develop more effective error correction mechanism. 
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