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ABSTRACT

With the increase of elderly population, Alzheimer’s Disease (AD),

as the most common cause of dementia among the elderly, is affect-

ing more and more senior people. It is crucial for a patient to receive

accurate and timely diagnosis of AD. Current diagnosis relies on

doctors’ experience and clinical test, which, unfortunately, may

not be performed until noticeable AD symptoms are developed.

In this work, we present our novel solution named time-aware

TICC and CNN (TATC), for predicting AD from actigraphy data.

TATC is a multivariate time series classification method using a

neural attention-based deep learning approach. It not only performs

accurate prediction of AD risk, but also generates meaningful in-

terpretation of daily behavior pattern of subjects. TATC provides

an automatic, low-cost solution for continuously monitoring the

change of physical activity of subjects in daily living environment.

We believe the future deployment of TATC can benefit both doctors

and patients in early detection of potential AD risk.
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• Information systems→Datamining; •Computingmethod-

ologies→ Neural networks;
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1 INTRODUCTION

The world is witnessing a dramatic increase of elderly population.

It is reported by UN1 that 1 in 5 on this planet will age 60 or older

by 2050. Alzheimer’s Disease (AD), the most common cause of

dementia among the elderly, is an irreversible and progressive neu-

rodegenerative disease that destroys memory and other important

mental functions, resulting in the loss of intellectual and social

skills [14]. It is estimated that AD will double its frequency in the

next 20 years [1]. AD symptoms are gradually developed and in

many cases are not easily recognized by patients or caregivers until

severe behavioural and cognitive changes happen. It is critical to di-

agnose the cognitive status of a patient related to AD in an accurate

and timely manner, so that effective strategies can be implemented

to prevent cognitive decline of the patient. Unfortunately, current

diagnosis of AD relies on doctors’ experience and clinical test such

as Montreal Cognitive Assessment (MoCA) or magnetic resonance

imaging (MRI), which is very costly. Patients may lose the best

opportunity of timely diagnosis and treatment.

A recent study [17] has identified physical activity as one of the

modifiable risk factors for AD. Meta-analysis of prospective studies

[24] has also reported that physical activity has a significant protec-

tive effect against AD. In this context some studies [28, 29] begin to

use wrist-worn devices such as actigraphs to assess objective and

continuous physical activity records in free-living environment, in

the hope of understanding the characteristics of physical activity

among people with different cognitive status related to AD. Moti-

vated by these findings, this paper aims to address the following

problem using a data mining approach: can actigraphy data be used

to predict Alzheimer’s Disease? To this end, we launched the project

of Hong Kong Alzheimer’s Disease Study in 2016, in which 560

Chinese men and 500 Chinese women aged 65 years and older

were recruited. Subjects are further categorized into three cogni-

tive groups related to AD and are required to wear an actigraph

for recording their physical activity. As the recorded actigraphy

data is a time series, we formulate our problem as a time series

classification problem.

In the literature, many methods (e.g., [3, 4, 23]) have been pro-

posed on time series classification. Most of them only consider the

1http://www.un.org/esa/population/publications/worldageing19502050/pdf/
90chapteriv.pdf
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relative temporal order between the series of data points, but ig-

nore the absolute clock time associated with them. Two time series

sequences that have identical values but happen at differen time

are regarded the same. This assumption does not hold in our sce-

nario, as the absolute time matters in our problem. As an example,

a subject with a low level of physical activity at 01:00am is clearly

different from another subject with a similar level of activity at

10:00am, since the former can be interpreted as sleeping at night

whereas the latter as physically inactive in daytime. In medicine,

the absolute clock time in monitoring patients’ behavior is closely

related to the effect of biological clock/circadian rhythm, which has

been proved to be very important in the Nobel Prize in Medicine

20172. Thus the absolute clock time should be considered in our

classification model.

In our model design, another important consideration is its abil-

ity of providing meaningful interpretation of the actigraphy data,

which corresponds to the daily behavior pattern of subjects, e.g.,

sleeping, exercising, light activity, etc. This motivates us to design

a multivariate time series classification model called time-aware

TICC and CNN (TATC). It is a neural attention-based deep learning

model that provides meaningful interpretation. In TATC, we take

a composite representation learning approach to extract discrimi-

native features using both unsupervised and supervised learning.

TICC [12] is the unsupervised component that infers hidden states,

e.g., sleeping and exercising, from time series. CNN is the super-

vised component to learn discriminative temporal features from

time series. Then we utilize a time-aware attention mechanism to

capture the effect of circadian rhythm by learning context weights

for different time intervals.

Our contributions are summarized as follows.

• We take a data mining approach to predicting AD from

actigraphy data collected under the project of Hong Kong

Alzheimer’s Disease Study. Our proposed TATC method pro-

vides an automatic, low-cost solution for continuously mon-

itoring the change of physical activity of subjects in daily

living environment. We believe the future deployment of

TATC can benefit both doctors and patients in early detection

of potential AD risk.

• We design and implement TATC, a neural attention-based
deep learning model for multivariate time series classifica-

tion. We use a time-aware attention mechanism to model the

effect of circadian rhythms. TATC outperforms three base-

lines for time series classification with promising prediction

performance. It also provides meaningful interpretation of

the inferred hidden states, which corresponds to the daily

behavior pattern of subjects.

• We report our experiences and insights gained from this

study, in particular, on data collection and its practical value

to clinical diagnosis.

The remainder of this paper is organized as follows. Section 2

describes our data collection procedure and the data format. Section

3 presents the design of TATC. Section 4 reports the experimental

results. Section 5 summarizes our lessons and insights gained in this

study. Section 6 reviews related work. Finally, Section 7 concludes

the paper.

2https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/

2 DATA COLLECTION

Our study targets subjects who are 65 years and older in Hong Kong

and may suffer from AD. We use actigraphy data which records

their physical activity to predict AD. This motivates the design

of TATC, yet our methodology is potentially applicable to some

other diseases such as Parkinson’s disease. In this section, we first

provide a description of participants enrolled in this project, and

then describe the format of the data for our analysis.

2.1 Participants

The project of Hong Kong Alzheimer’s Disease Study was initiated

by Prince of Wales Hospital3 in 2016. Subjects aged 65 years and

older were recruited under the project. 560 Chinese men and 500

Chinese women were enrolled, among who some subjects have

been diagnosed early stage of AD in memory clinics or geriatrics

clinics and taken AD drugs for at least 3 months. During 2016 –

2017, the cohort was invited for a repeated questionnaire interview

and measurement of physical performance.

To evaluate the subjects’ cognitive status, their cognitive function

was assessed by the validated Hong Kong version of Montreal

Cognitive Assessment (HK-MoCA) [27]. The whole scale has a total

score of 30, and 21/22 is the cutoff score to differentiate cognitive

impairment from cognitive normal. Participants who scored 22 or

below were suggested for further diagnosis by the clinical doctor.

Based on their MoCA score and doctor’s diagnosis, participants

were categorized into three cognition groups: normal control (NC),

mild cognitive impairment (MCI) and Alzheimer’s Disease (AD).

For the group of NC, no symptom of AD is exhibited. For the group

of MCI, the symptoms related to the thinking ability may start

to be noticeable to caregivers but they do not affect the daily life

of subjects [1]. For the group of AD, the dementia may affect the

subjects’ daily life. Out of 1,060 subjects enrolled in this project, 729

had their cognitive status evaluated and actigraphy data properly

recorded. Among the 729 subjects, 441 of themwere classified as NC,

103 were MCI, and 185 were AD. There were still 331 subjects who

did not complete the procedure either because they did not come

to hospital to see the doctor or because their actigraphy data was

not valid. The criterion of judging whether the collected actigraphy

data is valid or not is illustrated in Section 2.3.

2.2 Personal Particulars of Subjects

In the interview questionnaire, three types of subject information

are collected. The first type is the personal information of subjects,

including gender, age, years of education (MASCH), and body mass

index (BMI). The second type is the clinical history of subjects.

Specifically, subjects were asked whether they had diabetes before

(MHDIAB) and whether they had heart disease before (MHMI).

The third type records physical test results of subjects, including

their maximum grip strength (GRIPAM) and average walking speed

(GAITSPEED). The three types of features are listed in Table 1. The

statistics of these feature values for subjects in NC, MCI and AD

groups are displayed in Table 2.

3http://www3.ha.org.hk/pwh/index_e.asp
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Table 1: Features of personal particulars

Type Notation Meaning

Personal information

Gender M=male, F=female

Age 65 years and older

MASCH years of education

BMI body mass index

Clinical history
MHDIAB medical history of diabetes: Y=Yes, N=No

MHMI medical history of heart disease: Y=Yes, N=No

Physical test
GRIPAM maximum grip strength (kg)

GAITSPEED walking speed (m/s)

2.3 Physical Activity Records

Besides the information collected in the interview questionnaire,

participants were invited to wear an actigraph GT3X (Pensacola,

Florida, USA) on their non-dominant wrist for 7 consecutive days,

except when bathing or swimming. The actigraph GT3X is a small

device used for capturing and recording continuous, high resolution

physical activity. It contains a 3-axis accelerometer and a light

sensor. The accelerometer monitors general arm movement and

yields acceleration in three axes in 60-second epochs, which we

denote as Xacc , Yacc , and Zacc thereafter. The light sensor records
ambient light in the same frequency, which we denote as Lux . Thus
we get a 4-dimensional vector as I = [Xacc ,Yacc ,Zacc ,Lux] every
minute for each subject. Through 7 consecutive days, we obtain a

time series in the form of
〈
(I1; t1), (I2; t2), . . . , (Ik ; tk )

〉
, where Ik is

the vector [Xacc ,Yacc ,Zacc ,Lux] recorded at time tk .We exemplify
a time series fragment generated by the actigraph in a 3-minute

window in Table 3.

Since physical activity is closely related to the 24-hour biological

clock, we generate an average circadian activity of a subject in a

24-hour time span. Specifically, for every minute of a day, e.g., 23:59,

we collect the records of a subject at that minute through 7 days

and compute a 7-day average. Thus, for each subject, the average

circadian activity is represented as a 4-dimensional multivariate

time series consisting of 1,440 timestamps, one for eachminute in 24

hours. In case subjects forgot to put on the actigraph after bathing

or swimming, there are some non-wear periods. We apply methods

proposed in [8] to detect these periods. We ignore such non-wear

periods when the average function is applied. For example, given

a subject’s Xacc values at timestamp 23:59 of 7 consecutive days
as 6, 3,Null ,Null , 4, 12, 1, where Null represents no record in a
non-wear period, the average Xacc of that subject at timestamp
23:59 is calculated by (6 + 3 + 4 + 12 + 1)/5 = 5.2. If the entries of a
subject at the same minute through 7 days are all Null , we denote
the minute as missing timestamp, and fill in the average values of

all the subjects at the same minute. We consider a time series to be

valid if the number of missing timestamps is less than 720 out of

1,440 (i.e., half a day).

To illustrate the behavior of each group, we take the time series

data of all subjects within the same group and compute a group

average. Figure 1a is a plot of the group average circadian activity in

terms ofXacc of the three groups NC (plotted in blue), MCI (plotted
in orange) and AD (plotted in green) in 24 hours, respectively.

Figure 1b is a plot of the group average circadian activity in terms

of Lux of the three groups in 24 hours.

(a) Average circadian activity by Xacc of NC (blue), MCI

(orange) and AD (green)

(b) Average circadian activity by Lux of NC (blue), MCI

(orange) and AD (green)

Figure 1: The group average circadian activity per minute

by three groups. Themain gaps between each pair of groups

appear in the wake-up time, morning and afternoon.

2.4 Observations

Based on the group average circadian activity, we can make the

following observations.

• MCI subjects are very similar to NC subjects from bothmotor

movement measured by Xacc and ambient light measured
by Lux , while AD subjects are well separated from NC and

MCI subjects in the daytime.

• The difference between groups varies over time. In the evening
the difference is not obvious. The first big gap appears in

the wake-up time (i.e., 4:00 – 8:00am) in which NC and MCI

subjects become quite active while AD subjects are not. Com-

pared with NC, MCI subjects show bigger variance in both

Xacc and Lux .

Similar observations can be made from the measurements of Yacc
and Zacc . From the above observations, we conclude that different

time intervals have different degree of importance, thus we should

pay more attention to some specific time intervals, such as wake-up

time, morning, and afternoon.

3 THE PROPOSED TATC MODEL

TATC is designed to predict Alzheimer’s Disease based on the col-

lected actigraphy data. We formulate this problem as a classification

problem whose outcome is a probability that the subject has the

disease. Specifically, we construct two binary classifiers: one on AD

versus NC, and the other on MCI versus NC. Formally, suppose that

we are given a set of subjects’ data denoted as D = {(Xi ,yi )}mi=1,
where Xi is the multivariate time series representing the average
circadian activity of subject i , yi is the true class label, andm is the
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Table 2: Statistics of personal information of subjects in NC, MCI and AD groups

Group No. of subjects Age MASCH BMI MHDIAB MHMI GRIPAM GAITSPEED

NC 441 (M/F: 287/154) 82.4±3.6 7.7±4.9 23.5±11.2 Y/N: 89/352 Y/N: 50/391 24.9±4.7 0.8±0.2

MCI 103 (M/F: 57/46) 83.3±3.6 4.3±4.4 23.4±10.8 Y/N: 21/82 Y/N: 9/94 18.4±6.1 0.8±0.2

AD 185 (M/F: 68/117) 80.6±5.8 6.5±6.0 23.5±12.5 Y/N: 50/135 Y/N: 20/165 14.2±6.1 0.6±0.2

Age, MASCH, BMI, GRIPAM, GAITSPEED are listed as mean±standard deviation.

Table 3: A multivariate time series example generated by

actigraph GT3X

SubjectID Date Time Xacc Yacc Zacc Lux

HK0001 20161001 23:59 23 8 5 0

HK0001 20161002 00:00 32 15 9 4

HK0001 20161002 00:01 7 5 2 0

number of subjects, the target is to train a classification model to

predict the class label for any subject given his/her actigraphy data.

In the literature, many methods on time series classification

ignore the absolute clock time associated with the series of data

points. Two time series sequences that have identical values but

happen at different time are regarded the same. But this assump-

tion does not hold in our scenario. A subject with a low level of

activity at 01:00am is clearly different from another subject with

a similar level of activity at 10:00am. According to the observa-

tions in Section 2, the actigraphy data exhibits a clear circadian

rhythm that is controlled by the human biological clock. Different

time intervals have different degree of importance to differentiate

the behavior of the three groups of subjects. This motivates the

design of TATC which integrates the absolute clock time into the

model. In TATC, we first take a composite representation learning

approach to extract meaningful features using both unsupervised

and supervised learning. Then we utilize a time-aware attention

mechanism to model the effect of circadian rhythm. Based on the

composite feature representation and time-aware attention, we use

RNN to model the whole time series and capture the global tem-

poral dependencies in the time series. Finally, we take the output

of the RNN model as input, and construct a binary classifier for

prediction. Figure 2 depicts the overall framework of TATC.

In this section, we first introduce the composite feature repre-

sentation learning approach, and describe the time-aware attention

mechanism. Then we present temporal dependency modeling meth-

ods.

3.1 Composite Feature Representation
Learning

To build a classifier for AD prediction, we need to extract discrimi-

native features from the actigraphy data. We define two types of

features that are complementary to each other. The first type of fea-

tures describes the daily behavior pattern of subjects, e.g., sleeping,

exercising, etc., which provides an interpretable representation of

the raw, high-dimensional actigraphy data. This type of features

is learned by Toeplitz Inverse Covariance-based Clustering (TICC)

Personal 
Particulars

Subjects

Attention

CNN

TICC

GRU

CNN

TICC

GRU

CNN

TICC

GRU

Classifier

Output

Time series 

Figure 2: Framework of the proposed TATC model

[12], in an unsupervised learning approach. The second type of

features is learned by Convolutional Neural Network (CNN), in a

supervised learning approach by leveraging the class labels of the

training data. We use the composite representation of these two

types of features to characterize a time series.

3.1.1 TICCRepresentation. The actigraphy data can be expressed

as a timeline of a small number of hidden states, which correspond

to the daily behavior pattern of subjects, e.g., sleeping, exercising,

etc. Such hidden states, once inferred from the time series, can be

used as an interpretable representation of the raw, high-dimensional

actigraphy data, and leveraged to learn the classification model. To

this end, we apply Toeplitz Inverse Covariance-based Clustering

(TICC), recently proposed by Hallac et al. [12], on the actigraphy

data to infer the hidden state for each timestamp, and construct the

TICC representation based on the hidden states.

Given a subject’s average circadian activity time series X =
〈x j 〉Tj=1 where T = 1, 440 and x j is a 4-dimensional vector, to infer
the hidden state for each timestamp, TICC assigns each timestamp

to one Gaussian inverse covarianceΘk by minimizing the following

objective function:

min

κ∑

k=1

∑

x j ∈Pk
−ζ (x j ,Θk ) + β�{x j−1 � Pk }. (1)

In (1), κ is the number of hidden states. Pk is the corresponding
cluster of hidden state k . �{x j−1 � Pk } is the indicator function
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indicating that the previous hidden state is different from the cur-

rent hidden state. β is the penalty parameter. ζ (x j ,Θk ) is the log
likelihood that x j belongs to Pk . The Gaussian inverse covariance
Θk inferred by (1) represents the daily behavior pattern of subjects,

such as sleeping and exercising. It is worth pointing out that the

penalty term �{x j−1 � Pk } is vital to ensure the temporal con-
sistency of subjects’ behaviors. This penalty makes sense since a

subject cannot jump from sleeping to exercising and then back

to sleeping again in several minutes. By solving the optimization

problem in (1), we can infer the hidden state of each minute.

To construct the TICC representation, we propose to abstract

the minute-level time series X = 〈x j 〉Tj=1 into a coarse-grained rep-
resentation, in the unit of a longer interval, e.g., an hour. There are

two considerations for this interval-level representation: (1) The

minute-level representation yields high-dimensional features. This

may pose a challenge considering the number of subjects partic-

ipating in this project is relatively small. Using a longer interval

as the representation unit reduces the dimensionality; and (2) It is

unnecessary to characterize the daily behavior pattern of subjects

with such a fine granularity as minute. For example, it suffices to

know that a subject usually wakes up during 5:00 – 5:30am, but it

does not make a big difference, be it 5:00am or 5:01am. With these

considerations, we segment a time series X into n equal-length

subsequences, i.e., X = 〈X j 〉nj=1, X j = 〈x j ,x j+1, . . . ,x j+T /n−1〉. In
each subsequence X j , we infer the hidden state for each minute

by (1) and calculate the distribution of hidden states. For example,

suppose n = 24, i.e., we segment a time series of a day into 24

intervals and each interval lasts one hour. We then calculate the

distribution of hidden states in an hour. Suppose there are totally

κ = 5 hidden states, and in an hour the counts for each hidden state
are 15, 15, 12, 12, 6, then the hidden state distribution for that hour

is 25%, 25%, 20%, 20%, 10%. After calculating the distribution of hid-

den states in each interval, we obtain the temporal representation

TICC ∈ Rn×κ for a subject over n intervals.
3.1.2 CNN Representation. Besides the TICC representation, we

also use Convolutional Neural Network (CNN) to learn discrimina-

tive temporal features from the time series in a supervised approach.

In CNN, a filter is used to do convolution operations with different

temporal subsequences within the timespan of the filter. Similar to

the segmentation in Section 3.1.1, we first segment a time series

X into n equal-length subsequences 〈X j 〉nj=1. In each subsequence,
we calculate γ statistics for each univariate time series separately.
Specifically, we consider γ = 4 types of statistics: mean, standard
deviation, max value and cross zero rate (CZR). The definition of

CZR for a subsequence X j is:

CZR (X j ) =
1

T /n − 1
T /n−1∑

t=1

�{(x j+t − μ ) (x j+t−1 − μ ) < 0}. (2)

In (2), μ represents themean value of the subsequence, and�{(x j+t−
μ ) (x j+t−1 − μ ) < 0} is the indicator function indicating that for any
two adjacent timestamps one value is larger than μ while the other
one is smaller. Suppose we still segment a time series into 24 inter-

vals and each interval lasts one hour. We then calculate 4 statistics

forXacc ,Yacc ,Zacc ,Lux , respectively. Thus we get 4×4 = 16 statis-
tics every hour. The statistics calculated from the j-th subsequence

of a subject, X j , can be represented by a vector:

c j = [f1 (X j ), f2 (X j ), f3 (X j ), f4 (X j )], (3)

where f1, f2, f3, f4 represent the mean, standard deviation, max
value and CZR functions, respectively. Over n intervals, the sta-
tistics for a subject are denoted by C = 〈c1,c2, . . . ,cn〉, and C ∈
R
n×4γ .
It is known that hierarchically integrated multi-layer CNN is

very powerful in learning non-linear discriminative features when

sufficient training samples are provided. But given the small num-

ber of subjects in our problem, the multi-layer CNN would suffer

from serious overfitting. To alleviate this issue, we use a single-layer

CNN which takes the statistics inC as input to learn the feature rep-

resentation. It is worth mentioning that since we are working with

temporal data, the CNN filters are all 1-dimensional. Specifically,

we rewriteC ∈ Rn×4γ asC = [c̄1, c̄2, . . . , c̄4γ ], where c̄k ∈ Rn . To
detect one kind of temporal features fromC for interval j , we apply
the following calculation:

CNNj = ReLU(b +

4γ∑

k=1

[

L∑

l=1

Fk (l )c̄k (j − l )]), (4)

where b is the bias, L is the length of filter and Fk is the filter

working on dimension k . By detecting one kind of temporal features
with (4), we get 1-dimensional CNN representation for the current

channel. Thus for α kinds of temporal features, the final CNN

representation of a subject can be written asCNN ∈ Rn×α .
By combining the TICC representation and CNN representation,

we obtain the composite representation TC ∈ Rn×(κ+β ) over n
intervals:

TC = [TICC,CNN ]. (5)

3.2 Time-aware Attention

In this subsection, we propose a time-aware attention mechanism to

deal with the effect of circadian rhythm. In general, the basic assump-

tion of the attention mechanism is that only selective parts of input

features are informative for the end learning task. Specifically, in

our problem setting, different time intervals in a day have different

degree of importance to differentiate the three groups of subjects,

which can be realized by the time-aware attention mechanism. In

the following, we first describe how to learn the attention weights

for different time intervals based on the composite representation

TC . Then we transformTC into the time-aware representation with

the attention weights.

To learn the attentionweights for different time intervals, we first

embed the multivariateTC into a univariate time series by a linear

model. There are two considerations for this embedding: (1) we

do not need to differentiate variates within the same time interval;

and (2) we can reduce the number of parameters compared with

learning the attention weights directly from TC . Formally, given
TC = 〈tc j 〉nj=1, where each tc j is a (κ + β )-dimensional vector for
the composite representation of the j-th interval, we embed tc j
into a scalar by:

Sj = ETtc j + b0. (6)

Here E ∈ Rκ+β is the shared weight parameter of all time intervals,
b0 ∈ R is the bias. Hence the required parameter number is (κ+β+1).
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After getting a univariate time series S = 〈Sj 〉nj=1, we learn an

attention weight for a specific time interval j by:

α j =W
T

j S, (7)

whereWj ∈ Rn is an n-dimensional vector of parameters. To obtain
the attention weights α = {α j }nj=1 for n time intervals, we need n2
parameters. Together with the number of embedding parameters,

the total number of parameters needed is (n2 + κ + β + 1).
After that, a softmax operator is applied onα andwe get the time-

aware attention mechanism specially for limited training samples.

For each time interval in TC = 〈tc j 〉nj=1, we combine the feature
representation tc j with the corresponding attention weight α j , and
get the time-aware representation as TCα = 〈[α j , tc j ]〉nj=1. Note
that this time-aware attention is learned using backpropagation,

thus it is a data-driven approach to evaluating how important a

specific time interval is in contributing to the prediction of AD.

3.3 Temporal Dependency Modeling

Recurrent Neural Networks (RNN), such as Long Short-Term Mem-

ory recurrent neural network (LSTM) and Gated Recurrent Unit

(GRU) [9], are famous for their excellent performance in modeling

the long-term temporal dependencies in time series data. In our

solution, we use GRU to capture the temporal dependencies, since

GRU can achieve the same level of performance but requires fewer

parameters compared with LSTM. The consideration to take the

temporal dependencies into modeling is that subjects have some

long-term patterns and these patterns cannot be represented by

short-term representations such as TCα . For example, [10] finds
that some severe AD subjects have some disturbances in sleep-wake

cycles, and these kinds of patterns cannot be captured byTCα .
GRU can capture the long-term temporal dependencies by keep-

ing the recurrent hidden states inside. The hidden statehj is updated
upon the previous hidden state hj−1 with the input TCα and the

personal particulars of a subject, denoted as d , as defined in Section
2.2:

hj = ϕ (hj−1,TCα ,d ), (8)

where ϕ is a nonlinear function such as composition of a logistic
sigmoid with an affine transformation.

4 EXPERIMENTS

In this section, we validate the effectiveness of TATC for predicting

AD and MCI with actigraphy data.

4.1 Experimental Setup

4.1.1 Baselines and Metrics. We use three methods on time se-

ries classification as baselines: (1) Dynamic TimeWarping (DTW) [4],

implemented as a sum of squared DTW distances in each dimen-

sion; (2) BOSS [23]. As BOSS works on univariate time series only,

we train a base classifier on each univariate time series and build

an ensemble of four base classifiers; and (3) SMTS [3] which ranked

second in the gesture recognition competition organized by 2nd

ECML/PKDD Workshop on Advanced Analytics and Learning on

Temporal Data4. For fair comparison with these baselines, personal

4https://aaltd16.irisa.fr/challenge/

Figure 3: BIC score corresponding to different number of

clusters

Table 4: Number of parameters in the TATC architecture

Component Input Output #Parameters

CNN representation 24 × 16 12 × 2 64

max-pooling 12 × 2 6 × 2 0

TICC representation 24 × 5 24 × 5 0

max-pooling 24 × 5 6 × 5 0

TC representation 6 × (2 + 5) 6 × 7 0

attention 6 × 7 6 × 1 44

time-aware representation 6 × (1 + 7) 6 × 8 0

GRU 6 × 8 6 × 2 66

fully connected 6 × 2 2 26

logistic regression 2 1 3

total: 203

particulars of subjects are excluded from TATC and only actigraphy

time series is used.

Two binary classifiers are constructed: one on AD versus NC,

and the other on MCI versus NC. To handle the imbalanced class

distribution, we perform oversampling by SMOTE [6] on the AD

and MCI samples in the training set.

We perform 5-fold cross validation and report the average results.

In the medical domain, sensitivity, specificity, and Area Under the

receiver operating characteristics Curve (AUC) are most commonly

used metrics for evaluating the classification performance. In our

problem, sensitivity measures the recall of positives (i.e., AD or

MCI), and specificity measures the recall of negatives (i.e., NC).

4.1.2 Implementation details. We use minibatch based Adam

[15] to minimize the binary cross-entropy loss. He-normal [13] is

used as the initializer for CNN. The drop-out strategy is used in the

full connected layer with a rate of 0.3.

We use Bayesian Information Criterion (BIC) to decide the op-

timal number of clusters in TICC, which is set to 5 as shown in

Figure 3. According to BIC, we also discover the optimal penalty

β to be 400. The number of temporal features α in CNN is set to 2.

The number of time intervals n is set to 24. Detailed information of
TATC’s parameter size is listed in Table 4.

4.2 Results

The experimental results for predicting AD and MCI are listed in

Table 5 and Table 6 respectively. For predicting AD, TATC achieves

the best performance among 4 approaches, with a good balance
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Table 5: Quantitative comparison of different classifiers to

predict AD

Approach Sensitivity Specificity AUC

DTW 90.3% 47.5% 68.9%

BOSS 38.7% 91.3% 76.1%

SMTS 45.2% 92.5% 84.5%

TATC 80.6% 86.3% 86.2%

Table 6: Quantitative comparison of different classifiers to

predict MCI

Approach Sensitivity Specificity AUC

DTW 70.0% 48.3% 59.1%

BOSS 5.7% 95.5% 58.8%

SMTS 5.0% 91.0% 58.5%

TATC 42.3% 81.3% 61.7%

between sensitivity and specificity. It shows great promise of being

put into practice for early detection of AD. SMTS comes second,

with a high specificity but a low sensitivity of 45.2%. DTW is biased

towards AD, leading to a high sensitivity, but a low specificity and

AUC.

For predicting MCI, TATC still achieves the best performance.

We note that the classification performance is not as good as that

for predicting AD. In the literature of MCI research, MCI is further

categorized into stable MCI (sMCI) and progressive MCI (pMCI)

[25]. Subjects who convert to AD within 36 months are classified

as pMCI, and those who do not convert to AD are classified as

sMCI. sMCI subjects are physically as active as NC subjects. We

also observe in Figure 1 that the circadian activity of MCI and

NC subjects is very close, making it hard to differentiate these two

groups based on their physical activity. To improve the performance

of detecting MCI, we plan to explore the possibility of incorporating

other measurements besides actigraphy data.

We further evaluate the effectiveness of different components

of TATC in predicting AD. In this group of experiments, personal

features are included. Specifically we apply chi-squared test on the

features listed in Table 1 for the purpose of feature selection, and

select MASCH, MHDIAB, and GRIPAM as discriminative personal

features. The classification performance is listed in Table 7. In simple

classifier, only personal features are used, which achieves 65.6% in

AUC. cnn shares the same architecture with TATC, but does not use

TICC representation or time-aware attention. cnn achieves 79.7% in

AUC. ticc+cnn uses both TICC and CNN representation, but lacks

the time-aware attention mechanism. It achieves 83.6% in AUC.

TATC achieves the best performance by including all components,

demonstrating the effectiveness of the composite feature represen-

tation with TICC and CNN, the time-aware attention mechanism,

as well as the personal features.

4.3 Hidden State Interpretation

In this subsection, we interpret the hidden states learned by TATC.

As the optimal hidden state number is 5 according to BIC, 5 Markov

Table 7: Quantitative comparison of different com-

ponents of TATC to predict AD

Approach Sensitivity Specificity AUC

simple classifier 22.5% 92.5% 65.6%

cnn 64.5% 86.2% 79.7%

ticc+cnn 71.0% 81.3% 83.6%

TATC 73.5% 94.3% 88.2%

In simple classifier, only personal features are used. In cnn,

there is no TICC or time-aware attention. In ticc+cnn, there is

no time-aware attention.

Table 8: PageRank and mean values for five hidden states

State Interpretation Measure Xacc Yacc Zacc Lux

*1 good sleep
PageRank 0 0 0 0

mean 0 0 0 0

*2 sedentary activity
PageRank 0.37 0.37 0.26 0

mean 704 746 917 0

*3 light activity
PageRank 0.22 0.34 0.20 0.24

mean 932 972 1240 23

*4 moderate activity
PageRank 0.31 0.30 0.25 0.14

mean 1293 1281 1600 118

*5 exercising
PageRank 0 0 0 0

mean 2563 2238 2270 628

random field (MRF) are generated, each corresponding to a hid-

den state. An MRF is a weighted undirected graph which con-

sists of 4 vertices, and each vertex represents a variable from I =
[Xacc ,Yacc ,Zacc ,Lux]. If there is a partial correlation between two
variables within a hidden state, there is an edge connecting them

in the corresponding MRF. A large edge weight indicates that the

two variables are heavily dependent on each other. Notice for each

hidden state, its MRF will not change throughout time, thus the

MRF can be treated as a unique signature for each hidden state.

PageRank [21] is a commonly used graph analytic measure to quan-

tify the relative importance of each vertex inside a graph. We apply

PageRank to each of the 5 MRF to measure how influential a vari-

able is inside a hidden state. If a variable has a very high PageRank

value in an MRF, it means it has a strong capacity to influence other

variables. In addition to PageRank, mean value of each variable

reflects the intensity of body movement and ambient light. We list

the calculated PageRank and mean values in Table 8.

We infer an interpretation for each hidden state as follows. For

*1, as the PageRank and mean of Lux are both zero, we can infer that
ambient light in this hidden state does not change along with body

movement, meaning the circumstances do not change. Together

with the fact that the mean of all variables is zero, we interpret *1

as good sleep. For *2, with the same observation on Lux , we infer
the circumstances do not change. We also observe that *2 has the

second lowest movement as measured by the mean values, and

Xacc , Yacc and Zacc have a clear dependence of each other as re-
flected by PageRank. Thus we infer *2 as sedentary activity such as

disturbed sleep. As for *5, all mean values reach the maximum indi-

cating intensive body movement and high ambient light, whereas
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Breakfast
Taking train

Reading

Gym

Gym
Chatting

Sleep
23:45 – 05:45

Lying awake
05:45 – 08:00

08:00 – 09:20

09:20 – 10:45Lunch /Walking
13:10 – 15:00

10:45 – 12:30

Housework
15:00 – 17:10

17:10 – 18:30

Supper
18:30 – 20:00

Watching TV
20:00 – 22:00

Lying awake
22:00 – 23:45

Active exercising
moderate activity
light activity
sedentary activity
good sleep

Taking bus
1 : 0 – 1 : 0

Figure 4: Self-report daily activities along with inferred hid-

den states. Inner circle represents hidden states inferred by

TATC. Outer circle represents self-report activities.

all PageRank values are 0 indicating no clear dependence between

the variables. Thus we interpret it as exercising. For hidden states

*3 and *4, their patterns are quite similar. The difference between

these two is that acceleration and Lux are smaller for *3, which is
interpreted as light activity, whereas *4 is interpreted as moderate

activity. These can be regarded as a reasonable interpretation of

the 5 hidden states learned by TATC.

We have designed a detailed self-report questionnaire for sub-

jects to record their daily activities. We validate our interpretation

of the hidden states by aligning their reported activities along with

the hidden states in 24 hours. One NC case is exemplified in Figure 4.

With reference to the self-report activities, we get the real-world

interpretation of the hidden states. For example, lying awake and

watching TV are both clustered into hidden state *2 sedentary ac-

tivity, which makes sense because both of them involve low body

movements and Lux remains stable. Housework belongs to hidden
state *3 light activity since the subject needs to walk around inside

the house and Lux may also change. Gym is related to vigorous

body movement and is clustered into hidden state *5 exercising.

One interesting finding is that the subject is unaware of his/her

disturbed sleeping at night, while our method can capture light

body movement during sleep and interpret those short periods as

sedentary activity.

Based on the interpretation of the 5 hidden states, we compare

the circadian activity of AD and NC subjects. Along 24 hours, we

calculate the distribution of 5 hidden states for AD subjects (Figure

5a) and NC subjects (Figure 5b). We observe that AD subjects spend

nearly 85% of their time on either good sleep or sedentary activity,

versus 75% for NC subjects. Another interesting discovery is that

the difference between AD and NC subjects is more obvious during

4:00am – 12:00noon. NC subjects spend 20% time on exercisingwhile

AD subjects spend only 9% in the same period. NC subjects spend

20% time on moderate activity during 8:00am – 12:00noon while

AD subjects spend 13% only. This also proves that we should pay

different attention to different time intervals. In the next subsection

we give detailed analysis on the time-aware attention mechanism.

(a) Distribution of hidden states for AD subjects

(b) Distribution of hidden states for NC subjects

Figure 5: Circadian activity comparison between AD and NC

subjects

Figure 6: Average attention weight learned from NC and AD

subjects

4.4 Interpretation of Attention Mechanism

The motivation to apply time-aware attention in TATC is that dif-

ferent time intervals in a day have different degree of importance

to differentiate the three groups of subjects. To validate the effec-

tiveness of the attention mechanism, we plot the average attention

weight learned from the classification of AD versus NC subjects in a

24-hour time span in Figure 6. Indeed, we observe that different time

intervals have different attention weights. The largest attention

weight appears at 4:00 – 8:00am, which is the typical wake-up time

for the elderly. This is consistent with our observation in Figure

1 that the biggest gap between AD and NC appears during 4:00 –

8:00am. It also justifies our interpretation of hidden states in Figure

5 where we notice NC group exercises more and has less sedentary

activity than AD group. We also find that the time intervals 0:00

– 4:00am and 20:00 – 24:00pm have the lowest attention weights,

as this is sleeping time with little body movement. It is consistent

with our discovery in the hidden state interpretation that the two

groups are similar at these two intervals.

5 LESSONS AND INSIGHTS

This paper presents our experiences of applying deep learning

techniques to predict Alzheimer’s Disease based on the collected
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actigraphy data, and realize our ideas in a solution called TATC.

We summarize our lessons and insights gained from this project.

5.1 Data Collection

Data collection is very challenging with respect to the aged cohort.

As the average age of our subjects is above 80, engaging them

in repeated clinical assessments is not an easy task even though

we have standardized the procedures. For data collection from

actigraphy devices, the subjects were educated on the proper usage

of GT3X in the interview. But many subjects still forgot to put

on the device after bathing or swimming, or forgot to wear it for

various reasons. In addition, we have designed a detailed self-report

questionnaire for subjects to record their daily activities, but the

returned pieces are of low quality. In the end we could use only

20 self-report questionnaires for validation. An important lesson

is that our data collection procedure should be made simple and

bring little disturbance to subjects’ daily life, so that more valid and

valuable data can be recorded. In future work, we shall examine

the inclusion of other devices such as GT9X, which can be worn

during bathing and swimming.

5.2 Practical Value to Clinical Diagnosis

Traditional cognitive status diagnosis involves lots of clinical as-

sessments and clinic visits (see Section 2), which heavily rely on

the domain knowledge of doctors. These clinical assessments bring

much burden to patients and may deteriorate their cognitive status.

For those who have been diagnosed MCI, the progression fromMCI

to AD is unpredictable and there may be years or even dozens of

years before AD is developed. In such a long period, frequent clinic

visits become infeasible especially for those who refuse or have

difficulties in doing so, and patients may lose the best opportunity

of timely diagnosis and treatment.

Our proposed TATC method provides an automatic, low-cost

solution for continuouslymonitoring the change of physical activity

of subjects in daily living environment. The actigraphy data is sent

to the server on a daily basis, upon which the classification model

can be applied on the incoming data for prediction. Once potential

risk of AD is identified, doctors will be alerted immediately. Then

they can arrange clinic visits for subjects for further diagnosis and

treatment. We believe the future deployment of TATC can benefit

both doctors and patients in early detection of potential AD risk,

particularly for those who have been diagnosed MCI, as monitoring

the trajectory of changes is of great importance to them. This is the

most important contribution of this study to the medical domain.

6 RELATEDWORK

This work is related to time series representation, attention-based

neural network and healthcare interpretations.

Time series representation techniques can be generally classified

into two groups. The first group is non-transformed techniques.

Representative works include SAX [16], Shapelets [26], TSF [11],

and DTW [4]. This group of techniques works in the original time

domain and represents time series as a common shape (e.g., DTW),

or divides time series into several segments and represents them ac-

cordingly (e.g., SAX and TSF). In contrast to these non-transformed

techniques, the second group transforms time series into another

space. Representative works include SVD [5], BOSS [23], SMTS [3],

MFCC [18], and CNN [20]. This group, especially CNN-based rep-

resentation, has become quite popular in recent years for its good

performance in classification.

Attention-based neural network has been successfully used espe-

cially in machine translation [2] and sentence summarization [22].

In healthcare domain the effectiveness of this mechanism has also

been demonstrated by RETAIN [7] and Dipole [19] on Electronic

Health Records (EHR). To interpret how attention works, Dipole

exemplifies several patient visits and analyses why some visits are

more important than others.

Understanding the hidden states behind the observed time series

is vital for healthcare applications. In [20], a deep neural network is

trained to connect the observed data and the hidden activity. In [12]

each hidden state is represented by a Markov random field, and

graph analytics such as betweenness centrality is used to achieve

reasonable interpretation.

7 CONCLUSION

We design a multivariate time series classification method TATC

for predicting AD with actigraphy data. TATC takes a neural deep

learning approachwith time-aware attention formodeling the effect

of circadian rhythm. It achieves promising prediction performance

in terms of sensitivity, specificity and AUC. It also generates mean-

ingful interpretation of daily behavior pattern of subjects. TATC

shows great potential and practical value in continuous monitoring

of physical activity of subjects and in early detection of AD risk.

For future work, we plan to explore the possibility of incorporating

other measurements for predicting MCI.
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