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Abstract
This paper investigates acoustic modeling using the hy-
brid DBN-HMM framework in mispronunciation detec-
tion and diagnosis of L2 English. This is one of the first
efforts that compare the performance of DBN-HMM with
that of the best-tuned GMM-HMM trained in ML and
MWE on the same set of features. Previous work in ASR
has also shown the necessity of unsupervised pre-training
for DBNs to work well. We explore further the effect
of training our ASR engine in an unsupervised manner
with additional unannotated L2 data from the test speak-
ers. This is compared with the original ASR that has been
trained with annotated data in a supervised manner. Ex-
periments show that DBN-HMM can give significant im-
provement (between 13-18% relative in word pronuncia-
tion error rate) but is computationally more expensive.
Index Terms: mispronunciation detection and diagnosis,
restricted boltzmann machine, deep belief network

1. Introduction
Mispronunciation detection and diagnosis (MD&D) in
L2 speech, as a typical application in computer-aided pro-
nunciation training, needs to discern acoustically similar
but phonetically different phones. Although automatic
speech recognition (ASR) technology seems to be a good
fit for MD&D, the latter actually presents a higher re-
quirement in acoustic modeling due to the heterogeneous
deviations of L2 speech from native productions. There-
fore, researchers design dedicated features or classifiers
[1][2] to enhance discriminability. As shown in our pre-
vious work, we can still exploit the hidden Markov model
(HMM) paradigm, which is the predominant technique
in state-of-art ASR, by explicitly modeling mispronunci-
ations [3]. The standard HMM formalism uses a sepa-
rate Gaussian mixture model (GMM) to model the con-
ditional distribution of speech signal spectrum for each
state in a phone, which is often considered insufficient in
discriminability based on the maximum likelihood (ML)
criterion. However, this can be remedied to a certain ex-
tent by discriminative training [4].

The deep belief network (DBN) is a probabilis-

tic generative model composing of multiple layers of
stochastic latent variables. A layered, unsupervised pre-
training algorithm stacks up restricted Boltzmann ma-
chines (RBMs) from bottom up to construct a deep neu-
ral network [5]. Fine-tuning the pre-trained deep net
using back-propagation or other approaches is found to
achieve better classification performance than those with-
out pre-training. Deep nets also outperforms shallow
nets. Hence, it is re-gaining popularity in the research
arena. Compared with a set of GMMs, DBN is inherently
centralized. Moreover, in our experience, pre-trained
DBNs tend to converge faster to better local optimum
points which generalize well. Recently, this technique
has been successfully applied to acoustic modeling [6][7]
by replacing the GMMs with a DBN which models the
state posteriors in HMMs as the output of the network,
and this hybrid DBN-HMM framework still allows effi-
cient Viterbi decoding.

The above motivates use to explore the use of DBN-
HMM in MD&D as the approach offers the key advan-
tage of leveraging unlabeled L2 speech data. Our previ-
ous work in MD&D required annotated L2 speech data,
which is limited in quantity as labeling is an expensive
procedure. The rest of the paper is organized as follows:
We present RBMs which are building blocks of DBNs in
Section 2. Then we specify the division of our L2 cor-
pus for comparative evaluation purpose in Section 3. Our
approach for MD&D that incorporates acoustic modeling
using DBNs will be introduced in Section 4. Experiments
and analysis are presented in Section 5. Finally, conclu-
sions are given in Section 6.

2. Deep Belief Network
Restricted Boltzmann machines are the building blocks
of DBN. Unsupervised learning of RBMs maximizes the
probability of generating data without introducing class
labels. Types of RBMs commonly employed in process-
ing speech data include: (i) Gaussian-Bernoulli RBMs,
for front-end acoustic representation with assumed Gaus-
sian distributions; and (ii) Bernoulli RBMs, which can
encode binary data with high efficiency. DBNs can thus



be formed by stacking RBMs on top of one another.

2.1. Gaussian-Bernoulli RBM (GRBM)
The GRBM has one layer of stochastic visible Gaussian
units and one layer of stochastic hidden binary {0, 1}
units. There is no interaction between units in the same
layer and is thus “restricted”. It assigns joint probability
to visible-hidden pair (v,h) as follows:

E(v,h; Θ) = −hTWdiag(σ)−1v − aTh

+
1

2
(v − b)Tdiag(σ2)−1(v − b), (1a)

Pr(v,h; Θ) =
e−E(v,h;Θ)∫

v′

∑
h′ e
−E(v′,h′;Θ)dv′

, (1b)

where Θ = {W,a,b,σ}, and Θ will be omitted to
lighten notation wherever necessary. W = {wij} are
weights of the symmetric connections between the hid-
den unit i and the visible unit j, while ai and bj are their
bias terms. σj is the standard deviation of vj .

Marginalizing over h leads to Pr(v) =
∑

h Pr(v,h).
Given a set of F frames {vf}Ff=1,

∑
f log Pr(vf ) is the

objective to be maximized. The maximization can be in-
terpreted as an economical representation of v on h.

Differentiating
∑
f log Pr(vf ) w.r.t. any θ in Θ leads

to the following positive and negative phases:∑
f

[∑
h

e−E(vf ,h) ∂−E(vf ,h)
∂θ∑

h′ e
−E(vf ,h′)

]
(2a)

−
∑
f

[∫
v

∑
h

e−E(v,h) ∂−E(v,h)
∂θ∫

v′

∑
h′ e
−E(v′,h′)dv′

dv

]
. (2b)

Substituting θ in −∂E(vf ,h)
∂θ with wij , ai, bj , σj yields:

−∂E(vf ,h)

∂wij
=
vfj
σj
hi; − ∂E(vf ,h)

∂ai
= hi; (3a)

− ∂E(vf ,h)

∂bj
= (vfj − bj)/σ

2
j ; (3b)

− ∂E(vf ,h)

∂σj
= −

vfj
σ2
j

∑
i

hiwij +
(vfj − bj)2

σ3
j

. (3c)

Observe that Eqn. (2a) (the positive phase) is the condi-
tional expectation of −∂E(vf ,h)

∂θ , since:

e−E(vf ,h)∑
h′ e
−E(vf ,h′)

= Pr(h|vf ) =
∏
i

Pr(hi|vf ), (4)

with the last factorization owing to the non-connectivity
among hi. For example, take θ = wij and Eqn. (2a)
becomes:∑

f

[∑
h1

Pr(h1|vf ) · · ·

(∑
hi

hiv
f
j

σj
Pr(hi|vf )

)
· · ·

]

=
∑
f

[∑
hi

hiv
f
j

σj
Pr(hi|vf )

]
, (5)

and basing on the fact that hi can only be either 0 or 1:

Pr(hi = 1|vf ) =
1

1 + e−(
∑

j wijv
f
j /σj+ai)

. (6)

Hence, given the observations {vf}, the expectation of
derivatives in Eqn. (2a) can be easily computed. Un-
fortunately, Eqn. (2b) (the negative phase) involves an
integration over the feature space and is intractable. A
widely applied method that approximates this integral is
the Gibbs sampler which proceeds in a Markov chain as
follows:

v(0) ∼ a training frame, h(0) ∼ Pr(h|v(0)); (7a)

v(1) ∼ Pr(v|h(0)), h(1) ∼ Pr(h|v(1)); (7b)
· · ·

where Pr(vj |h) can be derived as:

Pr(vj |h) = N (vj ; bj + σj
∑
i

wijhi, σ
2
j ). (8)

Contrastive divergence (CD) training [5] makes two fur-
ther approximations: (i) that the chain is run for only k
steps; (ii) the integral in Eqn. (2b) is replaced by a single
sample. In this work, k = 1 as it is fast and empirically
works well. Starting from each training frame v(0), we
only sample h(0) in Eqn. (7a) and use the expectations
for Eqn. (6) and Eqn. (8) to replace the random samples
v(1) and h(1) in Eqn. (7b) for stability. This process in the
negative phase can be regarded as a single-round of “in-
struction and reconstruction”. Therefore, Eqn. (2) mea-
sures the discrepancy between the model’s “beliefs” in
the statistics on Eqn. (3a)-(3c) and the actual observed
statistics to present a direction for optimization.

2.2. Bernoulli RBM (BRBM)
BRBM differs from GRBM in that all visible and hidden
units are binary, with E(v,h; Θ) and Pr(v,h; Θ) similar
to Eqn. (1a) & (1b):

E(v,h; Θ) = −hTWv − aTh− bTv, (9a)

Pr(v,h; Θ) =
e−E(v,h;Θ)∑

v′
∑

h′ e
−E(v′,h′;Θ)dv′

. (9b)

The gradient of Pr(v) can be obtained in a manner sim-
ilar to that in a GRBM, and the conditional distributions
Pr(v|h) and Pr(h|v) becomes symmetric and trivial.

3. L2 Corpus
The Chinese Learners of English (CHLOE) Cantonese
subset consists of 13 hours of recordings by 50 male and
50 female native Cantonese college students reading con-
fusable words, minimal pairs, phonemic sentences and
the Aesop’s Fable “The North Wind and the Sun”. All
of the data have been phonetically labeled by trained lin-
guists. Apart from these, we have also collected nearly 40
hours of read speech on TIMIT prompts by the same set
of speakers. TIMIT prompts are phonetically-balanced



and are very desirable for training acoustic models. How-
ever, this large body of speech recordings remain unla-
beled due to lack of human resources. The labeled data
only constitutes one quarter of the entire corpus, which
motivates us to investigate unsupervised methods using
DBNs. We split CHLOE by speakers into groups A and
B, which leads to four subsets of data as shown in Table 3.

Table 1: Division of CHLOE.
group A group B

unlabeled a (6.5hr) c (20hr)
labeled b (6.5hr) d (20hr)

4. Approach to MD&D
We explicitly model salient segmental mispronunciation
errors in an extended pronunciation lexicon, as described
previously in [3]. A ML Viterbi pass using an acoustic
model with the extended lexicon outputs a phonetic tran-
scription for the prompted word sequence and achieves
MD&D. Note that the acoustic model may be based on
GMM-HMMs (as in our previous work [3]) or DBN-
HMMs (as in the current investigation).

4.1. GMM-HMM Baseline
We train a tied-state tri-phone GMM-HMM system using
the labeled data from training speakers, i.e. subset (b) in
Table 3, in the ML manner and tune the number of tied
states and the number of Gaussians per state on a sepa-
rate development set. The resulting baseline system has
1.5K tied states and 10 mixtures per state. In addition,
we refine the HMM baseline according to the MWE dis-
criminative criterion [4], where we present possible mis-
pronunciations for differentiation in training HMMs.

4.2. DBN-HMM
The unsupervised “pre-training” stage greedily con-
structs a DBN layer-by-layer from bottom up. We start
by treating the two bottom layers as a GRBM. Once the
GRBM is trained by CD, either the posteriors of the bi-
nary hidden units for every speech frame, or a set of sam-
ples drawn from the posteriors, can serve as the input to
the upper level BRBM which will also be trained by CD.
As we repeat this process by stacking as many BRBMs
as desired to develop a deep structure, the outputs of the
upper layers are supposed to represent an abstraction of
data capturing higher order correlations.

The supervised “fine-tuning” stage further optimizes
the parameters of the network according to some crite-
rion. We follow [7] and model the posteriors of HMM
states s for each speech frame o as the output of the
network, i.e. P(s|o). This is achieved by stacking on
top of the pre-trained DBN an extra softmax layer with
the number of units identical to the number of states in
our baseline GMM-HMM system. The frame-state cor-
respondence is obtained by a forced-alignment using this
GMM-HMM system, enabling us to minimize the sum of
log posteriors over all the training frames {of , sf}:

min
Θ′
−
∑
f

log
e
Wtop

if ,∗
Pr(hf ;of ,Θ)+btop

if∑
i e

Wtop
i,∗ Pr(hf ;of ,Θ)+btop

i

(10)

where Wtop and btop are the weight matrix and bias vec-
tor for the soft-max layer, and Θ′ = {Θ,Wtop,btop}.
The subscript in Wtop

if ,∗ means the if th row correspond-
ing to the aligned state identity for the f th training frame.
Pr(hf ;of ,Θ) denotes the probabilities of binary units
hf in DBN’s top layer which are recursively propagated
from of at the bottom. It is noted that this criterion is
conceptually similar to frame discrimination training of
Gaussians presented in [8].

During decoding, the GMMs in the GMM-HMMs are
replaced by this single fine-tuned DBN, thus becoming
a “DBN-HMM”. Therefore, instead of evaluation with a
GMM, the likelihood of a speech frame given a particular
state is approximated by L(o|s) ∝ P(s|o)/p(s), where
p(s) is the prior estimated from the alignment.

4.2.1. DBN Pre-training
Due to the high volume of data involved, instead of com-
puting the gradients using Eqn. (2a)-(3c) over the en-
tire pre-training data, we maximize the log-likelihood of
RBMs using stochastic gradient ascent for 20 epochs with
a batch size of 256 frames. Except for the visible layer of
the GRBM at the bottom, all layers contain 200 units. For
the GRBM, a learning rate of η = 0.004 is used for W,
a, b, while a much smaller value of 0.00001 is used for
σ. A learning rate of 0.1 is used for all the parameters of
BRBMs. Increment in each batch is smoothed by a mo-
mentum of γ = 0.9, which leads to the following update
rule for the tth increment of θ: ∆θ(t+1) = γ∆θ(t) +η ∂L∂θ ,
where ∂L

∂θ is the gradient in Eqn. (2). As described in
Sec. 4.2, we stack 5 RBMs layer-by-layer upward and
yield a 6-layer DBN.

4.2.2. DBN Fine-tuning
We attach a randomly initialized softmax layer on top of
the pre-trained DBN. 20 epochs (at which we observe
convergence) of fine tuning is performed by stochastic
gradient descent with a batch size of 2560 frames. As
the partial derivatives of the objective in Eqn. (10) with
respect to each individual parameter can be conveniently
obtained by the chain rule, we update all the parameters
simultaneously in each batch, using the conjugate gradi-
ent method with 5 line searches.

5. Experiments
5.1. Preprocessing
Short-time Fourier analysis is performed on a 25-ms
hamming window with a 10ms frame shift before a stan-
dard MFCC parameterization takes the first 13 cepstral
coefficients. The first and second order derivatives are ap-
pended to form the 39-dimensional feature vector. Cep-
stral mean normalization is done on a per utterance ba-
sis, but cepstral variance normalization in [7] is not done
since the variance is explicitly modeled, as shown in



Eqn. (1a).

5.2. Performance Metric
Performance is evaluated using the Word Pronunciation
Error Rate (WPER). Note that a given word with differ-
ent pronunciations (some of which may be mispronuncia-
tions) are treated as different work tokens. Hence, recog-
nition of an acoustic realization given these pronuncia-
tion alternatives achieves mispronunciation detection and
diagnosis, but may also involve False Acceptances (FA),
False Rejections (FR) and Diagnostic Errors (DE) (see
[4]) - the sum of which gives rise to WPER. For exam-
ple, the canonical pronunciation of the prompted word
“NORTH” is [n ao r th]. If the realization of [l ow f ]
(which is common for Cantonese learners) is accepted as
a correct pronunciation, it incurs an FA error.

5.3. Results
To investigate the impact of pre-training data on the fine-
tuning to follow, we pre-train on different combinations
of data subsets. All pre-trained DBNs are fine-tuned on
subset (b).
Table 2: GMM-HMM & DBN-HMM Results on test set
(d). Subsets (a)-(c) are described in Table 3.

criterion pre-training set WPER
(1) ML N/A 32.73%
(2) MWE [4] N/A 31.17%
(3) N/A None (random init) 43.39%
(4) N/A (b) 31.96%
(5) N/A (a)+(b) 27.96%
(6) N/A (b)+(c) 26.85%
(7) N/A (a)+(b)+(c) 27.08%

Table 2 shows the performance results1. The best re-
sult on DBN-HMM gives a 18.0% relative improvement
over ML training, which shows that introducing unsuper-
vised data from the test speakers during pre-training can
move the parameters to a region which is better geared for
fine tuning, leading to a better local optimum. Increasing
the number of line searches can reduce WPER even fur-
ther as observed in other preliminary experiments. This
may indicate that DBN is less prone to over-training.
In addition, there is a 13.8% relative improvement over
discriminatively trained HMMs based on the MWE cri-
terion. The performance gain does not come for free,
training a DBN using the 39-dimensional features takes
more than a week on a 16-core 2.5GHz Xeon machine,
which is significantly more expensive than even discrimi-
native training of GMM-HMM by an order of magnitude.
Therefore, the iterative fine-tuning using state alignment
derived from newer DBN-HMMs [7] is not adopted.

6. Conclusions and Perspectives
We have reported our investigations on using DBN-
HMM in discriminative acoustic modeling for mispro-

1Later results show the statistically insignificant difference in rows
(6) & (7) is due to stochastic optimization. In most cases, (7) is at least
at good as (6).

nunciation detection and diagnosis (MD&D) in L2 En-
glish. DBN-HMM allows unsupervised training with un-
labeled speech data in the CHLOE corpus. This, together
with the discriminative nature of DBN-HMM, give sig-
nificant gains in word pronunciation error rates (WPER)
- an 18% relative improvement over the GMM-HMM
trained in an ML fashion and a 13.8% relative improve-
ment over discriminatively trained GMM-HMM. Since
the unlabeled data is recorded from the same set of speak-
ers as those in the test set, our scheme can be regarded as
a form of unsupervised speaker adaptation. DBN-HMM,
however, is computationally much more expensive than
GMM-HMM. In the future, we will investigate ways to
reduce the computation required in training DBN-HMM,
while maintaining discriminability for MD&D.
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