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Abstract. Semi-supervised clustering has recently received a lot of attention in
the literature, which aims to improve the clustering performance with limited su-
pervision. Most existing semi-supervised clustering studies assume that the data
is represented in a vector space, e.g., text and relational data. When the data
objects have complex structures, e.g., proteins and chemical compounds, those
semi-supervised clustering methods are not directly applicable to clustering such
graph objects.

In this paper, we study the problem of semi-supervised clustering of data ob-
jects which are represented as graphs. The supervision information is in the form
of pairwise constraints of must-links and cannot-links. As there is no predefined
feature set for the graph objects, we propose to use discriminative subgraph pat-
terns as the features. We design an objective function which incorporates the con-
straints to guide the subgraph feature mining and selection process. We derive an
upper bound of the objective function based on which, a branch-and-bound algo-
rithm is proposed to speedup subgraph mining. We also introduce a redundancy
measure into the feature selection process in order to reduce the redundancy in
the feature set. When the graph objects are represented in the vector space of
the discriminative subgraph features, we use semi-supervised kernel K-means
to cluster all graph objects. Experimental results on real-world protein datasets
demonstrate that the constraint information can effectively guide the feature se-
lection and clustering process and achieve satisfactory clustering performance.

Keywords: Semi-supervised clustering, frequent subgraph mining.

1 Introduction

Complex structures in many scientific applications can be represented as graphs, e.g.,
protein structures, chemical compounds, program flows and XML documents. In many
applications, it would be very useful if we can automatically partition a set of data
objects which are represented as graphs into disjoint clusters. For example, in bioin-
formatics, graph clustering can distinguish different families of proteins based on their
structural similarity. In practice, we may also have some prior information about the
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graph data objects, e.g., some proteins are similar (or dissimilar) based on the similar-
ities of their amino acid sequences and three-dimensional structure, or some proteins
share a common evolutionary origin. If we can effectively incorporate the prior infor-
mation into clustering, the clustering performance could be significantly boosted.

Semi-supervised clustering has recently received a lot of attention in the literature.
Traditional clustering approaches fall into the category of unsupervised learning, as
only unlabeled data is used for clustering. When a small amount of supervision in-
formation is available, it can be incorporated into the clustering process to improve
the clustering performance. There has been research focusing on constraint-based [1]
or distance-based [2], [3], [4], [5] semi-supervised clustering. However, most existing
semi-supervised clustering methods assume that the input data is in a feature vector
space, e.g., text and relational data. When the data objects have complex structures but
no predefined feature space, such as proteins and chemical compounds, these methods
are not directly applicable to cluster the data objects.

In this paper, we study the problem of clustering graph objects with a limited amount
of supervision information. Supervision in the form of pairwise constraints is usually
more realistic than requiring class labels in many applications. Thus we consider su-
pervision information including must-links and cannot-links, indicating respectively
whether two graph objects should belong to the same cluster or not. Such pairwise
constraints occur naturally in many domains.

The first challenge in clustering graph objects is the lack of feature vector representa-
tion of the graph objects. As an effective solution adopted in recent graph classification
methods [6], [7], [8], [9], we use subgraphs as features to represent a graph object in a
binary vector. But different from graph classification as a supervised learning problem,
we do not have class labels in our clustering problem to supervise the feature selec-
tion process. In order to evaluate the usefulness of the subgraph features, we propose a
semi-supervised feature mining and selection algorithm – an objective function for sub-
graph feature selection is designed which incorporates the pairwise constraints, with
the aim to satisfy as many constraints as possible. In order to avoid exhaustive enu-
meration of all subgraph features, we integrate the objective function into the subgraph
mining process and push it deep for pruning the search space. Given any subgraph g,
an upper bound of the objective function for g’s supergraphs can be derived, based on
which, we develop a branch-and-bound algorithm to efficiently search for optimal sub-
graph features by pruning the subgraph search space. In addition, considering the high
redundancy between subgraph patterns, we design a redundancy control mechanism in
order to generate a redundancy-aware feature set. Based upon the subgraphs features,
all graph objects can be represented in a feature space. Then we perform the semi-
supervised kernel K-means algorithm [10] to cluster the graph objects. Experimental
results on real protein graphs demonstrate that our semi-supervised feature selection
and graph object clustering algorithms can accurately generate clusters which are very
close to the underlying family labels of the protein data. The branch-and-bound algo-
rithm expedites the subgraph mining process and prunes a lot of low-quality subgraph
features by considering both the constraint and unconstraint graph objects.

The rest of the paper is organized as follows. Section 2 discusses related work on
semi-supervised clustering, graph clustering and graph mining methods. We define the
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semi-supervised graph clustering problem in Section 3. In Section 4 we formulate the
subgraph feature mining problem as an optimization problem and develop a branch-
and-bound algorithm for the feature mining. We discuss two clustering algorithms we
have implemented in Section 5. Experimental results are presented in Section 6. Finally
we conclude our paper in Section 7.

2 Related Work

Semi-supervised clustering algorithms aim to improve clustering results using limited
supervision. The supervision is generally given as pairwise constraints. [2] proposed
an algorithm that, given examples of similar or dissimilar pairs of points in R

n, learns
a distance metric over Rn that respects these relationships. [4] studied the problem of
learning distance metrics using side-information in the form of equivalence relations,
which provide small groups of data points that are known to be similar or dissimilar.
[5] proposed a probabilistic model for semi-supervised clustering based on Markov
Random Fields that provides a principled framework for incorporating supervision into
prototype-based clustering. Most semi-supervised clustering methods in the literature
assume that the input is in a vector space [1], [2], [3], [4], [5]. [10] proposed a semi-
supervised clustering algorithm SS-Kernel-Kmeans, which uses a kernel approach to
cluster a large graph into k disjoint components.

Most existing studies on graph clustering aim to find a k-way disjoint partitioning
of a large graph to minimize a certain objective function, such as ratio cut and nor-
malized cut [11]. Other graph clustering criteria include modularity [12], density [13],
and stochastic flows [14]. To the best of our knowledge, this paper is the first work on
semi-supervised feature selection and clustering of a set of graph objects.

Extracting subgraph patterns from graph data has been studied a lot. Frequent sub-
graph mining methods can be categorized into two major approaches: an Apriori-based
approach [15], [16] and a pattern-growth approach [17], [18], [19]. Recently, graph
classification [6], [7], [8] has received a lot of attention. Kong and Yu studied the
semi-supervised feature selection for graph classification and proposed a solution called
gSSC [9]. A common property of the above methods is to use discriminative subgraphs
as the feature space for graph classification. The feature evaluation function, e.g., in-
formation gain, is integrated into the subgraph mining process. To expedite the search
process, these mining algorithms may not strictly follow the traditional depth-first or
breadth-first traversal order to find discriminative subgraphs, for example, [6] uses leap
search to prune sibling branches, [8] follows an evolutionary computation strategy to
enumerate subgraphs, and gSSC [9] uses the branch-and-bound search strategy.

3 Problem Formulation

In this section, we formulate the problem of semi-supervised clustering of graph objects
based on subgraph features.

A graph object is denoted as G = (V,E, l), where V is the vertex set, E ⊆ V × V
is the edge set, and l is the label function mapping a vertex or an edge to a label.
The size of a graph is defined as the number of edges. Given a set of graph objects
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D = {G1, G2, . . . , Gn} and pairwise constraints in the form of must-links and cannot-
links, the goal of semi-supervised clustering is to partition the graph objects in D into
k disjoint clusters {πc}kc=1, where πc represents the c-th cluster, such that the total dis-
tance between the graph objects and the corresponding cluster centroids is minimized
and a minimum number of constraints are violated. The must-link constraint indicates
that two graph objects should belong to the same cluster, and the cannot-link constraint
indicates that two graphs should belong to different clusters. Moreover, we call the
graph objects occurring in the pairwise constraints as constraint graphs, otherwise as
unconstraint graphs. Thus, we can divide D into a constraint subset Dc and an uncon-
straint subset Du. D = Dc ∪ Du.

Different from traditional clustering problems which assume the input is represented
in a feature space, graph objects have complex topological structures, but no predefined
feature space. Thus we follow the idea of subgraph-based representation, where a set of
subgraphs is used as the feature set for representing the graph objects in a feature space.
A graph g is a subgraph of another graphG, if there exists a subgraph isomorphism from
g to G, denoted as g ⊆ G. G is called a supergraph of g. The definitions of subgraph
isomorphism and subgraph frequency are given as follows.

Definition 1 (Subgraph Isomorphism). For two labeled graphs g and G, a subgraph
isomorphism is an injective function f : V (g) → V (G), s.t., (1) ∀v ∈ V (g), l(v) =
l′(f(v)); and (2) ∀(u, v) ∈ E(g), (f(u), f(v)) ∈ E(G) and l(u, v) = l′(f(u), f(v)),
where l and l′ are the labeling functions of g and G, respectively.

Definition 2 (Frequency). Given a graph dataset D = {G1, . . . , Gn} and a subgraph
g, the supporting graph set of g is Dg = {Gi|g ⊆ Gi, Gi ∈ D}. The frequency of g is
|Dg|
|D| , denoted as freq(g).

Given a set of subgraph features {g1, . . . , gm}, a graph Gi can be represented as a bi-
nary vector xi = [x1

i , . . . , x
m
i ]T, where the k-th component xk

i in xi denotes whether
gk is a subgraph of Gi. xk

i = 1 iff gk ⊆ Gi, xk
i = 0 otherwise. Due to the expressive-

ness of subgraph features, we adopt the subgraph-based feature representation in our
clustering framework. In the paper we use the following notations.

– S = {g1, g2, . . . , gm}: the full set of subgraph features that can be enumerated
from the graph objects in D. Only a subset of subgraph features T ⊆ S is selected
for graph object clustering.

– X : the matrix representation of the graph objects D = {G1, . . . , Gn} in the feature
space of S. X = [x1,x2, . . . ,xn] = [f1, f2, . . . , fm]T ∈ {0, 1}m×n, where X =
[Xij ]

m×n. Xij = 1 iff gi ⊆ Gj , Xij = 0 otherwise.
– M0 and C0: M0 = {(Gi, Gj)|π(Gi) = π(Gj)} denotes the given set of must-link

constraints where a must-link indicates that two graphs should belong to the same
cluster. Here π(Gi) denotes the cluster label of graph Gi. C0 = {(Gi, Gj)|π(Gi) �=
π(Gj)} denotes the given set of cannot-link constraints where a cannot-link indi-
cates that two graphs should belong to different clusters.

Example 1. In Fig.1, we show a set of graph objects D = {G1, G2, G3} and a set of
subgraph features T = {g1, g2, g3, g4}. There is a must-link between (G1, G2) and a
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Fig. 1. A Running Example

cannot-link between (G1, G3). The feature vectors are also shown. For example, g1 is a
subgraph of G1 and G2, but not a subgraph of G3. So the corresponding feature vector
is f1 = [1, 1, 0].

4 Semi-supervised Subgraph Mining

The first and perhaps the biggest challenge in our graph object clustering problem is
how to mine discriminative subgraph features based on both constraint and unconstraint
graphs. It is infeasible and unnecessary to enumerate all subgraph patterns from D for
the clustering purpose, as the number of subgraphs is exponential to the graph size.
In graph classification [6], [7], [8], [9] where the class label information is available,
an evaluation measure such as information gain can be used to select discriminative
subgraph features. However, in our clustering problem, the limited supervision is in
the form of pairwise constraints, rather than class labels. It is non-trivial to design an
objective function for subgraph feature selection, with the aim to satisfy as many con-
straints as possible. In addition, we need a strategy to integrate the objective function
into the subgraph mining process, in order to discover the set of optimal subgraph fea-
tures wrt. the objective function in a timely fashion, and effectively prune the search
space composed of low-quality features.

As our goal is to find a set of high-quality subgraphs for clustering wrt. the con-
straints, we first formulate the subgraph feature mining problem as an optimization
problem, given the semi-supervised information:

T ∗ = argmax
T⊆S

Ψ(T ) s.t. |T | ≤ t, (1)

where Ψ(T ) is an objective function to evaluate the usefulness of a subgraph feature
subset T , T ∗ is the optimal set of subgraph features, |T | represents the size of the
subgraph feature set T , and t is the maximum feature number we use.
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4.1 Objective Function

We consider both constraint and unconstraint graph objects in defining the objective
function Ψ . To fully utilize the supervision information, in the preprocessing step, we
try to infer additional constraints from the given constraint sets M0 and C0 by assuming
consistency of the constraints. For the must-links in M0, we compute the transitive
closure of the must-links to derive connected components consisting of graph objects
connected by must-links. Let there be κ connected components, which are used to create
κ initial clusters {	p}κp=1. We use Minf to denote the must-link constraints inferred
from the transitive closure that were not in the initial set, and use M = M0 ∪Minf

to denote the augmented must-link set. For each pair of initial clusters 	p and 	q that
have at least one cannot-link between them, we add cannot-link constraints between
every pair of graphs in 	p and 	q, and denote the inferred cannot-links as Cinf . The
augmented cannot-link set is denoted as C = C0∪Cinf . This augmentation step can infer
as many additional constraints as possible from the given constraint sets. Considering
both constraint and unconstraint graphs, the objective function on subgraph features
should satisfy the following aspects:

– must-link: each pair of graph objects (Gi, Gj) ∈ M0 should be close to each other;
– cannot-link: each pair of graph objects (Gi, Gj) ∈ C0 should be far away from each

other;
– separability: unconstraint graph objects should be separated from each other. Sub-

graph features that are too frequent or too rare are not useful, as graph objects
represented in such feature space cannot be separated from each other;

– inner-cluster distance: graph objects in the same initial cluster 	p should be close
to each other;

– inter-cluster distance: graph objects in different initial clusters 	p and 	q should
be far away from each other.

Based on the above properties, we define an objective function Ψ(T ) which we want to
maximize on a subgraph feature set T as follows:

Ψ(T ) =
α

|C0|
∑

(Gi,Gj)∈C0

(DTxi −DTxj)
2 − β

|M0|
∑

(Gi,Gj)∈M0

(DTxi −DTxj)
2

+
γ

|Du|2
∑

Gi,Gj∈Du

(DTxi −DTxj)
2 − δ

|M|
κ∑

p=1

∑

Gi,Gj∈�p,
(Gi,Gj)∈M

(DTxi −DTxj)
2

+
η

|C|
κ∑

p,q=1,
p�=q

∑

Gi∈�p,Gj∈�q,
(Gi,Gj)∈C

(DTxi −DTxj)
2 (2)

where DT = diag(d(T )) is a diagonal matrix indicating which features are selected
into the feature set T from S, d(T )i = I(gi ∈ T ) is an indicator function. α, β, γ, δ, η
are five parameters, which adjust the weights of the five types of constraints.
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For two graphs Gi, Gj ∈ D, we define a symmetric matrix W = [Wij ]
n×n as:

Wij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2β
|M0| − 2δ

|M| if (Gi, Gj) ∈ M0

− 2δ
|M| if (Gi, Gj) ∈ Minf

2α
|C0| +

2η
|C| if (Gi, Gj) ∈ C0

2η
|C| if (Gi, Gj) ∈ Cinf
2γ

|Du|2 if Gi, Gj ∈ Du

0 otherwise

(3)

We give a higher weight Wij to the given must-links and cannot-links in M0 and C0,
and a lower weight to those inferred constraints in Minf and Cinf , as we assume the
provided constraints are stronger than the inferred ones. Then we can rewrite the objec-
tive function Ψ(T ) in Eq.(2) as follows:

Ψ(T ) =
1

2

∑

i,j

(DTxi −DTxj)
2Wij = trace(DT

TX(D −W )XTDT )

= trace(DT
TXLXTDT ) =

∑

gk∈T

(fTk Lfk)

whereD is a diagonal matrix whose entries are column sums of W , i.e., Dii =
∑

j Wij .
We denote the matrix D −W as L.

When we use a feature evaluation measure q to denote q(gk) = fTk Lfk, the optimiza-
tion problem in Eq.(1) can be rewritten as

max
T⊆S

∑

gk∈T

q(gk) s.t. |T | ≤ t (4)

Suppose the values for all subgraphs are denoted as q(g1) ≥ q(g2) ≥ . . . ≥ q(gm)
in the descending order. The optimal solution to the optimization problem is: T ∗ =
{gi|i ≤ t}.

Example 2. Continue our example in Fig.1. After we propagate the two given con-
straints, we generate two initial clusters 	1 = {G1, G2}, 	2 = {G3}. Suppose all five

parameters α, β, γ, δ, η are set to be 1, we can compute W =

⎛

⎝
0 −2 3

2−2 0 1
2

3
2

1
2 0

⎞

⎠, and the

corresponding matrix L =

⎛

⎝
− 1

2 2 − 3
2

2 − 3
2 − 1

2− 3
2 − 1

2 2

⎞

⎠. With L, all subgraph features’ scores can

be calculated according to our objective function as: q(g1) = fT1 Lf1 = 2, q(g2) = − 3
2 ,

q(g3) = 0, and q(g4) = 2. g2 has the lowest score, as it violates the must-link (G1, G2)
and the cannot-link (G1, G3). g1 and g4 are the best features.
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Fig. 2. Subgraph Pattern Searching Tree

4.2 Subgraph Mining with Branch-and-Bound Pruning

To select the optimal feature set T ∗, we need to find t subgraphs g1, . . . , gt from D
with the highest scores q(·). A straightforward solution is to enumerate the full set
of subgraphs S first, and then calculate the q scores and return the top-t subgraphs.
Obviously, this two-step process is not scalable, as the number of subgraphs in S is
exponential to the size of graph objects in D, and could be extremely large. Thus the
exhaustive enumeration approach is too expensive to be practical.

Our subgraph feature mining is built based on the gSpan algorithm by Yan and Han
[17]. gSpan is an efficient depth-first search algorithm to enumerate subgraphs in their
minimum DFS code order. Given a minimum support threshold min sup ∈ [0, 1],
gSpan outputs all subgraphs whose frequency is no less than the minimum support.

To further improve the mining efficiency, we can integrate the feature evaluation
function q(·) into gSpan and push it deep for search space pruning. If we can derive
a tight upper bound of the feature evaluation function q, we can follow a branch-and-
bound search strategy to quickly identify the top subgraphs and prune low-quality sub-
graph features. Theorem 1 gives an upper bound of the q function. The similar principle
has been used in some related studies on graph mining and classification [6], [9].

Theorem 1. (Upper Bound of q Function): Given two subgraphs g, g′ ∈ S, g′ is a
supergraph of g, i.e., g ⊆ g′. The q value of g′, q(g′), is upper bounded by q̂(g), which
is defined as : q̂(g) = fTg L̂fg, where the matrix L̂ is defined as L̂ij = max(0, Lij).

Proof. We compute q(g′) = fTg′Lfg′ =
∑

Gi,Gj∈Dg′
Lij where Dg′ = {Gi|g′ ⊆

Gi, Gi ∈ D}. Since g′ is the supergraph of g, we have Dg′ ⊆ Dg according to the
Apriori property. Moreover, L̂ij = max(0, Lij), we have L̂ij ≥ Lij and L̂ij ≥ 0.
Therefore, we have

q(g′) =
∑

Gi,Gj∈Dg′

Lij ≤
∑

Gi,Gj∈Dg′

L̂ij ≤
∑

Gi,Gj∈Dg

L̂ij = q̂(g)

For now, we complete the proof.

With the derived upper bound q̂, we can develop a branch-and-bound subgraph mining
algorithm on top of gSpan for mining the optimal subgraph feature set T ∗. During
the depth-first search of the DFS code tree, we maintain the current top-t subgraphs
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according to the q function. Let g be the currently visited subgraph in the DFS code
tree. If there are less than t subgraphs in T , we directly add g into T and recursively
perform mining in the DFS code tree; if there are t subgraphs in T , then we will check
whether the q value of g, q(g) is higher than the current minimum q value in T , i.e.,
q(g) > ming′∈T q(g′). If yes, we will replace the lowest-ranked subgraph in T , i.e.,
argming′∈T q(g′), with g. Before we recursively search the subtree rooted at g, we will
first estimate the upper bound of any supergraph g′ of g by q̂(g) = fTg L̂fg . If q̂(g) is
less than the minimum q value in T we have so far, we can safely prune the DSF code
subtree rooted at g, as all supergraphs of g cannot have a higher q value than the current
top-t subgraphs in T . Fig. 2 illustrates the idea of branch-and-bound search in the DFS
code tree. Algorithm 1 shows the branch-and-bound algorithm.

Algorithm 1. Branch-and-Bound Subgraph Mining
Input: Graph objects D = {G1, . . . , Gn}, must-linksM and cannot-links C, minimum support
threshold min sup, maximum number of features selected t
Output: A set of optimal subgraph features T ∗

1: formulate the subgraph feature evaluation function q fromM and C;
2: T ← ∅;
3: recursively DFS traverse the DFS Code Tree in gSpan:
4: g ← currently visited subgraph in DFS Code Tree;
5: if |T | < t
6: T ← T ∪ {g};
7: recursively DFS traverse the subtree rooted at g;
8: else if q(g) > ming′∈T q(g′)
9: gmin = argming′∈T q(g′) and T = T − {gmin};

10: T = T ∪ {g} and update gmin = argming′∈T q(g′);
11: if q̂(g) > q(gmin) and freq(g) ≥ min sup
12: recursively DFS traverse the subtree rooted at g;
13: return T ∗ = T

4.3 Redundancy-Aware Subgraph Features

Based on the feature evaluation function q, we aim to find t subgraph features with the
highest q function scores. However, there is a potential issue due to the high redundancy
between subgraph patterns: a graph pattern g often occurs in a similar set of graph ob-
jects in the database with its supergraph or subgraph patterns. If a graph has a very
high q function score, it is likely that its supergraphs or subgraphs have high scores as
well. But such supergraphs and subgraphs are redundant to each other. If we return t
subgraph features with high redundancy, the useful information contained in the t fea-
tures is not maximized. To avoid this case, we introduce another function R to measure
the redundancy between two subgraphs by the overlap of their supporting graph sets.

Given two subgraphs gi and gj , the redundancy is defined as R(gi, gj) =
|Dgi

∩Dgj
|

|Dgi
∪Dgj

| ,

where Dg is the set of graph objects containing a subgraph g. R ∈ [0, 1]. It measures
the co-occurrences of two subgraphs in the graph database. The higher R(gi, gj) is, the
more redundant gi and gj are.
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Taking the redundancy between graphs into consideration, our goal is to find t sub-
graphs which have high q function scores and low mutual redundancy. Formally we set
a redundancy threshold δ ∈ [0, 1]. For any two graphs gi, gj in the answer set T , we re-
quire R(gi, gj) ≤ δ. With the redundancy requirement, our branch-and-bound subgraph
mining algorithm (Algorithm 1) can be revised as follows. Let g be the currently visited
subgraph pattern. If q(g) > ming′∈T q(g′), we further check the redundancy between
g and every graph g′ ∈ T . If ∀g′ ∈ T where q(g′) ≥ q(g), we have R(g, g′) ≤ δ hold,
then g is added to T . Otherwise, g is not added to T and we proceed with the recursive
subgraph mining process. If g is added to T , then we further check for every g′ ∈ T
where q(g′) < q(g). If R(g, g′) > δ, we will remove g′ from T , to make sure every pair
of subgraphs in T satisfy the redundancy requirement. Our revised algorithm makes a
tradeoff between the feature optimality (wrt. the q function) and the redundancy. For a
high-quality subgraph feature with a high q value, if it is redundant to another good fea-
ture in the answer set, then the former one will not be considered. With such redundancy
control, we will select a high-quality feature set with diversity.

Example 3. In Fig. 1, g1 is a supergraph of g4. As both g1 and g4 are subgraphs
of G1 and G2, we have Dg1 = Dg4 = {G1, G2}. The redundancy R(g1, g4) =
|{G1,G2}∩{G1,G2}|
|{G1,G2}∪{G1,G2}| = 1. With the redundancy control mechanism, we choose only
one of them.

5 Semi-supervised Graph Object Clustering

Based on the optimal subgraph feature set T ∗, we can represent each graph object
Gi ∈ D as a vector xi. Then we can use traditional clustering approaches to cluster the
vector representation of the graphs objects. In this section, we describe two clustering
algorithms we have tested. One is the widely used clustering algorithm K-means, and
the other is the kernel-based semi-supervised clustering algorithm SS-Kernel-Kmeans
[10]. We use squared Euclidean distance as the unified clustering distortion measure.

5.1 K-Means

In K-means, we first choose k random points as initial centroids. Then each point is
assigned to the closest centroid. After that, the centroid of each cluster is updated by
taking the average of the vectors of all points in that cluster. We repeat the point as-
signment and centroid update steps until no point changes its cluster assignment, or we
reach the user-specified maximum iterations. The goal of K-means clustering is to find
k clusters {πc}kc=1 which minimize the sum of the squared distance of each point to its
closest centroid. The objective function we aim to minimize can be expressed as:

J
(
{πc}kc=1

)
=

k∑

c=1

∑

xi∈πc

‖xi − mc‖2, where mc =

∑
xi∈πc

xi

|πc| (5)

Note that in K-means, we do not utilize the must-links M and cannot-links C.
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5.2 Semi-supervised Kernel-Kmeans

In this part, we discuss the semi-supervised kernel K-means algorithm [10] which con-
siders must-link and cannot-link constraints during the clustering process. Assume two
points xi, xj belong to clusters πp, πq respectively. The objective function we aim to
minimize can be formulated as:

J
(
{πc}kc=1

)
=

k∑

c=1

∑

xi∈πc

‖xi − mc‖2 −
∑

(xi,xj)∈M
πp=πq

ŵij

|πp|+
∑

(xi,xj)∈C
πp=πq

ŵij

|πp| (6)

The first term in Eq.(6) is the standard K-means objective function, the second term is a
cluster-size weighted reward function for must-link constraint satisfaction, and the third
is a cluster-size weighted penalty function for cannot-link constraint violation.

6 Experimental Study

In this section, we report our experimental results to demonstrate the effectiveness and
mining efficiency of our semi-supervised feature selection and clustering methods. Our
algorithm is implemented in C++ and compiled with g++ 2.95.3. The experiments are
preformed on a machine with 2.66GHz CPU.

6.1 Datasets

We use protein datasets in our experiments. The protein datasets consist of protein struc-
tures from Protein Data Bank (http://www.rcsb.org/pdb/) classified by SCOP (Structural
Classification of Proteins). A protein can be represented as a graph object, where a node
represents an amino acid and is labeled with the amino acid type. An edge exists be-
tween two nodes if the distance between the two alpha carbons in the amino acids is less
than 11.5 angstroms and the edge is labeled based on the distance between the alpha
carbons. The protein families we use and their sizes are listed in Table 1. The average
node number is 217 and the average edge number is 2141 in a protein graph. In the
first group of experiments, the graph dataset is created by selecting three protein fam-
ilies with SCOP id 52592, 56251, and 56437. We set the cluster number k = 3 in this
experiment. In the second group of experiments, the dataset consists of all six protein
families listed in Table 1. We set k = 6 in this experiment.

Table 1. List of SCOP Families

SCOP ID Family Name Number of Proteins
47617 Glutathione S-transferase (GST) 36
50514 Eukaryotic proteases 44
52592 G proteins 33
56251 Proteasome subunits 35
56437 C-type lection domains 38
88634 Picornaviridae-like VP 39

To generate the pairwise constraints, we randomly select pairs of graph objects
(Gi, Gj) from the protein dataset. If Gi and Gj belong to the same family, we create a
must-link between Gi and Gj ; otherwise, we create a cannot-link between them.
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Fig. 3. Clustering Performance of Different Methods

6.2 Clustering Methodology and Evaluation Measure

We perform 2-fold cross validation in our experiments: 50% of the graph dataset is used
as the training set, from which the must-link and cannot-link constraints are sampled.
The other 50% of the dataset is used as the test set. The subgraph mining and clustering
steps are run on the whole dataset, while the clustering evaluation is done on the test set
only. All results are averaged over 10 runs of the 2-fold cross validation. In the feature
set objective function Ψ in Eq.(2), all five parameters α, β, γ, δ, η are set to be 1.

We use normalized mutual information (NMI) to evaluate our clustering results. It
estimates how closely the clustering algorithm could reconstruct the underlying label
distribution in the data. If X is the random variable denoting the cluster labels of the
graph objects and Y is the random variable denoting the underlying class labels of the
graphs, then NMI is defined as NMI = I(X;Y )

(H(X)+H(Y ))/2 , where I(X ;Y ) = H(X) −
H(X |Y ) is the mutual information between the random variables X and Y , H(X) is
the Shannon entropy of X , and H(X |Y ) is the conditional entropy of X given Y .

We test the following feature selection methods, where the first two use subgraph
features and the third uses simple vertex and edge based features.

– Semi-supervised subgraph feature selection. We select the optimal subgraph fea-
ture set T ∗ wrt. the objective function Ψ(T ) which incorporates the supervision
information. This method is denoted as ssFS.

– Unsupervised subgraph feature selection. We select a feature set T wrt. the objec-
tive function Ψ(T ), but the constraints are not used. Thus we only consider the sep-
arability of the subgraph features on the unconstraint graph objects. This method is
denoted as usFS.

– Using vertex and edge labels as features. As a baseline method, we use vertex and
edge labels as features to represent a graph object as a binary vector. This method
is denoted as VEL.

We also test the following two clustering methods.

– Semi-supervised clustering. The semi-supervised kernel based clustering algorithm
SS-Kernel-Kmeans [10] is used for clustering. This method is denoted as KKM.
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Fig. 4. Clustering Performance with Different Number of Features and Minimum Support
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Fig. 5. Clustering Performance with Different Redundancy Thresholds

– Unsupervised clustering. Traditional K-means is used for clustering. This method
is denoted as KM.

We combine different feature selection mechanisms with the two clustering methods,
and compare their clustering performance.

6.3 Performance on Graph Clustering

In the first experiment, we compare the clustering performance of different methods
listed above. Figure 3 shows the NMI value of different clustering methods when we
increase the number of constraints on the two protein graph datasets we created (k = 3
and k = 6). We set min sup = 30%, the number of features t = 80, and the re-
dundancy threshold δ = 1.0. A general trend we observe is an increasing NMI value
with the increasing number of constraints. In addition, ssFS+KKM achieves the highest
NMI value as it utilizes the supervision information in both feature selection and clus-
tering. ssFS+KM comes next, which also shows the usefulness of the optimal feature
set when considering constraints for feature selection. The performance of usFS+KKM
and usFS+KM is much worse, as the feature selection step is unsupervised. We can see
the NMI value of usFS+KM remains unchanged when we increase the constraint num-
ber, as it does not utilize the supervision information at all. Finally, the performance of
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Fig. 6. Semi-supervised Subgraph Feature Mining Time with Branch-and-Bound Search

VEL is the worst, which shows that subgraph features are more effective than simple
label features. This experiment demonstrates that our feature selection objective func-
tion Ψ(T ) is very effective in selecting discriminative subgraph features for clustering.
When considering supervision information, the semi-supervised clustering algorithm
can also improve the clustering performance.

In the second experiment, we test the clustering performance by varying the param-
eters min sup and the feature number t. We fix the redundancy threshold δ = 1.0 and
use the semi-supervised method ssFS+KKM. We use 120 constraints for the 3-cluster
dataset (k = 3) and 240 constraints for the 6-cluster dataset (k = 6). As we can see
from Figure 4, the NMI value increases in general with the increasing number of fea-
tures. The NMI value also increases when min sup decreases, as a lower min sup
implies a larger set of subgraph candidates for feature selection.

In the third experiment, we test the clustering performance by varying the redun-
dancy threshold δ. We set min sup = 30% and the number of features t = 80. We
run the semi-supervised method ssFS+KKM. As we can see from Figure 5, in general
the clustering performance improves as the redundancy threshold decreases, i.e., with a
lower redundancy tolerance. In most cases, the NMI value is the highest when δ = 0.6
and it is the lowest when δ = 1.0, i.e., with no redundancy control. For all three redun-
dancy thresholds, the NMI values increase with the number of available constraints.

6.4 Subgraph Mining Efficiency

In this part, we study the subgraph mining efficiency of the branch-and-bound search
algorithm (Algorithm 1). In this experiment we set the number of features t = 100
and the redundancy threshold δ = 1.0. For semi-supervised feature selection, we use
120 constraints for the 3-cluster dataset (k = 3) and 240 constraints for the 6-cluster
dataset (k = 6). Figure 6 shows the subgraph feature mining time in a logarithmic scale
by our feature selection method (ssFS) and the original gSpan mining algorithm, when
we vary the min sup threshold. When the min sup is low, ssFS is about an order of
magnitude faster than gSpan, which shows the effectiveness of the branch-and-bound
based pruning. When the min sup is high, the difference becomes smaller, as a lot of
subgraph candidates can be pruned in gSpan as well simply based on min sup.
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7 Conclusions

In this paper, we study the problem of semi-supervised graph object clustering, where
pairwise constraints as must-links and cannot-links are used to guide the feature selec-
tion and clustering steps. As graph objects are not represented in a vector space, we
propose to use subgraphs as features to represent the graph objects in a feature space.
An objective function for feature selection is designed, which incorporates the pair-
wise constraints. We integrate the objective function into gSpan for mining the optimal
feature set. An upper bound of the objective function enables us to prune the subgraph
search space effectively in a branch-and-bound manner. A semi-supervised kernel based
clustering algorithm is used to cluster the graph objects. Our experiments demonstrate
that the semi-supervised subgraph feature selection and clustering approach is very ef-
fective in boosting the clustering performance.
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