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Abstract 
In business marketing, corporations and institutions are 
interested in executing a sequence of marketing actions to 
affect a group of customers. For example, a financial 
institution may derive marketing strategies for turning their 
reluctant customers into active ones and a 
telecommunications company may plan actions to stop their 
valuable customers from leaving.  These marketing plans 
are aimed at converting groups of customers from an 
undesirable class to a desirable one. In this paper, we 
formulate this group marketing-plan generation problem as 
a planning problem.  We design a novel search algorithm 
to find a cost-effective and highly probable plan for 
switching a group of customers from their initial states to 
some more desirable final states. We explore the tradeoff 
among time, space and quality of computation in this 
planning framework. We demonstrate the effectiveness of 
the methods through empirical results. 

Introduction  

Marketing campaign planning in business marketing can be 
considered as a process of planning in which the objective 
is to convert groups of customers from one class to another, 
more profitable class.  In business marketing literature 
(Dibb et. al 1996), planning for marketing campaigns 
corresponds to developing action plans by taking into 
account the customer segmentation, marketing objectives 
and budgetary constraints into consideration.  In the 
marketing practice today, it is a common practice to design 
action plans by a human experts through focus group 
studies (Bank Marketing Association 1989).  The 
planning process itself is both long and laborious.  
   Marketing planning can be divided into two types.  
Direct marketing or one-to-one marketing plans are aimed 
at generating plans to target individual customers.  This is 
an expensive process that is only applied to valuable 
customers. Direct marketing usually assumes that the next 
action to be performed can be decided based on 
observation of a customer’s current state.  In this paper we 
consider a second kind of marketing plans called 
segmentation-marketing plans.  These plans are aimed at 
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marketing to multiple groups of customers rather than a 
single customer, where a sequence of actions is executed 
on a segment of chosen customers until they are completed. 
   Essentially, the planning process can be considered as 
building a statistical model based on past data and using the 
model to formulate a plan to be executed on a group of 
customers.  These marketing actions can hardly be 
formulated as traditional classical planning representations.  
Often marketing plans are expected to be effective on only 
a subset of the customers in the target group, and the 
planning is currently done by hand through various 
marketing studies such as focus groups.  A marketing plan 
thus generated will be applied to a chosen subset of 
customers to be effective.  For example, a cell-phone 
company may decide to reduce the monthly fee for a 
subgroup of its customers who are both highly valuable and 
likely to leave the company for its competitors.  
   To illustrate, we consider the following scenario.  
Suppose that a company is interested in marketing to a 
group of 100,000 customers in the financial market to 
promote a special loan signup.  We start with a customer-
loan database with historical customer information on past 
loan-marketing results in Table 1. Suppose that we are 
interested in building a 3-step plan to market to the selected 
group of customers in the new customer list.  There are 
many candidate plans to consider in order to move as many 
customers as possible from non-signup status to a signup 
one.  The signup status corresponds to a positive class that 
we would like to move the customers to, and the non-
signing up status corresponds to the initial state of our 
customers.  Our plan will choose not only low-cost actions, 
but also highly successful actions from the past experience.  
For example, a candidate plan might be: 

Step 1: Send mails; 

Step 2: Call home #; 

Step 3: Offer low interest rate 
   This example also introduced a number of interesting 
aspects for the planning problem. First, not all people in the 
group of 100,000 customers should be considered as 
candidates for the conversion.  Some people should not be 
considered as part of marketing campaign because they are 
too costly or nearly impossible to convert.  To identify a 
group of applicable customers, certain data mining 



algorithms for customer segmentation can be applied.  
Second, the group marketing problem is to use the same 
plan for different customers in the intended customer group, 
instead of a different action plan for each different 
customer.  This makes the group marketing different from 
the direct-marketing problem that some authors have 
considered in the data mining literature (Domingos and 
Richardson 2001; Pednault et. al 2002; Ling and Li 1998; 
Yang and Cheng 2002). For group marketing, we don’ t 
have the luxury of observing intermediate states during a 
plan execution in order to decide what to do next.  Instead, 
we must build an N-step plan ahead of time, and evaluate 
the plan according to cross-validation from the historical 
records.  Third, for the customers in the group to be 
marketed to, there are potentially many possible actions 
that we can provide.  Each action comes with an inherent 
cost associated with it.  In addition, an action is not 
guaranteed to produce its intended result.  For example, it 
may be more costly to call a customer at his home than to 
send mail.  However, sending a mail to a customer may 
have less effect than calling a customer at home.  Neither 
mailing nor calling can guarantee that all customers 
contacted will be converted to signup status afterwards.  
Additionally, calling a customer may have an adverse effect 
of annoying the customer more than necessary.  Finally, it 
is difficult to formulate this problem as a classical planning 
problem, because the preconditions and effects of actions 
are only implicit in the database, rather than given ahead of 
time by “experts”  in a crisp logical formulation. 
   We formulate the above problem as a probabilistic 
planning problem, where the key issue is to look for good 
plans for converting customer groups. Our approach is to 
first identify a state space and assign the potential 
customers to initial states.  We classify the customer states 
into groups belonging to desirable or undesirable classes.  
Our objective becomes one to convert customers from 
undesirable class to desirable one.  We propose an 
algorithm called MPlan as a solution to this planning 
problem using the historical database as an AND-OR tree 
search problem.  The resulting plan will provide a basis 
for the final marketing plans.  Our aim is to choose high-
utility actions to be included in our plan where the notion 
of utility is introduced to increase the probability of success 
while reducing costs. 
   This research deviates from the traditional planning 
applications and formulation of classical planning in 
several aspects.  Compared to classical planning, in group 
marketing we cannot guarantee with certainty the result of 
actions; each action may result in an initial group to be split 
into several subgroups, each landing in a potential state 
following a probability distribution.  This distribution can 
be learned from historical plan traces obtained before.  A 
second difference from classical planning is that there is no 
easy way to formulate the actions in terms of relations and 
logic formulas needed fro preconditions and effects.  The 
only observable fact before and after an action’s execution 
is from the historical databases, which records the customer 
status in various attributes.  By applying a statistical 

classifier to the attributes, we could learn a customer’s 
potential standing in terms of desirable versus undesirable 
classes. 
   The problem is also different from the traditional MDP 
approach (Sutton and Barto 1998) to solving the 
probabilistic planning problem.  In MDP, it is assumed 
that at all time during a plan’s execution, the intermediate 
states can be known either completely or partially.  The 
problem is that of finding a policy in which to direct an 
agent’s action no matter where the agent is observed to 
land.  The MDP formulation is more suitable for direct 
marketing (Ling and Li 1998), which is geared towards 
finding a plan for each individual such that an action is 
chosen based on the agent’s observed resulting state.  
However, in group marketing, it is often the case that we 
have no such opportunity to obtain the intermediate states 
for a group of customers in the middle of plan execution.  
Instead, we have to find a single plan for a group of similar 
customers and to execute this plan to completion.  Thus, 
this aspect where a sequence of actions is built and 
executed is more akin to classical planning. 
   The problem is also different from the probabilistic 
planning framework of (Draper et. al 1994), which 
considered modeling each action in a probabilistic version 
of the pre-conditions and post-conditions.  The problem 
there is still to consider how to build a plan from a single 
initial state to a single goal state.  In contrast, in our 
problem the actions’  logical representations are not 
available; all that we can observe are action labels and their 
association with states.  In addition, we consider customer 
groups that are scattered into multiple initial states.  The 
goal state (Keeney and Raiffa 1976) is not clearly definable 
in our case either, because the positive class in general 
defines the potential goal state sets. 
   In data mining area, a related area is cost-sensitive 
learning and decision making (Domingos 1999; Elkan, 
2001) in the machine learning community. However, 
significant differences remain. Cost-sensitive methods try 
to minimize the cost of a single decision.  However, in 
many applications, sequences of decisions in the form of 
plans are needed. 

Marketing-Planning Problem Formulation 

We now consider how to formulate the marketing problem 
more formally as a planning problem.  We first consider 
how to build a state space from a given set of customer 
records. 
   As in any machine learning and data mining schemes, 
the input customer records consist of a set of attributes for 
each customer, along with a class attribute that describes 
the customer status.  A customer’s attribute may be his 
age, income, gender, credit with the bank, and so on.  The 
class attribute may be “Applied” , which is a Boolean 
indicating whether the customer has applied and is 
approved for loan.  As with any real customer databases, 
the number of attributes may be extremely large; for the 
KDDCUP-98 data (Blake and Merz 1998), there are a total 



of 481 attributes to describe each customer. Of the many 
attributes, some may be removed when constructing a state.  
For convenience, we refer to this database table as the 
Customer Table. Table 1 is an example of Customer Table. 
 
Table 1. An example customer-loan database. The last 
attribute is the class attribute. 
 

 
Table 2. An example Marketing-log database. 
 

S# A# S# A# S# A# S# 
S1 A1 S2 A2 S3 A3 S4 
S0 A0 S1 A1 S2 A4 S5 
S2 A2 S3 A4 S4 A4 S7 
… … … … … … … 
… … … … … … … 
S0 A0 S3 A4 S4 A4 S7 

 
   A second source of input is the previous marketing-
record database.  This is a database that describes how the 
previous marketing actions have changed each customer’s 
attributes as a result of the actions’  execution.  For 
example, after a customer receives a promotional mail, the 
customer’s response to the marketing action is obtained and 
recorded.  As a result of the mailing, the action count for 
the customer in this marketing campaign is incremented by 
one, and the customer may have decided to respond by 
filling out a general information form and mailing it back to 
the bank.  The status of the customer at any instant of time 
is referred to as a state, and state may change as a result of 
executing an action.  Thus, the historical marketing-record 
database consists of state-action sequences, one for each 
participating customer.  This sequence database will serve 
as the training data for our planner.  For convenience, this 
historical marketing database table is referred to as the 
Marketing-log Table. Table 2 is an example of Marketing-
log Table. 
   Given the Customer table and the Marketing-log table, 
our first task is to formulate the problem as a planning 
problem.  In particular, we wish to find a method to map 
the customer records in the customer table into states using 
a statistical classifier.   This task in itself is not trivial 
because it maps a large attribute space into a more concise 
space.  The problem is more complicated when there are 
missing values in the database.  In this paper, we will not 
delve into this issue, because it involves the issues of data 
cleaning and data mining (Han and Chamber 1998).   

   After the state space is obtained, we will use a second 
classifier to classify the states into either desirable or 
undesirable states based on the training data provided in the 
Customer table. Classification algorithms such as decision 
tree or Naïve Bayes are possible choices as long as the 
classification error rate is low enough. 
   Next, the state-action sequences in the Marketing-log 
table will be used for obtaining action definitions in a state 
space, such that each action is represented as a probabilistic 
mapping from a state to a set of states.  To make the 
representation more realistic, we will also consider the cost 
of executing each action.   
   To summarize, from the two tables we can obtain the 
following information: 
• jis srf =)( maps a customer record ir to a state 

js . This function is known as the customer-state mapping 
function; 
• )( sp c is a probability function that returns the 
probability that state s  is in a desirable class.  We call 
this classifier the state-classification function; 
• ),|( jik assp returns the transition probability that, 
after executing an action ja  in state is , one ends up in 
state ks . 
   Once the customer records are converted to states and 
the state transition through actions are learned from the 
Marketing-log table, the state space can be formulated as 
an AND-OR graph.  In this graph, there are two types of 
nodes. A state node represents a state.  From each state 
node, an action links the state node to an outcome node, 
which represents the outcome of performing the action 
from the state.  An outcome node then splits into multiple 
state nodes according to the probability distribution given 
by the ),|( jik assp  function.  This graph essentially is 
an AND-OR graph, where each state is an OR node, with 
the actions that can be performed on the node forming the 
OR-branches.  Each outcome node is an AND node, 
where the different arcs connecting the outcome node to the 
state nodes are the AND edges.  A figure illustrating the 
scenario is shown in Figure 1. 
   Given a set of customers for whom the marketing plan 
is designed, we use a customer-state mapping function to 
convert the customer records to a set of initial states which 
these customers belong to initially in the state space.  Note 
that because of the potentially large number of customers 
involved, there could be a set of initial states corresponding 
to the customers, instead of a single initial state as in 
classical planning.  These initial states provide an initial 
segmentation of the customers. 
   In this setting, we can give a definition of the 
marketing-plan planning problem.  Given a set of initial 
customers, our goal is to find a sequence of actions for each 
initial state that converts as many of the customers in that 
state from the undesirable class to the desirable one while 
incurring minimal costs.  The plan must satisfy some 
constraints, in one of the following forms: 
• length constraint: the number of actions must be at most 
N; 
 

Customer Salar
y 

Cars Mortga
ge 

Loan 
Signup? 

John 80K 3 None Y 
Mary 40K 1 300K Y 

… … … … … 
Steve 40K 1 None N 



• probability constraint: the expected probability of being 
in a desirable class of all terminal states a plan leads to 
must be at least Success_Threshold.  
 

 
Figure1. An example of AND-OR graph.  
 
   Not all customers in the given set of customers are 
convertible to the desirable class.  In this case, we also 
want to identify a subset of customers who can be 
converted within the constraint.   
   The marketing plan generation problem can be 
considered in several forms.  A variation of the problem is 
to find a uniform plan for all different customer segments, 
regardless of which initial states they start from, so that as 
many customers as possible are converted to the desirable 
class under the length and probability constraint. This 
formulation corresponds to the need for corporations to 
market to an entire group of customers with the same 
actions for consistency and cost-cutting.  In this paper, we 
focus on the first problem where we can have different 
plans for different segments of customers. 

Marketing-Campaign Planning Algorithm 

Algorithm Overview 
A major difficulty in solving the marketing-planning 
problem stems from the fact that there are potentially many 
states and many connections between states.  This 
potentially large space can be reduced significantly by 
observing that the states and their connections are not all 
equal; some states and action sequences in this state-space 
are more significant than others because they are more 
frequently “ traveled”  by traces in the Marketing-log table.  
This observation allows us to use an approach in which we 
exploit planning by abstraction. 

   In particular, significant state-action sequences in the 
state space can be discovered through a frequent string-
mining algorithm.  We start by defining a minimum-
support threshold for finding the frequent state-action 
sequences.  Support represents the number of occurrences 
of a state-action sequence from the Marketing-log table.  
More formally, let )(seqcount be the number of times 
sequence “seq”  appears in the database for all customers. 
Then the support for sequence “seq”  is defined as 
 
            )()sup( seqcountseq = ,       (1) 
 
   Then, a string-mining algorithm based on moving 
windows will mine the Marketing-log table database to 
produce state-action subsequences whose support is no less 
than a user-defined minimum-support value.  For 
connection purpose, we only retained substrings both 
beginning and ending with states, in the form 
of >< ++ niiii sasas ,......,,,, 11 .   
   Once the frequent sequences are found, we piece 
together the segments of paths corresponding to the 
sequences to build an abstract AND-OR graph in which we 
will search for plans.  If >< 210 ,, sas  and 

>< 432 ,, sas  are two segments found by the string-
mining algorithm, then >< 43210 ,,,, sasas  is a new path 
in the AND-OR graph.  Since each component of the 
AND-OR graph is guaranteed to be frequent, the AND-OR 
graph is a highly concise and representative state space.  
Suppose that we wish to find a marketing plan starting from 
a state 0s , we consider all action sequences in the AND-
OR graph that start from 0s satisfying the length or 
probability constraint.  
   We used a function ),()(),( pshpgpsf += to 
estimate how “good”  a plan is.  Let s  be an initial state 
and p  be a plan. Let )( pg be a function that sums up the 
cost of each action in the plan. Let ),( psh  be a heuristic 
function estimating how promising the plan is for 
transferring customers initially belonging to state s . 

),( psh is a kind of utility estimation of the plan. This 
function can be determined by users in different specific 
applications. In our work, we estimated ),( psh in the 
following manner.  We start from an initial state and 
follow a plan that leads to several terminal states is , 1+is , 

2+is , …, jis + . For each of these terminal states, we 
estimate the state-classification probability )|( isP + . Each 
state has a probability of )|(1 isP +−  to belong to a 
negative class.  The state requires at least one further 
action to proceed to transfer the )|(1 isP +−  who remain 
negative, the cost of which is at least the minimum of the 
costs of all actions. We compute heuristic estimation for 
terminal states where the plan leads. For an intermediate 
state leading to several states, an expected estimation is 
calculated from the heuristic estimation of its successive 
states weighted by the transition probability ),|( jik assp . 
The process starts from terminal states and propagates back 
to the root, until reaching the initial state.  Finally, we 
obtain the estimation of ),( psh for the initial state s  
under the plan p . 

S0

A1

O1 O2

A2

S1 S2

S3

S7 S8

S4 S5 S6

A
2

O3 O4

A
2



   Based on the above heuristic estimation methods, we 
can perform a best-first search in the space of plans until 
the termination condition is met.  The termination 
conditions are determined by the probability or the length 
constraints in the problem domain. 

Search for Plans using MPlan 
In the AND-OR graph, we carry out a procedure MPlan 
Search to perform a best-first search for plans. We 
maintain a priority queue Q by starting with a single-action 
plan. Plans are sorted in the priority queue in terms of the 
evaluation function ),( psf . 
   In each iteration of the algorithm, we select the plan 
with minimum value of ),( psf  from the queue. We 
then estimate how promising the plan is. That is, we 
compute the expected state-classification probability 

)|( 0sE +  from back to front in a similar way as with 
),( psh calculation, starting with the )|( isP +  of all 

terminal states the plan leads to and propagating back to 
front, weighted by the transition probability 

),|( jik assp . We compute )|( jsE + , the expected value 
of the state-classification probability of all terminal states.  
If this expected value exceeds a predefined threshold 
Success_Threshold, i.e. the probability constraint, we 
consider the plan to be good enough and the search process 
terminates.  Otherwise, one more action is attached to this 
plan and the new plans are inserted into the priority queue. 

)|(
i

sE +  is the expected state-classification probability 
estimating how “effective”  a plan is at transferring 
customers from state is . Its calculation can be defined in 
the following recursive way:  
 

)|(*),|()|( kjiki sEasspsE +�=+ ; if is  is a non-
terminal state; or 
 

)|()|( ii sPsE +=+  if is  is a terminal state.    (2) 
 
   We define Success_Threshold as a lower bound on 

)|(
i

sE + .  We conduct the above search procedure for 
all initial states, finding one plan for each.  It is possible 
that in some AND-OR graphs, we cannot find a plan whose 

)|( isE + exceeds the Success_Threshold, either because 
the AND-OR graph is not good enough or because the 
Success_Threshold is too high.  To address this, we define 
a parameter Max_Step which defines the maximum length 
of a plan, i.e. the length constraint.  We will discard a 
candidate plan which is longer than the Max_Step and 

)|( isE + value less than the Success_Threshold.  Table 
3 is the pseudo code of the MPlan Search algorithm. 
   Consider an example of MPlan Search algorithm using 
the AND-OR graph in Figure 1. Suppose that we are 
looking for a plan for customers starting at state 0s .  
Suppose we have a finite set of actions and the minimum 
cost among these actions is denoted by MinC. 
 
Step 1. We inserted two single-step plans – <A1> and 
<A2> into Q with the evaluation function as follows: 
 

Table 3. The MPlan Search Algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f(S0, A1)=Cost(A1) + P(S1|S0, A1) * (1-P(+|S1)) * MinC + 
P(S2|S0, A1) * (1-P(+|S2)) * MinC 
 
f(S0, A2)=Cost(A2) + P(S7|S0, A2) * (1-P(+|S7)) * MinC + 
P(S8|S0, A2) * (1-P(+|S8)) * MinC 
 
Step 2. Suppose <A1> is the plan with minimum ),( psf  
value in Q. Therefore, <A1> is deleted from Q and 
examined to see whether it is a qualified plan.  
 

)|( 0sE + =P(S1|S0, A1) * P(+|S1) + P(S2|S0, A1) * P(+|S2) 
 
   If )|( 0sE +  is less than Success_Threshold, then 
<A1> is not a “good”  plan.  Thus, actions A1 and A2 are 
appended to the end of plan <A1> to form two new plans 
<A1A1> and  <A1A2>.  These two plans are then 
inserted into Q.  
   Because there is no path <A1A1> in the AND-OR 
graph, we discard the candidate <A1A1> from Q. The 

),( psf  value of <A1A2> is: 
 
f(S0, A1A2)=Cost(A1A2) + P(S1|S0, A1) * (P(S3|S1, A2) 
* (1-P(+|S3)) * MinC + P(S4|S1, A2) * (1-P(+|S4)) * MinC) 
+ P(S2|S0, A1) * (P(S5|S2, A2) * (1-P(+|S5)) * MinC + 
P(S6|S2, A2) * (1-P(+|S6)) * MinC)) 
 
Step 3. Now we have plans <A2>, <A1A2> in Q. Suppose 
<A1A2> is the plan with minimum ),( psf . Therefore, 
<A1A2> is deleted from Q to see whether it is a promising 
plan.  
 

)|( 0sE + = P(S1|S0, A1) * (P(S3|S1, A2) * P(+|S3) + 
P(S4|S1, A2) * P(+|S4)) + P(S2|S0, A1) * (P(S5|S2, A2) * 
P(+|S5) + P(S6|S2, A2) * P(+|S6)) 
 
If )|( 0sE +   >= Success_Threshold, then <A1A2> is a 
“good”  plan with minimum cost from Q.  
 

1. Insert all possible one-action plans into Q. 
2. While (Q not empty) {  
3.   Get a plan with minimum value of ),( psf  

from Q. 
4.   Calculate )|( sE +  of this plan. 
5.   If ( )|( sE +  >= Success_Threshold) 
    Return Plan;  
6.   If (length(Plan) > Max_Step) 

  Discard Plan; 
7.   Else  

  7.1 Expand plan by appending an action. 
  7.2 Calculate ),( psf  for the new plans   
and insert into Q. 

8 }   end while 
9 Return “plan not found” ; 



Step 4. Return the plan <A1A2>.  Stop. 

Analysis 
The Marketing-Plan algorithm has two major components 
in terms of time complexity – one is state space abstraction 
by string mining algorithm; the other is Mplan, the best-
first algorithm.  
   In the string-mining algorithm, we find frequent strings 
which satisfy the predefined minimum support threshold. 
Suppose that there are N sequences in the Marketing-log 
table. The average length of the sequences is K. We scan 
the sequences with a finite window of size W. We need to 
find all the frequent strings with length less than or equal to 
W. For each sequence with an average length K, time 
complexity is )2/)1()1(( +−+ WWWKO . If W << K, 
then it is )(KO . For totally N sequences, it is )(NKO . 
If W is comparable to K, then it is )( 2NKO . 
   In the MPlan Search Algorithm, the number of 
iterations is bounded by the parameter Max_Step. Suppose 
the number of different actions is A. In the worst case when 
the algorithm exits with “No plan found” , the number of 
iterations is )( _ StepMaxAO . However, in an average case 
the plan should complete faster than the worst case. The 
time complexity for a single iteration is determined by the 
size of the state space. In general, it takes more time to 
calculate ),( psf  and )|( isE +  in a complex state space 
than in a simple one because the planner has more states 
and paths to explore. 
   Note that although our proposed state space abstraction 
method using string mining does not reduce the number of 
iterations of MPlan algorithm, it saves a lot of time in 
exploring in the state space in each iteration because many 
statistically trivial paths are discarded before the search 
process. 

Experimental Setup 

Although we are able to obtain Customer data, it has been 
difficult to obtain Marketing-log data from real world.  To 
test our ideas, we used a simulator to generate the 
customer-log data according to some customer distributions 
we can specify. The Customer data are used for training a 
classifier for state-classification function )( sp c . The 
Marketing-log data are used in two ways: (1) Frequent 
state-action subsequences are mined from the Marketing-
log data to construct a highly concise and representative 
AND-OR graph; (2) Models of transition probability 

),|( jik assp are estimated from the statistics of the 
Marketing-log data. 

Data set 
We used the IBM Synthetic Generator 
(http://www.almaden.ibm.com/cs/quest/syndata.html) to 
generate a Customer dataset with two classes and nine 
attributes. The positive class has 30,000 records 
representing successful customers and negative has 70,000 
representing unsuccessful ones. Those 70,000 negative 

records are treated as starting points for Marketing-log data 
generation. We carried out the state abstraction and 
mapping by feature selection, only keeping four attributes 
out of nine. Those four attributes were converted from 
continuous range to discrete values. The state space has 
400 distinct states.  A classifier is trained using the C4.5 
decision tree algorithm (Quinlan 1993) on the Customer 
dataset. The classifier will be used later to decide on the 
class of a state. 
   We generated the Marketing-log data using another 
simulator.  Each of the 70,000 negative records is treated 
as an initially failed customer.  A trace is then generated 
for the customer, transforming the customer through 
intermediate states to a final state. We also defined four 
types of actions, each of which has a cost and impacts on 
attribute transitions. We can illustrate the definition of an 
action’s impact on attribute transitions through an example. 

�
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=
5.03.02.0

010

05.015.08.0

13M  

   In this matrix, 13M  is a matrix representing the impact 
of action 1A  on Attribute three. The matrix is n by n if 
attribute i has n different values.  Suppose attribute 3 has 
three distinct values 0, 1, 2. The first row in the matrix 
means if attribute 3 takes value 0, after action 1A , Attribute 
three will take on the first value with 80% probability, 
value 1 with 15% probability and value 2 with 5% 
probability.  After an action is taken, attributes for a 
customer will change probabilistically according to the 
definition of impact of actions. 
   The Marketing-log data generation algorithm is shown 
in Table 4.  In this procedure, we define terminal* as 
follows: once a customer changes from the negative class 
to the positive class, the state for the first time he is 
classified as positive is a terminal state. If a customer 
received actions for a predefined number of times, say, 20 
times and still remained negative, the 20th state is the 
terminal state.  Using this method, we generated 70,000 
traces for the 70,000 failed records. Figure 2 illustrates the 
distribution of different-length traces. 
 
Table 4. The Marketing-log data generation algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 

Input: A set of initially failed states 
iS  and a set of 

actions
iA  with state-transition matrices. 

Output: Sequences of trace data preserving temporal 
order, in the form of >< ++ niiii sasas ,......,,,, 11 . 
Algorithm:  
For each initially failed state s 

while s is not a terminal* state 
randomly select an action a; 

    generate the next state s’  according to  
the impact of action a on attributes; 

    end while 
end for 



   In Figure 2, the horizontal axis represents the number 
of actions in a trace. The vertical axis represents the 
number of “n-actions”  traces. For example, the first dot 
represents that there are about 18,000 traces that has only 
one action before success. We can see that long traces with 
more than 6 actions are very rare. 
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Figure2. Distribution of number of traces as a function of 
plan length. 

Test Criteria 
We evaluated the quality of the plans via simulation. Again, 
we used the IBM Synthetic Generator to generate 100,000 
customer records that correspond to the failed class.  Our 
goal is to find marketing plans to convert them to a 
successful class.  This testing process corresponds to the 
testing phase for a trained model in machine learning. 
   In this simulation, if there is a plan suitable for 
converting a customer record, a sequence of actions is 
carried out on that record.  The plan will then change the 
customer record probabilistically according to impact of 
actions on attributes. At the end, the classifier is used to 
decide whether the changed record has turned into a 
successful one. 
   We define a number of quantities to measure the 
success of the test results. Let },...,{ 21 nsss be a set of 
terminal states in a current plan from an initial state.  We 
wish to estimate the success probability of the plan.  We 
define a quantity -- the expected success probability 

)|( 0sE +  recursively as equation (2). 
   As mentioned before, a user-defined 
Success_Threshold is used as a lower bound on )|( 0sE + ; 
we consider a plan is found successfully for an initial state 
only when )|( 0sE + is no less than the Success_Threshold. 
   We define the Max_Step as a length constraint, 
whereby plans longer than this limit will not be examined. 
   Let N be the number of customers who are to be 
converted through the marketing plans.  Those are the 
customers who belong to the negative class initially.  Let 
PlanSet be the set of plans that are found by the MPLan 
planner for these N customers.  Then the Transition Rate 
is defined as the proportion of people who are transformed 
to the successful class after the application of the plan.  
Let M be the number of customers among the N people 
who belong to the successful class after the plans are 
applied.  Then 

N

M
RateTransition = ,          (3) 

   Finally, let L be the number of initial segments which 
corresponds to L initial states.  Let K be the number of 
initial states among the L where a marketing plan is 
successfully found within the stated limits.  Then the Plan 
Rate is defined as: 

L

K
PlanRate = ,             (4) 

   We also measure the CPU time used to search for the 
plan.  This is denoted as Time.  

Evaluation Results 
Figure 3 (a) illustrates the Transition Rate, Plan Rate of a 
plan as a function of Success_Threshold.  
Success_Threshold corresponds to a threshold on the 
expected probability that the terminal states are considered 
belonging to the positive class. This parameter determines 
how easy it is to find a successful plan. When 
Success_Threshold is low, many states are considered 
positive, and thus plans can be easily and quickly found for 
most of the initial states in the graph.  Thus we can 
observe from Figures 3 (a) and (b) that searching Time is 
low and Plan Rate is high with low Success_Threshold. 
However, because Success_Threshold is low, the plans 
found don’ t guarantee high probability of success. So 
Transition Rate is also low at first.  As Success_Threshold 
increases, so does the Transition Rate and searching Time. 
When Success_Threshold is too high, no plan can be found 
for some initial states. Therefore, both of the Plan Rate and 
Transition Rate decrease. The Time is much higher 
because the searching process doesn’ t terminate until all 
the plans expanded longer than Max_Step. 
   Figures 4 and 5 illustrate the Transition Rate, Plan Rate 
and searching Time of a plan as a function of minimum 
support MinSupport.  MinSupport =N means a sequence 
has to appear at least N times in Marketing-log data to be 
frequent.  An AND-OR graph with minimum support 
MinSupport=1 corresponds to a state space constructed 
without undergoing frequent string mining procedure. 
Generally speaking, MinSupport determines the frequent 
state-action sequences mined from Marketing-log data and 
thus the size of the AND-OR graph – the search space for a 
plan. When MinSupport is low, the search space is very 
large and complex; searching will then take a lot of time to 
complete. As MinSupport gets larger, the search space 
becomes more and more compressed, and search time will 
be shorter.  When MinSupport becomes extremely high, 
the search space may lose many important states and 
transitions, making plan searching harder again.   
   However, the search efficiency also depends on other 
parameters. Success_Threshold is another important factor. 
When Success_Threshold is low, approximately the same 
Plan Rate and Transition Rate can be found no matter how 
large the state space is, as shown in Figure 4. When 
Success_Threshold is higher, plan searching becomes more 
difficult. In a large search space, searching for a solution 
plan takes a lot more time.  In an extremely concise state 
space, no plans can be found because many states and 



transitions are discarded by state space abstraction, as 
shown in Figure 5.  
   Notice that in Figure 5(a), Transition Rate reaches a 
maximum for a state space when MinSupport=100. This 
means that with appropriate frequent string mining, plans 
found in the resulted state space won’ t lose in terms of 
effectiveness compared with original state space without 
string mining; the feature of string mining even provides 
better performance. It also saves time in search space 
construction and plan searching process, as shown in 
Figure 5(b).  
   Figures 6(a) (b) illustrates the Transition Rate, Plan 
Rate and searching Time of a plan as a function of 
Max_Step. As we can see from the figure, increasing the 
length of Max_Step has little effect on Transition Rate and 
Plan Rate.  This is due to the fact that once a group of 
customers are converted to a positive class boundary; any 
further actions will not improve their chance of being 
positive.  However, Time increases greatly because 
searching process often continues until all possible plans 
within the length of Max_Step are explored. 
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Figure 3(a). Plan Rate, Transition Rate vs. 
Success_Threshold. MinSupport = 100, Max_Step =5. 
  

Figure 3(b). CPU Time vs. Success_Threshold. 
MinSupport = 100, Max_Step =5. 
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Figure 4(a). Plan Rate, Transition Rate vs. MinSupport. 
Success_Threshold=0.05. Max_Step =5. 
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Figure 4(b). CPU Time vs. MinSupport. 
Success_Threshold=0.05. Max_Step =5. 
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Figure 5(a). Plan Rate, Transition Rate vs. MinSupport. 
Success_Threshold=0.20. Max_Step =5 
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Figure 5(b). CPU Time vs. MinSupport. 
Success_Threshold=0.20. Max_Step =5. 
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Figure 6(a). Plan Rate, Transition Rate vs. Max_Step. 
MinSupport=100, Success_Threshold=0.50.  
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Figure 6(b). CPU Time vs. Max_Step. MinSupport=100, 
Success_Threshold=0.50. 

Summary of the Test Results 
In this test we used sequence mining as a filter before state 
space construction.  We observe that using frequent string 
mining can indeed save a lot of searching time while at the 
same time, provide much more desirable plans in terms of 
their performance. Increasing the Success_Threshold can 
bring about much more promising plans. Increasing 
Max_Step does not bring any significant improvement in 
plan searching when this parameter is over a certain 
threshold. 

Conclusions and Future Work 
In this paper, we explored planning in the marketing 
planning domain, where the problem formulation is 
significantly different from the classical or probabilistic 
planning situations.  Our approach combines both data 
mining and planning in order to build an abstraction space 
in which the plans are obtained.  The plans are no longer 
transforming an agent’s state from one initial state to a goal 
state; instead, in our situation we formulate plans that 
transform groups of customers from a set of initial states to 
positive class states.  This formulation has many realistic 
applications in the real world, well beyond marketing 
planning.   
   In the future, we wish to consider different variations of 
the problem in marketing and other related domains.  We 
wish to obtain some more realistic data from the customer 
relationship management domain and build a realistic 
system for marketing planning. 
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