
Information Sciences 278 (2014) 685–702
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Measuring the impact of MVC attack in large complex networks
http://dx.doi.org/10.1016/j.ins.2014.03.085
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Address: East China Normal University, China. Tel.: +86 13510721660.
E-mail address: lironghuascut@gmail.com (R.-H. Li).
Rong-Hua Li a,b,⇑, Jeffrey Xu Yu c, Xin Huang c, Hong Cheng c, Zechao Shang c

a Guangdong Province Key Laboratory of Popular High Performance Computers, Shenzhen University, China
b East China Normal University, China
c The Chinese University of Hong Kong, Hong Kong
a r t i c l e i n f o

Article history:
Received 17 April 2013
Received in revised form 9 March 2014
Accepted 13 March 2014
Available online 29 March 2014

Keywords:
Complex network
MVC attack
FM sketch
(Adaptive) submodularity
a b s t r a c t

Measuring the impact of network attack is an important issue in network science. In this
paper, we study the impact of maximal vertex coverage (MVC) attack in large complex net-
works, where the attacker aims at deleting as many edges of the network as possible by
attacking a small fraction of nodes. First, we present two metrics to measure the impact
of MVC attack. To compute these metrics, we propose an efficient randomized greedy algo-
rithm with near-optimal performance guarantee. Second, we generalize the MVC attack
into an uncertain setting, in which a node is deleted by the attacker with a prior probabil-
ity. We refer to the MVC attack under such uncertain environment as the probabilistic MVC
attack. Based on the probabilistic MVC attack, we propose two adaptive metrics, and then
present an adaptive greedy algorithm for calculating such metrics accurately and effi-
ciently. Finally, we conduct extensive experiments on 20 real datasets. The results show
that P2P and co-authorship networks are extremely robust under the MVC attack while
both the online social networks and the Email communication networks exhibit vulnerabil-
ity under the MVC attack. In addition, the results demonstrate the efficiency and effective-
ness of the proposed algorithms for computing the proposed metrics.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Networks are ubiquitous. Many practical systems in nature and society can be characterized by the network. Examples
include (online) social networks, computer networks, Internet, biological networks, transportation networks, and so on. After
the seminal work by Watts and Strogatz [51] and Barabási and Albert [2], complex networks have attracted increasing atten-
tion in both industry and research communities in the last decade. The studies of complex network mainly focus on inves-
tigating the underlying organizing principles, the function, and the dynamics of the network.

However, networks are very often attacked by malicious users. An important issue in network science is to study the
robustness of a network subject to nodes or links errors [1,52]. Many real-world examples are briefly described below. In
airline network, an important question is how the operational ability of the network is affected given that a certain airports
are closed. In computer networks, a key problem is to study how the communication capacity changes when some comput-
ers in the network are attacked by the hackers. In P2P networks, a crucial issue is to study how the communication ability of
the network is affected when a certain number of peers depart from the network.

In practice, a network attacker typically has a small budget of k nodes (edges) to attack due to resource limitation. The
attacker aims at maximizing some utility functions after attacking k nodes (edges). Many previous studies have been focused

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.03.085&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.03.085
mailto:lironghuascut@gmail.com
http://dx.doi.org/10.1016/j.ins.2014.03.085
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


686 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
on such nodes (edges) attack problems. For example, Albert et al. [1] studied the robustness of a network by considering the
diameter of the network after deleting a small fraction of nodes. In [1], the utility function of the attacker corresponds to the
diameter of the network, and the attacker aims to maximize the diameter of the network, which will make the network as
less cohesive as possible. Many subsequent studies [9,8,10] followed this framework to study how a network is affected by
nodes or edges errors. However, most of them focus on deriving analytical solutions on the basis of some specific random
graph models. More recently, Schneider et al. [45] investigated how the size of the giant connected component changes sub-
ject to nodes deletions. Clearly, in [45], the utility function of the attacker is the inverse of the size of the maximal connected
component of the network, and the attacker aims to minimize the size of the maximal connected component of the network.

Instead of the diameter and the size of maximal connected component, in this paper, we consider another important met-
ric, i.e., the number of residual edges of the network after attacking. Specifically, in our model, the attacker’s utility function
is equal to the number of edges that are removed. The attacker aims at maximizing the number of edges that are deleted
after attacking a small fixed budget of k nodes of the network. Or, equivalently, the attacker wants to minimize the number
of residual edges of a network after attacking. Clearly, this problem is equivalent to the maximal vertex coverage (MVC)
problem on networks [21]. We thus refer to such type of attack as the MVC attack. Note that the number of residual edges
is a very natural and intuitive metric to measure the function and performance of the network. Intuitively, after the removal
of k nodes, the network with a large number of residual edges implies that the function and performance of the network are
not extensively damaged. There are many practical applications that can suffer from such MVC attack. For instance, in com-
puter networks, the hacker may want to attack k workstations so as to minimize the number of surviving links in the net-
work. In online social networks, the attacker may want to target k users by providing some incentives to persuade them to
leave the social network so as to minimize the number of residual social ties of the network. Such incentive-based attacks
indeed encounter in real-world online social networks. For example, a recent news in CNET (http://news.cnet.com/
delete-10-facebook-friends-get-a-free-whopper/) reports an attack event. The fast-food company Burger King developed a
Facebook application, namely Whopper Sacrifice, giving a Facebook user a free coupon for a free hamburger if he/she deletes
10 people from his/her friends list. By statistics, 82,771 Facebook users participated in this campaign, and 233,906 Facebook
friendships were deleted. After then, Facebook closed this application due to a large number of link deletions. In addition, on
the positive side, the MVC attack could be used to fight terrorism. For example, given a terrorist network, we may want to
attack a small number of terrorists so that the number of residual ties in the network is minimal. As a consequence, it is
important to investigate the impact of MVC attack in a network.

To study impact of the MVC attack, we present two new metrics of the network, named k-MVC-impact and cumulative
k-MVC-impact. More specifically, k-MVC-impact is defined by the minimal fraction of the residual edges after removing k
nodes, and cumulative k-MVC-impact is the average k-MVC-impact from k ¼ 1 to k. To compute the two proposed metrics,
we propose an optimal dynamic programming algorithm for tree-like networks. For general networks, by using the submod-
ularity of the MVC problem, we present a randomized greedy algorithm with near-optimal approximation guarantee for cal-
culating our metrics efficiently. To the best of our knowledge, this work is the first work to measure the impact of MVC attack
in complex networks. Besides the MVC attack, we also introduce a probabilistic MVC problem where a node is not always
successfully removed by the attacker. Instead, we consider that the node is removed by the attacker with a prior probability.
In terms of probabilistic MVC attack, we also propose two new metrics, called adaptive k-MVC-impact and adaptive cumula-
tive k-MVC-impact. We show that the probabilistic MVC problem can be formulated as an adaptive submodular function
maximization problem [19]. Based on this, we present a near-optimal adaptive greedy algorithm to calculate adaptive
k-MVC-impact and adaptive cumulative k-MVC-impact efficiently. Finally, we conduct extensive experimental studies on 20
real-world datasets. The results show that the P2P and co-authorship networks are extremely robust subject to MVC attack,
whereas the online social networks, the Email communication networks, as well as the web graph are shown to be very
vulnerable subject to MVC attack. Also, the results confirm the effectiveness and efficiency of the proposed algorithms for
computing the proposed metrics.

The remainder of this paper is organized as follows. We describe the problem and propose two metrics for studying the
impact of MVC attack in Section 2. We then present two new algorithms for computing the proposed metrics in Section 3. In
Section 4, we propose two new metrics w.r.t. the probabilistic MVC attack and develop an efficient adaptive greedy algo-
rithm for calculating them accurately. We conduct extensive experimental studies in Section 5. Finally, we survey the related
work in Section 6 and conclude this work in Section 7.
2. Problem formulation

Consider an undirected network G ¼ ðV ; EÞ, where V denotes a set of nodes and E denotes a set of undirected edges
between the nodes. Let n ¼ jV j and m ¼ jEj be the number of nodes and the number of edges in G, respectively. The problem
that we address in this paper is to measure the impact of MVC attack in a network.

Specifically, we consider the following setting. Assume that there is an attacker who wants to attack a network, and the
attacker has a budget of k nodes to attack. If a node is attacked by the attacker, then the node and its incident edges will be
removed from the network. The attacker aims to maximize some utility functions by attacking k nodes. In this paper, we
introduce a utility function for the attacker. That is, the number of edges that are removed by attacking k nodes. In other
words, the goal of the attacker is to maximize the number of edges that are removed after deleting k nodes. Note that this



R.-H. Li et al. / Information Sciences 278 (2014) 685–702 687
problem is equivalent to the maximal vertex coverage (MVC) problem [21] which aims to select k nodes that cover as many
edges as possible. Therefore, we refer to such an attack as the MVC attack. Formally, let S (S # V) be a set of nodes, and FðSÞ be
the number of edges that are removed after deleting the nodes in S. Then, the MVC attack problem can be formulated as
max
S # V

FðSÞ

s:t: jSj 6 k:
ð1Þ
Let F�ðSÞ be the optimal solution for Eq. (1). Then, we define a metric called k-MVC-impact of a network G as follows.

Definition 2.1. Given a network G ¼ ðV ; EÞ, the k-MVC-impact of G is rk ¼ 1� F�ðSÞ=m.

By Definition 2.1, the k-MVC-impact (rk) denotes the fraction of residual edges after removing k nodes. Intuitively, after
removing k nodes, the larger the fraction of residual edges is, the more robust the network is. In addition, it can be seen that
rk falls into the interval [0,1]. If rk ¼ 0, we say a network is completely collapsed. We refer to the minimal k that causes
rk ¼ 0 as the collapsed point denoted by ~k. Clearly, ~k equals to the minimum vertex cover number of a network. Note that
rk measures the point-wise impact of MVC attack in a network. Naturally, we define the cumulative impact called cumulative
k-MVC-impact as follows.

Definition 2.2. Given a network G ¼ ðV ; EÞ, the cumulative k-MVC-impact of G is �rk ¼
Pk

i¼1ri

� �
=k.

Unlike the k-MVC-impact, the cumulative k-MVC-impact evaluates the average point-wise k-MVC-impact. According to
Definitions 2.1 and 2.2, large rk and �rk indicate a high robustness of the network subject to MVC attack. Note that the
key subroutine to compute cumulative k-MVC-impact (�rk) is to calculate k-MVC-impact (rk). In the following section, we focus
on how to compute rk efficiently. It is worth mentioning that, although we mainly focus on the undirected networks, the
proposed metrics and techniques can be easily generalized to directed networks. This is because in our model, once a node
is deleted, its incident edges are also removed. Therefore, under our model, we can ignore the directions of edges for the
directed networks, and then apply the proposed metrics and techniques to measure the impact of MVC attack.

3. Algorithms

Given a network G, the key issue to evaluate k-MVC-impact of G is to solve the MVC attack problem (Eq. (1)). Unfortu-
nately, finding the MVC on general networks has been known to be NP-complete [11]. Hence, there is no hope to exactly
compute rk in polynomial time. In this section, we first propose an optimal dynamic programming algorithm for computing
rk on trees. Then, we introduce a randomized greedy algorithm for calculating rk on general networks.

3.1. Algorithm for trees

Here we show that rk can be exactly calculated on trees in polynomial time by a dynamic programming algorithm. Con-
sider a tree T whose root node has c children. The optimal way for finding k nodes that maximize FðSÞ (jSj ¼ k) must follow
either of the following two cases. The first case is that we select the root node into the set S and then recurse on the children
with a budget of k� 1. The second case is that we do not choose the root node and instead recurse on the children with a
budget of k. However, such recursion will result in very high computational cost, because the recursion needs to partition the
c children into k or k� 1 parts in all possible ways.

To reduce the computational cost, we transform the tree T into a binary tree T in the following way. For every node v in T,
assume the children of v are v1; . . . ;vc . If c 6 2, we do nothing. Otherwise, we replace v by a binary tree with leaves v1; . . . ;vc .
Specifically, let v1 be the left child of v. Create a virtual node w1 and let it be the right child of v. Then, let the rest children of v
be the children of w1. Repeat this procedure until every node has at most two children. Notice that the number of nodes in T

is at most twice the number of nodes in T and the depth of T is at most a factor of log2dmax larger than the depth of T. Here
dmax denotes the maximal out-degree of a node in T. Similar constructions have been applied for different applications
[28,29].

Based on the above transformation, we can design a dynamic programming (DP) algorithm on T . Let Jðv ; S; kÞ be the opti-
mal solution in the subtree rooted by v with a budget k; LðvÞ and RðvÞ be the left and right child of node v respectively. Then,
the recursive equation of the DP algorithm is given by
Jðv; S; kÞ ¼max max
i¼0;1;...;k

fJðLðvÞ; S; iÞ þ JðRðvÞ; S; k� iÞg;Cðv; SÞ þ max
i¼0;1;...;k�1

JðLðvÞ; S [ fvg; iÞ þ JðRðvÞ; S [ fvg; k� 1� iÞf g
� �

;

ð2Þ
where Cðv; SÞ is a cost function and it is defined as follows. For each node v in T [ T , we set Cðv; SÞ ¼ FðS \ fvgÞ � FðSÞ, where
S denotes the current optimal solution and FðSÞ is evaluated on the original tree T. In other words, Cðv; SÞ denotes the gain of
the objective function after selecting node v into the solution set S. For each virtual node v in T , we set Cðv ; SÞ ¼ �1 to
ensure that the virtual nodes will not be selected into the optimal solution S. The first term in Eq. (2) represents the case
that the node v is not selected into the solution S. The second term denotes the case that the node v is added into the solution



688 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
S. The optimal solution can be obtained by invoking Jðv ; S; kÞ, where v is the root node of the tree T and S ¼ ;. One can easily
show that the optimal solution obtained by the DP algorithm on T is the optimal solution of the MVC attack problem (Eq. (1))
on T.

We analyze the time complexity of the DP algorithm as follows. First, the time complexity for building the binary tree T is
Oðnlog2dmaxÞ. Second, for each node in the tree T , we need to evaluate the recursion OðkÞ times, and each evaluation takes at
most OðnÞ time. There are Oðnlog2dmaxÞ number of nodes in T . Consequently, the time complexity of the DP algorithm is
Oðkn2log2dmaxÞ. For the space complexity, the algorithm needs to store the trees T; T , and maintains all the Jðv; S; kÞ, which
results in Oðkn2log2dmaxÞ space complexity.

Remark. The proposed tree transformation method is based on a paradigm of ‘‘trading space for time’’. Note that in the
transformed binary tree, we include a small number of virtual nodes to speedup the dynamic programming algorithm.
Moreover, we show that such a number can be bounded, and the additional space overhead is only twice than the space
complexity of the original tree. In addition, we emphasize that our purposes of studying impact of MVC attack on trees are
twofold. On the one hand, tree is a powerful model to characterize the hierarchy structure in many real-world applications.
Such applications include the evolutionary tree in biology, social hierarchy structure in social networks, as well as XML data.
The proposed study could be useful for these applications where it needs to measure the impact of MVC attack. On the other
hand, for the trees, we have a nice polynomial-time algorithm to calculate the proposed metrics. However, for general
networks, computing the proposed metrics is NP-hard, and thus we has to resort to approximation algorithms. Therefore, the
algorithm for trees can serve as a very useful baseline to evaluate the practical performance of the approximation algorithms
when they are performed on trees.
3.2. Algorithm for general networks

In this subsection, we present a randomized greedy algorithm with near-optimal performance guarantee for computing
rk on general networks efficiently. First, we briefly describe the concept of nondecreasing submodular set function. Let A be a
finite set. A set function F defined on the subsets of A is a nondecreasing submodular function if the following condition
holds. For any subsets B and C such that B # C # A, and for any element j R C, we have qjðBÞP qjðCÞP 0, where qjðBÞ rep-
resents the marginal gain and it is defined as qjðBÞ ¼ FðB [ fjgÞ � FðBÞ.

It is easy to check that FðSÞ is a nondecreasing monotone submodular set function. Based on this, there exists a greedy
algorithm for solving the MVC problem (Eq. (1)) efficiently. In particular, the greedy algorithm works in k rounds. In each
round, the algorithm finds the node with the maximal marginal gain (qjðSÞ) and adds it to the optimal node set S, where
S is initialized to be an empty set. By a celebrated result [42], this greedy algorithm can achieve a 1� 1=e approximate ratio.
The time complexity of the greedy algorithm is OðkmÞ, because the algorithm needs to visit all the edges to find the node
with the maximal marginal gain in the worst case. Below, we will propose a more efficient randomized greedy algorithm
using the well-known Flajolet-Martin (FM) sketch [17].

The FM sketch is a probabilistic counting data structure and it can be utilized to estimate the cardinality of a multi-set
[17]. Let N be the cardinality of a multi-set A. Then, the FM sketch only uses log N þ c bits for estimating N accurately, where
c is a small constant. In particular, the FM sketch is a bitmap with size l ¼ log N þ c. There exists a hash function
h : A! f1; . . . ; lg, mapping an element a (a 2 AÞ to a bit i (i 2 f1; . . . ; lg) in the bitmap with probability PrðhðaÞ ¼ iÞ ¼
1=ð2iþ1Þ. At the beginning, all the bits in the bitmap are set to 0. Then, for processing an element a (a 2 A), we set the cor-
responding hðaÞ-th bit of the bitmap to 1. Finally, an asymptotically unbiased estimator for the cardinality N can be obtained
by 2z=0:77351, where z denotes the position of the least-significant zero bit in the bitmap. Another important property of the
FM sketch is that it can be easily used to estimate the cardinality of the union of two multi-sets if these two multi-sets come
from the same domain. Specifically, we construct two FM sketches with the same size for two multi-sets respectively. To
estimate the cardinality of the union of two multi-sets, we only need to do a bitwise-OR between the two FM sketches,
and then estimate the cardinality based on the resulting FM sketch. To enhance the estimation accuracy, we can make
use of multiple hash functions. For convenience, we only consider one hash function to describe our algorithm. In addition,
it is worth mentioning that there also exist many other probabilistic counting structures, such as Loglog sketch [13] and
Hyper Loglog sketch [16]. Here we select to use FM sketch because it is easy to be implemented, and both its efficiency
and its estimating accuracy are desirable as shown in our experiments.

The key idea of our algorithm is described as follows. For each node u, we create an FM sketch to sketch the incident edges
of u and use it to estimate FðfugÞ. Then, for any set S; FðSÞ can be calculated by
FðSÞ ¼
[
u2S

EðfugÞ
�����

�����; ð3Þ
where EðfugÞ denotes the set of incident edges of node u. Note that EðfugÞ can be represented by an FM sketch. As a result, for
any set S, we can estimate FðSÞ by performing jSj times bitwise-OR operation. Our algorithm is described in Algorithm 1.
Firstly, Algorithm 1 creates an FM sketch for each node v i 2 V (lines 2–5). In particular, for each node v i, we initialize a



R.-H. Li et al. / Information Sciences 278 (2014) 685–702 689
bitmap FM[i], i.e., set all the bits of FM[i] to 0 (line 3). For all the incident edges of node v i, we insert them into the bitmap
FM[i] by setting the corresponding bits to 1 (lines 4–5). Secondly, Algorithm 1 greedily chooses k nodes based on their
approximate marginal gain (lines 6–22). Specifically, we create two FM sketches CFM and OFM and use them to estimate
the current optimal solution and the current marginal gain, respectively. Algorithm 1 works in k rounds. In each round, it
selects the node with the maximal approximate marginal gain (lines 12–19). To compute the approximate marginal gain
of node v i (denoted by q̂i), we only need to do a bitwise-OR between the FM sketches CFM and FM[i] (line 13), which results
in the FM sketch OFM. Then, we can use the standard unbiased estimator to estimate q̂i for node v i (lines 14–15). After find-
ing the node with the maximal approximate marginal gain, we need to update the answer set S and the FM sketch CFM. Note
that we only need to do a bitwise-OR between the FM sketches CFM and FM[Idx] to update the CFM (lines 19–22). Here
FM[Idx] denotes the FM sketch of the node v Idx which achieves the maximal approximate marginal gain. Finally, Algorithm
1 outputs the answer set S and the approximate rk (line 23). Notice that to calculate cumulative k-MVC-impact �rk we do not
need to invoke Algorithm 1 k times, but invoke Algorithm 1 with parameter k only once. Because we can record all the F (line
22) obtained in each round and compute cumulative k-MVC-impact. Additionally, we can use the so-called CELF framework
[32] to accelerate both the original greedy algorithm and our randomized greedy algorithm.

Algorithm 1. The Randomized Greedy Algorithm
Input: Network G ¼ ðV ; EÞ and k.
Output: A set S with k nodes, rk

1: Let h : fe1; . . . ; emg ! f1; . . . ; lg be the hash function that maps the edges to a position of the BITMAP, here
l ¼ log mþ c denotes the size of the BITMAP;

2: for each node v i 2 V do
3: Initialize a BITMAP FM[i] 0;
4: each incident edge e of v i do
5: Set the hðeÞ-bit of FM[i] to 1;
6: end for
7: end for
8: S ;;
9: Create two FM sketches CFM 0, OFM 0;

10: F  0; do
11: for iter = 1 to k
12: max �1;
13: Idx 0;
14: for each node v i 2 ðV n SÞ do
15: OFM (CFM) bitwise-OR (FM[i]);
16: Let z be the position of the least-significant 0 bit in OFM;
17: q̂i  2z=0:77351� F;
18: if q̂i > max then
19: max q̂i;
20: Idx i;
21: end if
22: end for
23: S S [ fv Idxg;
24: CFM (CFM) bitwise-OR (FM[Idx]);
25: Let z be the position of the least-significant 0 bit in CFM;
26: F  2z=0:77351;
27: end for
28: return S and 1� F=m;

Theoretically, by a similar analysis as in [20], Algorithm 1 can achieve a 1� 1=e� � approximate ratio with high
probability for computing the rk on general networks. The reason is because the FM sketch estimates the marginal gain
qiðSÞ of any set S within an � error bound with high probability [17]. The time complexity of Algorithm 1 is OðknþmÞ. First,
Algorithm 1 takes OðmÞ time to initialize the FM sketches for every node (lines 2–5). Second, Algorithm 1 uses OðknÞ time to
compute the rk. The rationale is that the bitwise-OR (line 13) and the estimation step (lines 14–15) can be done in constant
time [43]. We emphasize that OðknþmÞ is more efficient than OðkmÞ when k cannot be ignored. Another advantage of
Algorithm 1 is that the FM sketches for every node can be built offline. Assume that we have built the FM sketches for every
node of a given network G. Then, for any given k, Algorithm 1 can compute the corresponding rk in OðknÞ time. However, the
original greedy algorithm still needs OðkmÞ time complexity for computing rk. For the space complexity, Algorithm 1 needs



690 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
to store the network G which takes Oðmþ nÞ space complexity. In addition, Algorithm 1 maintains OðnÞ FM sketches which
take Oðn log mÞ bits, because each FM sketch only takes Oðlog mÞ bits. The size of Oðn log mÞ bits can be dominated by the
Oðmþ nÞ graph size. So putting it all together, the space complexity of Algorithm 1 is OðnþmÞ, which is the same as the
original greedy algorithm.
3.3. Discussions

Here we show that the proposed technique can also be generalized to the cost-based attack model. We briefly describe
the cost-based attack model as follows. In the cost-based attack model, each node in the network is associated with a non-
negative weight which models the cost needed to successfully remove the node. The attacker has a budget of k units cost,
and its goal is to maximize the number of removed edges after attacking some nodes subject to the budget constraint. More
formally, we have
max
S # V

FðSÞ

s:t:
X
v2S

cv 6 k;
ð4Þ
where cv denotes the cost of node v. Based on the optimal solution of Eq. (4), the k-MVC-impact and cumulative k-MVC-impact
under the cost-based attack model can be defined in a similar way to Definitions 2.1 and 2.2. Below, we discuss how to cal-
culate the optimal solution of Eq. (4).

Since FðSÞ is a submodular function, the problem described in Eq. (4) is a submodular function maximization with knap-
sack constraint problem, which is known to be NP-hard [39]. For such a problem, there is an efficient greedy algorithm with a
ð1� 1=

ffiffiffi
e
p
Þ approximation factor [38]. Specifically, in each greedy step, without violating the budget constraint, the algo-

rithm adds the node with the maximal ratio of the marginal gain to the cost of that node. More formally, in each greedy step,
the node selection of the greedy algorithm is according to the following rule
arg max
v2VnS;cvþ

P
u2S

cu6k
ðFðS [ fvgÞ � FðSÞÞ=cv ; ð5Þ
where S denotes the set of selected nodes up to current greedy step. The greedy node-selection process terminates if there is
no node that can be added. Let S1 and FðS1Þ be the optimal solution and optimal value obtained by the greedy node-selection
process, respectively. Then, the algorithm computes Fðv�Þ according to the following equation
Fðv�Þ ¼ max
v2V ;cv6k

FðfvgÞ: ð6Þ
Finally, the optimal solution of the greedy algorithm is obtained by
arg max
S2ffv�g;S1g

FðSÞ: ð7Þ
Based on such a greedy algorithm, our randomized greedy algorithm (Algorithm 1) can be easily generalized to solve the
optimization problem given in Eq. (4). To this end, we need to modify the termination condition of the main loop in
Algorithm 1 (line 9) to a budget constraint, and also we need to modify the node selection rule (lines 16–18) to the rule
described in Eq. (5). The detailed algorithm is very similar to Algorithm 1, thus we omit it for brevity.

4. Probabilistic MVC attack

In the previous sections, we consider the problem for measuring the impact of a network under a deterministic MVC
attack model. That is, if an attacker attacks a node, then the node as well as its incident edges will be removed from the net-
work. However, in practice, the nodes in a network may be tolerant of attacks to some extent. In other words, the attacker
may not always delete a node successfully. In this section, we study the problem for measuring the impact of a network
under such a scenario.

Now we consider the following setting. Suppose that an attacker has a budget of k nodes to attack. If the attacker attacks a
node v, then the node v will be successfully attacked by the attacker with a probability pðvÞ. If the node v is successfully
attacked by the attacker, then v and its incident edges will be removed from the network. If the node v survives after attack,
then we do nothing. The attacker sequentially attacks the nodes one by one and he/she can observe the previous outcomes,
i.e., whether the attacked nodes are successfully removed or not. In addition, we assume that either the attacker succeeds or
fails, the attacker cannot make any attempt to attack the same node again. The reason is twofold. First, if the attacker suc-
ceeds, then the node will be removed from the network, thereby there is no chance to attack it again. Second, if the attacker
fails, then the attacker deems that this node is quite robust and it is very hard to be attacked, thus the attacker gives up
attacking the same node again. The attacker wants to find an optimal policy for selecting nodes to attack such that he/
she can maximize the expected utility function, i.e., the number of deleted edges. Clearly, such a problem requires the
attacker to make decision under uncertainty. For convenience, we refer to such a problem as the probabilistic MVC problem,



R.-H. Li et al. / Information Sciences 278 (2014) 685–702 691
as it is a probabilistic generalization of the original MVC problem. We formulate the probabilistic MVC problem as a stochas-
tic optimization problem as follows.

Under the above attack model, each node in a network has two states 0 and 1 which signify the node is alive or deleted
after attack, respectively. Let Xi 2 f0;1g be the state of node v i and pðv iÞ be the probability of the deletion of node v i. Further,
we let / ¼ ðX1;X2; . . . ;XnÞ be a possible state of the network G and X be the set of all the possible states of G, i.e., / 2 X. In
addition, we assume that the variables Xi (i ¼ 1;2; . . . ;n) are independent. This is because the events of the nodes deleted
successfully or not are typically independent of each other. Based on this, we have
Pr½/� ¼
Y
v i2V

pðv iÞXi ð1� pðv iÞÞ1�Xi : ð8Þ
Let p be a policy for choosing nodes to attack. The utility function F : 2n �X! RP0 represents the number of edges that are
removed after attack, which depends on which nodes we select and which state of each node is. Let Sðp;/Þ be the set of
nodes selected by p under the possible state /. Then, the expected utility function of a policy p is given by
FðSðp;/ÞÞ ¼ E½FðSðp;/Þ;/Þ�; ð9Þ
where the expectation is taken w.r.t. pð/Þ. Based on these notations, the probabilistic MVC problem aims to find the optimal
policy so as to maximize FðSðp;/ÞÞ. Formally,
arg max
p

FðSðp;/ÞÞ

s:t: jSðp;/Þj 6 k;
ð10Þ
where jSðp;/Þj denotes the cardinality of the set Sðp;/Þ.
Let p� and FðSðp�;/ÞÞ be the optimal policy and the optimal value for Eq. (10), respectively. Then, similar to Definitions 2.1

and 2.2 we can define the adaptive k-MVC-impact and adaptive cumulative k-MVC-impact of a network G as follows.

Definition 4.1. Given a network G ¼ ðV ; EÞ, and the probability of each node v, i.e., pðvÞ, the adaptive k-MVC-impact of G is
dk ¼ 1� FðSðp�;/ÞÞ=m.
Definition 4.2. Given a network G ¼ ðV ; EÞ, and the probability of each node v, i.e., pðvÞ, the adaptive cumulative k-MVC-

impact of G is �dk ¼
Pk

i¼1di

� �
=k.

Likewise, the larger dk and �dk imply the larger adaptive k-MVC-impact of a network. Below, we focus on developing
algorithm for solving Eq. (10) by using the property of adaptive submodularity [19].

4.1. The adaptive greedy algorithm

In this subsection, we propose a near-optimal greedy algorithm for solving Eq. (10) efficiently. Below, we prove that the
utility function F is an adaptive submodular function [19].

Adaptive submodularity: First, we introduce some important notations and definitions on adaptive submodularity intro-
duced in [19]. Let w be a partial observation and domðwÞ be the set of nodes that have been observed. In other words, w cap-
tures both the nodes in domðwÞ and their corresponding states. A partial observation w is consistent with a possible state / if
and only if all the states of the nodes in domðwÞ are consistent with the states of the nodes represented by /, and we denote it
by w � /. Assume there is another partial observation w0 and domðwÞ# domðw0Þ. Then, w and w0 are consistent if and only if all
the states of the nodes in w are consistent with the states of the same nodes in w0, and we denote it by w � w0. Next, we give
the definition of conditional expected marginal gain as follows.

Definition 4.3 (Conditional expected marginal gain). Given a partial observation w and a node v, the conditional expected
marginal gain of choosing a node v is given by
Dðv jwÞ ¼ E FðdomðwÞ [ fvg;/Þ � FðdomðwÞ;/Þjw � /½ �; ð11Þ
where the expectation is taken w.r.t. pð/jwÞ.
Based on the conditional expected marginal gain, we give the definition of strong adaptive monotonicity and adaptive

submodularity as follows.

Definition 4.4 (Strong adaptive monotonicity). A function F : 2n �X! RP0 is strong adaptive monotone w.r.t. distribution
pð/Þ if the following condition holds. For all w, all v R domðwÞ, and all possible state o of node v such that
Pr½/ðvÞ ¼ ojw � /� > 0, we have
E½FðdomðwÞ;/Þjw � /� 6 E FðdomðwÞ [ fvg;/Þjw � /;/ðvÞ ¼ o½ �: ð12Þ



692 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
Definition 4.5 (Adaptive submodularity). A function F : 2n �X! RP0 is adaptive submodular w.r.t. distribution pð/Þ if the
conditional expected marginal gain of any node does not increase as more nodes are chosen and their states are observed.
That is to say, F is adaptive submodular if for all w and w0 such that domðwÞ# domðw0Þ and w � w0, and for all v 2 V n domðw0Þ,
we have Dðv jwÞP Dðv jw0Þ.

Based on the above definitions, we show that our utility function FðSðp;/Þ;/Þ is strong adaptive monotone and adaptive
submodular as follows.
Lemma 4.1. The utility function F is strong adaptive monotone.
Proof. Given a w and v R domðwÞ. To show F is strong adaptive monotone, we must show
Table 1
States p

State

Case
Case
E FðdomðwÞ;/Þjw � /½ � 6 E FðdomðwÞ [ fvg;/Þjw � /;/ðvÞ ¼ o½ �: ð13Þ
Let NðwÞ be the set of nodes that are removed after choosing domðwÞ and observing w. For every w � /, the set of removed
nodes by selecting domðwÞ is the same. Let f ðNðwÞÞ be a function denoting the number of edges that are removed after delet-
ing all the nodes in NðwÞ. By definition, we have E½FðdomðwÞ;/Þjw � /� ¼ f ðNðwÞÞ. Let w0 be a partial observation such that
domðw0Þ ¼ domðwÞ [ fvg and w � w0. Likewise, we have E½FðdomðwÞ [ fvg;/Þjw � /;/ðvÞ ¼ o� ¼ f ðNðw0ÞÞ. Clearly, we have
NðwÞ# Nðw0Þ. Since f is a monotone function, we conclude that f ðNðwÞÞ 6 f ðNðw0ÞÞ. This completes the proof. h
Lemma 4.2. The utility function F is adaptive submodular.
Proof. Let w and w0 be two partial observations such that domðwÞ# domðw0Þ and w � w0. Then, to show F is adaptive submod-
ular, we need to show that DðujwÞP Dðujw0Þ holds for all u 2 V n domðw0Þ.

Without loss of generality, we assume that domðwÞ ¼ fv1; . . . ;v ig. Let Xj denote the corresponding state of node v j for
j ¼ 1; . . . ; n. Then, we partition the set of all the possible states (X) into two subsets (X0 and X1) as shown in Table 1.

In the above table, XðuÞ denotes the state of node u, ‘‘�’’ denotes the states that have been observed in w, and ‘‘�’’
represents the states that have not been observed in w. Then, for a possible state of all the nodes /, we have
Pr½/ 2 X0jw� ¼ 1� pðuÞ and Pr½/ 2 X1jw� ¼ pðuÞ, where pðuÞ denotes the probability of successfully removing node u. Let
quðdomðwÞ;/Þ ¼ FðdomðwÞ [ fug;/Þ � FðdomðwÞ;/Þ. Then, we have
DðvjwÞ ¼
X

X

Pr½/jw�quðdomðwÞ;/Þ

¼
X
X0

Pr½/jw�quðdomðwÞ;/Þ þ
X
X1

Pr½/jw�quðdomðwÞ;/Þ

¼
X
X1

Pr½/jw�quðdomðwÞ;/Þ

¼ quðdomðwÞ;/Þ
X
X1

Pr½/jw�

¼ quðdomðwÞ;/ÞpðuÞ:

ð14Þ
Note that the third equality in the above equation holds due to quðdomðwÞ;/Þ ¼ 0 under / 2 X0. The reason is because, under
the X0, we know that node u has not been successfully removed, thereby the corresponding marginal gain is 0. The fourth
equality holds because quðdomðwÞ;/Þ is the same for any / 2 X1. Based on this, we have
Dðv jwÞ � Dðv jw0Þ ¼ pðuÞðquðdomðwÞ;/Þ � quðdomðw0Þ;/ÞÞP 0;
where the last inequality holds because FðdomðwÞ;/Þ is submodular for any fixed /. This completes the proof. h

The adaptive greedy algorithm: Here we present an adaptive greedy algorithm for the probabilistic MVC problem. Sim-
ilar to the greedy algorithm for the MVC problem, the adaptive greedy algorithm works in k rounds. In each round, it chooses
the node with the maximal conditional expected marginal gain Dðv jwÞ under the current partial observation w. We outline
the adaptive greedy algorithm in Algorithm 2.
artition.

s X1 X2 � � � Xi XðuÞ Xiþ2 � � � Xn Subsets

0 ⁄ ⁄ � � � ⁄ 0 � � � � � X0

1 ⁄ ⁄ � � � ⁄ 1 � � � � � X1



R.-H. Li et al. / Information Sciences 278 (2014) 685–702 693
Algorithm 2. The Adaptive Greedy Algorithm.

Input: Network G ¼ ðV ; EÞ; k, and pðvÞ for any v 2 V
Output: A set S with k nodes and dk

1: S ;; w ;;
2: for iter = 1 to k do
3: max �1;
4: Idx 0;
5: for each node v i 2 ðV n SÞ do
6: Compute Dðv ijwÞ by Eq. (14)
7: if Dðv ijwÞ > max then
8: max Dðv ijwÞ;
9: Idx i;

10: end if
11: end for
12: S S [ fv Idxg;
13: Observe /ðv IdxÞ;
14: w w [ fðv Idx;/ðv IdxÞg;
15: end for
16: return S and 1� FðdomðwÞ;/Þ=m;

Unlike the greedy algorithm for the MVC problem, in each round, Algorithm 2 needs to observe the state of the selected
node ðv Idx in line 11). This can be done by tossing a biased coin with probability pðv IdxÞ to determine the state of the selected
node (v Idx). In addition, we can use Eq. (14) to compute the conditional expected marginal gain. The time and space complex-
ity of Algorithm 2 are OðkmÞ and Oðmþ nÞ, respectively.

Theoretically, by using the result derived in [19], Algorithm 2 achieves a 1� 1=e approximate ratio. Formally, we have the
following theorem. The proof is similar to the proof presented in [19].

Theorem 4.1. The node selection policy found by Algorithm 2 obtains 1� 1=e of the value of the optimal policy for the
probabilistic MVC problem (Eq. (10)).
Remark. In [19], Golovin and Krause proposed an algorithm to extend the adaptive greedy algorithm, which is used to solve
the adaptive submodular function maximization problem, to handle cost-based model. They proved that their extended
algorithm can also produce a 1� 1=e approximation bound. By using their framework, we can easily modify Algorithm 2
to handle the cost-based attack model. Specifically, let cv be the cost of node v. The generalized algorithm is very similar
to Algorithm 2. The only difference is that, in each round, it selects the node with maximal ‘‘cost-normalized’’ expected mar-
ginal gain that is DðvjwÞ=cv for v 2 V . By using the theory established in [19], such a modified algorithm can achieve a 1� 1=e
approximation bound.
5. Experiments

In this section, we conduct extensive experiments on one synthetic and twenty real-world datasets to evaluate the effec-
tiveness and efficiency of our approaches. In the following, we first describe the experimental setup and then report our
findings.

5.1. Experimental setup

Datasets: The network datasets used in our experiments are given in Table 2. These networks can be classified into seven
categories. (1) Rndtree: the Rndtree dataset is a random tree including 750 nodes and 749 edges. We generate it based on a
standard branch process [14]. (2) The co-authorship networks: we collect 5 physics co-authorship networks which are GrQc,
Astroph, HepTh, HepPh, and CondMat from Stanford network data collections [31]. These 5 physics co-authorship networks
represent the co-authorship over 5 different areas in physics respectively. DBLP (http://www.informatik.uni-trier.de/ley/db/)
is a computer science bibliographic dataset. We built a co-authorship graph from a subset of the DBLP data with 78,649
authors. (3) Online social networks (OSNs): we download the Delicious (http://delicious.com/) and Douban (http://
www.douban.com/) from ASU social computing data repository [53] and download the Epinions (http://www.epinions.com)
and two Slashdot datasets (http://slashdot.org/) from Stanford network data collections [31]. (4) Location-based social net-
works (LBSNs): the Brightkite and Gowalla are two notable LBSNs. We download these two datasets from Stanford network
data collections [31]. (5) Communication networks: we download two Email communication networks (EmailEnron and

http://www.informatik.uni-trier.de/ley/db/
http://delicious.com/
http://www.douban.com/
http://www.douban.com/
http://www.epinions.com
http://slashdot.org/


Table 2
Summary of the datasets.

Name #nodes #edges Ref. Description

Rndtree 750 749 [14] Random tree

GrQc 5242 28,968 [31] Co-authorship networks
Astroph 18,772 396,100 [31]
HepTh 9877 51,946 [31]
HepPh 12,008 236,978 [31]
CondMat 23,133 186,878 [31]
DBLP 78,649 382,294 Website

Delicious 537,392 1,459,778 [53] Online social networks
Douban 154,908 654,324 [53]
Epinions 75,872 396,026 [31]
Slashdot1 77,360 826,544 [31]
Slashdot2 82,168 867,372 [31]

Brightkite 58,228 428,156 [31] Location based social networks
Gowalla 196,591 1,900,654 [31]

EmailEnron 36,692 367,662 [31] Communication networks
EmailEuAll 265,182 224,372 [31]

Gnutella04 10,876 36,308 [31] P2P networks
Gnutella05 8846 27,572 [31]
Gnutella06 8717 27,790 [31]
Gnutella08 6301 18,284 [31]

NotreDame 325,729 1,522,178 [31] Web

694 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
EmailEuAll) from Stanford network data collections [31]. (6) P2P networks: we employ four P2P networks (Gnutella04, Gnu-
tella05, Gnutella06, and Gnutella08) which are originally collected from Gnutella [31]. (7) Web graphs: we download a web
graph dataset from Stanford network data collections [31], which is originally collected from University of Notre Dame.

Parameter settings and experimental environment: There are two parameters in Algorithm 1: the number of hash
functions and the size of the bitmap. In all of our experiments, we set the number of hash functions and the size of the bit-
map to be 100 and 30, respectively. We conduct our experiments on a Windows Server 2007 with 4xDual-Core Intel Xeon
2.66 GHz CPU, and 8G memory. All the algorithms are implemented in C++.

5.2. Experimental results

Results on trees: Here we conduct experiment on Rndtree dataset. This experiment is designed to evaluate the accuracy
of the greedy algorithm described in Section 3.2 and the accuracy of the randomized greedy algorithm given in Algorithm 1.
For convenience, we refer to the greedy algorithm and the randomized greedy algorithm as Greedy and RGreedy, respec-
tively. In Section 3.1, we have developed a dynamic programming (DP) algorithm for computing the k-MVC-impact and
cumulative k-MVC-impact of trees optimally. Hence, to evaluate the accuracy of the Greedy and RGreedy, we compare them
with the DP algorithm on a random tree dataset. Our results are depicted in Fig. 1.
0 50 100
0

0.2

0.4

0.6

0.8

1

k

k−
M

VC
−i

m
pa

ct

(a) k−MVC−impact vs. k

0 50 100
0.4

0.5

0.6

0.7

0.8

0.9

1

k

C
um

ul
at

iv
e 

k−
M

VC
−i

m
pa

ct

(b) Cumulative k−MVC−impact vs. k

Greedy
DP
RGreedy

Greedy
DP
RGreedy

Fig. 1. Result on a random tree.



R.-H. Li et al. / Information Sciences 278 (2014) 685–702 695
From Fig. 1(a) and (b), we can clearly see that both the Greedy algorithm and RGreedy algorithm are very close to the
optimal DP algorithm. Further, when k is very small (e.g., k 6 30), the curves by these three algorithms converge into one
curve. The rationale is that both the Greedy and RGreedy achieve near-optimal approximation ratio. In general, both the
k-MVC-impact and cumulative k-MVC-impact decrease as k increases. This is because the impact of MVC attack of a network
is inversely proportional to the number of node-attacks.

Results on general networks: Here we conduct experiments on 20 real-world general network datasets. This experiment
is designed to measure the impact of MVC attack of these networks. For the directed networks, we consider them as the
undirected networks by ignoring the direction of the edges. We use our k-MVC-impact and cumulative k-MVC-impact as
two metrics. Notice that the budget of an attacker, i.e., k, is typically very small in practice. Hence, we mainly focus on mea-
suring the impact of MVC attack of a network under a small budget k. Tables 3 and 4 report the results given k ¼ 0:1% � n and
0:2% � n respectively, where n ¼ jV j. In the following, we concentrate on analyzing the result on k ¼ 0:1% � n and similar
results can be obtained when k ¼ 0:2% � n.

As can be seen in Table 3, the P2P networks are more robust than other types of networks under MVC attack. For example,
in the Gnutella05 dataset, after removing 0.1% of nodes, the k-MVC-impact and cumulative k-MVC-impact by the Greedy algo-
rithm are 0.9838 and 0.9898, respectively. That is to say, there are only 1.62% of edges being deleted after removing 0.1% of
nodes in the worst case. This observation indicates that removing a small fraction of peers from the P2P network does not
significantly affect the number of links between the peers. Similarly, the co-authorship networks (first 6 rows in Table 3) are
shown to be very robust w.r.t. MVC attack. For instance, in the DBLP network, the k-MVC-impact and cumulative k-MVC-
impact by the Greedy algorithm are 0.9618 and 0.9783 after removing 0.1% of nodes, respectively. These results suggest that
a small number of ‘‘important researchers’’ leaving the research community will not significantly affect the co-authorship
between the scholars. In general, the online social networks (rows 7–11 in Table 3) and the location based social networks
(rows 12–13) show poor robustness w.r.t. MVC attack. Taking the Gowalla dataset as an example, the k-MVC-impact and the
cumulative k-MVC-impact by the Greedy algorithm are 0.8329 and 0.8788 when k ¼ 0:1% � n, respectively. In other words,
after removing 0.1% of nodes, 16.7% of social ties in the Gowalla network will be deleted. Also, the robustness of the Email
communication networks under MVC attack, especially the EmailEuAll network, is very poor. In the EmailEuAll network, the
k-MVC-impact and cumulative k-MVC-impact (for k ¼ 0:1% � n) by the Greedy algorithm are 0.4404 and 0.6408, respectively.
In other words, after deleing 0.1% of nodes, the number of residual edges in the EmailEuAll network are only 44.04% of the
original edges. This observation suggests that the Email communication networks may be very vulnerable under the MVC
attack. In addition, we find that the NotreDame web graph is not very robust w.r.t. the MVC attack, as the k-MVC-impact
and cumulative k-MVC-impact (for k ¼ 0:1% � n) by the Greedy algorithm are 0.8337 and 0.8835, respectively. This result is
consistent with the previous results on the ‘‘robust yet fragile’’ nature of the Internet [12], which means that the Internet
is robust to random errors but it is vulnerable w.r.t. the intended node attacks. Over all the datasets, we find that the
k-MVC-impact and cumulative k-MVC-impact by the RGreedy algorithm are very close to the k-MVC-impact and cumulative
k-MVC-impact by the Greedy algorithm, respectively. More specifically, for the k-MVC-impact and cumulative k-MVC-impact
when k ¼ 0:1% � n, the maximal absolute differences between the RGreedy algorithm and the Greedy algorithm are only
Table 3
Results on general networks for k ¼ 0:1% � n.

Datasets k-MVC-impact Cumulative k-MVC-impact

Greedy RGreedy Greedy RGreedy

GrQc 0.9743 0.9747 0.9841 0.9841
Astroph 0.9660 0.9675 0.9807 0.9811
HepTh 0.9791 0.9794 0.9879 0.9881
HepPh 0.9554 0.9561 0.9751 0.9754
CondMat 0.9641 0.9652 0.9785 0.9787
DBLP 0.9618 0.9643 0.9783 0.9795

Delicious 0.7390 0.7842 0.8220 0.8422
Douban 0.9345 0.9403 0.9625 0.9651
Epinions 0.8515 0.8589 0.9056 0.9088
Slashdot1 0.8825 0.8903 0.9246 0.9286
Slashdot2 0.8800 0.8862 0.9230 0.9259

Brightkite 0.8982 0.9025 0.9353 0.9368
Gowalla 0.8329 0.8401 0.8788 0.8863

EmailEnron 0.8474 0.8529 0.9061 0.9083
EmailEuAll 0.4404 0.4809 0.6408 0.6711

Gnutella04 0.9826 0.9829 0.9888 0.9889
Gnutella05 0.9838 0.9839 0.9898 0.9898
Gnutella06 0.9829 0.9833 0.9893 0.9894
Gnutella08 0.9835 0.9835 0.9894 0.9894

NotreDame 0.8337 0.8492 0.8835 0.8920



Table 4
Results on general networks for k ¼ 0:2% � n.

Datasets k-MVC-impact Cumulative k-MVC-impact

Greedy RGreedy Greedy RGreedy

GrQc 0.9536 0.9551 0.9729 0.9732
Astroph 0.9430 0.9449 0.9670 0.9680
HepTh 0.9620 0.9635 0.9787 0.9791
HepPh 0.9176 0.9203 0.9547 0.9559
CondMat 0.9414 0.9442 0.9652 0.9662
DBLP 0.9369 0.9427 0.9636 0.9664

Delicious 0.6512 0.7011 0.7567 0.8064
Douban 0.8924 0.9021 0.9375 0.9433
Epinions 0.7789 0.7948 0.8592 0.8667
Slashdot1 0.8223 0.8389 0.8873 0.8949
Slashdot2 0.8203 0.8336 0.8856 0.8919

Brightkite 0.8479 0.8568 0.9034 0.9074
Gowalla 0.7835 0.8002 0.8426 0.8566

EmailEnron 0.7741 0.7836 0.8575 0.8621
EmailEuAll 0.2755 0.3078 0.4924 0.5272

Gnutella04 0.9720 0.9731 0.9827 0.9831
Gnutella05 0.9733 0.9743 0.9838 0.9841
Gnutella06 0.9739 0.9751 0.9839 0.9843
Gnutella08 0.9701 0.9706 0.9820 0.9821

NotreDame 0.7761 0.8055 0.8437 0.8574

696 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
0.0452 (appearing in the Delicious dataset) and 0.0303 (appearing in the EmailEuAll dataset) over all the datasets, respec-
tively. When k ¼ 0:2% � n, the maximal absolute differences for the k-MVC-impact and cumulative k-MVC-impact are
0.0499 and 0.0497 (both appearing in the Delicious dataset), respectively. These results imply that our RGreedy algorithm
is as effective as the Greedy algorithm. In the following, we will systematically study the performance of the RGreedy
algorithm.

Performance of the randomized greedy algorithm: In this experiment, we evaluate the effectiveness and efficiency of
Algorithm 1, i.e., the RGreedy algorithm. To this end, we compare it with four baseline algorithms, i.e., Greedy, Degree,
RCDegree, and Random. Here the Degree algorithm is to select top-k maximal degree nodes, and the Random algorithm is
to pick k nodes randomly. The RCDegree algorithm is first to remove top-k0 (k0 < k) high degree nodes and recalculates
the degrees of the residual graph, and then recursively removes nodes based on the re-calculated degrees. In our experi-
ments, we set k0 ¼ 0:2� k, and similar results can be observed by other k0. We make use of the k-MVC-impact and cumulative
k-MVC-impact as two metrics to evaluate the effectiveness of the algorithms. Notice that these two metrics inversely mea-
sure the effectiveness of the algorithms. Fig. 2 illustrates the effectiveness of the RGreedy algorithm on GrQc dataset. Similar
results can be observed on other datasets. From Fig. 2(a) and (b), we can observe that the Greedy algorithm outperforms all
other algorithms according to both the k-MVC-impact and cumulative k-MVC-impact metrics, followed by the RGreedy algo-
rithm, the RCDegree algorithm, the Degree algorithm, and the Random algorithm. Also, we can see that the performance of
the RGreedy algorithm is very close to that of the Greedy algorithm, which confirms our theoretical analysis in Section 3.2. In
0 50 100
0.75

0.8

0.85

0.9

0.95

1

k

k−
M

VC
−i

m
pa

ct

(a) k−MVC−impact vs. k

0 50 100
0.85

0.9

0.95

1

k

C
um

ul
at

iv
e 

k−
M

VC
−i

m
pa

ct

(b) Cumulative k−MVC−impact vs. k

Greedy
Degree
RGreedy
RCDegree
Random

Greedy
Degree
RGreedy
RCDegree
Random

Fig. 2. Effectiveness of the randomized greedy algorithm on GrQc dataset.



R.-H. Li et al. / Information Sciences 278 (2014) 685–702 697
addition, we can see that the RCDegree is better than the Degree algorithm. When k is small, the performance of the RCDe-
gree algorithm is close to the performance of the RGreedy algorithm. However, when k increases, the gap between the RCDe-
gree algorithm and our RGreedy algorithm increases, which suggests that the RCDegree algorithm is not very effective when
k is large. The reason is because the RCDegree algorithm is without any performance guarantee, while the RGreedy algorithm
can achieve a 1� 1=e� � approximation factor. Also, it is worth mentioning that the effectiveness of the Random algorithm
is quite poor.

To evaluate the efficiency of the RGreedy algorithm, we compare the running time of different algorithms. Table 5 shows
the running time of various algorithms for computing k-MVC-impact over all the datasets used. Here we set k ¼ 100 over all
the datasets, and similar results can be observed for other k. Since the running time of different algorithms for calculating the
cumulative k-MVC-impact is very close to computing the k-MVC-impact, we omit it for brevity. From Table 5, we find that the
RGreedy algorithm is significantly more efficient than the Greedy algorithm. On average, the RGreedy algorithm reduces the
running time over the Greedy algorithm by 662%. The most efficient algorithm is the Random algorithm, because it only
needs to randomly select k nodes. The RCDegree algorithm is more efficient than the Greedy algorithm, but it is still very
expensive when the graph size is very large. Also, we observe that the Degree algorithm is more efficient than the RGreedy
and the Greedy algorithms. The reason is that the Degree algorithm can be implemented by a linear-time sorting algorithm,
which is OðnÞ time complexity. These results are consistent with our complexity analysis presented in Section 3.2.

Performance of the adaptive greedy algorithm: In this experiment, we first evaluate the performance of the adaptive
greedy algorithm, i.e., Algorithm 2, and then we measure the impact of probabilistic MVC attack of 20 real-world networks
based on the adaptive metrics. To this end, for each dataset in Table 2, we generate two types of probabilistic networks,
namely homogeneous probabilistic network and heterogeneous probabilistic network, according to two different rules.
For the homogeneous probabilistic network, we assign the same probability p for every node. In our experiments, we set
p to 0.5, and similar results can be observed for other p. For the heterogeneous probabilistic network, we adopt two
probabilistic models. The first model is the power-law model, pðvÞ ¼ d�a

v , where dv denotes the degree of node v and a is
a parameter. In our experiments, we set a ¼ 1 and a ¼ 0:5 respectively. This power-law model implies that the node with
large degree will be robust to attack. This is because the node with large degree is typically an important node, thereby
in practice it is built in a more robust way than other nodes. The second model is the uniform distribution model where
pðvÞ is a [0, 1] uniform random variable.

After generating the probabilistic networks, we are now ready to test the performance of our adaptive greedy algorithm.

Recall that getting the optimal policy of the probabilistic MVC problem would require enumeration of Ck
n2k possible states,

which is apparently impractical. Hence, similar to the evaluation methodology introduced in [19], we compare Algorithm 2
to a data dependent bound on the optimal value. Specifically, we develop the adaptive bound as follows. Let
; ¼ w0 � w1 � � � � � wk be the partial observations observed by Algorithm 2. Let OPTðwiÞ ¼max

p
E½FðSðp;/Þ;/Þjwi � /� be

the optimal value after observing wi. Then, by a similar derivation as in [19], we can obtain kþ 1 bounds b0; b1; . . . ; bk, where
bi ¼ E½FðdomðwiÞ;/Þjwi � /� þmaxS # V ;jSj6k

P
v2SDðv jwiÞ. Notice that here we use the property of strong adaptive monotone of

our utility function F (Lemma 4.1) to derive this bound. After taking the expectation over /, for any p and any i we have
Table 5
Runnin

Time

GrQc
Astro
HepT
HepP
Cond
DBLP

Delic
Doub
Epin
Slash
Slash

Brigh
Gow

Ema
Ema

Gnut
Gnut
Gnut
Gnut

Notr
E½FðSðp;/Þ;/Þjwi � /� 6 E½OPTðwiÞ� 6 E½bi�:
g time of different algorithms.

(ms) Greedy RGreedy RCDegree Degree Random

162 37 88 10 10
ph 2099 103 1100 19 11
h 302 59 201 12 10
h 1194 71 750 15 10
Mat 1047 123 653 18 13

2459 395 1552 57 11

ious 11,858 2664 8023 437 11
an 4199 766 2451 110 11

ions 2294 379 1450 54 11
dot1 4815 400 2742 59 11
dot2 4974 410 2610 63 11

tkite 2507 291 1429 44 10
alla 12,727 970 8750 151 11

ilEnron 1751 192 781 30 9
ilEuAll 1846 1308 826 200 10

ella04 230 62 105 13 10
ella05 178 55 93 12 11
ella06 177 52 89 12 10
ella08 118 43 52 10 10

eDame 10,354 1609 5879 246 10



0 100 200 300 400 500
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

k

A
da

pt
iv

e 
k−

M
VC

−i
m

pa
ct

(a) Adaptive k−MVC−impact vs. k

0 100 200 300 400 500
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

k

A
da

pt
iv

e 
cu

m
ul

at
iv

e 
k−

M
VC

−i
m

pa
ct

(b) Adaptive cumulative k−MVC−impact vs. k

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

Fig. 3. Performance of the adaptive greedy algorithm on GrQc datasest (Homogeneous probabilistic network, p ¼ 0:5 for all nodes).

698 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
As a result, for any i, the expectation of bi is an upper bound on the optimal value of any policy. Analogous to [19], we use the
average bound �bi ¼ ð

Pi
j¼0bjÞ=ðiþ 1Þ to derive our adaptive bound. That is, for adaptive k-MVC-impact and adaptive cumulative

k-MVC-impact, our adaptive bounds are bi ¼ 1� �bi=m and �bi ¼ ð
Pi

j¼1bjÞ=i for i ¼ 1; . . . ; k, respectively. In addition, we also
compare our algorithm with three other baselines: the Random algorithm, the Degree algorithm, and the WDegree algo-
rithm. The Random algorithm randomly selects nodes to attack, while the Degree algorithm selects nodes to attack according
to a decreasing order of their degrees. The WDegree algorithm is the probability weighted Degree algorithm, where the algo-
rithm selects nodes based on the probability weighted degrees (i.e., pv � dv ). We run all the algorithms 100 times on each
dataset, and all the experimental results reported in this subsection are the average results over 100 experiments.

Fig. 3 shows the performance of the adaptive greedy algorithm on GrQc dataset with homogeneous probabilities. Similar
results can be observed on other datasets. From Fig. 3, we can clearly see that the performance of the adaptive greedy algo-
rithm is better than the performance of the other baseline algorithms. Note that in the homogeneous probabilistic network,
the Degree algorithm and the WDegree algorithm are equivalent. In addition, we can observe that the performance of the
adaptive greedy algorithm is close to the adaptive bound. We emphasize that the unknown optimal solution lies between
the solution by the adaptive greedy algorithm (red1 dashed curve) and the adaptive bound (blue dot curve). This result indi-
cates that our adaptive greedy algorithm is very effective and the adaptive bound is tight, which is consistent with our theo-
retical analysis in Section 4.1.

Figs. 4–6 show the results observed from the heterogeneous probabilistic networks. Similarly, we can see that our solu-
tion by the adaptive greedy algorithm is significantly better than the other baselines, and it is also very close to the adaptive
bound. This result further confirms that our adaptive greedy algorithm is very effective. In addition, it is worth mentioning
that the WDegree algorithm performs much better than the other two baselines in the heterogeneous probabilistic network
with uniform distribution, but it still significantly worse than our adaptive greedy algorithm. The reason is because all the
baselines algorithm are without any performance guarantee, while our algorithm can achieve a 1 � 1/e approximation factor.

The above experiment shows that the adaptive greedy algorithm is very effective to approximately calculate the optimal
solution of the probabilistic MVC problem. Here we measure the impact of probabilistic MVC attack in 20 real-world net-
works using the adaptive metrics (Definitions 4.1 and 4.2), which are calculated by the adaptive greedy algorithm (Algorithm
2). Our results are depicted in Tables 6 and 7 for k ¼ 0:1% � n and k ¼ 0:2% � n, respectively. To avoid redundancy, we focus on
discussing the results for k ¼ 0:1% � n (Table 6) and similar results can be obtained for k ¼ 0:2% � n. For the heterogeneous
probabilistic networks, we focus on describing the results for the power-law distribution with parameter a ¼ �1, and similar
conclusions can be made for the other models. From Table 6, we can see that, in the homogeneous probabilistic networks, the
results of adaptive k-MVC-impact and adaptive cumulative k-MVC-impact are very similar to the results of the k-MVC-impact
and cumulative k-MVC-impact shown in Table 3, respectively. More specifically, we can find that the P2P networks and co-
authorship networks exhibit high robustness to the probabilistic MVC attack, while the communication networks show a
low robustness (for example, the EmailEuAll network, row 15 in Table 6). It is worth noting that the values in Table 6 is typ-
ically larger than the values shown in Table 3. This is because in the homogeneous probabilistic networks, the node is
removed with a constant probability (smaller than 1), while in the case of computing the k-MVC-impact metric, the node
is removed deterministically. In the heterogeneous probabilistic networks, where the node removal probability is inversely
proportional to the degree of the node, we can observe that all the networks exhibit high robustness. The reason is that in
such networks, the high degree nodes are very hard to be attacked. Our algorithm selects the node with maximal conditional
expected marginal gain to attack, which is typically not a high degree node. On the other hand, the selected node is removed
1 For interpretation of color in Fig. 1, the reader is referred to the web version of this article.



0 100 200 300 400 500

0.975

0.98

0.985

0.99

0.995

1

k

A
da

pt
iv

e 
k−

M
VC

−i
m

pa
ct

(a) Adaptive k−MVC−impact vs. k

0 100 200 300 400 500
0.986

0.988

0.99

0.992

0.994

0.996

0.998

k

A
da

pt
iv

e 
cu

m
ul

at
iv

e 
k−

M
VC

−i
m

pa
ct

(b) Adaptive cumulative 
k−MVC−impact vs. k

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

Fig. 4. Performance of the adaptive greedy algorithm on GrQc datasest (Heterogeneous probabilistic network with power-law distribution, pðvÞ ¼ d�1
v for

every node v).

0 100 200 300 400 500

0.95

0.96

0.97

0.98

0.99

1

k

A
da

pt
iv

e 
k−

M
VC

−i
m

pa
ct

(a) Adaptive k−MVC−impact vs. k

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

0 100 200 300 400 500
0.97

0.975

0.98

0.985

0.99

0.995

1

k

A
da

pt
iv

e 
cu

m
ul

at
iv

e 
k−

M
VC

−i
m

pa
ct

(b) Adaptive cumulative k−MVC−impact vs. k

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

Fig. 5. Performance of the adaptive greedy algorithm on GrQc datasest (Heterogeneous probabilistic network with power-law distribution, pðvÞ ¼ d�1=2
v for

every node v).

R.-H. Li et al. / Information Sciences 278 (2014) 685–702 699
by our algorithm according to a probability, which is inversely proportional to its degree. As a result, the algorithm will
delete a small number of nodes with relatively low degree, thus deletes a very small number of edges. These results indicate
that if the high degree nodes in a network are built in a robust way, then the network is very robust w.r.t. the probabilistic
MVC attack.
6. Related work

Robustness of complex networks: Our work is closely related to measure the robustness of complex network. After the
seminal work by Albert et al. [1], measuring robustness of complex networks has attracted much attention in the last decade.
In order to characterize the robustness of a complex network, most previous studies focused on studying some statistical
properties of the network after removing a fraction of nodes or edges. The widely-used statistical properties of a network
include the diameter, the size of the giant component, and the average path length. Most subsequent works on network
robustness such as [9,8,10,36,30,50] followed this framework. However, all of these works aimed at deriving analytical solu-
tions based on random graph model or some specific graph models, such as star graph model. More recently, Schneider et al.
[45] proposed a robustness index based on the size of the giant component and they also showed that the onion-like net-
works have good robustness according to their index. However, they did not provide a detailed algorithm for computing
their index, and the complexity for calculating their index is unknown. Malliaros et al. [40] proposed a robustness metric
based on a concept of expansion. They also presented an efficient algorithm for computing the metric. Tanaka et al. [46] pro-
posed a dynamical robustness metric to measure the ability of a network to maintain its dynamical activity against node



0 100 200 300 400 500

0.9

0.92

0.94

0.96

0.98

1

k

A
da

pt
iv

e 
k−

M
VC

−i
m

pa
ct

(a) Adaptive k−MVC−impact vs. k

0 100 200 300 400 500

0.94

0.95

0.96

0.97

0.98

0.99

1

k

A
da

pt
iv

e 
cu

m
ul

at
iv

e 
k−

M
VC

−i
m

pa
ct

(b) Adaptive cumulative k−MVC−impact vs. k

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

Adaptive Greedy
Adaptive bound
Degree
WDegree
Random

Fig. 6. Performance of the adaptive greedy algorithm on GrQc datasest (Heterogeneous probabilistic network with uniform distribution, pðvÞ ¼ Uð0;1Þ for
every node v).

Table 6
Probabilistic MVC attack on general networks for k ¼ 0:1% � n. Here we use the abbreviation for a certain words, ‘‘Adaptive’’ to ‘‘Ada.’’, ‘‘cumulative’’ to ‘‘cum.’’,
‘‘Homogeneous’’ to ‘‘Homo.’’, and ‘‘Heterogeneous’’ to ‘‘Heter’’.

Datasets Ada. k-MVC-impact Ada. cum. k-MVC-impact

Homo. Heter. Homo. Heter.

GrQc 0.9919 0.9998 0.9935 0.9998
Astroph 0.9922 0.9999 0.9943 0.9999
HepTh 0.9924 0.9999 0.9947 0.9999
HepPh 0.9866 0.9999 0.9907 0.9999
CondMat 0.9885 0.9999 0.9926 0.9999
DBLP 0.9905 0.9997 0.9949 0.9999

Delicious 0.9204 0.9893 0.9432 0.9897
Douban 0.9834 0.9896 0.9898 0.9990
Epinions 0.9535 0.9898 0.9698 0.9899
Slashdot1 0.9672 0.9898 0.9771 0.9899
Slashdot2 0.9632 0.9898 0.9750 0.9899

Brightkite 0.9753 0.9898 0.9842 0.9899
Gowalla 0.9550 0.9898 0.9682 0.9899

EmailEnron 0.9512 0.9899 0.9677 0.9899
EmailEuAll 0.8351 0.9779 0.8956 0.9789

Gnutella04 0.9946 0.9998 0.9966 0.9999
Gnutella05 0.9956 0.9996 0.9972 0.9998
Gnutella06 0.9949 0.9999 0.9967 0.9999
Gnutella08 0.9958 0.9997 0.9971 0.9998

NotreDame 0.9566 0.9896 0.9701 0.9898

700 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
faults. Subsequently, the same authors also studied how the deletion of hub nodes affects the network dynamics [44]. Unlike
these studies, we investigate the impact of a network from an attacker perspective, in which we show how a network is
affected by MVC attack.

Another line of research on measuring robustness of complex network is based on network connectivity [18]. Such
robustness measures include algebraic connectivity [15], super connectivity [3], conditional connectivity [22], and isoperi-
metric number [41]. Recently, Wu et al. [52] proposed a spectral measure of robustness of complex network by counting
the number of closed walk. Both the connectivity based and spectral robustness measures only consider the topological struc-
ture of the network, ignoring the concrete attack models. This may result in some networks with large robustness in terms of
these measures, but they are easily attacked by intended attacks. Complementarily, there also exist some studies on
vulnerability of complex networks. For instance, in [23], Holme et al. studied the response of complex networks subject to
nodes or edges attacks, and they defined the vulnerability of a network by a measure of the average inverse geodesic length.
Subsequently, in [6], Boccaletti et al. presented a multi-scale vulnerability measure based on the link betweenness. Recently,
Tong et al. [48] proposed a vulnerability measure based on the dominant eigenvalue of the adjacency matrix of the network.
Besides network robustness, robustness measures were also studied in the domain of fuzzy reasoning [37]. For example, Li



Table 7
Probabilistic MVC attack on general networks for k ¼ 0:2% � n.

Datasets Ada. k-MVC-impact Ada. cum. k-MVC-impact

Homo. Heter. Homo. Heter.

GrQc 0.9919 0.9996 0.9927 0.9997
Astroph 0.9839 0.9999 0.9906 0.9999
HepTh 0.9863 0.9996 0.9917 0.9998
HepPh 0.9786 0.9999 0.9865 0.9999
CondMat 0.9830 0.9998 0.9891 0.9999
DBLP 0.9813 0.9995 0.9902 0.9997

Delicious 0.9003 0.9885 0.9233 0.9889
Douban 0.9710 0.9891 0.9834 0.9896
Epinions 0.9347 0.9895 0.9567 0.9897
Slashdot1 0.9508 0.9897 0.9676 0.9898
Slashdot2 0.9460 0.9897 0.9646 0.9898

Brightkite 0.9608 0.9896 0.9755 0.9898
Gowalla 0.9398 0.9897 0.9573 0.9898

EmailEnron 0.9288 0.9898 0.9526 0.9899
EmailEuAll 0.7865 0.9759 0.8541 0.9780

Gnutella04 0.9916 0.9992 0.9946 0.9996
Gnutella05 0.9932 0.9990 0.9955 0.9995
Gnutella06 0.9927 0.9994 0.9951 0.9997
Gnutella08 0.9919 0.9993 0.9949 0.9996

NotreDame 0.9283 0.9894 0.9339 0.9897

R.-H. Li et al. / Information Sciences 278 (2014) 685–702 701
et al. [37] studied several robustness measures of fuzzy connectives. Subsequently, they also investigated the relation
between the robustness of fuzzy reasoning and fuzzy implication operators [24].

The preliminary version of this work appears in [35]. In this paper, we revise the preliminary version and make the fol-
lowing extensions. First, we present a polynomial algorithm (the DP algorithm) to compute the impact of MVC attack on
trees exactly (Section 3.1). Second, we discuss how to generalize the proposed algorithms to the cost-based attack model
(Section 3.3). Third, we study a probabilistic MVC attack problem on general networks, and we present two new metrics
based on it (Section 4). Finally, we conduct extensive experiments to support the newly added materials (Section 5).

Submodular and adaptive submodular optimization: Our work is also related to the submodular set function maximi-
zation problem [42]. In general, the submodular set function maximization problem is NP-complete. There is a well-known
greedy algorithm with 1� 1=e approximate ratio for solving this problem [42]. In practice, many applications have been for-
mulated as the submodular function maximization problem. Such applications include the maximal k coverage problem [49],
the influence maximization problem in social networks [25], the observation selection and sensor placement problem
[26,27], the document summarization problem [38,39], the spread of misinformation problem [7], and the diversified rank-
ing problem [33,47,34]. All of these problems can be approximately solved by the greedy algorithm described in [42]. In the
present paper, we study the MVC problem and present a randomized greedy algorithm for solving it efficiently. Adaptive
submodular function generalizes submodular set function to adaptive policies [19]. In [19], Golovin et al. showed that the
property of adaptive submodularity results in an efficient greedy algorithm for finding the near-optimal policy. The adaptive
submodularity has a number of applications, such as stochastic optimization [19], and active learning [19,4,5]. In the present
paper, we prove that the objective function of our probabilistic MVC problem is adaptive submodular, and we develop an
efficient greedy algorithm with near-optimal performance guarantee for such a problem.
7. Conclusions

In this paper, we present a study of measuring the impact of MVC attack in complex networks. We define two metrics
called k-MVC-impact and cumulative k-MVC-impact, and propose a dynamic programming algorithm to compute the pro-
posed metrics on trees optimally. We then develop a near-optimal randomized greedy algorithm by using the FM sketch
for calculating the proposed metrics on general networks. In addition, we present two adaptive metrics to measure the
impact of a network under probabilistic MVC attack, and design a near-optimal adaptive greedy algorithm for computing
such metrics. Finally, we extensively evaluate the proposed approaches on 20 real datasets. The results confirm the effective-
ness and efficiency of the proposed methods.

There are several future directions deserving further investigation. First, our current metrics are defined on unweighted
networks, thereby a direct future direction is to generalize our metrics and techniques to the weighted networks. Second, the
proposed metrics are based on a natural utility function, i.e., the number of edges. It would be interesting to define new met-
rics based on other utility functions, such as the number of triangles, the number of closed paths, and so on. In addition, our
metrics are based on the node attack models. One can also define new metrics based on the edge attack models, in which the



702 R.-H. Li et al. / Information Sciences 278 (2014) 685–702
problem is to delete a set of edges so as to maximize (or minimize) some predefined utility functions. Finally, it would also be
interesting to apply our metrics and algorithms to real-world applications.

Acknowledgements

The work was supported by grants GRF 418512, 411211, and 411310 from HK-RGC.

References

[1] R. Albert, H. Jeong, A.L. Barabsi, Error and attack tolerance of complex networks, Nature 406 (2000).
[2] A.L. Barabási, R. Albert, Emergence of scaling in random networks, Science (1999).
[3] D. Bauer, F. Boesch, C. Suffel, R. Tindell, Connectivity extremal problems and the design of reliable probabilistic networks, in: Theory and application of

graphs, 1981.
[4] G. Bellala, S.K. Bhavnani, C. Scott, Extensions of generalized binary search to group identification and exponential costs, in: NIPS, 2010.
[5] G. Bellala, S.K. Bhavnani, C. Scott, Group-based active query selection for rapid diagnosis in time-critical situations, IEEE Trans. Inform. Theor. (2012).
[6] S. Boccaletti, J. Buldu, R. Criado, J. Flores, V. Latora, J. Pello, M. Romance, Multiscale vulnerability of complex network, Chaos (2007).
[7] C. Budak, D. Agrawal, A. El Abbadi, Limiting the spread of misinformation in social networks, in: WWW, 2011.
[8] D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Network robustness and fragility: percolation on random graphs, Phys. Rev. Lett. 85 (25) (2000).
[9] R. Cohen, K. Erez, D. ben Avraham, S. Havlin, Resilience of the internet to random breakdowns, Phys. Rev. Lett. 85 (21) (2000).

[10] R. Cohen, K. Erez, D. ben Avraham, S. Havlin, Breakdown of the internet under intentional attack, Phys. Rev. Lett. 86 (16) (2001).
[11] G. Cornuejols, G.L. Nemhauser, L.A. Wolsey, Worst-case and probabilistic analysis of algorithms for a location problem, Oper. Res. 28 (4) (1980) 847–

858.
[12] J.C. Doyle, D.L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka, W. Willinger, The robust yet fragile nature of the internet, PNAS 102 (41)

(2005) 14497–14502.
[13] M. Durand, P. Flajolet, Loglog counting of large cardinalities (extended abstract), in: ESA, 2003, pp. 605–617.
[14] R. Durrett, Random Graph Dynamics, Cambridge University Press, 2006.
[15] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J. 23 (98) (1973) 298–305.
[16] P. Flajolet, E. Fusy, O. Gandouet, F. Meunier, Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm, in: ESA, 2003, pp. 605–617.
[17] P. Flajolet, G.N. Martin, Probabilistic counting algorithms for data base applications, J. Comput. Syst. Sci. 31 (2) (1985) 182–209.
[18] H. Frank, I.T. Frisch, Analysis and design of survivable network, IEEE Trans. Commun. Technol. 18 (5) (1970) 501–519.
[19] D. Golovin, A. Krause, Adaptive submodularity: theory and applications in active learning and stochastic optimization, J. Artif. Intell. Res. (JAIR) 42

(2011) 427–486.
[20] P.R. Goundan, A.S. Schulz, Revisiting the Greedy Approach to Submodular Set Function Maximization, Technical Report, MIT, 2008.
[21] Q. Han, Y. Ye, H. Zhang, J. Zhang, On approximation of max-vertex-cover, Eur. J. Oper. Res. 143 (2) (2002) 342–355.
[22] F. Harary, Conditional connectivity, Networks 13 (1983) 346–357.
[23] P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Attack vulnerability of complex networks, Phys. Rev. Lett. (2002).
[24] J. Jin, Y. Li, C. Li, Robustness of fuzzy reasoning via logically equivalence measure, Inf. Sci. 15 (2007) 5103–5117.
[25] D. Kempe, J.M. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in: KDD, 2003.
[26] A. Krause, C. Guestrin, Near-optimal observation selection using submodular functions, in: AAAI, 2007, pp. 1650–1654.
[27] A. Krause, A.P. Singh, C. Guestrin, Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies, J. Mach.

Learn. Res. 9 (2008) 235–284.
[28] R. Kumar, K. Punera, A. Tomkins, Hierarchical topic segmentation of websites, in: KDD, 2006.
[29] T. Lappas, E. Terzi, D. Gunopulos, H. Mannila, Finding effectors in social networks, in: KDD, 2010.
[30] S. Latifi, E. Saberinia, X. Wu, Robustness of star graph network under link failure, Inf. Sci. 178 (3) (2008) 802–806.
[31] J. Leskovec, Standford Network Analysis Project, 2010. <http://snap.standford.edu>.
[32] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J.M. VanBriesen, N.S. Glance, Cost-effective outbreak detection in networks, in: KDD, 2007.
[33] R.H. Li, J.X. Yu, Scalable diversified ranking on large graphs, in: ICDM, 2011, pp. 1152–1157.
[34] R.H. Li, J.X. Yu, Scalable diversified ranking on large graphs, IEEE Trans. Knowl. Data Eng. (2013).
[35] R.H. Li, J.X. Yu, X. Huang, H. Cheng, Z. Shang, Measuring robustness of complex networks under MVC attack, in: CIKM, 2012.
[36] T.K. Li, J.J.M. Tan, L.H. Hsu, Hyper hamiltonian laceability on edge fault star graph, Inf. Sci. 165 (2004) 59–71.
[37] Y. Li, D. Li, W. Pedrycz, J. Wu, An approach to measure the robustness of fuzzy reasoning, Int. J. Intell. Syst. 20 (4) (2005) 393–413.
[38] H. Lin, J. Bilmes, Multi-document summarization via budgeted maximization of submodular functions, in: HLT-NAACL, 2010.
[39] H. Lin, J. Bilmes, A class of submodular functions for document summarization, in: ACL, 2011.
[40] F.D. Malliaros, V. Megalooikonomou, C. Faloutsos, Fast robustness estimation in large social graphs: communities and anomaly detection, in: SDM,

2012.
[41] B. Mohar, Isoperimetric number of graphs, J. Combin. Theor. Ser. B 47 (3) (1989) 274–291.
[42] G.L. Nemhauser, L.A. Wolsey, M.L. Fisher, An analysis of approximations for maximizing submodular set functions-i, Math. Program. 14 (1978) 265–

294.
[43] C.R. Palmer, P.B. Gibbons, C. Faloutsos, ANF: a fast and scalable tool for data mining in massive graphs, in: KDD, 2002, pp. 81–90.
[44] R. Quax, A. Apolloni, P.M.A. Sloot, The diminishing role of hubs in dynamical processes on complex networks, J.R. Soc. Interface 10 (2013).
[45] C.M. Schneider, A.A. Moreira, S. Jos, J. Andrade, S. Havlin, H.J. Herrmann, Mitigation of malicious attacks on networks, PNAS 108 (10) (2011) 427–486.
[46] G. Tanaka, K. Morino, K. Aihara, Dynamical robustness in complex networks: the crucial role of low-degree nodes, Sci. Rep. 2 (232) (2012).
[47] H. Tong, J. He, Z. Wen, R. Konuru, C.Y. Lin, Diversified ranking on large graphs: an optimization viewpoint, in: KDD, 2011.
[48] H. Tong, B.A. Prakash, C.E. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, D.H. Chau, On the vulnerability of large graphs, in: ICDM, 2010.
[49] V.V. Vazirani, Approximation Algorithms, Springer, 2004.
[50] D. Walker, S. Latifi, Improving bounds on link failure tolerance of the star graph, Inf. Sci. 180 (3) (2010) 2571–2575.
[51] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature (1998).
[52] J. Wu, M. Barahon, Y.J. Tan, H.Z. Deng, Spectral measure of structural robustness in complex networks, IEEE Trans. Syst. Man Cybern. – Part A 41 (6)

(2011).
[53] R. Zafarani, H. Liu, Social Computing Data Repository at ASU, 2009. <http://socialcomputing.asu.edu>.

http://refhub.elsevier.com/S0020-0255(14)00376-4/h0110
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0115
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0120
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0125
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0130
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0135
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0140
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0145
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0145
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0150
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0150
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0155
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0155
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0160
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0165
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0170
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0175
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0175
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0180
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0185
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0190
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0195
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0200
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0200
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0205
http://snap.standford.edu
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0210
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0215
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0220
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0225
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0230
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0230
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0235
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0240
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0245
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0250
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0250
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0255
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0260
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0265
http://refhub.elsevier.com/S0020-0255(14)00376-4/h0265
http://socialcomputing.asu.edu

	Measuring the impact of MVC attack in large complex networks
	1 Introduction
	2 Problem formulation
	3 Algorithms
	3.1 Algorithm for trees
	3.2 Algorithm for general networks
	3.3 Discussions

	4 Probabilistic MVC attack
	4.1 The adaptive greedy algorithm

	5 Experiments
	5.1 Experimental setup
	5.2 Experimental results

	6 Related work
	7 Conclusions
	Acknowledgements
	References


