
5

GBAGC: A General Bayesian Framework for Attributed
Graph Clustering

ZHIQIANG XU, Nanyang Technological University
YIPING KE and YI WANG, Institute of High Performance Computing
HONG CHENG and JAMES CHENG, The Chinese University of Hong Kong

Graph clustering, also known as community detection, is a long-standing problem in data mining. In recent
years, with the proliferation of rich attribute information available for objects in real-world graphs, how to
leverage not only structural but also attribute information for clustering attributed graphs becomes a new
challenge. Most existing works took a distance-based approach. They proposed various distance measures
to fuse structural and attribute information and then applied standard techniques for graph clustering
based on these distance measures. In this article, we take an alternative view and propose a novel Bayesian
framework for attributed graph clustering. Our framework provides a general and principled solution to
modeling both the structural and the attribute aspects of a graph. It avoids the artificial design of a distance
measure in existing methods and, furthermore, can seamlessly handle graphs with different types of edges
and vertex attributes. We develop an efficient variational method for graph clustering under this framework
and derive two concrete algorithms for clustering unweighted and weighted attributed graphs. Experimental
results on large real-world datasets show that our algorithms significantly outperform the state-of-the-art
distance-based method, in terms of both effectiveness and efficiency.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining; G.2.2 [Graph Theory]:
Graph Algorithms

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Attributed graph clustering, model-based clustering, Bayesian method

ACM Reference Format:
Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2014. GBAGC: A general Bayesian
framework for attributed graph clustering. ACM Trans. Knowl. Discov. Data 9, 1, Article 5 (August 2014),
43 pages.
DOI: http://dx.doi.org/10.1145/2629616

1. INTRODUCTION

Graph clustering is a fundamental data-mining and machine-learning technique for
studying and understanding graph data. Classic graph clustering groups vertices in

This work is partially supported by the Hong Kong Research Grants Council (RGC) General Research
Fund (GRF) Project No. CUHK 411211, 411310, and the Chinese University of Hong Kong Direct Grants
No. 4055015 and No. 4055017.
Authors’ addresses: Z. Xu, School of Computer Engineering, Nanyang Technological University, 50 Nanyang
Avenue, Singapore 639798; email: zxu1@e.ntu.edu.sg; Y. Ke and Y. Wang, Institute of High Performance
Computing, 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632; email: {keyp, wangyi}@ihpc.a-
star.edu.sg; H. Cheng, Department of Systems Engineering and Engineering Management, The Chinese
University of Hong Kong, Shatin, N. T., Hong Kong; email: hcheng@se.cuhk.edu.hk; J. Cheng, Department
of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong;
email: jcheng@cse.cuhk.edu.hk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1556-4681/2014/08-ART5 $15.00

DOI: http://dx.doi.org/10.1145/2629616

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

http://dx.doi.org/10.1145/2629616
http://dx.doi.org/10.1145/2629616

5:2 Z. Xu et al.

a given graph based on simple vertex connections (i.e., edges) to identify densely con-
nected subgraphs or communities. In recent years, technological advances have gen-
erated an abundant amount of rich information for real-world objects. As a result, in
addition to edge connections, vertices in graphs are now commonly associated with
a list of attributes that describe the characteristics and properties of the real-world
objects represented by the vertices. This gives rise to a new type of graph, namely,
attributed graphs, and hence the demand of new clustering techniques for attributed
graphs, called attributed graph clustering.

Attributed graph clustering is useful in many application domains as it yields more
informative results. We list a few examples as follows:

—In service-oriented social networking sites (e.g., Facebook, Twitter, LinkedIn), users
and their interactions (e.g., friend-of, follower-of) form a social network. Each user
in the network can be further characterized by various information in his or her
personal profile, such as interests, gender, education, residency, and so forth. Clus-
tering the users in a social network by considering both their social relationships
and personal profiles is particularly useful for social networking sites in service/apps
recommendation, user-targeted online advertising, and so on.

—In the telecommunication business, a communication network consists of subscribers
as vertices and their communications (e.g., voice calls, text messaging, email) as
edges. Each subscriber is associated with attributes such as demographic informa-
tion, current service plans, service usage, and so forth. User groups discovered by
clustering the attributed communication network can be used to design effective
group-oriented marketing strategies in order to mitigate customer churns for tele-
com operators.

—In the World Wide Web, a web graph is composed of web pages and hyperlinks. Each
web page can be described by attributes such as URL/domain, elements, keywords,
tags, and so forth. Web communities discovered by considering both hyperlinks and
web page attributes are more informative than those identified solely based on hy-
perlinks, since the former also utilizes web page contents whose similarity may not
be captured by linkages.

The benefits of utilizing attribute information in addition to linkage information for
graph clustering are obvious; however, the problem of attributed graph clustering is
significantly more difficult as the presence of attributes poses grave new challenges
to the task. An attributed graph contains two completely different types of informa-
tion, structural connections and attribute values. Classic graph clustering and object
clustering techniques handle either one of the two types but not both. Consequently,
the resultant clusterings may not only miss important information but also lead to
inaccurate findings. Therefore, how to meaningfully combine and leverage these two
types of information is an essential task for attributed graph clustering.

The difficulty in handling attributed graphs does not only lie in the difference in the
information nature (i.e., structural connections and attribute values). Greater chal-
lenges are posed as different applications actually generate graphs with different types
of vertex attributes and edges. Attributed graphs can be social networks with categor-
ical vertex attributes (e.g., gender, education, residency) and unweighted edges (e.g.,
friend-of), communication networks with numeric vertex attributes (e.g., data usage,
total call charge, SMS usage) and weighted edges (e.g., number of communications),
or networks with other types of combinations. How to develop a general solution that
works for a wide variety of attributed graphs is challenging.

There have been some works on attributed graph clustering [Zhou et al. 2009; Cheng
et al. 2011; Zhou et al. 2010; Neville et al. 2003; Steinhaeuser and Chawla 2008]. They
mainly adopt the distance-based approach, which requires one to deliberately design a
distance measure between graph vertices that can take both structural and attribute

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:3

information into consideration. Such a distance measure assigns, either explicitly or
implicitly, weights to structural and attribute information in order to achieve a good
balance between them. Manual weighting obviously does not work well in general,
while learning weights for specific graphs is very time consuming [Zhou et al. 2009;
Cheng et al. 2011; Zhou et al. 2010]. Furthermore, a distance measure is usually
tailored for attributed graphs with a particular type of edges and vertex attributes.
Generalizing the measure to graphs with other edge and attribute types is a nontrivial
task.

In this article, we take an alternative view and propose a General Bayesian frame-
work to Attributed Graph Clustering (GBAGC). Unlike the existing distance-based
approaches, our framework is model based, which defines a probabilistic model that
fuses structural and attribute information in a natural and principled manner. The
model-based approach frees us from the problems of the distance-based approaches.
On one hand, it avoids the artificial design of a distance measure. On the other hand,
it is a general framework that can be easily instantiated to cluster various attributed
graphs with different types of edges and attributes.

Our framework is grounded on two fundamental assumptions in graph clustering
research: (1) there exists a true but unknown clustering of the vertices underlying the
observed graph, and (2) vertices from the same cluster behave similarly to each other,
while vertices from different clusters can behave differently. Under our framework, the
cluster label of each vertex is explicitly represented as a hidden variable. Moreover,
the intracluster similarity is enforced by assuming that the attribute values and edge
connections of a vertex should depend on its cluster label. In particular, for vertices
from the same cluster, their attribute values and edge connections should follow a
common set of distributions that are attached to that cluster. Via the hidden cluster
variable, the structural and the attribute information of the vertices are naturally
fused for attributed graph clustering.

Our framework essentially defines a joint probability distribution over the space of
all possible attributed graphs and all possible clusterings of the vertices. For a given
attributed graph to be clustered, the distribution induces a probability for each possible
clustering. Therefore, the problem of attributed graph clustering can be transformed
into a standard probabilistic inference problem, that is, to find the clustering that
gives the highest probability [Pearl 1988]. Intuitively, this clustering best explains the
observed attribute values and edge connections of the graph. Despite its conceptual
simplicity, the inference problem is computationally intractable. To address this issue,
we develop an efficient approximate solution based on the variational principle [Jordan
et al. 1999]. We show that this solution is scalable on large graphs.

We summarize the main contributions of this article as follows:

—We propose a novel Bayesian framework for attributed graph clustering. Our frame-
work avoids the artificial design of distance measures and provides a natural and
principled way to leverage both structural and attribute information for clustering.
Unlike existing works, which are designed to cluster specific types of attributed
graphs, the new framework establishes a general approach to handle attributed
graphs with a wide range of edge and attribute types.

—We show that the clustering problem can be transformed into a probabilistic inference
task under the proposed framework. We analyze the computational hardness of the
inference task and develop an efficient variational method for clustering.

—We demonstrate how the general framework can be easily instantiated to cluster var-
ious types of attributed graphs. We provide a practical guideline on the instantiation
and exemplify it using two common types of attributed graphs, that is, unweighted
and weighted graphs with categorical attributes. We also provide some insights on
the applicability of the framework to other types of attributed graphs.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:4 Z. Xu et al.

—We provide empirical evidence showing that our algorithm consistently outperforms
the state-of-the-art distance-based algorithm [Zhou et al. 2010] on real-world at-
tributed graphs. Our algorithm achieves significantly higher clustering quality in
both structural and attribute aspects. Our algorithm is also drastically faster, from
a few times on a small dataset to three orders of magnitude in larger datasets, and
consumes substantially less memory. As a reference, we also compare our algorithm
with a recent model-based attributed graph clustering method called PICS [Akoglu
et al. 2012], which is based on a very different principle and handles only unweighted
graphs with binary attributes. We show that our algorithm produces appealing al-
ternative clustering results with much shorter running time.

Article Organization. The rest of the article is organized as follows. In Section 2, we
formally define the problem of attributed graph clustering. In Section 3, we present our
Bayesian framework. We then develop a variational clustering algorithm in Section 4.
In Section 5, we derive two instances under our general framework for unweighted and
weighted attributed graphs and discuss the instantiations to other types of attributed
graphs. We report experimental results in Section 6 and discuss related works in
Section 7. Finally, we conclude the article and point out future directions in Section 8.

2. PROBLEM STATEMENT

An attributed graph is defined as a 5-tuple G = 〈V,�, F, H, W〉, where V =
{v1, v2, . . . , vN} is a set of N vertices, � = {a1, a2, . . . , aT } is a set of T attributes at-
tached to each vertex, F = { f1, f2, . . . , fT } is a set of T functions with ft : V → dom(at)
assigning to each vertex an attribute value from the domain dom(at) of at, H is an
attribute attached to each pair of vertices, and W : V × V → dom(H) is a function
that assigns an attribute value from the domain dom(H) to each vertex pair. Note
that this definition of attributed graph can accommodate a variety of structural con-
nections, for example, unweighted graphs with dom(H) = {0, 1} and weighted graphs
with dom(H) = R. In this article, we focus on undirected attributed graphs by restrict-
ing W(vi, v j) = W(v j, vi), while our method can be easily extended to handle directed
attributed graphs by removing this constraint.

Given an attributed graph G and the number of clusters K, the problem of attributed
graph clustering is to partition the vertices V into K disjoint subsets V1, V2, . . . , VK,
that is, V = ⋃K

i=1 Vi and Vi ∩ Vj = ∅ for any i �= j, such that (1) the vertices within each
cluster are densely or strongly connected, while the vertices from different clusters are
sparsely or weakly connected, and (2) the vertices within each cluster possess similar
attribute values, while the vertices from different clusters may possess dissimilar
attribute values.

3. A GENERAL BAYESIAN FRAMEWORK FOR ATTRIBUTED GRAPH CLUSTERING

In this section, we present a General Bayesian framework for Attributed Graph Clus-
tering (GBAGC). Given a set of vertices V , the framework essentially defines a joint
probability distribution over the space of all possible attributed graphs and all possible
partitions over V . To cluster a given attributed graph, it performs probabilistic infer-
ence by calculating the posterior probability of each possible clustering for the graph
and returns the most probable clustering with the maximum probability. Intuitively,
this clustering best explains the attribute values and edge patterns of the given graph.

The framework is general in the sense that it is not tailored to specific types of the
vertex and edge attributes � and H and can be conceptually applied to a variety of
attributed graphs. We will discuss how this framework can be instantiated to cluster
concrete attribute graphs with particular vertex and edge attributes in Section 5.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:5

ALGORITHM 1: Generate Clustered Attributed Graph
Input: V , �, H, K
Output: (X, Y, Z)

1. Choose α ∼ Dirichlet(ξ)
2. For each cluster k ∈ {1, 2, . . . , K}:

(a) Choose θk ∼ p(θk|γ)
(b) For each cluster l ∈ {k, k + 1, . . . , K}:

• Choose φkl ∼ p(φkl|κ)
• Set φlk = φkl

3. For each vertex vi ∈ V :
(a) Choose Zi ∼ Multinomial(α)
(b) Choose Yi ∼ p(Yi|θZi)
(c) For each vertex v j ∈ V with i < j:

• Choose Xij ∼ p(Xij |φZi Zj)

We start by introducing some basic notions and notations in Section 3.1. We then
describe an intuitive process for generating attributed graphs in Section 3.2. This
process essentially draws samples of attributed graphs from an underlying distribution.
In Section 3.3, we analyze the assumptions made by the generative process, based
on which we formally define the distribution. Finally, in Section 3.4, we present a
conceptual way to cluster attributed graphs under this framework.

3.1. Notions and Notations

Suppose we are given a set of vertices V , the vertex and edge attributes � and H, and
the number of clusters K.

—An adjacency matrix X = [Xij] is an N× N random matrix. Each element Xij is a ran-
dom variable that takes value from dom(H). It indicates the existence or connection
strength of the edge between vertices vi and v j .

—An attribute matrix Y = [Yit] is an N × T random matrix. Each element Yit is a
random variable that takes value from dom(at). It denotes the value of attribute at
associated with vertex vi.

—A clustering of vertices Z = [Zi] is an N × 1 random vector. Each element Zi is a
categorical random variable that takes value from {1, 2, . . . , K}. It denotes the label
of the cluster that vertex vi belongs to.

By enumerating the values of X and Y, we can exhaust all possible attributed graphs
over V . Every instantiation of X and Y leads to a unique graph. Therefore, we can
equivalently represent an attributed graph as a pair (X, Y). Suppose we further know
the value of Z. In this case, we have a clustering of the vertex set V . Therefore, we
refer to the tuple (X, Y, Z) as a clustered attributed graph.

3.2. A Generative Process

Algorithm 1 outlines a process for generating clustered attributed graphs. The process
takes as input a set of vertices V , a set of vertex attributes �, an edge attribute H,
and the number of clusters K. It outputs a sample (X, Y, Z) from all possible clustered
attributed graphs.

We start by discussing Step 3, the core step of this process. Steps 1 and 2 are
for the Bayesian treatment of the model parameters. We will elaborate on them in
Section 3.2.2.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:6 Z. Xu et al.

3.2.1. Generating X, Y, Z. In order to generate a sample of clustered attributed graphs,
we need to determine (1) the adjacency matrix X = [Xij], (2) the attribute matrix
Y = [Yit], and (3) the clustering of vertices Z = [Zi]. At Step 3 of Algorithm 1, we
generate them as follows:

(1) We first sample the cluster label Zi of each vertex vi from a multinomial distribution
independently (Step 3(a)). The multinomial distribution is defined as

p(Zi = k|α) = αk, k = 1, 2, . . . , K. (1)

The distribution is parameterized by a K-vector α = (α1, α2, . . . , αK). The element
αk denotes the proportion of the vertices belonging to cluster k and satisfies the
constraints αk ∈ [0, 1] and

∑K
k=1 αk = 1. For now, let us assume the parameter

α (and also θ , φ below) is given. Later on, we will show how to choose α from a
Bayesian prior.

(2) Given the cluster label Zi of vertex vi, we then sample the attribute values of this
vertex (Step 3(b)). Specifically, we sample an attribute vector Yi = (Yi1, . . . , YiT)
from a distribution p(Yi|θZi). The distribution is parameterized by θZi . As indicated
by its subscript, this parameter is specific to cluster Zi. In other words, all vertices
belonging to the same cluster share a common distribution, while the distributions
can differ across different clusters. The idea is that vertices in the same cluster
are similar to each other. Therefore, they should exhibit a similar pattern in their
attribute values.

The parametric form of the distribution p(Yi|θZi) depends on the vertex attributes
�. For example, it could be a multivariate normal distribution if the attributes in
� take continuous values and are intercorrelated, or a product of T multinomial
distributions if the attributes take categorical values and are mutually indepen-
dent. We will leave it abstract when discussing the framework and come back to
this issue in Section 5.

(3) Given the cluster labels Zi and Zj for vertex pair vi and v j , we finally sample the
attribute value Xij from a distribution p(Xij |φZi Zj) (Step 3(c)), which denotes the
existence or connection strength of the edge (vi, v j). The distribution is parameter-
ized by φZi Zj . Note that this parameter depends on the cluster labels Zi and Zj . The
implication is as follows. Suppose we are generating the samples Xik and Xjk for
two vertices vi and v j with respect to a common third vertex vk. If vi and v j come
from the same cluster, that is, Zi = Zj , we are sampling Xik and Xjk from the same
distribution. Otherwise, we are using different distributions for sampling. This is
reasonable because vertices from the same cluster should be similar to each other,
and they should have the same characteristic to interact with other vertices. On
the other hand, for vertices from different clusters, the characteristic may diverge.

The parametric form of the distribution p(Xij |φZi Zj) depends on the edge attribute
H. For example, it could be a Bernoulli distribution if H takes value from {0, 1} in
the case of unweighted graphs or a normal distribution if H takes value from R in
the case of weighted graphs. Again, we will leave it abstract until Section 5.

3.2.2. Generating α, θ, φ. To complete the generative process, we still need to specify the
parameters α, θ , and φ. We take a Bayesian approach to address this issue. Instead of
presuming a fixed value for each parameter, we treat α, θ , and φ themselves as random
variables and place prior distributions over them. We then sample their values from the
prior distributions as follows. We will discuss the benefits of the Bayesian treatment
in Section 3.4.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:7

(1) We place a Dirichlet distribution over α, from which we sample the value of α
(Step 1). The density function of the Dirichlet distribution is defined as

p(α|ξ) =
	
(∑K

k=1 ξk

)
∏K

k=1 	 (ξk)

K∏
k=1

α
ξk−1
k , (2)

where 	(·) is the Gamma function. The distribution is parameterized by a posi-
tive real K-vector ξ = (ξ1, ξ2, . . . , ξK). We refer to ξ as a hyperparameter1 of the
generative process in order to distinguish it from the parameter α.

The choice of the Dirichlet distribution is not arbitrary. It is mainly for mathe-
matical convenience. Recall that we sample Z from the multinomial distribution
parameterized by α. Mathematically, the Dirichlet is known as the conjugate prior
for multinomial distribution [DeGroot 1986]. It means that, if the prior distribution
of α is Dirichlet, then after we observe an instantiation of Z, the posterior distri-
bution of α is still Dirichlet. This will give rise to a closed-form expression for the
posterior and facilitate the development of an efficient attributed graph clustering
algorithm later. In the same spirit, we will enforce conjugate priors for θ and φ
later.

(2) We place a conjugate distribution p(θk|γ) over θk for each cluster k and sample the
value of θk from it (Step 2(a)). Note that the hyperparameter γ does not depend on
the cluster label k. It is shared by all the K clusters. This should not be interpreted
as that the parameters θk for different clusters are tied to the same value, and
thus the attributes of the vertices from different clusters are drawn from the same
distribution. In fact, at Step 2(a), we sample the parameter θk for each cluster k
independently. Therefore, the values of θk vary across different clusters. This allows
us to accommodate the intercluster heterogeneity of vertex attributes.

(3) Finally, we place a conjugate distribution p(φkl|κ) with hyperparameter κ over φkl,
from which we sample the value of φkl for each cluster pair (k, l) independently
(Step 2(b)). We set φlk = φkl as the edges are undirected.

3.3. Bayesian Model for Clustered Attributed Graphs

In the previous subsection, we described a generative process for clustered attributed
graphs. Each run of this process produces an instantiation of the parameters α, θ, φ
and the clustered attributed graph (X, Y, Z). It essentially draws samples from an
underlying joint probability distribution over α, θ, φ, X, Y, Z. In this subsection, we
formally define a Bayesian model that represents this underlying distribution.

We first note that the generative process implicitly makes a number of conditional
independence assumptions among ξ, γ, κ, α, θ, φ, X, Y, Z. Mathematically, two random
variables A and B are conditionally independent given a third variable C if and only if

p(A, B|C) = p(A|C)p(B|C).

Instead of enumerating these assumptions here, we give a compact graphical repre-
sentation in Figure 1. Each node in the graph corresponds to one random variable.
The shaded node represents either an observable or a hyperparameter. Each rectangle
denotes the repetition of the enclosed component, where the number of repetitions is
indicated by the subscript of the rectangle. For example, the rectangle encompassing
the nodes Yi and Zi means that there are N nodes Y1, Y2, . . . , YN, each of which has
two parent nodes θ and Zi, and N nodes Z1, Z2, . . . , ZN, each of which has one parent

1For simplicity, we set the hyperparameters ξ, γ, κ at predefined values in this article. We do note that
they can also be optimized by maximum likelihood estimate [Blei et al. 2001] for potentially improved
performance.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:8 Z. Xu et al.

Fig. 1. A graphical representation of the proposed Bayesian model.

node α. The structure of the graph is constructed according to the flow of the gen-
erative process. Note that there is another rectangle that encompasses the nodes Yj
and Zj with N repetitions. There are in fact only N nodes Y1, Y2, . . . , YN and N nodes
Z1, Z2, . . . , ZN in the model. This rectangle is duplicated to depict the dependency of
Xij on Zi and Zj .

The set of conditional independence assumptions can be readily read off from the
graph. Specifically, a node is independent of all its nondescendants given its parent
nodes [Pearl 1988]. For example, Zi is independent of ξ, γ, κ, θ, φ given α. This is because
the generation of Zi depends only on α (see Step 3(a) of Algorithm 1). Similarly, Zi and
Zj are conditionally independent given α. This is because the cluster labels for different
vertices are sampled independently.

Given the hyperparameters ξ, γ, κ, we decompose the joint distribution over
α, θ, φ, X, Y, Z using the probability chain rule and apply the conditional independence
assumptions encoded in Figure 1. This leads to our Bayesian model for clustered at-
tributed graphs:

p(α, θ, φ, X, Y, Z|ξ, γ, κ) = p(α|ξ)p(θ |γ)p(φ|κ)p(Z|α)p(X|Z, φ)p(Y|Z, θ), (3)

where

p(θ |γ) =
K∏

k=1

p(θk|γ), (4)

p(φ|κ) =
K∏

k, l=1
k≤l

p(φkl|κ), (5)

p(Z|α) =
N∏

i=1

p(Zi|α), (6)

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:9

p(X|Z, φ) =
N∏

i, j=1
i< j

p(Xij |φZi Zj), (7)

p(Y|Z, θ) =
N∏

i=1

p(Yi|θZi), (8)

and p(Zi|α) and p(α|ξ) are defined in Equations (1) and (2), respectively. As discussed in
Sections 3.2.1 and 3.2.2, we bear with the abstract forms of p(θk|γ), p(φkl|κ), p(Xij |φZi Zj),
and p(Yi|θZi) at the moment.

For brevity, we will omit the conditional part of the joint distribution p(α, θ, φ,
X, Y, Z|ξ, γ, κ) and abbreviate it to p(α, θ, φ, X, Y, Z) in the rest of this article. The
same applies to all the conditional and marginal distributions that are derived from
this joint distribution. One should, however, always bear in mind that all these distri-
butions are conditioned on the hyperparameters ξ, γ, κ.

3.4. Attributed Graph Clustering as Probabilistic Inference

The Bayesian model proposed in the previous subsection defines a joint distribution
p(α, θ, φ, X, Y, Z). Based on this model, the problem of clustering a given attributed
graph (X, Y) can be transformed into a standard probabilistic inference problem,
namely, finding the maximum a posteriori (MAP) configuration [Pearl 1988] of the
clustering Z conditioning on X, Y:

Z
 = arg max
Z

p(Z|X, Y). (9)

Intuitively, Z
 gives the most probable clustering of the vertex set V that best explains
the attribute values Y and edge patterns X of the given graph.2

Despite its conceptual simplicity, the probabilistic inference problem is notoriously
hard. There are two major difficulties. The first difficulty is that we need to jointly
optimize the N variables Z = {Z1, Z2, . . . , ZN}. The search space grows exponentially
with the number of vertices N and is computationally prohibitive for large graphs. The
second difficulty lies in the calculation of the posterior distribution of Z. Note that

p(Z|X, Y) =
∫∫∫

p(α, θ, φ, Z|X, Y)dαdθdφ, (10)

where

p(α, θ, φ, Z|X, Y) = p(α, θ, φ, X, Y, Z)∑
Z

∫∫∫
p(α, θ, φ, X, Y, Z)dαdθdφ

. (11)

Due to the integrals over the parameters α, θ, φ, there is no closed-form expression for
p(Z|X, Y). To address both difficulties, we develop an efficient algorithm to approximate
Z
 in the next section.

Before closing this section, we would like to emphasize the significance of the
Bayesian treatment to the parameters α, θ, φ. This can be clearly seen from how we
calculate the posterior p(Z|X, Y) in Equation (10). By treating α, θ, φ as random vari-
ables, we model the intrinsic uncertainty in their values. We essentially consider all
possible values of α, θ, φ and take the average over them by integration, rather than
sticking to a single hypothetic value. In this way, the estimation of p(Z|X, Y) is more
reliable, which in turn leads to more robust clustering results.

2Z
 gives a hard clustering of the graph vertices. Our framework can be used to produce soft clustering as
well, where the degree that a vertex vi belongs to cluster k is given by the probability p(Zi = k|X, Y).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:10 Z. Xu et al.

4. AN EFFICIENT VARIATIONAL ALGORITHM FOR CLUSTERING

4.1. Basic Idea

We now develop an efficient algorithm to approximate the optimal clustering Z
. The
algorithm is based on the variational principle described in Jordan et al. [1999]. The
idea is to approximate the distribution p(α, θ, φ, Z|X, Y) defined in Equation (11) using
a variational distribution q(α, θ, φ, Z) that is tractable for the integration over α, θ, φ
and the maximization over Z. We then approximate Z
 as follows:

Z
 = arg max
Z

p(Z|X, Y)

= arg max
Z

∫∫∫
p(α, θ, φ, Z|X, Y)dαdθdφ

≈ arg max
Z

∫∫∫
q(α, θ, φ, Z)dαdθdφ. (12)

Apparently, the success of this approximation depends on the choice of the variational
distribution q(α, θ, φ, Z). On one hand, it should be amenable to efficient integration
and maximization. On the other hand, it should be as close to the truth p(α, θ, φ, Z|X, Y)
as possible. To this end, we restrict ourselves to a family of distributions that factorize
as follows:

Q(α, θ, φ, Z) = Q(α)Q(θ)Q(φ)
∏

i

Q(Zi). (13)

We then choose the distribution within this family that is the closest to p(α, θ, φ, Z|X, Y)
as the variational distribution q(α, θ, φ, Z). Due to this factorization, the integrals
over α, θ, φ in Equation (12) diminish and the joint maximization over Z reduces to
independent maximization over each Zi,

Z
 ≈
(

arg max
Z1

q(Z1), arg max
Z2

q(Z2), . . . , arg max
ZN

q(ZN)
)

. (14)

Two questions remain: (1) how to characterize the distributions in the variational
family Q(α, θ, φ, Z) and (2) how to find the optimal variational distribution q(α, θ, φ, Z)
from this family that best approximates p(α, θ, φ, Z|X, Y). We address these two ques-
tions in Sections 4.2 and 4.3, respectively.

4.2. Variational Family

In addition to the factorization assumption in Equation (13), we require the distribu-
tions in the variational family to be parametric and take the form

Q(α, θ, φ, Z|ξ̃ , γ̃ , κ̃, β̃) = Q(α|ξ̃)Q(θ |γ̃)Q(φ|κ̃)
∏

i

Q(Zi|β̃i), (15)

where ξ̃ , γ̃ , κ̃, β̃ are the newly introduced variational parameters. This assumption is
mild as we do not restrict the specific parametric forms of the marginals Q(α|ξ̃), Q(θ |γ̃),
Q(φ|κ̃), and Q(Zi|β̃i). Rather, we allow them (and the variational parameters as well)
to vary freely. As a consequence, the distributions in the variational family can now be
exhausted by enumerating all possible parametric forms and variational parameters.
Each instantiation specifies a unique distribution.

For simplicity, we will sometimes omit the conditional parts of the Q(·) distributions.
For example, we will abbreviate Q(α, θ, φ, Z|ξ̃ , γ̃ , κ̃, β̃) and Q(Z|β̃) to Q(α, θ, φ, Z) and
Q(Z), respectively. One should, however, always bear in mind that the Q(·) distributions
are conditioned on the variational parameters.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:11

4.3. Optimal Variational Distribution

Recall that our goal is to find the optimal variational distribution q(α, θ, φ, Z) in the
family Q(α, θ, φ, Z) that is the closest to the true posterior p(α, θ, φ, Z|X, Y). Before
we can seek the solution, we need to define a distance measure between the two
distributions first to characterize the optimality. We adopt the Kullback-Leibler (KL)
divergence [Cover and Thomas 1991] that is commonly used in information theory and
machine learning. It is defined as

KL(Q||p) =
∑

Z

∫∫∫
Q(α, θ, φ, Z) log

Q(α, θ, φ, Z)
p(α, θ, φ, Z|X, Y)

dαdθdφ. (16)

Our problem is thus to find the variational distribution that minimizes the KL
divergence

q(α, θ, φ, Z) = arg min
Q

KL(Q||p).

However, this optimization problem is intractable to solve because the KL divergence
involves the term p(α, θ, φ, Z|X, Y), which is exactly what we strive to approximate in
the first place.

Instead of directly minimizing the KL divergence, we solve an equivalent maximiza-
tion problem

q(α, θ, φ, Z) = arg max
Q

L(Q),

where

L(Q) =
∑

Z

∫∫∫
Q(α, θ, φ, Z) log

p(α, θ, φ, X, Y, Z)
Q(α, θ, φ, Z)

dαdθdφ. (17)

The equivalence between these two optimization problems can be easily seen by notic-
ing that their objective functions sum up to a constant:

KL(Q||p) + L(Q) = log p(X, Y). (18)

Note that L(Q) involves the joint p(α, θ, φ, X, Y, Z) instead of the conditional
p(α, θ, φ, Z|X, Y). The former can be efficiently evaluated according to Equation (3).

Our objective now is to maximize L(Q) with respect to Q(α, θ, φ, Z). As we do not re-
strict the parametric forms of Q(α|ξ̃), Q(θ |γ̃), Q(φ|κ̃), and Q(Zi|β̃i), we need to determine
the optimal forms as well as the optimal values of the variational parameters ξ̃ , γ̃ , κ̃, β̃.
This appears to be a daunting task as there could be a large number of parametric
forms. Fortunately, the following proposition ensures that the components q(α), q(θ),
q(φ), and q(Zi) of the optimal variational distribution q(α, θ, φ, Z) must take the same
parametric forms as the priors p(α), p(θ), p(φ), and p(Zi), respectively. As a result,
we can safely restrict the parametric form of the variational family Q(α, θ, φ, Z) to
be the same as these priors without missing the optimal solution. We only need
to optimize the variational parameters, of which the stationary points are also
characterized in the following proposition.

PROPOSITION 1. The distributions Q(α), Q(θ), Q(φ), and Q(Zi) at the stationary points
(including the maximum) of L(Q) have exactly the same parametric forms as the
prior distributions p(α), p(θ), p(φ), and p(Zi) and are characterized by the following
equations:

ξ̃k = ξk +
N∑

i=1

β̃ik, (19)

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:12 Z. Xu et al.

Q(θk) ∝ exp

{
log p(θk) +

N∑
i=1

β̃ik log p(Yi|θk)

}
, (20)

Q(φkk) ∝ exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log p(φkk) +
N∑

i, j=1
i< j

β̃ikβ̃ jk log p(Xij |φkk)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (21)

Q(φkl) ∝ exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log p(φkl) +
N∑

i, j=1
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (22)

β̃ik ∝ exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EQ(α)[log αk] + EQ(θk)[log p(Yi|θk)]

+
N∑

j=1
j �=i

K∑
l=1

β̃ jl EQ(φkl)[log p(Xij |φkl)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (23)

for all k, l = 1, . . . , K, k < l and i = 1, . . . , N.

The proof of Proposition 1 is mainly adapted from that of variational Bayesian EM
[Beal 2003]. For clarity, we defer all the proofs and detailed derivations in this article
to the appendices.

An important implication of Proposition 1 is that the optimal variational distribution
q(Zi) will take the same form as p(Zi), that is, multinomial distribution. It is param-
eterized by the optimized β̃i = (β̃i1, β̃i2, . . . , β̃iK). Plugging it back to Equation (14), an
approximation to the optimal clustering Z
 can now be easily obtained as

Z
 ≈
(

arg max
k

β̃1k, arg max
k

β̃2k, . . . , arg max
k

β̃Nk

)
. (24)

4.4. Iterative Optimization Procedure

Based on Proposition 1 and Equation (24), we now present an iterative procedure
(Algorithm 2) for attributed graph clustering. We call it general Bayesian attributed
graph clustering (GBAGC). It takes as input an initial value β̃(0), a threshold ε, and a
limit on the number of iterations nmax. It returns an approximately optimal clustering
Z
 of the graph vertices.

Intuitively, Algorithm 2 starts with an initial guess of the variational parameter β̃
and iteratively improves the distribution Q(α, θ, φ, Z) by enforcing the stationary point
conditions in Proposition 1. The following proposition shows that the objective function
L(Q) will keep increasing in each iteration.

PROPOSITION 2. For all n = 1, 2, . . . ,

L(Q(n−1)) ≤ L(Q(n)).

According to Equation (18), the value of L(Q) is bounded from above. Therefore, an
immediate corollary of Proposition 2 is that Algorithm 2 is guaranteed to converge

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:13

ALGORITHM 2: GBAGC
Input: an initial value β̃ (0), a threshold ε, a maximum number of iterations nmax
Output: a vertex clustering Z∗

1. n ← 1
2. Repeat

(a) Given β̃ (n−1), update ξ̃ (n), Q(n)(θ), Q(n)(φ) according to Equations (19)–(22)
(b) Given ξ̃ (n), Q(n)(θ), Q(n)(φ), β̃ (n−1), update β̃ (n) according to Equation (23)
(c) n ← n + 1

Until L(Q(n)) − L(Q(n−1)) < ε or n > nmax

3. Return
(

arg maxk β̃ (n)
1k , arg maxk β̃ (n)

2k , . . . , arg maxk β̃ (n)
Nk

)

within a finite number of iterations. In particular, it will converge to a local maximum
of L(Q). Note that L(Q) is nonconcave and can have multiple local maxima. Thus, the
quality of the local maximum that Algorithm 2 converges to depends on the choice of
the initial value β̃(0). We will discuss the initialization issue in the experiments.

4.5. Complexity Analysis

The time complexity of Algorithm 2 is dominated by the loop of Step 2. Each iteration
of this loop updates the variational distributions Q(·) once according to Equations (19)–
(23). Specifically, it updates ξ̃ , Q(θ), Q(φ), and β̃ in sequence, which takes time O(NK),
O(K(Tθ + NTY)), O(K2(Tφ + N2TX)), and O(NK(Tᾱ + TȲ + NKTX̄)), respectively. Here,
Tθ , TY , Tφ , and TX denote the time required to evaluate the distributions p(θk), p(Yi|θk),
p(φkl), and p(Xij |φkl), while Tᾱ, TȲ , and TX̄ denote the time required to calculate the ex-
pectations EQ(α)[log αk], EQ(θk)[log p(Yi|θk)], and EQ(φkl)[log p(Xij |φkl)], respectively. Note
that these quantities depend on the specific forms of the distributions p(·) and Q(·) but
are constant in the number of vertices N and the number of clusters K. Therefore, the
time complexity of one iteration of Algorithm 2 is O(N2K2) and the total complexity of
the algorithm is O(N2K2 I), where I is the number of iterations.

Despite the quadratic worst-case time complexity, Algorithm 2 can be substantially
accelerated in practice. First of all, we note that real-world graphs usually exhibit
sparse structures. This sparsity can be exploited to significantly reduce the time com-
plexity. In particular, it often enables an efficient calculation of the summations over the
adjacency matrix X in Equations (21)–(23), which are the root causes of the quadratic
complexity. This intuition is formalized by the following proposition. Let nnz(X) be
the number of nonzero entries in X, or equivalently the number of graph edges. The
proposition states that, under mild assumptions, a significant reduction in the time
complexity from O(N2K2 I) down to O(nnz(X)K2 I) can be achieved.

PROPOSITION 3. Assume that p(Xij |φkl) is from the exponential family [Casella and
Berger 2001]. Let s(Xij) = (s1(Xij), . . . , sr(Xij), . . . , sR(Xij))T denote the vector of sufficient
statistics of p(Xij |φkl), and define sr(X) as the N× N square matrix consisting of elements
sr(Xij), i, j ∈ {1, 2, . . . , N}. If nnz(sr(X)) = nnz(X) for all r ∈ {1, 2, . . . , R}, then each
iteration of Algorithm 2 can be accomplished in O(nnz(X)K2) time.

We give the proof of Proposition 3 in Appendix C. Note that the assumptions of Propo-
sition 3 are satisfied by an array of commonly used distributions for p(Xij |φkl). They
include, but are not limited to, the Bernoulli distribution, binomial distribution, Possion
distribution, exponential distribution, Weibull distribution, and Gaussian distribution.
These distributions can be used to model a wide range of attributed graphs with dif-
ferent edge types. We give two concrete examples in Section 5.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:14 Z. Xu et al.

Second, the convergence of Algorithm 2 can be speeded up by performing an asyn-
chronous update. In each iteration of the algorithm, we alternate between two opti-
mization steps. At Step 2(a), we update ξ̃ , Q(θ), Q(φ) based on β̃. At Step 2(b), we update
β̃ based on ξ̃ , Q(θ), Q(φ). The key observation here is that the updating equations of
ξ̃ , Q(θ), Q(φ) depend only on β̃. Therefore, we choose to execute Step 2(b) multiple times
in each iteration. This would increase the running time per iteration, but in return, it
usually brings about more improvement in L(Q) and leads to a much greater reduction
in the number of iterations I toward convergence.

Finally, we note that Algorithm 2 is highly parallelizable. At Step 2(a), the updating of
ξ̃k, Q(θk), Q(φkl) can be performed independently for different clusters k and l. Similarly,
the updating of β̃ik at Step 2(b) can be performed independently for different vertexes
i and clusters k. Therefore, a significant reduction in elapsed running time can be
achieved by deploying parallel computing.

For space complexity, the main consumption comes from the storage of the adjacency
matrix X and the attribute matrix Y of the input graph and the variational distribu-
tions, Q(·). Specifically, storing X and Y takes space O(N2) and O(NT), respectively.
Here, T is the number of vertex attributes. Storing ξ̃ , Q(θ), Q(φ), and β̃ takes space
O(K), O(KSθ), O(K2Sφ), and O(NK), respectively. Here, Sθ and Sφ denote the space
required to keep the distributions Q(θk) and Q(φkl). Again, they depend on the specific
forms of the distributions but are constant in N and K. Since T < N holds in general
and K � N holds for the clustering task, the total space complexity of Algorithm 2 is
O(N2). The space consumption could be further reduced in practice by deploying sparse
matrix representations.

5. APPLICATIONS TO SPECIFIC ATTRIBUTED GRAPHS

So far we have developed a general Bayesian framework for clustering attributed
graphs. Throughout the development, we keep the edge and attribute types abstract
and make no assumptions about them. In this section, we show how this framework
can be easily instantiated to cluster specific graphs with particular types of edges and
attributes.

We start by providing a general guideline here:

(1) Given a specific attributed graph to be clustered, identify the vertex attributes �
and the edge attribute H.

(2) Choose appropriate parametric forms for the distributions p(Yi|θZi) and p(Xij |φZi Zj)
according to � and H.

(3) Choose the corresponding conjugate priors p(θk|γ) and p(φkl|κ).
(4) Plug all the distributions into Equations (19)–(23) and use Algorithm 2 to cluster

the given graph.

In the next subsections, we will demonstrate how this guideline can be applied to
handle two popular classes of attributed graphs. We will also shed some light on its
applicability to other types of attributed graphs.

5.1. Unweighted Graph with Categorical Vertex Attributes

The attributed graphs with unweighted edges and categorical vertex attributes are
arguably the most popular class in real-world applications. This class of attributed
graphs can be naturally modeled under our framework by letting the edge attribute H
be a binary variable that takes value from {0, 1} and each vertex attribute at ∈ � be a
distinct categorical variable.

Accordingly, each element Xij of the adjacency matrix is a binary random variable,
and each element Yit of the attribute matrix is a categorical random variable that
takes value from the domain dom(at). The standard choices of their distributions are

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:15

Bernoulli and multinomial, respectively, which are defined as follows:

p(Xij |φZi Zj) = (1 − φZi Zj)
1−Xij (φZi Zj)

Xij , (25)

p(Yi|θZi) =
T∏

t=1

p(Yit|θZit), (26)

p(Yit|θZit) =
Mt∏

m=1

θ
δ(Yit,atm)
Zitm

. (27)

Here, Mt is the cardinality of the domain dom(at), atm is the mth value in dom(at), and
δ (Yit, atm) is the indicator function that takes value 1 if Yit = atm and 0 otherwise. The
vector θZit = (θZit1, θZit2, . . . , θZitMt) is the parameter of the multinomial distribution for
vertex attribute variable Yit. The element θZitm denotes the proportion of vertices in
cluster Zi that take value atm. It satisfies θZitm ∈ [0, 1] and

∑Mt
m=1 θZitm = 1.

The conjugate priors for the Bernoulli and multinomial distributions are Beta and
Dirichlet, respectively. They are defined as

p(φkl|κ) = 	(μ + ν)
	(μ)	(ν)

φ
μ−1
kl (1 − φkl)ν−1

, (28)

p(θk|γ) =
T∏

t=1

p(θkt|γt), (29)

p(θkt|γt) =
	
(∑Mt

m=1 γtm

)
∏Mt

m=1 	 (γtm)

Mt∏
m=1

θ
γtm−1
ktm . (30)

Here, κ = (μ, ν) and γ = (γ1, . . . , γT) are the hyperparameters.3 Note that there is
one dedicated hyperparameter γt for each attribute at. This is because the domains of
different attributes are different.

Plugging Equations (25)–(30) into Equations (19)–(23), we arrive at the following
updating rules:

γ̃ktm = γtm +
N∑

i=1

β̃ikδ (Yit, atm) ,

μ̃kk = μ +
N∑

i, j=1
i< j

β̃ikβ̃ jkXij,

ν̃kk = ν +
N∑

i, j=1
i< j

β̃ikβ̃ jk(1 − Xij),

μ̃kl = μ +
N∑

i, j=1
i �= j

β̃ikβ̃ jl Xij,

3Following the convention in Bayesian statistics, we set the values of ξ, κ, γ at 1. This leads to the noninfor-
mative priors [DeGroot 1986], which are equivalent to uniform distributions over α, φ, θ . They assign equal
probabilities to all possible values of α, φ, θ . Intuitively, it reflects that our prior belief has no preference on
any parameter value over the others.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:16 Z. Xu et al.

ν̃kl = ν +
N∑

i, j=1
i �= j

β̃ikβ̃ jl(1 − Xij),

β̃ik ∝ exp

{[
ψ(ξ̃k) − ψ

(
K∑

l=1

ξ̃l

)]
+

T∑
t=1

Mt∑
m=1

δ (Yit, atm)

[
ψ (γ̃ktm) − ψ

(
Mt∑

n=1

γ̃ktn

)]

+
N∑

j=1
j �=i

K∑
l=1

β̃ jl
[
Xijψ(μ̃kl) + (1 − Xij)ψ(ν̃kl) − ψ(μ̃kl + ν̃kl)

]}
,

for all t = 1, . . . , T , k, l = 1, . . . , K, k < l, and i = 1, . . . , N. ψ(·) is the Digamma function,
which is the logarithmic derivative of the Gamma function 	(·),

ψ(x) = d log 	(x)
dx

= 	′(x)
	(x)

.

The Digamma function can be efficiently approximated by series expansion and stan-
dard implementations exist in popular mathematical libraries such as Matlab.

These specific rules can then be used by Algorithm 2 for clustering unweighted
attributed graphs.

5.2. Weighted Graph with Categorical Vertex Attributes

Our general framework can be easily instantiated to deal with weighted graphs. In
particular, we consider an interesting class of attributed graphs with nonnegative
integer edge weights and categorical vertex attributes. Such weights can be used to
represent connection strength between vertices, for example, the number of emails
sent between two users in an email network, the number of calls made between two
subscribers in a telecommunication network, the number of papers jointly published
by two authors in a coauthor network, and so on.

The vertex attributes �, the distributions p(Yi|θZi), and the prior p(θZi |γ) remain the
same as in the previous subsection since both consider categorical vertex attributes.
The only change is with the edge attribute H (and thus Xij). It is now a nonnegative
random variable that takes value in {0, 1, 2, . . .}. The standard distribution for this
random variable is the Poisson:

p(Xij |φZi Zj) = exp{−φZi Zj }
φ

Xij

Zi Zj

Xij !
, (31)

where φZi Zj denotes the average edge weight between cluster Zi and cluster Zj and
satisfies φZi Zj ∈ [0,∞). The corresponding conjugate prior is the Gamma distribution,
defined as

p(φkl|κ) = νμ

	(μ)
φ

μ−1
kl exp{−νφkl}, (32)

where κ = (μ, ν) is the hyperparameter.4 Plugging Equations (31) and (32) along with
Equations (26), (27), (29), and (30) into Equations (19)–(23), we arrive at the following

4We set the values of μ, ν to be smaller than 1 so that the prior p(φkl) provides as little information as possible
about the true values of parameters φkl and let the data speak for themselves [Gelman 2006].

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:17

updating rules for weighted attributed graphs:

γ̃ktm = γtm +
N∑

i=1

β̃ikδ (Yit, atm) ,

μ̃kk = μ +
N∑

i, j=1
i< j

β̃ikβ̃ jkXij,

ν̃kk = ν +
N∑

i, j=1
i< j

β̃ikβ̃ jk,

μ̃kl = μ +
N∑

i, j=1
i �= j

β̃ikβ̃ jl Xij,

ν̃kl = ν +
N∑

i, j=1
i �= j

β̃ikβ̃ jl,

β̃ik ∝ exp

{[
ψ(ξ̃k) − ψ

(
K∑

l=1

ξ̃l

)]
+

T∑
t=1

Mt∑
m=1

δ (Yit, atm)

[
ψ (γ̃ktm) − ψ

(
Mt∑

n=1

γ̃ktn

)]

+
N∑

j=1
j �=i

K∑
l=1

β̃ jl

[
Xij[ψ(μ̃kl) − log ν̃kl] − log(Xij !) − μ̃kl

ν̃kl

]}
,

for all t = 1, . . . , T , k, l = 1, . . . , K, k < l, and i = 1, . . . , N.

5.3. Other Types of Attributed Graphs

Besides the previous two examples, the GBAGC framework can be readily instantiated
to attributed graphs with other types of edge connection and vertex attributes. For
example, we can employ Gaussian distribution plus the Gaussian-Gamma prior to
model edges weighted by real values. We can also use Poisson/Gaussian distributions
to deal with integer/real-valued vertex attributes in a similar fashion. In fact, for almost
all common types of edge and vertex attributes, there exist well-studied and tractable
distributions and conjugate priors [Gelman et al. 2003], making GBAGC extensible to
a variety of attributed graph clustering applications.

In this article, we have been focusing on homogeneous attributed graphs in which all
the vertices/edges share the same attributes. It is worth mentioning that GBAGC can
be readily generalized to deal with heterogeneous attributed graphs as well. This can
be seen by noticing that the joint distribution over the vertex attributes and struc-
tural patterns factorizes (Equations (7) and (8)). Therefore, we are free to choose
heterogeneous distributions and conjugate priors for vertices/edges with different
attributes.

6. EXPERIMENTAL STUDY

To assess the effectiveness of our clustering framework, we evaluate the perfor-
mance of two instances of the framework by comparing them with the state-of-the-art

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:18 Z. Xu et al.

Table I. Datasets

vertices # edges |dom(a1)| |dom(a2)| dom(H)
Political Blogs 1,490 16,715 2 NIL {0, 1}
DBLP10K 10,000 27,867 3 100 {0, 1}
DBLP84K 84,170 201,334 3 100 {0, 1}
WtDBLP10K 10,000 27,867 3 100 [0, 59]
WtDBLP84K 84,170 201,334 3 100 [0, 59]

distance-based attributed graph clustering algorithm Inc-Cluster [Zhou et al. 2010] (an
improved version of SA-Cluster [Zhou et al. 2009]) and a recent model-based algorithm
PICS [Akoglu et al. 2012]. All the algorithms were implemented in Matlab and the
experiments were run on machines with Linux OS, Intel Xeon 2.67GHz CPUs, and
12GB or 256GB of RAM.

6.1. Datasets

We use five real datasets in our experiments. Three of them are unweighted attributed
graphs that were used in the evaluation of Inc-Cluster [Zhou et al. 2010]. The other two
are the weighted version of two of the unweighted graphs, which we use to evaluate
the weighted instance.

• Political Blogs. This dataset has 1,490 vertices and 19,090 edges. Each vertex
represents a web blog on U.S. politics and each directed edge represents a hyperlink
from one web blog to another. Each vertex is associated with an attribute, indicating
the political leaning of the web blog, liberal or conservative. Since we only consider
undirected graphs in this work, we ignore the edge directions in this dataset, which
results in 16,715 undirected edges.

• DBLP10K. This dataset is a coauthor network extracted from the DBLP Bibliog-
raphy data. Each vertex represents a scholar and each edge represents a coauthor
relationship between two scholars. The dataset contains 10,000 scholars who have
published in major conferences in four research fields: database, data mining, infor-
mation retrieval, and artificial intelligence. Each scholar is associated with two at-
tributes, prolific and primary topic. The attribute “prolific” has three values: “highly
prolific” for the scholars with ≥20 publications, “prolific” for the scholars with ≥10
and <20 publications, and “low prolific” for the scholars with <10 publications. The
domain of the attribute “primary topic” consists of 100 research topics extracted by a
topic model [Hofmann 1999] from a collection of paper titles from the scholars. Each
scholar is then assigned a primary topic out of the 100 topics.

• DBLP84K. This dataset is a larger DBLP coauthor network. It contains 84,170 schol-
ars in 15 research fields. In addition to the four research fields used in DBLP10K, 11
additional fields are further included: machine learning, computer vision, network-
ing, multimedia, computer systems, simulation, theory, architecture, natural lan-
guage processing, human–computer interaction, and programming language. This
dataset also has two vertex attributes, which are defined in a similar way as in
DBLP10K.

• WtDBLP10K. This dataset is the same as DBLP10K except that each edge carries
a weight representing the number of papers jointly published by two scholars.

• WtDBLP84K. This dataset is the same as DBLP84K except that each edge
carries a weight representing the number of papers jointly published by two
scholars.

Table I summarizes the characteristics of the datasets, including the number of
vertices, the number of edges (i.e., the number of vertex pairs that are of nonzero

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:19

weight), the domain size of each of the vertex attributes |dom(ai)|, and the domain
of the edge attribute dom(H). Among the three unweighted datasets, the Political
Blogs dataset is the smallest. The other two datasets are much larger, allowing us
to test the scalability of the algorithms (e.g., Inc-Cluster consumes 60GB of memory
for DBLP84K). The weighted version of the two larger datasets is used to evaluate
weighted attributed graph clustering.

6.2. Experimental Settings

We give the details of the experimental settings in this subsection, including the algo-
rithm for comparison, the measures that are used to assess the quality of a clustering,
and the initialization of parameters in the algorithms.

6.2.1. Algorithms for Comparison. We compare our model-based clustering algorithm,
GBAGC, with the state-of-the-art distance-based clustering algorithm, denoted by Inc-
Cluster [Zhou et al. 2010]. In order to design a distance measure that considers both
structure and attributes, Inc-Cluster constructs an augmented graph, which introduces
an artificial vertex for each attribute value and links a vertex in the input graph G to the
artificial vertex if the vertex takes the corresponding attribute value. A unified distance
measure is defined as the random walk score computed from the augmented graph.
The k-medoids algorithm is then applied to cluster vertices with the defined distance
measure. For performance comparison on the weighted instance, we also modify Inc-
Cluster to run on weighted graphs by utilizing the edge weights in the transition
probability matrix for distance calculation.

To further demonstrate the benefits of incorporating the attribute information into
clustering attributed graphs, we also compare GBAGC with the downgraded versions of
itself and Inc-Cluster that use only the structure information for clustering. We denote
these two alternatives as GBAGC (structure only) and Inc-Cluster (structure
only), respectively.

We also compare GBAGC with a recent model-based algorithm for attributed graph
clustering, denoted by PICS [Akoglu et al. 2012]. PICS aims to find vertex groups with
similar connectivity and homogeneous attributes. It casts the clustering problem as a
data compression task and uses the minimum description length (MDL) principle to
automatically choose the number of clusters. PICS only handles unweighted graphs
with binary attributes. Therefore, we only test it on the first three datasets of un-
weighted graphs, and we transform each categorical attribute a with |dom(a)| possible
values to |dom(a)| dummy binary attributes for PICS.

6.2.2. Clustering Quality Assessment. Since our objective is to cluster attributed graphs,
we assess the quality of a clustering in two aspects: structure and attribute.

[Structure Quality] We use modularity as a quality measure for structure. Mod-
ularity [Newman and Girvan 2004] is popularly used in graph clustering to measure
the strength of division of a graph into vertex clusters (also called communities).

To define modularity, we first introduce the following notions. Given a clustering
{V1, . . . , VK}, let E be the set of vertex pairs with nonzero weights (called edges), Ekl (k �=
l) the set of intercluster edges between Vk and Vl, and Ekk the set of intracluster edges
in Vk. Then the fraction of intracluster edges in Vk is defined as fkk = |Ekk|

|E| and the

fraction of intercluster edges between Vk and Vl (k �= l) is defined as fkl = flk = |Ekl|
2|E|

(there are 2|E| edges in the denominator because an edge is shared by fkl and flk).
By counting both intracluster and intercluster edges, the fraction of edges incident to
cluster Vk is defined as αk = ∑K

l=1 fkl.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:20 Z. Xu et al.

The modularity is then defined as

modularity (V1, . . . , VK) =
K∑

k=1

(
fkk − α2

k

)
. (33)

Intuitively, if edges were distributed at random, the expected fraction of intracluster
edges in Vk is α2

k . By subtracting this expected fraction (i.e., α2
k) from the true fraction

of intracluster edges in Vk (i.e., fkk), modularity reflects the concentration of vertices
within clusters compared to random distribution of edges between all vertices regard-
less of clusters. The value of modularity falls within the range of [−1, 1]. A positive
value indicates that the number of intracluster edges exceeds the number expected on
a random basis. Therefore, a clustering result with high modularity has dense connec-
tions among vertices within the same cluster and sparse connections among vertices
across different clusters.

Note that modularity is also applicable to weighted networks [Newman 2004a].
Specifically, let wkl = ∑

(vi ,v j)∈Ekl
W(vi, v j) and w = ∑

(vi ,v j)∈E W(vi, v j), and define
fkk = wkk

w
and fkl = flk = wkl

2w
(k �= l). Plugging them into Equation (33) gives the

modularity for weighted graphs. Likewise, a higher modularity indicates a better clus-
tering quality in the weighted case.

[Attribute Quality] For vertex attributes, we use entropy as a quality measure.
Entropy is a well-accepted measure that quantifies the uncertainty of a random vari-
able. In attributed graph clustering, entropy can be used to measure the degree of
inconsistency of the attribute values in each cluster.

Given a clustering {V1, . . . , VK}, for each attribute at, the entropy of at in cluster Vk
is defined as

entropy (at, Vk) = −
|dom(at)|∑

m=1

pktm log pktm,

where pktm is the fraction of vertices in cluster Vk that take the mth value in dom(at).
We then define the entropy of an attribute at with respect to the clustering

{V1, . . . , VK} as

entropy (at) =
K∑

k=1

|Vk|
|V | entropy (at, Vk),

which is the average entropy of K clusters weighted by the cluster size |Vk|. The value
of entropy falls within the range of [0,∞). A lower entropy indicates a higher degree
of consistency in the attribute values associated with the vertices in the same cluster
and thus a higher intracluster attribute similarity.

6.2.3. Parameter Settings and Implementations. We use METIS [Karypis and Kumar 1998]
to initialize our GBAGC algorithm. METIS is a fast structure-based graph partitioning
algorithm. It partitions the graph vertices into K equally sized clusters with minimum
number or weighted sum of intercluster edges. To initialize GBAGC, we set β̃ik = 1 if
the ith vertex is assigned to the kth cluster by METIS and β̃il = 0 for l �= k.

We set all hyperparameters ξ , γ, and κ to 1 for experiments on unweighted graphs.
For weighted graphs, the hyperparameter κ is set to 0.1 while ξ and γ are set to 1.
The threshold ε for the objective function L(Q) is set to 10−5. The maximum number
of iterations nmax is set to 10. We implement the speedup tricks for sparse graphs as
shown in Proposition 3 and deploy sparse representations for matrices.

For Inc-Cluster, we use the default setting as in the code provided by the authors.
For PICS, it is parameter free and we use the implementation by the authors.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:21

Fig. 2. Clustering performance of GBAGC and Inc-Cluster on Political Blogs.

6.3. Performance on Unweighted Attributed Graphs

In the following, we first report and discuss the performance of GBAGC and Inc-Cluster
on the three datasets of unweighted graphs. We then compare their performance with
that of PICS.

6.3.1. Clustering Performance on Political Blogs. For the Political Blogs dataset, we set the
number of clusters at K = 4, 6, 8, and 10, respectively.

We first examine the quality of clustering with respect to structural information.
Figure 2(a) reports the modularity of the clustering by GBAGC and Inc-Cluster. The
result shows that, with respect to the modularity values (the higher the better), GBAGC
achieves significantly higher-quality clustering than Inc-Cluster.

The modularity values of the clusterings by Inc-Cluster are in fact all negative. Note
that when the clustering is formed by random, the value of modularity is 0. This means
that the clustering computed by Inc-Cluster has a lower quality than a clustering
obtained by randomly distributing edges to different clusters. The poor performance
of Inc-Cluster is mainly because it is a distance-based method with the objective of
optimizing the intracluster distance. Their distance measure (i.e., the random walk
score) may not be able to capture community structures properly.

Next we assess the quality of clustering with respect to attribute information.
Figure 2(b) reports the attribute entropy of the clustering obtained by GBAGC and
Inc-Cluster for the Political Blogs dataset. GBAGC improves the attribute entropy
of Inc-Cluster by 36% to 59%. The much lower entropy value of GBAGC shows that

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:22 Z. Xu et al.

GBAGC attains a much higher degree of consistency in intracluster attribute values,
which indicates a much higher attribute similarity than Inc-Cluster.

Our method is able to obtain low attribute entropy because in our generative model,
the attribute value of the vertices in the same cluster is drawn from the same multi-
nomial distribution. The process of optimizing L(Q) favors more skewed multinomial
distribution and thus achieves a low attribute entropy in the clustering results. On the
other hand, Inc-Cluster converts attribute values to artificial vertices and links them
to original vertices to form an augmented graph. This increases the vertex connectiv-
ity with additional paths through the artificial vertices. However, it may not lead to
consistent attribute values in the clusters. For example, two vertices u and v are both
connected to an artificial vertex of an attribute value at1, meaning that both u and v
take the value at1 of the attribute at. Then suppose that v is structurally connected to
another vertex w and w takes a different attribute value at2. Inc-Cluster may put u, v,
and w in the same cluster since their random walk scores can be high due to the paths
through at1, even though u, v, and w do not exhibit high consistency on attribute at.

For different values of K tested, the clustering quality of Inc-Cluster is almost in-
variant in terms of both modularity and entropy. For GBAGC, the modularity degrades
and the entropy improves when K increases. This reflects the natural tradeoff between
the structural quality and attribute quality of a clustering solution. With more clusters
and smaller average cluster size, it allows solutions with more consistent intracluster
attribute values. On the other hand, the clusters would be more fragmental in this case
and less indicative of inherent community structure. GBAGC finds a balance between
these two aspects and achieves a stable overall clustering quality for different values
of K.

Figure 2(c) reports the running time of both algorithms for Political Blogs. On aver-
age, GBAGC is faster than Inc-Cluster by more than one order of magnitude. Therefore,
in terms of both quality and efficiency, GBAGC is a clear winner for clustering this small
dataset.

Figure 2 also reports the performance of the structure-only versions of GBAGC and
Inc-Cluster. Comparing GBAGC with its structure-only version, we observe that it
trades off modularity for entropy. It improves the attribute entropy over the structure-
only version by 8% on average, but its modularity also decreases. This is not surpris-
ing because GBAGC explicitly enforces the intracluster attribute homogeneity, which
may not always align with the structural homogeneity. In contrast, there are no sig-
nificant changes in the performance of Inc-Cluster after incorporating the attribute
information. Both the modularity and entropy are almost the same for Inc-Cluster and
Inc-Cluster (structure only). If we further compare GBAGC with Inc-Cluster (struc-
ture only), we can see that the former exploits attribute information very effectively,
resulting in an improvement in attribute entropy by 49% on average.

In terms of running time, the structure-only versions are faster since the incor-
poration of the attribute information into clustering incurs overhead. However, this
overhead is much smaller in the case of GBAGC than in that of Inc-Cluster.

6.3.2. Clustering Performance on DBLP10K. For the DBLP10K dataset, we set the number
of clusters at K = 50, 100, 200, and 300, respectively.

Figure 3(a) shows that GBAGC obtains high-quality clustering as the modularity is
consistently over 0.5 for all values of K. According to Newman [2004b], a modularity
value of 0.3 already indicates a significant community structure, that is, a high-quality
clustering. On the contrary, Inc-Cluster records a low modularity of less than 0.1 for all
values of K. The difference in the modularity value between GBAGC and Inc-Cluster
is considerably greater in clustering this larger dataset than in clustering the smaller
Political Blogs dataset.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:23

Fig. 3. Clustering performance of GBAGC and Inc-Cluster on DBLP10K.

Figures 3(b) and 3(c) report the entropy values of each of the two attributes5 of
DBLP10K. The results show that GBAGC attains considerably lower entropy values
for both attributes than Inc-Cluster. On average, GBAGC improves the entropy of
a1 of Inc-Cluster by 15% and that of a2 by 29%. This demonstrates the advantage
of GBAGC over Inc-Cluster in attaining a higher-quality clustering with respect to
attribute information, in addition to structural information.

When K increases, both modularity and attribute entropy of Inc-Cluster improve, but
all of them are still significantly worse than those of GBAGC. For GBAGC, the trend
is similar to that of Political Blogs. The entropy of both attributes improves in general
as K increases, while modularity decreases. The only exception happens at K = 300,
where GBAGC trades off the entropy of a2 for the modularity and the entropy of a1.
In all cases, GBAGC produces high-quality clustering, as evidenced by much higher
modularity and lower entropy than Inc-Cluster.

Figure 3(d) reports the running time of GBAGC and Inc-Cluster. The result shows
that GBAGC is faster than Inc-Cluster by 23 to 147 times. As K increases, the running
time of GBAGC increases linearly with K. However, for the running time of Inc-Cluster,
we observe a different trend. There is a sudden increase in the running time of Inc-
Cluster as K increases from 50 to 100, and then it uses almost the same amount of time
in the range of K from 100 to 300. We examined the Inc-Cluster algorithm and found

5Note that the entropy value of a1 is significantly lower than that of a2 because the domain size of a1 is
significantly smaller than that of a2, as shown in Table I.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:24 Z. Xu et al.

that the number of iterations in its optimization process increases in a stepwise manner
as K increases, and the running time is mainly determined by the number of iterations.
Inc-Cluster uses four iterations for K = 50 and five iterations for K ∈ [100..300], which
explains the trend shown in Figure 3(d). More importantly, Figure 3(d) shows that the
magnitude of increase in the running time of Inc-Cluster is significantly more rapid
than the linear increase in the running time of GBAGC, indicating that GBAGC is also
more scalable than Inc-Cluster as K increases.

When compared with their respective structure-only versions, GBAGC and Inc-
Cluster behave differently. With the addition of attribute information, Inc-Cluster
only improves the entropy of a1, but the entropy of a2 becomes worse. On the con-
trary, GBAGC achieves improvements over GBAGC (structure only) on the entropy of
both attributes by 3% and 9%, respectively. Remarkably, the structure quality is not
significantly compromised: the modularity merely decreases 1%. When compared with
Inc-Cluster (structure only), GBAGC improves the entropy of a1 and a2 by 18% and
28%, respectively.

Again, the computational overhead paid by Inc-Cluster for incorporating the at-
tribute information into clustering is significantly higher than that by GBAGC. The
running time of GBAGC, GBAGC (structure only), and Inc-Cluster (structure only) is
comparable to each other, while Inc-Cluster is up to two orders of magnitude slower.

6.3.3. Clustering Performance on DBLP84K. For the largest dataset, DBLP84K, we use a
wider range of values of K, with K = 150, 300, 600, and 1200, respectively.

As reported in Figure 4(a), the modularity value of GBAGC for this largest dataset
is the highest among the three datasets and is consistently over 0.6, indicating a very
high clustering quality. Inc-Cluster produces low modularity of less than 0.1 for all
values of K. The difference in the modularity value between GBAGC and Inc-Cluster
also further widens, especially for small values of K.

Figures 4(b) and 4(c) further show that GBAGC consistently attains lower entropy
values for both of the attributes than Inc-Cluster. GBAGC improves the entropy of
a1 and a2 by 27% and 57%, respectively. Different from the results for DBLP10K, the
entropy of Inc-Cluster for both attributes does not improve dramatically as K increases.
On the contrary, GBAGC produces a clustering with much lower entropy for both
attributes when K increases, at an expense of slightly worse modularity. This again
demonstrates that GBAGC achieves a good tradeoff between structural and attribute
quality as K changes.

Figure 4(d) shows a huge gap between the running time of GBAGC and that of Inc-
Cluster. On average, GBAGC is faster than Inc-Cluster by over an order of magnitude.
As explained for Figure 3(d) in Section 6.3.2, the running time of GBAGC increases
linearly as K increases. On the contrary, the running time of Inc-Cluster increases in
a stepwise manner.

On this large dataset, Inc-Cluster performs worse than Inc-Cluster (structure only)
in all three measures, meaning that the way that Inc-Cluster exploits the attribute
information actually hurts in this particular case. In contrast, GBAGC improves the
entropy of a1 and a2 of GBAGC (structure only) by 3% and 20%, respectively, and
meanwhile retains almost the same modularity level. GBAGC also gains about 20%
and 31% improvement on the entropy of a1 and a2 over Inc-Cluster (structure only).
Again, all these are achieved at a very small computational overhead, especially when
compared to the extra cost incurred by Inc-Cluster.

6.3.4. Comparison with PICS. We now present the performance comparison of GBAGC,
Inc-Cluster, and PICS. Since PICS automatically selects the cluster number K by
itself, we set the K in GBAGC and Inc-Cluster to the same value for a fair comparison.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:25

Fig. 4. Clustering performance of GBAGC and Inc-Cluster on DBLP84K.

Table II. Performance of GBAGC, Inc-Cluster, and PICS

Dataset Algorithm K Modularity Entropy of a1 Entropy of a2 Running Time (Sec.)

GBAGC 11 0.133 0.368 - 0.096
Political Blogs Inc-Cluster 11 −0.003 0.987 - 0.928

PICS 11 0.165 0.572 - 36.477

GBAGC 9 0.655 0.577 5.925 0.239
DBLP10K Inc-Cluster 9 0.001 0.640 6.469 273.409

PICS 9 0.337 0.325 6.275 251.554

GBAGC 20 0.825 0.291 5.876 18.160
DBLP84K Inc-Cluster 20 0.001 0.318 6.559 5484.222

PICS 20 0.406 0.136 6.388 5308.746

Table II gives the results on the three datasets, where the best entry for each measure
is highlighted in bold.

In terms of clustering quality, Inc-Cluster is the worst, while GBAGC and PICS
achieve different tradeoffs between structure and attribute aspects. On political blogs,
PICS obtains better modularity but GBAGC gets better attribute entropy. On both
DBLP10K and DBLP84K, GBAGC generates clusterings with high modularity in struc-
ture and high homogeneity in attribute a2, while PICS produces clusterings with high
homogeneity in attribute a1. On these two datasets, we argue that GBAGC produces
more appealing clusterings since it induces more insights to identify researcher groups

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:26 Z. Xu et al.

Table III. Approximate Memory Usage

Political Blogs DBLP10K DBLP84K
GBAGC 320MB 680MB 4GB
Inc-Cluster 460MB 4GB 60GB
GBAGC (K from PICS) 160MB 160MB 250MB
PICS 160MB 160MB 450MB

with tight collaborations (edge connections) and similar research topics (attribute a2)
than to identify groups with similar prolificacy in publication (attribute a1).

In terms of running time, GBAGC is the clear winner. It is up to three orders of
magnitude faster than Inc-Cluster and PICS. Although GBAGC and PICS share the
linear time complexity in theory (in the number of graph edges), GBAGC is much more
efficient in practice as shown in Table II.

6.3.5. Conclusions of Performance Comparison for Unweighted Attributed Graphs. In conclu-
sion, the results in Sections 6.3.1 to 6.3.4 show that GBAGC consistently attains high-
quality clustering in terms of both structural quality and attribute quality.

Compared with the state-of-the-art distance-based attributed graph clustering algo-
rithm Inc-Cluster, the clustering obtained by GBAGC has significantly higher modu-
larity and lower entropy for all datasets and all values of K tested. In addition, GBAGC
is also consistently faster than Inc-Cluster, where the speedup in time is up to three
orders of magnitude for clustering large datasets.

By comparing with the structure-only versions, we show that GBAGC is able to in-
corporate effectively and efficiently the attribute information into graph clustering. It
leads to significant improvement in attribute quality, does not substantially compro-
mise the structure quality, and incurs small computational overhead for the incorpora-
tion. In contrast, Inc-Cluster incurs a much larger cost, but the benefit of incorporating
the attribute information turns out to be marginal.

We also show that GBAGC can produce competitive alternative clusterings to PICS,
which takes a very different model-based approach to attributed graph clustering.
GBAGC achieves a different tradeoff between structure and attribute quality from
PICS. Particularly on DBLP datasets, we argue that GBAGC generates more mean-
ingful clustering results. In addition, GBAGC has the same linear time complexity as
PICS but is much more efficient to deploy in practice (faster by up to three orders of
magnitude).

Finally, we briefly summarize the memory consumptions of the three algorithms. In
general, GBAGC uses more memory with larger K value, while the memory consump-
tion of Inc-Cluster remains unchanged across different K. As shown in Table III, even
with the largest K values tested in our experiments, GBAGC (the first row) requires sig-
nificantly less memory than Inc-Cluster. For DBLP84K, which is the largest among the
three datasets, GBAGC consumed 4GB memory. In contrast, Inc-Cluster used 60GB,
which made us have to run all the experiments for this dataset on a computer with
256GB of RAM. Under the same value of K, the memory consumption of GBAGC (the
third row) is comparable to that of PICS on the two smaller datasets and is less than
that of PICS on the large DBLP84K.

To summarize, with the remarkably higher clustering efficiency (in terms of both
time and memory consumption) and the significantly better clustering quality (in
terms of both structure and attribute), our model-based approach is evidentially a
more promising solution to attributed graph clustering than existing distance-based
approaches.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:27

Fig. 5. Clustering performance on WtDBLP10K.

6.4. Performance on Weighted Attributed Graphs

We now report the performance of GBAGC and Inc-Cluster on the two weighted at-
tributed graphs, WtDBLP10K and WtDBLP84K. We test the same values of K as in
the unweighted case.

6.4.1. Clustering Performance on WtDBLP10K. Figure 5(a) reports the modularity of the
clusterings obtained by the two algorithms. The modularity obtained by GBAGC is
over 0.6 at all values of K, which is an indication of the detection of a very significant
community structure. In contrast, the performance of Inc-Cluster is significantly worse
where the modularity is very low. This demonstrates that GBAGC also achieves much
higher structural quality than Inc-Cluster in clustering the weighted graph. Note that
the modularity difference between GBAGC and Inc-Cluster in clustering graphs with
the edge weight information is greater than that without the edge weight informa-
tion, which shows that GBAGC is more flexible than Inc-Cluster in handling weighted
attributed graphs.

Figures 5(b) and 5(c) report the entropy values for the two attributes of WtDBLP10K.
GBAGC attains consistently lower entropy values than Inc-Cluster for both attributes.
Figure 5(d) reports the running time. Similar to the unweighted case, GBAGC runs two
orders of magnitude faster than Inc-Cluster on average. The running time of GBAGC
increases very slowly with K, while that of Inc-Cluster exhibits a stepwise trend with
a big increase in the steps.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:28 Z. Xu et al.

On this dataset, both GBAGC and Inc-Cluster obtain similar modularity to their
respective structure-only versions. In terms of attribute quality, Inc-Cluster achieves
better entropy of a1 but worse entropy of a2 than Inc-Cluster (structure only). In con-
trast, GBAGC generally improves the entropy of both attributes by utilizing the at-
tribute information. In terms of efficiency, it is the same as in the unweighted case.
Inc-Cluster incurs much more computational cost than GBAGC in order to incorporate
the attribute information into graph clustering.

It is interesting to compare the results here with those of DBLP10K. We observe
that GBAGC brings about less improvement on the attribute entropy in this weighted
case than in the unweighted one. This is mainly because the weights of the edges now
carry extra information, some of which overlaps with the attribute information on the
vertices. Specifically, each edge weight represents the number of papers coauthored
by the two incident researchers. Such information is also indicative of the number
of publications (attribute a1) of each researcher and the similarity in the primary
research topics (attribute a2) of two researchers. Due to this correlation, the GBAGC
(structure only) is able to use the weighted edges alone to generate clusters with
relatively homogeneous attribute values. Adding the attribute information thus only
improves the clustering quality slightly due to the effect of diminishing return. Taking a
different perspective, this also demonstrates the capability of GBAGC in capturing the
correlation between structure and attribute information through the common cluster
label.

6.4.2. Clustering Performance on WtDBLP84K. The modularity values for WtDBLP84K
are reported in Figure 6(a). For this large dataset, GBAGC also attains much higher
modularity than Inc-Cluster. The modularity gap between GBAGC and Inc-Cluster is
the biggest on WtDBLP84K among all the datasets for both unweighted and weighted
cases. Figures 6(b) and 6(c) further show that GBAGC achieves significantly lower
entropy than Inc-Cluster for both attributes. In addition, a huge gap in the running
time between GBAGC and Inc-Cluster is again observed as shown in Figure 6(d).

The comparison with structure-only versions on WtDBLP84K gives similar results
to that on WtDBLP10K. The only difference is that Inc-Cluster obtains much worse
modularity than Inc-Cluster (structure only), while GBAGC attains consistently high
modularity in both versions.

6.4.3. Conclusions of Performance Comparison for Weighted Attributed Graphs. In conclu-
sion, the experimental results of clustering WtDBLP10K and WtDBLP84K show that
GBAGC significantly outperforms Inc-Cluster in terms of both efficiency and clustering
quality for the weighted attributed graphs. Compared to the unweighted case, GBAGC
demonstrates higher suitability in handling edge weight information than Inc-Cluster
as their performance gap further widens in the weighted setting.

Compared with its structure-only version, GBAGC is able to improve the attribute
quality in clustering weighted graphs when the attribute information is also consid-
ered. The improvement is smaller than that in the unweighted case due to the corre-
lation between the edge weights and the attribute information. This in fact shows the
capability of GBAGC in capturing such correlations embedded in data.

The memory usage of GBAGC and that of Inc-Cluster for the weighted graphs are
comparable to those in the unweighted case as reported in Table III; that is, GBAGC
also consumes significantly less memory than Inc-Cluster for the weighted attributed
graphs.

The results demonstrate that our general model-based framework works well for
weighted attributed graphs and the instantiation is superior to existing distance-based
approaches, with much better clustering quality and higher clustering efficiency.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:29

Fig. 6. Clustering performance on WtDBLP84K.

7. RELATED WORK

There are a considerable number of works on attributed graph clustering in literature.
They can be mainly categorized into two classes, distance based and model based.

The main idea of the distance-based approach is to design a distance/similarity
measure for vertex pairs that combines both structural and attribute information of
the vertices. Based on this measure, standard clustering algorithms like k-medoids
and spectral clustering are then applied to cluster the vertices. Neville et al. [2003]
proposed a similarity measure for unweighted graphs with categorical attributes. The
idea is to assign a weight to each edge using the attribute information. The weight is
defined as the number of attribute values shared by the two end vertices. Standard
graph clustering algorithms are then applied on the weighted adjacency matrix to
perform clustering. This idea is extended by Steinhaeuser and Chawla [2008] to handle
continuous attributes, where the differences in attribute values of neighboring vertices
are used to define the edge weights. He et al. [2001] proposed a different similarity
measure that is tailored to web page clustering. It combines the textual information
and hyperlink structure. Based on this similarity measure, a hierarchical clustering
algorithm is then applied to recursively partition the web pages.

The state-of-the-art distance-based algorithm is Inc-Cluster [Zhou et al. 2009, 2010].
It was designed for unweighted graphs with categorical attributes. It first constructs
an augmented graph by creating an artificial vertex for each distinct attribute value
and linking it to all the original vertices that possess this attribute value. A dis-
tance measure is then defined as the random walk score [Tong et al. 2006] computed

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:30 Z. Xu et al.

from the augmented graph. When computing the distance measure, Inc-Cluster au-
tomatically assigns different weights to structure and attributes. For the sake of ef-
ficiency, it computes the distances in an incremental fashion. Finally, the K-mediods
algorithm is applied to cluster the vertices based on the distance measure. In this
article, we compare our algorithm, GBAGC, with Inc-Cluster on unweighted graphs.
We also modify Inc-Cluster to work for weighted graphs by utilizing the edge weights
in the transition probability matrix for random walk score computation. As evidenced
by the experimental results, our approach significantly outperforms Inc-Cluster in
terms of both clustering quality and efficiency on both unweighted and weighted
graphs.

Instead of artificially designing a distance measure, the model-based approach for-
mulates a joint modeling of the interplay between edge connections and vertex at-
tributes and makes use of this model to infer the optimal clustering. Zanghi et al.
[2010] proposed a probabilistic model based on a similar generative process to ours.
It can be treated as an instance of GBAGC for unweighted edges and continuous at-
tributes, except that it does not take a Bayesian treatment but treats model parameters
as fixed values. Henderson et al. [2010] studied attributed graph clustering in a differ-
ent context. It aims at fusing clustering results from different algorithms to devise a
hybrid approach. It treats the clustering results from other algorithms as categorical
attributes on vertices. It then transforms these attributes to attributes on edges and
applies LDA for graph clustering. Akoglu et al. [2012] proposed a different model-based
approach named PICS to attributed graph clustering. It casts the clustering problem
as a data compression task, where each cluster is treated as a compression of a cohe-
sive subset of nodes that exhibit both similar connectivity patterns and high attribute
homogeneity. It developed a matrix-based data compression model and applied the
minimum description length (MDL) principle to find the optimal number of clusters
and clustering. While the underlying principle can be extended to more general cases,
the original paper only handles unweighted graphs with binary attributes. As shown
in the experimental study, our approach and PICS achieve different tradeoffs between
structure and attribute quality in clustering, but our approach is orders of magni-
tude faster than PICS. Recently, Xu et al. [2012] proposed a preliminary Bayesian
method for attributed graph clustering. The method is developed for unweighted
attributed graphs with categorical attributes and formed the basis of the current
work.

As can be seen, most of the existing works on attributed graph clustering are tai-
lored for specific types of edges and attributes. They cannot be trivially adapted to
other data types. In contrast, our GBAGC establishes a general framework for at-
tributed graph clustering with structured attributes. It inherits the idea of Xu et al.
[2012] but extends the scope of applicability from merely unweighted graphs with
categorical attributes to a much broader range of cases such as weighted edges and
numerical attributes. To this end, the core operations that are shared when clustering
different types of attributed graphs are abstracted, while the peripheral and type-
dependent operations are articulated to make it easy for users to deal with specific
attributed graphs at hand. To the best of our knowledge, this is the first attempt in lit-
erature that strives to promote the use of model-based graph clustering to this broader
scope.

Our work is also remotely related to the works on community detection in the World
Wide Web and citation networks. The goal is to identify subsets of documents or hyper-
texts that are densely connected and, meanwhile, contain similar textual contents or
topics. The existing works usually leverage on sophisticated topic modeling techniques
to incorporate the textual contents, such as probabilistic latent semantic analysis [Cohn

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:31

and Hofmann 2001; Nallapati et al. 2008] and LDA [Erosheva et al. 2004; Nallapati
et al. 2008]. Yang et al. [2009a, 2009b] developed a different discriminative approach. It
assumes that the cluster membership of each vertex follows a Gaussian process, which
is defined by the textual contents. Recently, Sun et al. [2012] studied the problem of
community detection in heterogeneous networks that contain different types of objects
(e.g., articles, authors, publication venues, etc.) and connections (e.g., authorship, cita-
tion, etc.). It leverages on both the textual content of the articles and publication venues
and the rich information in the heterogeneous links to perform clustering. All these
works strive to take advantage of the unstructured text data to improve clustering
quality. In contrast, our work focuses on structured attributes.

8. CONCLUSIONS

We studied the problem of clustering attributed graphs. Unlike the existing works that
defined artificial distance measures to fuse the structural and attribute information,
which are usually tailored for a specific type of attributed graphs, we proposed a natural
and principled model-based approach for clustering various types of attributed graphs.
More specifically, we devised a general Bayesian framework to seamlessly leverage the
structural and attribute information in clustering generic attributed graphs. We then
developed an efficient variational algorithm to solve the clustering problem under this
framework. We also derived two instances from our general framework for clustering
specific types of attributed graphs: unweighted and weighted ones.

Our experiments on real-world attributed graphs verified both the effectiveness and
efficiency of our method. First, the experimental results show that the two instances of
our GBAGC algorithm attain high clustering quality both structure-wise and attribute-
wise and are significantly superior to the state-of-the-art algorithm for this task, Inc-
Cluster [Zhou et al. 2010]. Second, our algorithms are up to three orders of magnitude
faster and consume substantially less memory than Inc-Cluster. The results particu-
larly show that our algorithms are more scalable in clustering large attributed graphs
than Inc-Cluster. Third, comparing the unweighted and weighted instances, our al-
gorithm is shown to be more superior to Inc-Cluster in fusing the extra edge weight
information. This demonstrates the generality of our framework. Finally, our method
provides a good alternative to existing model-based methods such as PICS [Akoglu
et al. 2012], which is tailored for unweighted graphs with binary attributes and takes
a much longer time to run in practice.

Model-based clustering methods are commonly considered slow and hard to scale up.
Nonetheless, this work shows that our model-based method is far more efficient than
the state-of-the-art distance-based method. Given the promising results, we hope that
our work can draw more attention to research on model-based methods and stimulate
the development in this direction for large-scale data mining. In the future, we will fur-
ther extend our framework to deal with more complicated and realistic datasets, such
as missing value in attributes, heterogeneous types of edge connections and attribute
values, and multiple edges.

APPENDIX

A. PROOF FOR PROPOSITION 1

Consider the following equality-constrained maximization problem:

maxQL(Q)

subject to
∑

Z

∫∫∫
Q(α, θ, φ, Z)dαdθdφ = 1.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:32 Z. Xu et al.

Introducing a Lagrangian multiplier for each variational distribution, we obtain the
Lagrange function:

L̃(Q) = L(Q) + λα

[∫
Q(α)dα − 1

]
+ λθ

[∫
Q(θ)dθ − 1

]

+ λφ

[∫
Q(φ)dφ − 1

]
+
∑

i

λi

⎡
⎣∑

Zi

Q(Zi) − 1

⎤
⎦ ,

where L(Q) can be simplified as follows:

L(Q) =
∑

Z

∫∫∫
Q(α, θ, φ, Z) log

p(α, θ, φ, X, Y, Z)
Q(α, θ, φ, Z)

dαdθdφ

= EQ(α)[log p(α)] + EQ(α,Z)[log p(Z|α)] − EQ(α)[log Q(α)]

+ EQ(θ)[log p(θ)] + EQ(θ,Z)[log p(Y|Z, θ)] − EQ(θ)[log Q(θ)]

+ EQ(φ)[log p(φ)] + EQ(φ,Z)[log p(X|Z, φ)] − EQ(φ)[log Q(φ)]

−
∑

i

EQ(Zi)[log Q(Zi)].

Note that the expectations in appendices are all taken with respect to variational
distributions Q(·|·) indicated by subscripts, for example,

EQ(α)[log p(α)] =
∫

Q(α|ξ̃) log p(α|ξ)dα.

Our starting point is the equation

∇ L̃(Q) =
(

∂ L̃
∂Q(α)

,
∂ L̃

∂Q(θ)
,

∂ L̃
∂Q(φ)

,
∂ L̃

∂Q(Z1)
, . . . ,

∂ L̃
∂Q(ZN)

)
= 0.

We derive these partial derivatives one by one, starting with ∂ L̃
∂Q(α) .

A.1. ∂L̃
∂Q (α)

For simplicity, we collect from L̃(Q) the terms involving Q(α) in L̃Q(α) and denote the
sum as

L̃Q(α) = EQ(α)[log p(α)] + EQ(α,Z)[log p(Z|α)] − EQ(α)[log Q(α)] + λα

∫
Q(α)dα

=
∫

Q(α)
[
log p(α) + EQ(Z)[log p(Z|α)] − log Q(α) + λα

]
dα.

Thus,

∂ L̃
∂Q(α)

= ∂ L̃Q(α)

∂Q(α)
= log p(α) + EQ(Z)[log p(Z|α)] − log Q(α) + λα − 1.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:33

Setting ∂ L̃
∂Q(α) = 0, we arrive at

Q(α) = exp{−1 + λα + log p(α) + EQ(Z)[log p(Z|α)]}
= exp{log p(α) + EQ(Z)[log p(Z|α)]}/Cα,

where λα is related to the normalization constant Cα as follows:

1 − λα = log Cα = log
∫

exp{log p(α) + EQ(Z)[log p(Z|α)]}dα.

The exponent can be further expanded as

log p(α) + EQ(Z)[log p(Z|α)] =
∑

k

(ξk − 1) log αk +
∑

i

EQ(Zi)[log p(Zi|α)]

=
∑

k

{
ξk − 1 +

∑
i

EQ(Zi)[δ(Zi, k)]

}
log αk.

Thus, Q(α|ξ̃) is a Dirichlet distribution with parameters

ξ̃k = ξk +
∑

i

EQ(Zi)[δ(Zi, k)], k = 1, 2, . . . , K.

As we will see in Section A.4, variational distribution Q(Zi|β̃i) is a multinomial distri-
bution and thus EQ(Zi)[δ(Zi, k)] = β̃ik, k = 1, 2, . . . , K. Finally, we get Eq. (19):

ξ̃k = ξk +
∑

i

β̃ik, k = 1, 2, . . . , K.

A.2. ∂L̃
∂Q (θ)

Collect from L̃(Q) the terms involving Q(θ) in L̃Q(θ):

L̃Q(θ) = EQ(θ)[log p(θ)] + EQ(θ,Z)[log p(Y|Z, θ)] − EQ(θ)[log Q(θ)] + λθ

∫
Q(θ)dθ

=
∫

Q(θ)
[
log p(θ) + EQ(Z)[log p(Y|Z, θ)] − log Q(θ) + λθ

]
dθ.

Setting ∂ L̃
∂Q(θ) = 0, we arrive at

Q(θ) = exp
{
log p(θ) + EQ(Z)[log p(Y|Z, θ)]

}
/Cθ ,

where λθ is related to the normalization constant Cθ as follows:

1 − λθ = log Cθ = log
∫

exp
{
log p(θ) + EQ(Z)[log p(Y|Z, α)]

}
dθ.

Since

log p(θ) =
∑

k

log p(θk),

EQ(Z)[log p(Y|Z, θ)] =
∑

i

EQ(Zi)[log p(Yi|Zi, θ)],

EQ(Zi)[log p(Yi|Zi, θ)] =
∑

k

EQ(Zi)[δ(Zi, k)] log p(Yi|θk) =
∑

k

β̃ik log p(Yi|θk),

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:34 Z. Xu et al.

the exponent can be further expanded as

log p(θ) + EQ(Z)[log p(Y|Z, θ)] =
∑

k

[
log p(θk) +

∑
i

β̃ik log p(Yi|θk)

]
.

Thus, we have

Q(θ |γ̃) =
∏

k

Q(θk|γ̃k), and Q(θk|γ̃k) = exp

{
log p(θk) +

∑
i

β̃ik log p(Yi|θk)

}/
Cθk,

k = 1, 2, . . . , K, where Cθk = ∫
exp{log p(θk) + ∑

i β̃ik log p(Yi|θk)}dθk. Equation (20) is
obtained. Moreover, since p(Yi|θk) and p(θk) are conjugate, Q(θ) has the same parametric
form as p(θ).

A.3. ∂L̃
∂Q (φ)

Collect from L̃(Q) the terms involving Q(φ) in L̃Q(φ):

L̃Q(φ) = EQ(φ)[log p(φ)] + EQ(φ,Z)[log p(X|Z, φ)] − EQ(φ)[log Q(φ)] + λφ

∫
Q(φ)dφ

=
∫

Q(φ)[log p(φ) + EQ(Z)[log p(X|Z, φ)] − log Q(φ) + λφ]dφ.

Setting ∂ L̃
∂Q(φ) = 0, we arrive at

Q(φ) = exp{log p(φ) + EQ(Z)[log p(X|Z, φ)]}
/

Cφ,

where λθ is related to the normalization constant Cθ as follows:

1 − λφ = log Cφ = log
∫

exp
{
log p(φ) + EQ(Z)[log p(X|Z, φ)]

}
dφ.

Since

log p(φ) =
∑
k≤l

log p(φkl),

EQ(Z)[log p(X|Z, φ)] =
∑
i< j

EQ(Zi ,Zj)[log p(Xij |Zi, Zj, φ)]

=
∑
i< j

∑
k,l

EQ(Zi ,Zj)[δ(Zi, k)δ(Zj, l)] log p(Xij |φkl)

=
∑
i< j

∑
k,l

β̃ikβ̃ jl log p(Xij |φkl)

=
∑

k

∑
i< j

β̃ikβ̃ jk log p(Xij |φkk) +
∑
k<l

∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl),

the exponent can be further expanded as

log p(φ) + EQ(Z)[log p(X|Z, φ)] =
∑

k

⎡
⎣log p(φkk) +

∑
i< j

β̃ikβ̃ jk log p(Xij |φkk)

⎤
⎦

+
∑
k<l

⎧⎨
⎩log p(φkl) +

∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

⎫⎬
⎭ .

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:35

Thus, we have

Q(φ|κ̃) =
∏
k≤l

Q(φkl|κ̃kl)

and

Q(φkk|κ̃kk) = exp

⎧⎨
⎩log p(φkk) +

∑
i< j

β̃ikβ̃ jk log p(Xij |φkk)

⎫⎬
⎭
/

Cφkk, k = 1, 2, . . . , K,

Q(φkl|κ̃kl) = exp

⎧⎨
⎩log p(φkl) +

∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

⎫⎬
⎭
/

Cφkl , k, l = 1, 2, . . . , K, k < l,

where

Cφkk =
∫

exp

⎧⎨
⎩log p(φkk) +

∑
i< j

β̃ikβ̃ jk log p(Xij |φkk)

⎫⎬
⎭dφkk

Cφkl =
∫

exp

⎧⎨
⎩log p(φkl) +

∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

⎫⎬
⎭dφkl.

Equations (21) and (22) are obtained. And similarly, Q(φ) has the same parametric
form as p(φ).

A.4. ∂L̃
∂Q (Zi)

Collect from L̃(Q) the terms involving Q(Zi) in L̃Q(Zi):

L̃Q(Zi) = EQ(α,Zi)[log p(Zi|α)] + EQ(θ,Zi)[log p(Yi|Zi, θ)]

+
∑
j �=i

EQ(φ,Zi ,Zj)[log p(Xij |Zi, Zj, φ)] − EQ(Zi)[log Q(Zi)] + λi

∑
Zi

Q(Zi)

=
∑

Zi

Q(Zi)

⎧⎨
⎩EQ(α)[log p(Zi|α)] + EQ(θ)[log p(Yi|Zi, θ)]

+
∑
j �=i

EQ(φ,Zj)[log p(Xij |Zi, Zj, φ)] − log Q(Zi) + λi

⎫⎬
⎭.

Setting ∂ L̃
∂Q(Zi)

= 0, we arrive at

Q(Zi) = exp

⎧⎨
⎩EQ(α)[log p(Zi|α)] + EQ(θ)[log p(Yi|Zi, θ)]

+
∑
j �=i

EQ(φ,Zj)[log p(Xij |Zi, Zj, φ)]

⎫⎬
⎭
/

Ci,

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:36 Z. Xu et al.

where λi is related to the normalization constant Ci as follows:

log Ci = 1 − λi = log
∑

Zi

exp

⎧⎨
⎩EQ(α)[log p(Zi|α)] + EQ(θ)[log p(Yi|Zi, θ)]

+
∑
j �=i

EQ(φ,Zj)[log p(Xij |Zi, Zj, φ)]

⎫⎬
⎭.

Since

EQ(φ,Zj)[log p(Xij |Zi, Zj, φ)] =
∑
k,l

EQ(φ,Zj)[δ(Zi, k)δ(Zj, l) log p(Xij |φkl)]

=
∑

k

δ(Zi, k)
∑

l

EQ(Zj)[δ(Zj, l)]EQ(φ)[log p(Xij |φkl)]

=
∑

k

δ(Zi, k)
∑

l

β̃ jl EQ(φkl)[log p(Xij |φkl)],

the exponent can be further expanded as

EQ(α)[log p(Zi|α)] + EQ(θ)[log p(Yi|Zi, θ)] +
∑
j �=i

EQ(φ,Zj)[log p(Xij |Zi, Zj, φ)]

=
∑

k

δ(Zi, k)EQ(α)[log αk] +
∑

k

δ(Zi, k)EQ(θ)[log p(Yi|θk)]

+
∑
j �=i

∑
k

δ(Zi, k)
∑

l

β̃ jl EQ(φ)[log p(Xij |φkl)]

=
∑

k

δ(Zi, k)

⎧⎨
⎩EQ(α)[log αk] + EQ(θk)[log p(Yi|θk)] +

∑
j �=i

∑
l

β̃ jl EQ(φkl)[log p(Xij |φkl)]

⎫⎬
⎭.

Thus, for any i = 1, . . . , N, Q(Zi|β̃i) is a multinomial distribution with parameters

β̃ik = exp

⎧⎨
⎩EQ(α)[log αk] + EQ(θk)[log p(Yi|θk)] +

∑
j �=i

∑
l

β̃ jl EQ(φkl)[log p(Xij |φkl)]

⎫⎬
⎭
/

Ci ,

k = 1, 2, . . . , K. Equation (23) is obtained.

B. PROOF FOR PROPOSITION 2

As described in Algorithm 2, Q(n) is obtained from Q(n−1) by a sequence of variational
parameter updating:

(1) Update ξ̃ (n), Q(θ |γ̃ (n)), Q(φ|κ̃ (n)) according to Equations (19)–(22);
(2) Update β̃(n) according to Equation (23).

In order to prove L(Q(n−1)) ≤ L(Q(n)), it suffices to show that none of the updating will
decrease the value of L. We only prove this for updating ξ̃ (n) in the following. The other
cases can be shown similarly.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:37

When updating ξ̃ (n), we keep other variational distributions Q(θ |γ̃ (n−1)), Q(φ|κ̃ (n−1)),
and parameter β̃(n−1) fixed. Thus, the aim is to show that

L
(
Q(α|ξ̃ (n−1)), Q(θ |γ̃ (n−1)), Q(φ|κ̃ (n−1)), Q(Z|β̃(n−1))

)
≤ L

(
Q(α|ξ̃ (n)), Q(θ |γ̃ (n−1)), Q(φ|κ̃ (n−1)), Q(Z|β̃(n−1))

)
.

To this end, we consider

L
(
Q̂(α), Q(θ |γ̃ (n−1)), Q(φ|κ̃ (n−1)), Q(Z|β̃(n−1))

)
= EQ̂(α)[log p(α)] + EQ̂(α)Q(Z|β̃(n−1))[log p(Z|α)] − EQ̂(α)[log Q̂(α)] + C

=
∫

Q̂(α){log p(α) + EQ(Z|β̃(n−1))[log p(Z|α)] − log Q̂(α)}dα + C

= −KL(Q̂(α)||Q(α|ξ̃ (n))) + log C(n−1)
α + C,

where C is a constant with respect to Q̂(α) and

C(n−1)
α =

∫
exp

{
log p(α) + EQ(Z|β̃(n−1))[log p(Z|α)]

}
dα.

Note that KL(Q̂(α)||Q(α|ξ̃ (n))) is nonnegative and attains its minimum value zero if and
only if Q̂(α) = Q(α|ξ̃ (n)). Therefore, L(Q̂(α), Q(θ |γ̃ (n−1)), Q(φ|κ̃ (n−1)), Q(Z|β̃(n−1))) will be
maximized at Q(α|ξ̃ (n)). That is, for any variational distribution Q̂(α), we have

L(Q̂(α), Q(θ |γ̃ (n−1)), Q(φ|κ̃ (n−1)), Q(Z|β̃(n−1)))

≤ L(Q(α|ξ̃ (n)), Q(θ |γ̃ (n−1)), Q(φ|κ̃ (n−1)), Q(Z|β̃(n−1))),

which completes the proof.

C. PROOF FOR PROPOSITION 3

The quadratic time complexity of Algorithm 2 is caused by the updating of Q(φ) and
β̃ (Equations (21)–(23)). Therefore, it suffices to show that the complexity of these
updating steps can be reduced to O(nnz(X)K2) under the assumptions of Proposition 3.

We start by defining the parametric forms of p(Xij |φkl) and its conjugate prior
p(φkl|κkl). Since p(Xij |φkl) is from the exponential family, it can be expressed as

p(Xij |φkl) = h(Xij)exp{η(φkl) · s(Xij) − A(φkl)}.
Here, h(·), η(·), s(·), and A(·) are the base measure, parameter function (a row vector),
sufficient statistics (a column vector), and log-partition function of the exponential fam-
ily, respectively. As a member of the exponential family, p(Xij |φkl) always has conjugate
prior in theory, which is given by

p(φkl|κkl) = h(φkl)exp{κkl · s(φkl) − A(κkl)}.
Here, κkl = (κ (1)

kl , κ
(2)
kl) is the hyperparameter (a row vector) for φkl, while

s(φkl) = (η(φkl),−A(φkl))T is the corresponding sufficient statistics (a column vector).
Plugging these parametric representations of p(Xij |φkl) and p(φkl|κkl) into Equa-

tions (21) and (22), we can see that the optimal variational distributions Q(φkk) and
Q(φkl) now take the following forms:

Q(φkk|κ̃kk) = h(φkk)exp{κ̃kk · s(φkk) − A(κ̃kk)},
Q(φkl|κ̃kl) = h(φkl)exp{κ̃kl · s(φkl) − A(κ̃kl)},

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:38 Z. Xu et al.

where

κ̃kk =

⎛
⎜⎜⎜⎝κ

(1)
kk +

N∑
i, j=1
i< j

β̃ikβ̃ jks(Xij)T , κ
(2)
kk +

N∑
i, j=1
i< j

β̃ikβ̃ jk

⎞
⎟⎟⎟⎠ , (34)

κ̃kl =

⎛
⎜⎜⎜⎝κ

(1)
kl +

N∑
i, j=1
i �= j

β̃ikβ̃ jls(Xij)T , κ
(2)
kl +

N∑
i, j=1
i �= j

β̃ikβ̃ jl

⎞
⎟⎟⎟⎠ (35)

are the variational parameters. As a result, in order to update Q(φkk) and Q(φkl) in each
iteration of Algorithm 2, we only need to update the variational parameters κ̃kk and κ̃kl
according to Equations (34) and (35). By the assumption of Proposition 3, the sufficient
statistic vectors s(Xij) preserve the sparsity of X. Therefore, the first components of
κ̃kk and κ̃kl can be calculated in O(nnz(X)K2) time for all k, l = {1, . . . , K}. Further note
that

N∑
i, j=1
i< j

β̃ikβ̃ jl =
N∑

i=1

β̃ik

N∑
j=i+1

β̃ jl,

N∑
i, j=1
i �= j

β̃ikβ̃ jl =
(

N∑
i=1

β̃ik

)⎛
⎝ N∑

j=1

β̃ jl

⎞
⎠−

N∑
i=1

β̃ikβ̃il.

Therefore, the second components of κ̃kk and κ̃kl can be calculated in O(NK2) time for
all k, l = {1, . . . , K}. Putting together, the overall complexity for updating Q(φkk) and
Q(φkl) is reduced to O(nnz(X)K2).

The updating of β̃ enjoys a similar reduction in time complexity. Plugging the para-
metric form of p(Xij |φkl) into Equation (23), we obtain the following updating rule:

β̃ik ∝ exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EQ(α)[log αk] + EQ(θk)[log p(Yi|θk)]

+
N∑

j=1
j �=i

s(Xij)T
K∑

l=1

β̃ jl EQ(φkl)[η(φkl)T] −
K∑

l=1

EQ(φkl)[A(φkl)]
N∑

j=1
j �=i

β̃ jl

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Note that the time required to calculate the expectations EQ(α)[log αk],
EQ(θk)[log p(Yi|θk)], EQ(φkl)[η(φkl)T], and EQ(φkl)[A(φkl)] depends on the specific forms of the
distributions but is constant in N and K. Furthermore, the sufficient statistic vectors
s(Xij) preserve the sparsity of X by assumption. Therefore, it is easy to verify that the
complexity for updating β̃ is also reduced to O(nnz(X)K2), which completes the proof.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:39

D. DERIVATION OF UPDATING RULES FOR UNWEIGHTED GRAPH

D.1. Q (θ|γ̃)

From Proposition 1,

Q(θk) = exp

{
log p(θk) +

∑
i

β̃ik log p(Yi|θk)

}/
Cθk, k = 1, 2, . . . , K,

where

log p(θk) +
∑

i

β̃ik log p(Yi|θk) =
∑

t

p(θkt) +
∑

i

∑
t

β̃ik log p(Yit|θkt)

=
∑

t

[
p(θkt) +

∑
i

β̃ik log p(Yit|θkt)

]
.

Thus,

Q(θk|γ̃k) =
∏

t

Q(θkt|γ̃kt),

and

Q(θkt|γ̃kt) = exp

{
log p(θkt) +

∑
i

β̃ik log p(Yit|θkt)

}/
Cθkt ,

where Cθkt = ∫
exp{log p(θkt) +∑

i β̃ik log p(Yit|θkt)}dθkt.
Expanding the exponent of Q(θkt), we have

log p(θkt) +
∑

i

β̃ik log p(Yit|θkt)

= log

{
	
(∑

m γtm
)

∏
m 	 (γtm)

}
+
∑

m

(γtm − 1) log θktm +
∑

i

β̃ik

∑
m

δ (Yit, atm) log (θktm)

= log

{
	
(∑

m γtm
)

∏
m 	 (γtm)

}
+
∑

m

{[
γtm +

∑
i

β̃ikδ (Yit, atm) − 1

]
log θktm

}
.

Therefore, for any t = 1, 2, . . . , T , k = 1, 2, . . . , K, Q(θkt|γ̃kt) is a Dirichlet distribution
with parameters

γ̃ktm = γtm +
∑

i

β̃ikδ (Yit, atm) , m = 1, 2, . . . , Mt.

D.2. Q (φ|μ̃, ν̃)

From Proposition 1, for any k, l = 1, 2, . . . , K and k < l,

Q(φkl|μ̃kl, ν̃kl) = exp

⎧⎨
⎩log p(φkl) +

∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

⎫⎬
⎭
/

Cφkl .

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:40 Z. Xu et al.

The exponent can be expanded as

log p(φkl) +
∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

= log
	(μ + ν)
	(μ)	(ν)

+ (μ − 1) log φkl + (ν − 1) log (1 − φkl)

+
∑
i �= j

β̃ikβ̃ jl
[
(1 − Xij) log (1 − φkl) + Xij log φkl

]

= log
	(μ + ν)
	(μ)	(ν)

+
⎛
⎝μ +

∑
i �= j

β̃ikβ̃ jl Xij − 1

⎞
⎠ log φkl

+
⎡
⎣ν +

∑
i �= j

β̃ikβ̃ jl(1 − Xij) − 1

⎤
⎦ log (1 − φkl),

which implies that Q(φkl) is a Beta distribution with parameters μ̃kl = μ+∑i �= j β̃ikβ̃ jl Xij

and ν̃kl = ν +∑
i �= j β̃ikβ̃ jl(1 − Xij), for k, l = 1, 2, . . . , K, k < l.

Similarly, Q(φkk) is a Beta distribution with parameters μ̃kk = μ +∑i< j β̃ikβ̃ jkXij and
ν̃kk = ν +∑

i< j β̃ikβ̃ jk(1 − Xij), for k = 1, 2, . . . , K.

D.3. Q (Z|β̃)

From Proposition 1, for any i = 1, 2, . . . , N and k = 1, 2, . . . , K,

β̃ik = exp

⎧⎨
⎩EQ(α)[log αk] + EQ(θk)[log p(Yi|θk)] +

∑
j �=i

∑
l

β̃ jl EQ(φkl)[log p(Xij |φkl)]

⎫⎬
⎭
/

Ci.

For the items in exponents, we have

EQ(α|ξ̃)[log αk]

=
∫

Q(α|ξ̃) log αkdα = ∂

∂ξ̃k

[∑
l

log 	(ξ̃l) − log 	

(∑
r

ξ̃r

)]
= ψ(ξ̃k) − ψ

(∑
r

ξ̃r

)
,

EQ(θk)[log p(Yi|θk)]

=
∑

t

∑
m

δ(Yit, atm)EQ(θkt)[log θktm] =
∑

t

∑
m

δ (Yit, atm)

[
ψ (γ̃ktm) − ψ

(∑
n

γ̃ktn

)]
,

EQ(φkl)[log p(Xij |φkl)]

= (1 − Xij)EQ(φkl)[log (1 − φkl)] + Xij EQ(φkl)[log φkl]

= (1 − Xij)[ψ(ν̃kl) − ψ(μ̃kl + ν̃kl)] + Xij[ψ(μ̃kl) − ψ(μ̃kl + ν̃kl)]

= Xijψ(μ̃kl) + (1 − Xij)ψ(ν̃kl) − ψ(μ̃kl + ν̃kl).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:41

Thus,

β̃ik = exp

{
ψ(ξ̃k) − ψ

(∑
l

ξ̃l

)
+
∑

t

∑
m

δ (Yit, atm)

[
ψ (γ̃ktm) − ψ

(∑
n

γ̃ktn

)]

+
∑
j �=i

∑
l

β̃ jl[Xijψ(μ̃kl) + (1 − Xij)ψ(ν̃kl) − ψ(μ̃kl + ν̃kl)]

⎫⎬
⎭
/

Ci.

E. DERIVATION OF UPDATING RULES FOR WEIGHTED GRAPH

E.1. Q (φ|μ̃, ν̃)

From Proposition 1, for any k, l = 1, 2, . . . , K and k < l,

Q(φkl|μ̃kl, ν̃kl) = exp

⎧⎨
⎩log p(φkl) +

∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

⎫⎬
⎭
/

Cφkl .

The exponent can be expanded as

log p(φkl) +
∑
i �= j

β̃ikβ̃ jl log p(Xij |φkl)

= μ log ν − log 	(μ) + (μ − 1) log φkl − νφkl +
∑
i �= j

β̃ikβ̃ jl(Xij log φkl − φkl)

= μ log ν − log 	(μ) +
⎛
⎝μ +

∑
i �= j

β̃ikβ̃ jl Xij − 1

⎞
⎠ log φkl −

⎛
⎝ν +

∑
i �= j

β̃ikβ̃ jl

⎞
⎠φkl,

which implies that Q(φkl) is a Gamma distribution with parameters μ̃kl = μ +∑
i �= j β̃ikβ̃ jl Xij and ν̃kl = ν +∑

i �= j β̃ikβ̃ jl, for k, l = 1, . . . , K, k < l.
Similarly, Q(φkk) is a Gamma distribution with parameters μ̃kk = μ +∑

i< j β̃ikβ̃ jkXij

and ν̃kk = ν +∑
i< j β̃ikβ̃ jk, for k = 1, . . . , K.

E.2. Q (Z|β̃)

From Proposition 1, for any i = 1, 2, . . . , N and k = 1, 2, . . . , K,

β̃ik = exp

⎧⎨
⎩EQ(α)[log αk] + EQ(θk)[log p(Yi|θk)] +

∑
j �=i

∑
l

β̃ jl EQ(φkl)[log p(Xij |φkl)]

⎫⎬
⎭
/

Ci .

We only need to figure out the expectation of log p(Xij |φkl) with respect to Q(φkl) now.
Notice that the expectation of Gamma distribution f (x|a, b) = ba

	(a) x
a−1exp{−bx} is a

b . If
we write Gamma distribution in the form of exponential family

f (x|a, b) = exp{[(a − 1) log x − bx] + a log b − log 	(a)},
then

E[log x] = ∂

∂a
[log 	(a) − a log b] = ψ(a) − log b.

Thus,

EQ(φkl)[log p(Xij |φkl)] = −EQ(φkl)[φkl] + Xij EQ(φkl)[log φkl] − log(Xij !)

= − μ̃kl

ν̃kl
+ Xij[ψ(μ̃kl) − log ν̃kl] − log(Xij !).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

5:42 Z. Xu et al.

Consequently,

β̃ik = exp

{
ψ(ξ̃k) − ψ

(∑
l

ξ̃l

)
+
∑

t

∑
m

δ (Yit, atm)

[
ψ (γ̃ktm) − ψ

(∑
n

γ̃ktn

)]

+
∑
j �=i

∑
l

β̃ jl

[
− μ̃kl

ν̃kl
+ Xij

[
ψ(μ̃kl) − log ν̃kl

]− log(Xij !)
]⎫⎬
⎭
/

Ci.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments that have helped
improve the quality of the article significantly.

REFERENCES

Leman Akoglu, Hanghang Tong, Brendan Meeder, and Christos Faloutsos. 2012. PICS: Parameter-free
identification of cohesive subgroups in large attributed graphs. In SDM. 439–450.

Matthew J. Beal. 2003. Variational Algorithms for Approximate Bayesian Inference. Ph.D. Dissertation.
Gatsby Computational Neuroscience Unit, University College London.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2001. Latent dirichlet allocation. In NIPS. 601–608.
GeorgeC Casella and Roger Berger. 2001. Statistical Inference. Duxbury Resource Center.
Hong Cheng, Yang Zhou, and Jeffrey Xu Yu. 2011. Clustering large attributed graphs: A balance between

structural and attribute similarities. TKDD 5, 2 (2011), 12.
David Cohn and Thomas Hofmann. 2001. The missing link—A probabilistic model of document content and

hypertext connectivity. In NIPS.
Thomas M. Cover and Joy A. Thomas. 1991. Elements of Information Theory. Wiley-Interscience.
M. H. DeGroot. 1986. Proability and Statistics (2nd ed.). Addison-Wesley.
Elena Erosheva, Steve Fienberg, and John Lafferty. 2004. Mixed membership models of scientific publica-

tions. In PNAS.
A. Gelman. 2006. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1, 3

(2006), 515–534.
Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. 2003. Bayesian Data Analysis (2nd ed.).

CRC Press.
Xiaofeng He, Chris H. Q. Ding, Hongyuan Zha, and Horst D. Simon. 2001. Automatic topic identification

using webpage clustering. In ICDM. 195–202.
Keith Henderson, Tina Eliassi-Rad, Spiros Papadimitriou, and Christos Faloutsos. 2010. HCDF: A hybrid

community discovery framework. In SDM. 754–765.
Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In SIGIR. 50–57.
Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul. 1999. An introduction to

variational methods for graphical models. Machine Learning 37, 2 (1999), 183–233.
George Karypis and Vipin Kumar. 1998. Multilevel k-way partitioning scheme for irregular graphs. Journal

of Parallel and Distributed Computing 48 (1998), 96–129.
Ramesh Nallapati, Amr Ahmed, Eric P. Xing, and William W. Cohen. 2008. Joint latent topic models for text

and citations. In KDD. 542–550.
Jennifer Neville, Micah Adler, and David Jensen. 2003. Clustering relational data using attribute and link

information. In Text Mining and Link Analysis Workshop, IJCAI. 689–698.
M. E. J. Newman. 2004a. Analysis of weighted networks. Physical Review E 70 (2004).
M. E. J. Newman. 2004b. Fast algorithm for detecting community structure in networks. Physical Review E

69 (2004), 066133.
M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community structure in networks. Physical

Review E 69 (2004), 066113.
Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufmann.
Karsten Steinhaeuser and Nitesh V. Chawla. 2008. Community detection in a large real-world social network.

In Social Computing, Behavioral Modeling, and Prediction. 168–175.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

GBAGC: A General Bayesian Framework for Attributed Graph Clustering 5:43

Yizhou Sun, Charu C. Aggarwal, and Jiawei Han. 2012. Relation strength-aware clustering of heterogeneous
information networks with incomplete attributes. PVLDB 5, 5 (2012), 394–405.

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk with restart and its applica-
tions. In ICDM. 613–622.

Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2012. A model-based approach to attributed
graph clustering. In Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data (SIGMOD’12). ACM, New York, NY, 505–516. DOI:http://dx.doi.org/10.1145/2213836.2213894

Tianbao Yang, Rong Jin, Yun Chi, and Shenghuo Zhu. 2009a. A bayesian framework for community detection
integrating content and link. In UAI. 615–622.

Tianbao Yang, Rong Jin, Yun Chi, and Shenghuo Zhu. 2009b. Combining link and content for community
detection: a discriminative approach. In KDD. 927–936.

Hugo Zanghi, Stevenn Volant, and Christophe Ambroise. 2010. Clustering based on random graph model
embedding vertex features. Pattern Recognition Letters 31, 9 (2010), 830–836.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph clustering based on structural/attribute similarities.
PVLDB 2, 1 (2009), 718–729.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2010. Clustering large attributed graphs: An efficient incremen-
tal approach. In ICDM. 689–698.

Received June 2013; revised December 2013; accepted February 2014

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 1, Article 5, Publication date: August 2014.

http://dx.doi.org/10.1145/2213836.2213894

