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Abstract

A major challenge in frequent-pattern mining is the sheer size of its mining results. To compress the frequent patterns,
we propose to cluster frequent patterns with a tightness measure d (called d-cluster), and select a representative pattern for
each cluster. The problem of finding a minimum set of representative patterns is shown NP-Hard. We develop two greedy
methods, RPglobal and RPlocal. The former has the guaranteed compression bound but higher computational complexity.
The latter sacrifices the theoretical bounds but is far more efficient. Our performance study shows that the compression
quality using RPlocal is very close to RPglobal, and both can reduce the number of closed frequent patterns by almost
two orders of magnitude. Furthermore, RPlocal mines even faster than FPClose [G. Grahne, J. Zhu, Efficiently using pre-
fix-trees in mining frequent itemsets, in: Proc. IEEE ICDM Workshop on Frequent Itemset Mining Implementations
(FIMI’03)], a very fast closed frequent-pattern mining method. We also show that RPglobal and RPlocal can be combined
together to balance the quality and efficiency.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Frequent-pattern (or itemsets) mining has been a focused research theme in data mining due to its broad
applications in mining association [2], correlation [5], causality [18], sequential patterns [3], episodes [14],
multi-dimensional patterns [13], max-patterns [9], partial periodicity [11], and many other important data min-
ing tasks.

The problem of frequent-itemsets mining can be defined as follows. Given a transaction database, let
O ¼ fo1; o2; . . . ; odg be the set of items that appear in the database, T ¼ ft1; t2; . . . ; tkg be the transaction
set, and IðtiÞ � O be the set of items in transaction ti. For any itemset P, let T ðP Þ ¼ ft 2TjP � IðtÞg be
the corresponding set of transactions. We say P is the expression of pattern P, and jT(P)j is the support of
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pattern P. An itemset P is frequent if jT(P)jP min_sup, where min_sup is a user-specified threshold. The task
of frequent-itemsets mining is to find all the frequent itemsets. Several extensions have been made to the ori-
ginal frequent itemsets problem. A frequent itemset P is closed if there is no itemset P 0 such that P � P 0 and
T(P) = T(P 0), a frequent itemset P is maximal if there is no frequent itemset P 0 such that P � P 0.

There have been many scalable methods developed for frequent-pattern mining [12]. However, the real
challenge in frequent-pattern mining is the sheer size of its mining results. In many cases, a high min_sup

threshold may discover only commonsense patterns but a low one may generate an explosive number of out-
put patterns, which severely restricts its usage. To solve this problem, it is natural to explore how to ‘‘com-

press’’ the patterns, i.e., find a concise and succinct representation that describes the whole collection of
patterns.

Two major approaches have been developed in this direction: lossless compression and lossy approxima-
tion. The former is represented by the closed frequent itemsets [16] and non-derivable frequent itemsets [6]. Their
compression is lossless in the sense that the complete set of original frequent patterns can be recovered. How-
ever, the methods emphasize too much on the supports of patterns so that its compression power is quite lim-
ited. The latter is represented by the maximal frequent itemsets [9], as well as boundary cover sets proposed
recently [1]. These methods only consider the expressions of patterns, while the support information in most
of the itemsets is lost.

To achieve high-quality pattern compression, it is desirable to build up a pattern compression frame-
work that concerns both the expressions and supports of the patterns. A motivation example is shown as
follows.

Example 1. Table 1 shows a subset of frequent itemsets on accidents data set [8], where 39, 38, 16, 18, 12, 17
are the names of individual items. The closed itemsets cannot get any compression on this subset. The maximal
itemsets will only report the itemset P3. However, we observe that itemsets P2, P3 and P4 are significantly
different w.r.t. their supports, and the maximal itemset totally loses this information. On the other hand, the
two pairs (P1,P2) and (P4,P5) are very similar w.r.t. both expressions and supports. We suggest a high-quality
compression as P2, P3 and P4.

A general proposal for high-quality compression is to cluster frequent patterns according to certain simi-
larity measure, and then select and output only a representative pattern for each cluster. However, there are
three crucial problems that need to be addressed: (1) how to measure the similarity of the patterns, (2) how
to define quality guaranteed clusters where there is a representative pattern best describing the whole cluster,
and (3) how to efficiently discover these clusters (and hence the representative patterns)? This paper addresses
these problems.

First, we propose a distance measure between two frequent patterns, and show it is a valid distance metric.
Second, we define a clustering criterion, with which, the distance between the representative pattern and every
other pattern in the cluster is bounded by a threshold d. The objective of the clustering is to minimize the num-
ber of clusters (hence the number of representative patterns). Finally, we show the problem is equivalent to set-
covering problem, and it is NP-hard w.r.t. the number of the frequent patterns to be compressed. We propose
two greedy algorithms: RPglobal and RPlocal. The former has bounded compression quality but higher com-
putational complexity; whereas the latter sacrifices the theoretical bound but is far more efficient. Our perfor-
mance study shows that the quality of the compression using RPlocal is very close to RPglobal, and both can
reduce the number of patterns generated by about two orders of magnitude w.r.t. the original collection of
Table 1
A subset of frequent itemsets

Pattern ID Itemsets Support

P1 {38,16,18,12} 205227
P2 {38,16,18,12,17} 205211
P3 {39,38,16,18,12,17} 101758
P4 {39,16,18,12,17} 161563
P5 {39,16,18,12} 161576
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closed patterns. Moreover, RPlocal directly mines representative patterns from database and runs even faster
than FPClose [10], a fast closed frequent-itemset mining algorithm. We also show that RPglobal and RPlocal
can be integrated together to balance the quality and efficiency.

The remainder of the paper is organized as follows. In Section 2, we formally introduce the problem. The
NP-hardness is proved in Section 3. Section 4 proposes the RPglobal and RPlocal methods. Our performance
study is presented in Section 5. Section 6 discusses the related work. The potential extensions is presented in
Section 7, and we conclude the study in Section 8.
2. Problem statement

In this section, we first introduce a new distance measure on closed frequent patterns, and then discuss the
clustering criterion.

2.1. Distance measure

Definition 1 (Distance measure). Let P1 and P2 be two closed patterns. The distance of P1 and P2 is defined
as
DðP 1; P 2Þ ¼ 1� jT ðP 1Þ \ T ðP 2Þj
jT ðP 1Þ [ T ðP 2Þj
Example 2. Let P1 and P2 be two patterns: T(P1) = {t1, t2, t3, t4, t5} and T(P2) = {t1, t2, t3, t4, t6}, where ti is a
transaction in the database. The distance between P1 and P2 is DðP 1; P 2Þ ¼ 1� 4

6
¼ 1

3
.

Theorem 1. The distance measure D is a valid distance metric, such that:

(1) D(P1,P2) > 0, "P1 5 P2

(2) D(P1,P2) = 0, "P1 = P2

(3) D(P1,P2) = D(P2,P1)

(4) D(P1,P2) + D(P2,P3) P D(P1,P3), "P1,P2,P3

Proof. It is easy to verify that the first three properties are true. We prove the fourth statement is true.
To simplify the presentation, we define the following variables: jT(P1)j = a, jT(P2)j = b, jT(P3)j = c,

jT(P1) \ T(P2)j = b1, jT(P2) � T(P1) \ T(P2)j = b2, jT(P1) \ T(P3)j = c1, jT(P3) � T(P1) \ T(P3)j = c2,
jT(P1) \ T(P2) \ T(P3)j = d1, and jT(P2) \ T(P3) � T(P1) \ T(P2) \ T(P3)j = d2. The meanings of the vari-
ables are shown in Fig. 1.

Since (T(P1) \ T(P2)) [ (T(P1) \ T(P3)) � T(P1), we have
jT ðP 1Þ \ T ðP 2Þj þ jT ðP 1Þ \ T ðP 3Þj � jT ðP 1Þ \ T ðP 2Þ \ T ðP 3Þj 6 jT ðP 1Þj ) b1 þ c1 � d1 6 a ð1Þ
IV :d2

I

II
III

IV
V

VI

VII

T(P1)

T(P2) T(P3)

I+II+III+VI :a
I+II+V+IV :b
I+III+IV+VII :c
I+II :b1
I+III :c1
V+IV :b2
IV+VII :c2
I :d1

Fig. 1. Meanings of variables.
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Plug in all the variables into the distance definition,
DðP 1; P 2Þ þ DðP 2; P 3ÞP DðP 1; P 3Þ ()
b1

aþ b2

þ c1

aþ c2

6 1þ d1 þ d2

b1 þ b2 þ c1 þ c2 � d1 � d2
Using Eq. (1), we have:
1þ d1 þ d2

b1 þ b2 þ c1 þ c2 � d1 � d2

P 1þ d1

b1 þ b2 þ c1 þ c2 � d1

ðd2 P 0Þ

P 1þ d1

aþ b2 þ c2

¼ aþ d1 þ b2 þ c2

aþ b2 þ c2

ðEq. (1)Þ

P
b1 þ c1 þ b2 þ c2

aþ b2 þ c2

¼ b1 þ c2

aþ b2 þ c2

þ c1 þ b2

aþ b2 þ c2

ðEq. (1ÞÞ

P
b1

aþ b2

þ c1

aþ c2

ðaþ b2 P b1; c2 P 0; aþ c2 P c1; b2 P 0Þ
Thus the fourth statement is true. h

Remark. The distance measure can be extended to the general frequent patterns except that for non-closed
patterns, we may have D(P1,P2) = 0 for some P1 5 P2. This happens when P1 and P2 share the same support
transactions set.

2.2. Clustering criterion

By defining the distance on the set of transactions, the support information of patterns are well incorpo-
rated. We further consider the expressions of the patterns. Given two patterns A and B, we say B can be
expressed by A if O(B) � O(A). Following this definition, assume patterns P1,P2, . . . ,Pk are in the same clus-
ter. The representative pattern Pr of the cluster should be able to express all the other patterns. Clearly, we
have

Sk
i¼1OðP iÞ � OðP rÞ.

Using the distance measure defined in Section 2.1, we can simply apply a clustering method, such as k-
means, on the collection of frequent patterns. However, it introduces two problems. First, the quality of
the clusters cannot be guaranteed; and second, it may not be able to find a representative pattern for each
cluster (i.e., the pattern Pr may not belong to the same cluster). To overcome these problems, we introduce
the concept of d-cluster, where d (0 6 d 6 1) is the tightness measure of a cluster.

Definition 2 (d-cluster). A pattern P is d-covered by another pattern P 0 if O(P) � O(P 0) and D(P,P 0) 6 d. A
set of patterns form a d-cluster if there exists a representative pattern Pr such that for each pattern P in the set,
P is d-covered by Pr.

Remark. First, in d-cluster, one pattern can belong to multiple clusters. Second, using d-cluster, we only need
to compute the distance between each pattern and the representative pattern in a cluster. Since a pattern P is d-
covered by a representative pattern Pr only if O(P) � O(Pr), we can simplify the distance calculation by only

considering the supports of the patterns: DðP ; P rÞ ¼ 1� jT ðPÞ\T ðP rÞj
jT ðPÞ[T ðP rÞj ¼ 1� jT ðP rÞj

jT ðPÞj . Finally, if we extend the dis-

tance definition to non-closed patterns, it is easy to verify that a non-closed pattern must be d-covered by a
representative pattern if its corresponding closed pattern is covered. We have the following lemma with the
proof omitted.

Lemma 1. Given a transaction database, a minimum support M and a cluster quality measure d, if a represen-

tative pattern set R d-covers all the closed frequent patterns, then R d-covers all the frequent patterns.

In the remaining of the paper, when we refer to frequent patterns, we mean closed frequent patterns. For
simplicity, we use cover and cluster to represent d-cover and d-cluster, respectively.
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If we restrict the representative pattern to be frequent, then the number of representative patterns (i.e., clus-
ters) is no less than the number of maximal frequent patterns. This is because a maximal frequent pattern can
only be covered by itself. In order to achieve more succinct compression, we relax the constraints on represen-
tative patterns, i.e., allow the supports of representative patterns to be less than min_sup, M. For any repre-
sentative pattern Pr, assume its support is k. Since it has to cover at least one frequent pattern (i.e., P) whose
support is at least M, we have
d P DðP ; P rÞ ¼ 1� jT ðP rÞj
jT ðP Þj P 1� k

M

That is, k P (1 � d)M. This is the min_sup for a representative pattern. To simplify the notation, we use bM to
represent (1 � d)M. The pattern compression problem is defined as follows.

Definition 3 (Pattern compression problem). Given a transaction database, a min_sup M and the cluster
quality measure d, the pattern compression problem is to find a set of representative patterns R, such that for
each frequent pattern P (w.r.t. M), there is a representative pattern Pr 2 R (w.r.t. bM ) which covers P, and the
value of jRj is minimized.

3. NP-hardness

We show that the problem defined above is NP-hard.

Theorem 2. The problem of finding the minimum number of representative patterns is NP-hard.

Proof. We show that the pattern compression problem can be reduced from the set-covering problem.
First, for any pattern compression problem, we can construct a corresponding set-covering problem. There

are two min_sups in the pattern compression problem: min_sup M and the representative pattern’s min_sup bM .
We denote the set of frequent patterns (w.r.t. M) as FP(M), the set of frequent patterns (w.r.t. bM ) as FPð bM Þ.
For each pattern bP 2 FP ð bM Þ, we generate a set whose elements are all the patterns P 2 FP(M) which are
covered by bP . The set-covering problem is to find a minimum number of sets which cover all the elements,
where each set corresponds to a representative pattern.

We then show that for any set-covering problem, we can construct a corresponding pattern compression
problem. Let the given set-covering problem contain N elements {e1,e2, . . . ,eN} and K sets {S1,S2, . . . ,SK}.
Each set Si contains ni elements fe1

i ; e
2
i ; . . . ; eni

i g. We assume that (1) there exist no two sets Si and Sj such that
Si � Sj; and (2) there exists no single set covering all the elements.

By considering these elements as individual items, we first construct a (P0) transactions, each of which
contains N items {e1,e2, . . . ,eN}; then construct b (P1) transactions for each individual set (i.e., for each set Si,
there will be b transactions fe1

i ; e
2
i ; . . . ; eni

i g). Now we have a database containing a + bK transactions. If there
is any individual item ei whose support is less than a + bK, we further insert transactions with only one item
(ei) until its support reaches a + bK. Let M = a + bK and d ¼ bK�1

aþbK, then bM ¼ aþ 1. Since a and b can be
chosen arbitrarily, the value of d can be selected as any value in (0,1).

Now we have a database where the longest pattern {e1,e2, . . . ,eN} is not frequent w.r.t. bM . It will not be
considered as a representative pattern. Each set in the original set-covering problem corresponds to an itemset
whose support is at least aþ b P bM (we denote the set of all of these itemsets as RP) and can be considered as
representative patterns. Each element in the set-covering problem corresponds to an item whose support is
exactly M and has to be covered. We show that the solution of the pattern compression problem will only
choose representative patterns from RP. This is because RP is the maximal pattern set w.r.t. bM . If there is a
representative pattern P 62 RP, we can always find a P 0 2 RP, such that O(P) � O(P 0). Since all the frequent
patterns covered by P have supports at most M, they can also be covered by P 0. We conclude that the optimal
selection of the representative patterns corresponds to the solution of the original set-covering problem. h

In the rest of the paper, we treat the following terms as equivalent: element vs. frequent pattern (w.r.t. M);
set vs. frequent pattern (w.r.t. bM ); and set-cover vs. set of representative patterns. For any frequent pattern P

(w.r.t. bM ), we denote the set of patterns which can be covered by P as set(P).
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4. Discovering representative patterns

In this section, we describe algorithms for computing representative patterns.

4.1. The RPglobal method

Generally, the size of the frequent patterns is quite large. It is undesirable to enumerate all the combinations
to find the optimal selection. Since the problem is equivalent to the set-covering problem, it is natural to con-
sider some approximate algorithms available in the set-covering problem. The well-known one is the greedy
algorithm [7] which iteratively finds the current largest set. The pseudo-code for the pattern compression prob-
lem is shown in Fig. 2. Since the precondition for this method is to collect the complete information over the
elements and sets, we refer it as global method (in contrast to the local method to be discussed in the next
section).

The code is self-explanatory. Following the result of greedy set-covering [7], the ratio between the number
of the representative patterns selected by RPglobal and that of the optimal one is bounded.

Theorem 3. Given a collection of frequent patterns F, let the set of representative patterns selected by RPglobal
be Cg, the set of optimal (i.e., minimal number) representative patterns be C*, then jCgj 6 jC�j�
HðmaxP2FjsetðP ÞjÞ, where HðnÞ ¼

Pn
k¼1

1
k.

Proof. See [7]. h

The RPglobal method contains two steps. The first one is to collect the complete coverage information (i.e.,
find all the frequent patterns Q that can cover P), and the second one is to find the set-covers (i.e., find the set
of representative patterns). The greedy set-covering step can be implemented in time complexity of
Oð
P

P2FjsetðP ÞjÞ [7]. The computational challenge comes from finding the pattern coverage information. Note
this coverage problem is different from closedness checking, which can be handled more efficiently because of
the following reasons. First, closedness checking only needs to find one super-pattern which subsumes the
query pattern, whereas the coverage checking has to find all super patterns that can cover it. Second, the clo-
sedness checking can utilize transaction ID-based hash functions to do fast checking [20], while the coverage
checking cannot benefit from it since there is a d tolerance between the support transaction sets. To facilitate
the coverage search, we use an FP-tree-like structure [12] to index all the frequent patterns (w.r.t. bM ). An
example of FP-tree is shown in Fig. 3. The FP-tree has a head table associated with it. Single items are stored
in the head table. The entry for an item also contains the head of a list that links all the nodes with the same
name.
Fig. 2. The RPglobal algorithm.
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Fig. 3. A sample FP-tree.
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The construction of the index tree is similar to FP-tree, except that in FP-tree, the counts of the nodes are
updated by summing the counts of the inserted itemsets, while here, the counts of the nodes are updated by
choosing the maximum count over the inserted itemsets. To differentiate from traditional FP-tree, we call our
index tree as RP-tree (representative pattern tree). The coverage checking using RP-tree works as follows. Sup-
pose the current pattern is Q, O(Q) = {o1,o2, . . . ,ok} (items are ordered as in the RP-tree head table), and its
support is C. The support region for a valid representative pattern is [C · (1 � d), C]. Following the linked list
of ok in RP-tree, for each node n in the list, we test whether (1) the count is within the support region; and (2)
the query itemset is a subset of the ancestors of n.

The worst case computation complexity for coverage checking could be OðjFj2Þ. The RPglobal method
works well when jFj is not large. However, when the number of frequent patterns to be compressed increases,
the method does not scale well. It is necessary to develop an alternative method which discovers the set of
representative patterns efficiently, while still preserves the high quality of the results.

4.2. The RPlocal method

In this subsection, we introduce the idea of a local method and show how this method can be efficiently
incorporated into the frequent-pattern mining process.

4.2.1. Local greedy method
Computing the complete coverage information is necessary for RPglobal, since the method needs to find a

globally maximum set at each step. To develop a scalable method, this expensive computational requirement
has to be relaxed. Our objective is to report the representative patterns by an almost linear scan of the whole
collection of patterns, without knowing the complete coverage information. The intrinsic relationship among
the nearby patterns (according to the order generated by frequent pattern mining algorithms) can be utilized
for this purpose.

Most frequent pattern mining algorithms conduct depth-first enumerations in the pattern space (Fig. 4). It
starts from an empty pattern set, recursively calls the pattern-growth routine to expand the pattern set. Since
the individual items are sorted, at any stage of the algorithm, all the single items can be partitioned into three
disjoint sets: the conditional set (the items appearing in the current pattern), the todo-set (the items to be
expanded based on the current pattern) and the done-set (all the other items).

Example 3. Fig. 10 shows a search space with five single items a,b,c,d,e. At the time when the depth-first
search reaches pattern {a,c}, the conditional set is (a,c), the todo-set is (d,e) and the done-set is (b).

The depth-first search scans each pattern twice: the first visit from its parent, and the second visit after fin-
ishing the calls to its children. One can verify that after a pattern is visited in its second time, all the patterns
that can possibly cover it have been enumerated. The future patterns are not able to cover it.

We output a pattern in its second visit. The local greedy method sequentially scans the output patterns, at
any time when an uncovered pattern (called probe pattern) is found, the algorithm finds the current largest set



{a,b,c,d,e}

{a,d}

{a,c,d}{a,b,e}{a,b,d}{a,b,c}

{a}

{a,e}

{a,d,e}{a,c,e}

{a,c,d,e}{a,b,c,d} {a,b,d,e}{a,b,c,e}

{a,b} {a,c}

Fig. 4. Depth-first search in pattern space.
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(i.e., a representative pattern) which covers it. Here the current largest set has the same meaning as it has in the
global greedy method (i.e., the already covered pattern does not count for the set size). The following theorem
shows a bound of the local method.

Theorem 4. Given a collection of frequent patterns F, let the set of representative patterns selected by the local

method be Cl, the set of optimal representative patterns be C*. Assume the minimum number of patterns that cover
all the probe patterns be T. Then jClj < jC�j � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T �maxP2FjsetðP Þj

p
þ 1Þ.

Proof. For the simplicity of presentation, we prove the theorem in the set-covering framework. Let the
sequence of probe elements be e1,e2, . . . ,el (l = jClj), the sets selected by the local method be S1,S2, . . . ,Sl. Sim-
ilar to the approaches in [7], we assign a cost 1 to each set which is selected by the local method, distribute this
cost evenly over the elements covered for the first time. If e is covered for the first time by Si, then
ce ¼ 1

jSi�ðS1[S2[���[Si�1Þj, and jClj ¼
P

ce. The cost assigned to the optimal cover is
P

S2C�
P

e2Sce. Since each ele-
ment is in at least one set in the optimal cover, we have
jClj ¼
X

ce 6

X
S2C�

X
e2S

ce ¼
X
S2C�

KS
where KS ¼
P

e2Sce ¼
P

S02Cl

jRðS0Þ\Sj
jRðS0Þj and R(Si) = Si � (S1 [ S2 [ � � � [ Si�1).

Let the minimum sets covering all the probe elements be {M1,M2, . . . ,MT}. We further assume that set Mi,
i 2 {1,2, . . . ,T}, covers probe elements Ei ¼ fei1 ; ei2 ; . . . ; eipg ði1 < i2 < � � � < ipÞ, where Ei \ Ej = /, ("i 5 j),
and

ST
i¼1Ei ¼ fe1; e2; . . . ; elg.

Let the set (selected by the local method) associated with probe element ei1 be Si1 . Since Si1 is one of the
current largest sets which cover probe pattern ei1 , we have jR(Si1 )jP jR(Mi)j. Because ei1 ; ei2 ; . . . ; eip are in the
order of probe elements, these elements must have not been covered at the time when ei1 is selected as probe
element. Thus, jR(Mi)jP p, and we conclude jRðSi1ÞjP p. Similarly, we have jRðSi2ÞjP p � 1; jRðSi3ÞjP
p � 2; . . . ; jRðSipÞjP 1.

For all S 0 2 Cl, assume S01; S
0
2; . . . ; S0l is in ascending order of jR(S 0)j. KS achieves the maximum value if we

distribute the elements of S first in set S01 fully, then S02; . . ., until S0kþ1. Since distributing fully on S 0 means
RðS0Þ\S

RðS0Þ ¼ 1, we have KS 6 k + 1.

Evenly distribute the first k S 0 into T buckets, and assign minimum jR(S 0)j value for them, we have,
jSjP jRðS01Þj þ jRðS02Þj þ � � � þ jRðS0kÞjP T �
Xk

T

i¼1

i ¼ T �

k
T
� k

T
þ 1

� �
2

>
k2

2T
We have KS 6 k þ 1 <
ffiffiffiffiffiffiffiffiffiffiffi
2T jSj

p
þ 1, thus
jClj 6 jC�j � max
S2C�
ðKSÞ

� �
< jC�j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T �max

S
jSj

q
þ 1

� �
�
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The difference between the local method and the global method is the selections of the probe patterns.
Clearly, if the probe patterns are selected as patterns in the current largest set, the local method is identical
to the global method. Since the complete coverage information is not available, the bound on the local method
is worse than the global method. However, in our experiments, we found that the performance of the local
method is very close to that of the global method. This is because in the pattern compression problem, the
layout of the patterns and their coverage is not arbitrary. Instead, most frequent patterns are strongly con-
nected if they are in the same cluster, i.e., a pattern P is covered by the representative pattern Pr if and only
if Pr subsumes P and the distance between P and Pr is within d. As a result, for each pattern Pr, set(Pr) pre-
serves local compactness, that makes the selections of probe patterns not a dominant factor for compression
quality. Meanwhile, in most pattern compression problem, the sizes of sets are somewhat balanced. It is un-
likely to have a very large set which is selected by the global method but missed by the local method, thus leads
to a significant performance difference.

The local method relaxes the requirement of global comparison of sets sizes. However, it still needs to find
the current largest set at each step, which involves the coverage checking for the future patterns. We further
relax the method by finding a reasonably large set, instead of the largest set. The reasonably large set is
expected to cover more future patterns. Intuitively, the candidate set should be as long as possible, since longer
patterns generally have larger coverage. The candidate set should also contain more items within the probe

pattern’s todo-set. This is because items in todo-set are expected to appear more in the future.
These intuitions are well justified by the real experimental statistics. Fig. 5 (connect data set [8] with min-

sup = 0.8 · #transactions, d = 0.1) shows the future coverage w.r.t. a probe pattern which is output at position
5043. The future coverage counts the number of coverable patterns which are output after the probe pattern.
We ignore the patterns which cannot cover the probe pattern (i.e., the future coverage is 0). The values on the
y-axis are normalized w.r.t. the largest coverage. The x-axis is the order in which patterns are output. The
probe pattern is first visited at position 4952. Fig. 6 shows the corresponding pattern length (normalized
w.r.t. the longest length). We observe that the largest future coverage appears between the first visit and sec-
ond visit of probe pattern, and it also has the longest length within the same region. Based on the above obser-
vations, we select the reasonably large set as the longest pattern, which can cover the probe pattern, among all
the patterns between the first visit and second visit of the probe pattern (i.e., patterns expanded by the probe
pattern).

Since the local method only requires the knowledge on already-discovered patterns, we further integrate it
into frequent pattern mining process in order to improve the computational efficiency. The new method is
called RPlocal.

4.2.2. The algorithm

We develop an FP-growth-like algorithm [12,10] to discover representative patterns. Since FP-growth is a
well-known method, we omit the detailed description here due to the limited space.

The RPlocal algorithm is described in Fig. 7. We explain the algorithm line by line. Line 1 picks an item to
be expanded from the head table. Line 2 pushes the item onto a global stack IS which keeps track of the item-
sets along the path from the root in the pattern space. Each entry of IS has the following fields: item name,
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Fig. 7. The RPlocal algorithm.
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counts, covered, and cover pattern (among its children). Line 3 checks whether closed pruning can be applied
on IS(top). We discuss the challenge and our solution to the closed pruning problem in Section 4.2.3. Line 4
traces all the itemsets in the IS stack to check whether the current itemset can cover the itemsets in the stack. If
yes, and the current pattern is longer than the one stored in the cover pattern field, then the cover pattern field is
updated by the current pattern. Line 5 checks current itemset’s support. If it is less than M, then it is not
required to be covered. It also checks whether it is covered by a previous representative pattern (the previous
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representative patterns are indexed in RP-tree R, as shown in RPglobal). Lines 8–11 are the same as the FP-
growth algorithm. It collects the todo-set based current itemset, constructs a conditional FP-tree and a con-
ditional RP-tree for the coverage checking, then recursively calls the FPrepresentative routine with the new
trees. The details of coverage checking and the conditional RP-tree are discussed in Section 4.2.4. Line 12
checks whether the current itemset can be a probe pattern. If it is, then the cover pattern stored in the IS stack
is selected as a new representative pattern. Meanwhile, the covered fields of all the other itemsets in the IS stack
are set as true if they can be covered by the new representative pattern. The new representative pattern is
inserted into all RP-trees for future coverage checking. Finally, line 16 is a pruning technique that we will dis-
cuss in Section 4.2.5.

4.2.3. Prune non-closed patterns

Here we discuss the implementation of closed_pruning in the RPlocal algorithm. Assume a pattern P is not
closed, and the related closed pattern is Pc. There are two possibilities for Pc. One is (O(Pc) � O(P)) \ done-
set 5 /, then Pc is a pattern discovered before the first visit of P. The other is (O(Pc) � O(P)) \ done-set = /,
then Pc is a pattern expanded by P (i.e., Pc is discovered between the first visit and the second visit of P).

The second case is intrinsically handled by the RPlocal algorithm at line 8, where items with the same fre-
quency as P are directly merged into the conditional set, and the non-closed itemsets are skipped. The first case
is more interesting w.r.t. the computation pruning. The following lemma has been widely used in most of the
closed frequent pattern mining methods [20], and we state it without proof.

Lemma 2. In the RPlocal method, for any pattern P, if there exists a pattern Pc which was discovered before the

first visit of P, s.t. O(P) � O(Pc) and jT(P)j = jT(Pc)j, then all the patterns being expanded by P (i.e., patterns

within the first and second visits of P) are not closed.

We call this pruning technique as closed pruning. The function closed_pruning is to check whether the pat-
tern is not closed w.r.t. a previously discovered pattern. The challenge for closed pruning in the RPlocal algo-
rithm is that only representative patterns are kept, and generally it is a small subset of closed patterns. It is not
possible to check the closedness of a pattern using the previous outputs. Keeping all the closed patterns is one
option. However, an interesting observation from our experiments shows that even without closed pruning,
RPlocal runs faster than the closed frequent pattern mining algorithm. This is because the coverage checking
in RPlocal is much more efficient than the closedness checking in closed frequent pattern mining since the num-
ber of representative patterns to be checked with is significantly less than the number of closed frequent pat-
terns in closedness checking. Keeping all the closed patterns obviously will degrade the performance of
RPlocal.

Instead of checking the closedness with the previous output, RPlocal uses a closedness checking method
which tries to memorize the information of items in done-set. Since we only need to know whether an item
is present or not in the closed pattern, we use 1 bit to represent an item’s presence. If there are N single fre-
quent items, we use a N-bit array (referred as closed_index) for each pattern. The closed_index of a pattern is
computed by the bit-and operation between the closed_indices of all the related transactions. An example on
how to use closed_index is shown as follows.

Example 4. Given a database having 5 transactions: {f,c,a,m,p}, {f,c,a,b,m}, {f,b}, {c,b,p}, {f,c,a,m,p}, we
use N = 6 bits for the closed_index. Items f,c,a,b,m,p are assigned to the 1st to 6th bits, according to the
computation order. The closed_indices of transactions 1 and 5 are 111011, and the closed_index of transaction
2 is 111110. The closed_index of pattern {c,a} is 111010. Since item f is in the done-set of pattern {c,a} and f’s
bit is 1. We conclude that the closed pruning can be applied on pattern {c,a}.

To efficiently compute the closed_index for each pattern, we attach closed_index to each node in the FP-tree.
The closed_index can be aggregated along with the count measure, except that the count is updated by sum,
while the closed_index is updated by bit-and. Since the closed_index is attached to every node, the method is
limited by the memory requirement. Fortunately, our task is not to identify all closed pruning. Instead, we aim
to prune as much as possible, and the unpruned non-closed patterns will go to the coverage checking. The
problem turns out: Given a fixed number of k for closed_index, if the total number of single frequent items
is larger than k, how to select k items from them, and how much pruning can be achieved?
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It is natural to choose the first k items according to the computation order because the closed pruning
checks patterns with items in done-set. The experimental statistics on pumsb_star [8] data set is shown in
Fig. 8, where we collect the percentage of closed pruning achieved, by setting k as 32 and 64. We observe this
simple optimization works quite well. With only one integer (k = 32) as closed_index, the method misses less
than 2% and 15% closed pruning when the number of frequent items are 2 and 6 times of k, respectively. Using
two integers (k = 64) as closed_index, the method misses less than 1% of the closed pruning. The similar phe-
nomena are also observed on all the other data sets (e.g., mushroom, connect, accidents, chess) in our exper-
imental evaluations. It is interesting to see that these limited k bits achieve good pruning percentages. We give
a detailed explanation in the rest of this subsection.

Assume there are totally n independent frequent items, whose computation order is o1,o2, . . . ,ok, . . . ,on (for
simplicity, we assume the order of items keeps unchanged). We leave the first k for closed_index, and r = n � k

as left items. The percentage of the closed pruning by closed_index is defined as function h(k, r).
For any pattern, let the conditional set be foi1 ; oi2 ; . . . ; oimg, where i1 < i2 < � � � < im, we say m is the length of

the pattern and im is the span of the pattern. The position j is called a hole if j < im and j 62 {i1, i2, . . . , im}. If the
set of holes is not empty (i.e., the done-set is not empty), then this pattern is possible to be subsumed by a
previously output pattern (i.e., the closed pruning is possible to be applied on). A hole is active if the closed
pruning takes effect.

The items in the conditional set are distributed into two parts: the first k items set and the rest r items set.
Let the number of items falling in the rest r items set be v, and the number of holes falling in the rest r items set
be u (referred as (u,v)-configuration). To estimate the percentage of closed pruning for a (u,v)-configuration
(defined as g(k,u,v)), we need to further define two parameters: the expect number of active holes c and the
maximal pattern length l.

Assume items are independent, every hole has an equal opportunity to be active. If there is one hole, which
exists in the first k items, then the closed pruning is caught by the closed_index, otherwise, it misses. Since there

are at most l � v items falling into the first k items set, for each 0 6 i 6 m = max(l � v,k), there are
k
i

� �
dif-

ferent patterns. For each pattern, the number of all different placements for c active holes is
k � iþ u

c

� �
, and

the number of placements that all c active holes falling in the rest r items set is
u
c

� �
. Thus the pruning per-

centage by closed_index is
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Fig. 8. Percentage of closed pruning achieved.
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Now we examine the value of h(k, r). Among all patterns, there are two cases which are divided evenly.
First, the last item is not in the conditional set. In this case, the pruning percentage is same as h(k, r � 1). Sec-
ond, the last item is in the conditional set. In this case, we enumerate all possible (u,v)-configurations. There
are at most l � 1 bits to be placed within the latter r items (since the last item is already in, there are r � 1

selections). For each 0 6 i 6 m = max(l � 1, r � 1), there are
r � 1

i

� �
different (u,v) configurations

(u = r � 1 � i,v = i + 1), and for each configuration, the pruning percentage is g(k, r � 1 � i, i + 1), we have:
hðk; rÞ ¼ 1

2
hðk; r � 1Þ þ

Xm

i¼0

r � 1

i

� �
� gðk; r � 1� i; iþ 1Þ

2
Xm

i¼0

r � 1

i

� �
The base case is h(k, 0) = 1. We run simulations by setting k = 32 and varying r from 0 to 64. We observe that,
in most cases, the maximal pattern length is approximately proportional to the number of frequent items. Typ-
ically, we select the ratio as 1

3
, which is close to the experiments in pumsb_star data set. The value of expected

active closed bits c is varying from 1 to 4.
The simulation result in Fig. 9 shows that the percentage of pruning increases as c increases. This is because

when c is large, the probability that at least one active holes are caught by closed_index is high. Typically,
when c = 4, the simulation curve is close to the real experimental results. Note c = 1 is the base line where
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Fig. 9. Simulation results: percentage of closed pruning achieved.
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the corresponding curve represents the lower bound of closed pruning. We believe the closed_index method
has practical usage in real applications. The reason is as follows. The number of frequent patterns is exponen-
tially explosive w.r.t. the number of items. Within the current computational limit, if the number of items is
large, either the maximal length of the pattern is small or the pattern length is not small but the value of c is
reasonably large (thus the output closed patterns can be kept in a reasonable size). In the former case, the
effect of closed pruning (using whatever methods) to the whole computational efficiency is limited; while in
the latter case, our study shows that closed_index can achieve considerable improvement. Furthermore, the
closed_index approach only involves bit operations, which is very efficient.
4.2.4. Coverage checking

The task of coverage checking is to check whether an itemset is covered by a previous output representative
pattern. We have made two efforts to improve the efficiency: First, we use conditional RP-tree to check the
coverage; Second, we use coverage_index to speedup the subset checking. The idea of building a conditional
RP-tree for each FP-tree has been used for closed checking in [10]. Since the FP-tree is conditional (i.e., all the
itemsets generated by the current FP-tree share the same conditional items), it is natural to construct a con-
ditioned RP-tree associated with the current FP-tree, such that all the representative patterns stored in the
conditional RP-tree share the same conditional items. We can expect that the conditioned RP-tree would
be smaller than the whole RP-tree.

The function coverage_checking works as we described in RPglobal algorithm. The major part of the com-
putational cost is to traverse upword in the RP-tree to verify whether the query pattern is subsumed. We
improve it by adopting a similar technique used in Section 4.2.3. Every node in RP-tree is attached with a cov-

erage_index, which summarizes whose ancestor items. We allocate M bits for the coverage_index, and each
item is assigned to one bit. In our experiments, we set M = 32 (one integer), this is because the coverage check-
ing runs heavily in the whole mining procedure, and we want this part as efficient as possible. A bit is set to 1 iff
the corresponding item appears in the ancestors. The following rule is used to reduce the comparisons: Let the

coverage_index of the query pattern be Q, the coverage_index in the node be N, if Q & N 5 Q, where & is bit-and

operation, then the query pattern cannot be a subset of the ancestors of the node.
There are several differences in the coverage_index and closed_index: First, the bit assignment in closed

checking is global (i.e., an item is assigned to the same bit from scratch to the end), while in coverage checking,
it is local, (i.e., bits are dynamically reassigned in each RP-tree for the remaining frequent items). Second, if
the number of remaining items is larger than M, we assign not only bits for the first M items, but also multiple
items to one bit by distributing all items evenly on the M bits. Finally, the closed_index is updated when new
itemsets are inserted, while the coverage_index of each node is fixed by all its ancestors.
4.2.5. Item reordering

We now discuss the item_reordering routine on line 16 of the algorithm. This pruning method is based on
the following lemma. Due to the limited space, we omit the proof.

Lemma 3. Let Pr be a representative pattern, if pattern Pu is covered by Pr, then for any pattern P, such that

O(Pu) � O(P) � O(Pr), Pr covers P.

For example, if itemset {a} is covered by a representative pattern {a,b,c,d}, so are patterns {a,b}, {a,c},
{a,d}, {a,b,c}, {a,b,d}, and {a,c,d}, thus all these patterns can be safely pruned. However, the pruning tech-
nique is non-trivial because the prunable space is embedded in the whole search space, removing this space
would leave the whole search space unconnected.

Example 5. Take Fig. 10 as an example. Assume itemset {a,b,c,d} covers {a}, and {a,b,c,d} has been
selected as a representative pattern. According to Lemma 3, the search space containing {a,b,d}, {a,c}, {a,d},
and {a,c,d} can be pruned. However, if we remove them, there are several patterns which contain item e (i.e.,
{a,b,d,e}, {a,c,d,e}, {a,c,e}, and {a,d,e}) will be unreachable. To overcome this problem, we dynamically
reorder the search space as part (b) in Fig. 10, where we search item e first, items c, d will be skipped under
node {a} and {a,b}, but will go back to search space after item e is considered. The search space within the
dashed lines in part (b) of Fig. 10 are pruned.
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Fig. 10. Reorder items (c,d).
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We refer items (c,d) as the set of prunable-items. There will be at most one prunable-items set directly under
one node. If there are two prunable sets, we have to make choice to select one. For example, if both {a,b,c,d}
and {a,b,c,e} are selected as representative patterns under node a, we know that both (c,d) and (c,e) can serve
as prunable-items set. However, if we reorder all of them (i.e., (c,d,e)) to the tail part, the itemset {a,c,d,e} are
not reachable, but {a,c,d,e} has not yet been examined for coverage. In this case, we select the prunable-items
set which contains more items in hope to prune more search space.

4.3. Combining RPglobal and RPlocal

We have developed two algorithms for the pattern compression problem. The RPglobal method has guar-
anteed compression bound but is worse on scalability, whereas the RPlocal method is efficient but worse on the
compression. In this subsection, we discuss a combined method: RPcombine.

The main idea of RPcombine is to first use RPlocal to get a small subset of candidate representative patterns,
then use RPglobal to find the final results. To ensure that all the frequent patterns (w.r.t. M) are d-covered, we
need to choose the parameters for each step carefully.

Assume the quality measures for RPlocal and RPglobal are dl and dg, respectively. Any frequent pattern P
must be dl-covered by a candidate representative pattern Pl, which is further dg-covered by a final representa-
tive pattern Pg. An obvious result from Theorem 1 shows if we choose dl + dg = d, then P is guaranteed to be
covered by Pg. Here we exploit a better assignment. We have:
DðP ; P lÞ ¼ 1� jT ðP lÞj
jT ðP Þj 6 dl; DðP l; P gÞ ¼ 1� jT ðP gÞj

jT ðP lÞj
6 dg
The constraint given by the problem is
DðP ; P gÞ ¼ 1� jT ðP gÞj
jT ðP Þj 6 d
To achieve more compression, we would like the values of dl and dg to be as large as possible. This implies:
ð1� dlÞ � ð1� dgÞ ¼ 1� d
We use k to control the tradeoff between dl and dg, such that dl = kd and dg ¼ ð1�kÞd
1�kd . We further discuss the

selection of min_sup for RPlocal and RPglobal: Ml and Mg. Since the original compression problem has para-
meter M and d, we have bM ¼ ð1� dÞ �M for representative patterns. The RPlocal step needs to keep the same
min_sup for representative patterns. Thus,
Ml ¼
bM l

1� dl
¼

bM
1� dl

¼ ð1� dÞM
1� kd
All the frequent patterns (w.r.t. M) are dl-covered in the RPlocal step. To ensure that they are d-covered finally,
the RPglobal step needs to dg-cover all the patterns that possibly dl-cover the frequent patterns (w.r.t. M). Thus,
Mg ¼ ð1� dlÞ �M ¼ ð1� kdÞ �M
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In conclusion, RPcombine takes three parameters: M, d, k. The RPlocal step uses parameters Ml, dl on the
database, and the RPglobal step uses parameters Mg, dg on the outputs of the first step.

5. Performance study

We first demonstrate the quality and computational performance using the benchmark data sets in the fre-

quent itemset mining dataset repository [8], then show a case study on a real text document data. All the algo-
rithms were implemented in C++, and all the experiments were conducted on an Intel Pentium-4 2.6 GHz
system with 1 GB RAM. The system ran Linux with the 2.6.1 kernel and gcc 3.3.2. The methods to be com-
pared are summarized as follows. In the FPClose method, we generate all the closed frequent patterns w.r.t. M

(we use FPClose package [10], which is the winner of FIMI workshop 2003 [8]). In the RPglobal method, we
first use FPClose to get all the closed frequent itemsets with min_sup bM ¼ M � ð1� dÞ, then use RPglobal to
find a set of representative patterns covering all the patterns with min_sup M. In the RPlocal method, we
directly compute all the representative patterns from database.

5.1. Number of presentative patterns

The first set of experiments compare three algorithms w.r.t. the number of output patterns. We select acci-

dents, chess, connect and pumsb_star data sets [8]. For each data, we vary the value of min_sup as the percent-
age of the number of total transactions and fix d = 0.1 (we think it is a reasonably good compression quality).
The results are shown from Figs. 11–14. We have the following observations: First, both RPglobal and RPlocal
are able to find a subset of representative patterns, which is almost two orders of magnitude less than the
whole collection of the closed patterns; Second, although RPlocal outputs more patterns than RPglobal, the
performance of RPlocal is very close to RPglobal. Almost all the outputs of RPlocal are within two times of
RPglobal. The results of RPglobal are partial in that when minimum support becomes low, the number of
closed patterns grows very fast, the running times of RPglobal exceed the time limit (30 min).

5.2. Running time

The corresponding running time of the three methods are shown from Figs. 15–18. The times for RPglobal
include FPClose procedure. The results show that RPglobal does not scale well w.r.t. the number of patterns,
and is much slower than RPlocal. Comparing FPClose and RPlocal, we observe that although RPlocal examines
more patterns than FPClose (i.e., RPlocal examines the patterns with min_sup bM , while FPClose only examines
the patterns with min_sup M), RPlocal runs faster than FPClose, especially when min_sup is low.
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Fig. 11. Number of output patterns w.r.t. min_sup, accidents data set.
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Fig. 12. Number of output patterns w.r.t. min_sup, chess data set.
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Fig. 13. Number of output patterns w.r.t. min_sup, connect data set.
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Fig. 14. Number of output patterns w.r.t. min_sup, Pumsb_star data set.
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Fig. 15. Running time w.r.t. min_sup, accidents data set.
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Fig. 16. Running time w.r.t. min_sup, chess data set.

 500

 50

5

 0.5
 0.8  0.6  0.4  0.2

R
un

ni
ng

 T
im

e 
(S

ec
on

ds
)

Minsup

FPclose
RPlocal

RPglobal

Fig. 17. Running time w.r.t. min_sup, connect data set.

22 D. Xin et al. / Data & Knowledge Engineering 60 (2007) 5–29



 1000

 100

 10

1

 0.5
 0.5  0.4  0.3  0.2  0.1  0.04

R
un

ni
ng

 T
im

e 
(S

ec
on

ds
)

Minsup

FPclose
RPlocal

RPglobal

Fig. 18. Running time w.r.t. min_sup, Pumsb_star data set.
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Fig. 19. Running time w.r.t. closed pruning, Pumsb_star data set.
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We further investigate the benefit of closed pruning. Fig. 19 shows the results on pumsb_star data set, with
three configurations: FPClose, RPlocal (d = 0.1) with and without closed pruning. We observe that even with-
out closed pruning, RPlocal is more efficient than FPClose. This is because in RPlocal, the number of represen-
tative patterns is much less than the number of closed patterns. As a result, both the construction and query on
RP-trees are more efficient. We use two integers as closed_index and the improvement by applying closed prun-

ing is significant. When M = 0.04, the closed pruning version runs three times faster than the version without
closed pruning, and four times faster than FPClose. At that time, the number of frequent items is 173.

5.3. Distribution of representative patterns

The distributions of representative patterns w.r.t. pattern lengths and pattern supports are shown from
Figs. 20–23. We use accidents data set, with min_sup = 0.4. In order to get a high-level summary of support
distributions, we group supports into 10 buckets. The bucket id is computed by b 10�support

#transactionsc. Fig. 20 shows the

distributions w.r.t. the pattern lengths for three methods: FPClose, RPglobal and RPlocal (d = 0.1). We observe
that the overall shape of the distributions of RPglobal and RPlocal are similar to the shape of closed patterns.
RPglobal and RPlocal have certain shifts to longer length because the nature of the compression problem
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Fig. 20. Distribution of patterns w.r.t. pattern length, accident data set.
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Fig. 21. Distribution of patterns w.r.t. support buckets, accident data set.
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favors larger itemsets. Fig. 21 compares the distributions (w.r.t. pattern supports) of close itemsets, maximal
itemsets, and representative itemsets by RPglobal and RPlocal (d = 0.2). While the maximal itemsets catch the
boundary supports only, RPglobal and RPlocal are able to get a reasonable distribution which is similar to the
original closed itemsets. These suggest that both RPglobal and RPlocal achieve high quality compressions.

We also run RPlocal with different d from 0.1 to 0.3. Figs. 22 and 23 show the pattern distributions w.r.t.
lengths and supports. As we expected, the number of representative patterns decreases when the value of d
increases, because a larger value of d enables a representative pattern to cover more patterns. Increasing
the value of d also shifts the distributions of the patterns to longer and lower support patterns.

5.4. Additional tests

We examine the performance of RPcombine w.r.t. the different values of k. Fig. 24 shows the final number
of representative patterns by RPglobal, RPlocal and RPcombine on chess data set (with M = 0.6, d = 0.1).
Fig. 25 shows the corresponding running time. The times of RPcombine are the sums of local and global steps.
The k for RPcombine is varied from 0.01 to 0.4. When k is small (i.e., 0.01), the local step reports more can-
didates and the global step takes more time, but the compression quality is better. The compression quality
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Fig. 24. Number of output patterns w.r.t. k, chess data set.
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degrades as k increases, the number of representative patterns is even larger than RPlocal when k = 0.4. This is
because at that time, Mg decreases a lot in order to guarantee all the original frequent patterns are covered,
and dg also decreases. As a result, the global step needs to cover more pattern with tighter quality measure. In
most applications, we suggest to choose k = 0.1.

The final experiment is designed to verify the benefit to allow the support of representative patterns to be
beyond of min_sup M. We compare the number of output patterns with three different options: (1) the Beyond

case where the min_sup of representative patterns is bM ; (2) the Not Beyond case where the min_sup of repre-
sentative patterns is M; and (3) maximal patterns with min_sup M. We use the accident data set, varying d
from 0.05 to 0.3, while fixing M as 0.3. The results in Fig. 26 show that the beyond case gets fewer number
of representative patterns, especially in the case when d is large, while the not beyond case has maximal pat-
terns as its lower bound.

5.5. Document theme extraction: A case study

Theme discovery uses knowledge about the meaning of words in a text to identify broad topics covered in a
document [15]. One way to find themes from text document is to extract the frequent patterns of term occur-
rence. For example, a frequent pattern of ‘‘database management . . .’’ indicates that the document might be



Table 2
Top-5 document themes

FPClose RPglobal RPlocal

permission make digital permission make digital permission make digital
copy personal grant copy personal grant copy personal grant
without fee distribute without fee distribute without fee distribute

permission make digital thailand authority lack color lcd display
copy personal distribute sufficient refrigerate unit hour battery life
commercial full citation stop corpse rot apple click wheel

database manage database volunteer specialist account thailand authority lack
application mine algorithm firm pricewaterhousecooper sufficient refrigerate unit
keyword work unite nation stop corpse rot

database manage database state department spokesman grow frustrate
mine algorithm keyword comment intend estimate slow process

long military operate whittle down list

database manage database dna test carry tv radio station
application mine algorithm confirm dead bid broke normal

clear misidentification programming broadcast
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related to a collection of database papers, whereas a frequent pattern like ‘‘red cross . . .’’ might identify the
topic of the documents as aid and relief. In this case study, we show how to apply our methods to discover
term occurrence patterns efficiently and understand the underlying text data effectively.

The document collection is constructed by a mixture of documents of four topics: 386 news articles about
Tsunami, 367 research papers about data mining, 350 research papers about bioinformatics, and 347 blog arti-
cles about iPod Nano. A document is broken into sentences as transactions. For all three algorithms (FPClose,
RPglobal and RPlocal), we use min_sup as 0.0002. The d value for RPglobal and RPlocal is set as 0.5. Since it is
not possible to show all the mining results in the paper, we report a subset of top significant patterns (Table 2).
A pattern’s significance is modeled by a tf-idf scoring function similar to the Pivoted Normalization weighting
based document score [19]. Specifically, given a theme pattern p = w1 � � �wt, the significance is defined by
SðpÞ ¼
Xt

i¼1

1þ lnð1þ lnðtf iÞÞ

ð1� sÞ þ s
dl

avdl

� ln N þ 1

df i
where tfi equals the support of the pattern p and dfi is the inverse document frequency of word wi in the whole
transaction set.

Without considering redundancy, the top-5 results returned by FPClose only consist of two valuable themes
(themes 1 and 3), and all the others are redundant. RPglobal and RPlocal report five significantly different
themes. The third theme appears at 17th (12th) in RPglobal (RPlocal) results. This is because both RPglobal
and RPlocal allow the frequencies of representative patterns to be less than min_sup, and they can discover
more significant patterns w.r.t. tf-idf score. Since RPglobal and RPlocal use different heuristics, their results
are not identical. However, both of them cover patterns discovered by FPClose with d = 0.5.

6. Related work

Lossless methods have been proposed to reduce the output size of frequent itemset patterns. Ref. [16] devel-
oped the concept of closed frequent patterns, and [6] proposed mining non-derivable frequent itemsets. These
kinds of patterns are concise in the sense that all of the frequent patterns can be derived from these representa-
tions. However, they emphasize too much on the supports of patterns so that the compression power is limited.

Our work belongs to the family of Lossy compression methods. Previous works in this direction include
maximal patterns [9], error-tolerant patterns [17], d-free itemsets [4] and boundary cover sets [1]. Typically,
our work is close to error-tolerant patterns and d-free itemsets. Our work is different in that we define a
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new distance measure and formulate the problem as set-covering. Furthermore, we allow extended (i.e.,
longer) patterns to represent the compressed patterns, and it leads to stronger compression.

7. Discussions

In this section, we discuss several related issues. First, to approximate a collection of frequent patterns, peo-
ple always favor the more succinct compression. However, the explosive output pattern size restricts the appli-
cation of most advanced algorithms. The RPlocal method can be used as sampling procedure as we did in
RPcombine, since it is efficient and achieves considerable compression. Second, the compressed pattern sets gen-
erated by our method can be used for queries of finding approximate supports. We can construct an RP-tree
with all the representative patterns. The query process is similar to the coverage checking, except that in cover-

age checking, the query pattern comes with its support, while here, the support is unknown. Among all the pat-
terns which subsume the query pattern, we report the maximum support C. The support of the query pattern is
bounded in ½C; C

1�d�. Finally, although our algorithms are developed for frequent itemset problems, the method-
ology can be easily applied on frequent sequential patterns and graph patterns. This is because our method does
not rely on the structure of the patterns, but only the containment relationship. As long as the mining proce-
dures follow the pattern growth principle, we can always integrate RPlocal into the depth-first search.

8. Conclusions

We have considered the problem of compressing frequent patterns. The problem was shown to be NP-
Hard. Several methods have been proposed. The RPglobal method has theoretical bound, and works well
on small collections of frequent patterns. The RPlocal method is quite efficient, and preserves reasonable com-
pression quality. We also discuss a combined approach, RPcombine, to balance the quality and efficiency.

Acknowledgement

We are grateful to Professor Chengxiang Zhai and his student Qiaozhu Mei for providing us the text data-
set and its processing tools.

References

[1] F. Afrati, A. Gionis, H. Mannila, Approximating a collection of frequent sets, in Proc. KDD’04, pp. 12–19.
[2] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proc. SIGMOD’93,

pp. 207–216.
[3] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proc. ICDE’95, pp. 3–14.
[4] J. Boulicaut, A. Bykowski, C. Rigotti, Free-sets: a condensed representation of Boolean data for the approximation of frequency

queries, Data Mining and Knowledge Discovery Journal 7 (1) (2003) 5–22.
[5] S. Brin, R. Motwani, C. Silverstein, Beyond market basket: generalizing association rules to correlations, in: Proc. SIGMOD’97,

pp. 265–276.
[6] T. Calders, B. Goethals, Mining all non-derivable frequent itemsets, in: Proc. PKDD’02, pp. 74–85.
[7] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, second ed., MIT Press, 2001.
[8] Frequent Itemset Mining Dataset Repository, Available from: <http://fimi.cs.helsinki.fi/data/>.
[9] D. Gunopulos, H. Mannila, R. Khardon, H. Toivonen, Data mining, hypergraph transversals, and machine learning, in: Proc.

PODS’97, pp. 209–216.
[10] G. Grahne, J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, in: Proc. IEEE ICDM Workshop on Frequent Itemset

Mining Implementations (FIMI’03).
[11] J. Han, G. Dong, Y. Yin, Efficient mining of partial periodic patterns in time series database, in: Proc. ICDE’99, pp. 106–115.
[12] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: Proc. SIGMOD’00, pp. 1–12.
[13] B. Lent, A. Swami, J. Widom, Clustering association rules, in: Proc. ICDE’97, pp. 220–231.
[14] H. Mannila, H. Towvonen, A. Verkamo, Discovery of frequent episodes in event sequences, Data Mining and Knowledge Discovery

1 (3) (1997) 259–289.
[15] Q. Mei, C. Zhai, Discovering evolutionary theme patterns from text: an exploration of temporal text mining, in: Proc. KDD’05,

pp. 198–207.
[16] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, in: Proc. ICDT’99, pp. 398–

416.

http://fimi.cs.helsinki.fi/data/


D. Xin et al. / Data & Knowledge Engineering 60 (2007) 5–29 29
[17] J. Pei, A. Tung, J. Han, Fault-tolerant frequent pattern mining: problems and challenges, in: Proc. DMKD’01.
[18] C. Silverstein, S. Brin, R. Motwani, J. Ullman, Scalable techniques for mining causal structures, in: Proc. VLDB’98, pp. 594–605.
[19] A. Singhal, Modern information retrieval: a brief overview, Bull. IEEE CS Tech. Comm. Data Eng. 24 (4) (2001) 35–43.
[20] M. Zaki, C. Hsiao, Charm: an efficient algorithm for closed itemset mining, in: Proc. SDM’02.

Dong Xin received his BS and MS degrees from the Department of Computer Science and Engineering at Zhejiang
University in 1999 and 2002. He is currently a Ph.D. candidate in the Department of Computer Science at
University of Illinois at Urbana-Champaign. His research interests include data mining, data warehousing,
database system and bioinformatics.

Jiawei Han is a Professor in the Department of Computer Science at the University of Illinois at Urbana-
Champaign. He has been researching into data mining, data warehousing, stream data mining, spatiotemporal

and multimedia data mining, biological data mining, social network analysis, text and Web mining, and software

bug mining, with over 300 conference and journal publications. He has chaired or served in many program
committees of international conferences and workshops. He also served or is serving on the editorial boards for
Data Mining and Knowledge Discovery, IEEE Transactions on Knowledge and Data Engineering, Journal of
Computer Science and Technology, and Journal of Intelligent Information Systems. He is currently serving as
founding Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data (TKDD), and on the Board
of Directors for the Executive Committee of ACM Special Interest Group on Knowledge Discovery and Data

Mining (SIGKDD). Jiawei has received many awards and recognitions, including ACM SIGKDD Innovation
Award (2004) and IEEE Computer Society Technical Achievement Award (2005). He is an ACM Fellow (2004).

Xifeng Yan is currently a fifth-year Ph.D. candidate in Department of Computer Science at University of Illinois
at Urbana-Champaign. He is working on data mining, structural/graph pattern mining, and their applications in

database systems, autonomic computing, and bioinformatics. Mr. Yan has published more than 10 papers in
highly refereed journals and conferences such as TODS, SIGMOD, SIGKKDD, VLDB, ISMB, ICDE, and FSE.
He has applied for 2 US patents.
Hong Cheng is currently a third year Ph.D. candidate in Department of Computer Science at University of Illinois
at Urbana-Champaign. She is working on data mining, including frequent pattern mining and maintenance,
pattern summarization and usage, etc. She has published eight research papers in highly refereed conferences such
as SIGKDD, VLDB, SDM, ICDM, and ICAPS.


	l
	On compressing frequent patterns
	Introduction
	Problem statement
	Distance measure
	Clustering criterion

	NP-hardness
	Discovering representative patterns
	The RPglobal method
	The RPlocal method
	Local greedy method
	The algorithm
	Prune non-closed patterns
	Coverage checking
	Item reordering

	Combining RPglobal and RPlocal

	Performance study
	Number of presentative patterns
	Running time
	Distribution of representative patterns
	Additional tests
	Document theme extraction: A case study

	Related work
	Discussions
	Conclusions
	Acknowledgement
	References


