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ABSTRACT
As information networks become ubiquitous, extracting knowl-
edge from information networks has become an important
task. Both ranking and clustering can provide overall views
on information network data, and each has been a hot topic
by itself. However, ranking objects globally without con-
sidering which clusters they belong to often leads to dumb
results, e.g., ranking database and computer architecture
conferences together may not make much sense. Similarly,
clustering a huge number of objects (e.g., thousands of au-
thors) in one huge cluster without distinction is dull as well.

In this paper, we address the problem of generating clusters
for a specified type of objects, as well as ranking information
for all types of objects based on these clusters in a multi-
typed (i.e., heterogeneous) information network. A novel
clustering framework called RankClus is proposed that di-
rectly generates clusters integrated with ranking. Based on
initial K clusters, ranking is applied separately, which serves
as a good measure for each cluster. Then, we use a mixture
model to decompose each object into a K-dimensional vec-
tor, where each dimension is a component coefficient with
respect to a cluster, which is measured by rank distribution.
Objects then are reassigned to the nearest cluster under the
new measure space to improve clustering. As a result, qual-
ity of clustering and ranking are mutually enhanced, which
means that the clusters are getting more accurate and the
ranking is getting more meaningful. Such a progressive re-
finement process iterates until little change can be made.
Our experiment results show that RankClus can generate
more accurate clusters and in a more efficient way than the
state-of-the-art link-based clustering methods. Moreover,
the clustering results with ranks can provide more informa-
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tive views of data compared with traditional clustering.

1. INTRODUCTION
In many applications, there exist a large number of indi-
vidual agents or components interacting with a specific set
of components, forming large, interconnected, and sophis-
ticated networks. We call such interconnected networks as
information networks, with examples including the Inter-
net, highway networks [10], electrical power grids, research
collaboration networks [6], public health systems, biological
networks [14], and so on. Clearly, information networks are
ubiquitous and form a critical component of modern infor-
mation infrastructure. Among them, heterogeneous network
is a special type of network that contains objects of multiple
types.

A great many analytical techniques have been proposed to-
ward a better understanding of information networks and
their properties, among which are two prominent ones: rank-
ing and clustering. On one hand, ranking evaluates objects
of information networks based on some ranking function
that mathematically demonstrates characteristics of objects.
With such functions, any two objects of the same type can
be compared, either qualitatively or quantitatively, in a par-
tial order. PageRank [2] and HITS [11], among others, are
perhaps the most renowned ranking algorithms over infor-
mation networks. On the other hand, clustering groups ob-
jects based on a certain proximity measure so that similar
objects are in the same cluster, whereas dissimilar ones are
in different clusters. After all, as two fundamental analyti-
cal tools, ranking and clustering demonstrate overall views
of information networks, and hence be widely applied in dif-
ferent information network settings.

Clustering and ranking are often regarded as orthogonal tech-
niques, each of which is applied separately to information
network analysis. However, applying either of them over in-
formation networks often leads to incomplete, or sometimes
rather biased, analytical results. For instance, ranking ob-
jects over the global information networks without consid-
ering which clusters they belong to often leads to dumb re-
sults, e.g., ranking database and computer architecture con-
ferences and authors together may not make much sense; al-
ternatively, clustering a large number of objects (e.g., thou-
sands of authors) in one cluster without distinction is dull
as well. However, combining both functions together may
lead to more comprehensible results, as shown below.



Example 1.1 (Ranking without clustering) Consider
a set of conferences from two areas of (1) DB/DM (i.e.,
Database and Data Mining) and HW/CA (i.e., Hardware
and Computer Architecture), each having 10 conferences, as
shown in Table 1. Then we choose 100 authors in each area
from DBLP [4]. With the ranking function specified in Sec.
4.2, our ranking-only algorithm gives top-10 ranked results
(Table 2). Clearly, the results are rather dumb (because of
the mixture of the areas) and are biased towards (i.e., ranked
higher for) the HW/CA area. What is more, such dull or
biased ranking result is caused not by the specific ranking
function we chose, but by the inherent incomparability be-
tween the two areas.

Table 1: A set of conferences from two research ar-
eas

DB/DM {SIGMOD, VLDB, PODS, ICDE,
ICDT, KDD, ICDM, CIKM,
PAKDD, PKDD}

HW/CA {ASPLOS, ISCA, DAC, MICRO,
ICCAD, HPCA, ISLPED, CODES,
DATE, VTS }

Table 2: Top-10 ranked conferences and authors in
the mixed conference set

Rank Conf. Rank Authors
1 DAC 1 Alberto L. Sangiovanni-Vincentelli

2 ICCAD 2 Robert K. Brayton
3 DATE 3 Massoud Pedram
4 ISLPED 4 Miodrag Potkonjak
5 VTS 5 Andrew B. Kahng
6 CODES 6 Kwang-Ting Cheng
7 ISCA 7 Lawrence T. Pileggi
8 VLDB 8 David Blaauw
9 SIGMOD 9 Jason Cong
10 ICDE 10 D. F. Wong

Table 3: Top-10 ranked conferences and authors in
DB/DM set

Rank Conf. Rank Authors
1 VLDB 1 H. V. Jagadish
2 SIGMOD 2 Surajit Chaudhuri
3 ICDE 3 Divesh Srivastava
4 PODS 4 Michael Stonebraker
5 KDD 5 Hector Garcia-Molina
6 CIKM 6 Jeffrey F. Naughton
7 ICDM 7 David J. DeWitt
8 PAKDD 8 Jiawei Han
9 ICDT 9 Rakesh Agrawal
10 PKDD 10 Raghu Ramakrishnan

Example 1.2 (Ranking based on good clusters) Still
consider the data set introduced in Ex. 1.1, this time we
picked 10 conferences in the DB/DM area and rank them as
well as the authors relative to this conference cluster. The
ranking results are shown in Table 3.

Ex. 1.2 shows that good cluster indeed enhances ranking re-
sults. Moreover, assigning ranks to objects often leads to
better understanding of each cluster. Obviously, good clus-
ters promote good ranking, but how to get good clusters?
A straightforward way is to first evaluate similarity between
objects using a link-based method, such as SimRank [9], and
then apply graph clustering methods [15, 12] or the like to

generate clusters. However, to evaluate similarity between
objects in an arbitrary multi-typed information network is
a difficult and time-consuming task. Instead, we propose
RankClus that explores rank distribution for each clus-
ter to improve clustering, and the basic idea is as follows.
Based on initial K clusters, ranking is applied separately,
which serves as a good measure for each cluster. Then, a
mixture model is used to decompose each object into a K-
dimensional vector, where each dimension is a component
coefficient with respect to a cluster, which is measured by
rank distribution. Objects then are reassigned to the near-
est cluster under the new measure space. As a result, the
quality of clustering is improved. What is more, ranking
results can thus be enhanced further by these high quality
clusters. In all, instead of combining ranking and clustering
in a two stage procedure like facet ranking [3, 18], the qual-
ity of clustering and ranking can be mutually enhanced in
RankClus.

In this paper, we propose RankClus, a novel framework
that smoothly integrates clustering and ranking. Given a
user-specified target type, our algorithm directly generates
clusters for the target objects from target type as well as
rank information for all the objects based on these clusters in
the network. Our study shows that RankClus can generate
more accurate clusters than the state-of-the-art link-based
clustering method in a more effective and comprehensive
way. Moreover, the clustering results with ranks can provide
more informative views of data. The main contributions of
our paper are as follows.

1. We propose a general framework in which ranking and
clustering are successfully combined to analyze informa-
tion networks. To our best knowledge, our work is the
first to advocate making use of both ranking and clus-
tering simultaneously for comprehensive and meaningful
analysis of large information networks.

2. We formally study how ranking and clustering can mutu-
ally reinforce each other in information network analysis.
A novel algorithm called RankClus is proposed and its
correctness and effectiveness are verified.

3. We perform a thorough experimental study on both syn-
thetic and real datasets in comparison with the state-of-
the-art algorithms, and the experimental results demon-
strate the power of RankClus.

The rest of paper is organized as follows. Section 2 is on
related work. In Section 3, we define and illustrate several
important concepts to be used in subsequent sections. In
Section 4, we use the DBLP data as an example of a bi-
type information network, and define two ranking functions
on it. In Section 5, we propose the RankClus algorithm,
taking bi-type information network as an example. Section
6 is a systematic experimental analysis on both synthetic
and real datasets. We discuss our methodology in Section 7
and conclude our study in Section 8.

2. RELATED WORK
In information network analysis, two most important rank-
ing algorithms are PageRank [2] and HITS [11], both of
which are successfully applied to the Internet search. PageR-
ank is a link analysis algorithm that assigns a numerical



weight to each object of the information network, with the
purpose of “measuring” its relative importance within the
object set. On the other hand, HITS ranks objects based
on two scores: authority and hub. Authority estimates the
value of the content of the object, whereas hub measures
the value of its links to other objects. Both PageRank and
HITS are evaluating the static quality of objects in infor-
mation network, which is similar to the intrinsic meaning of
our ranking methods. However, both PageRank and HITS
are designed on the network of web pages, which is a di-
rected homogeneous network, and the weight of the edge is
binary. PopRank [13] aims at ranking popularity of web ob-
jects. They have considered the role difference of different
web pages, and thus turn web pages into a heterogeneous
network. They trained the propagation factor between dif-
ferent types of objects according to partial ranks given by ex-
perts. Different from their setting, we will calculate the rank
for each type of objects seperately (i.e., we do not compare
ranks of two objects belonging to different types), rather
than consider them in a unified framework. J. E. Hirsch [8]
proposed h index originally in the area of physics for char-
acterizing the scientific output of a researcher, which is de-
fined as the number of papers with citation number higher or
equal to h. Extensions work [16] shows that it also can work
well in computer science area. However, h-index will assign
an integer value h to papers, authors, and publication fo-
rums, while our work requires that rank sores can be viewed
as a rank distribution and thus can serve as a good mea-
sure for clustering. What is more, since there are only very
limited citation information in DBLP, ranking methods de-
manding citation cannot work in such kind of data. Instead
of proposing a totally new strategy for ranking, we aim at
finding empirical rules in the specific area of DBLP data set,
and providing ranking function based on these rules, which
works well for the specific case. The real novelty lies in our
framework is that it tightly integrates ranking and cluster-
ing and thus offers informative summary for heterogeneous
network such as the DBLP data.

Clustering is another way to summarize information network
and discover the underlying structures, which partitions the
objects of an information network into subsets (clusters) so
that objects in each subset share some common trait. In
clustering, proximity between objects is often defined for
the purpose of grouping “similar” objects into one cluster,
while partitioning dissimilar ones far apart. Spectral graph
clustering [15, 12] is state-of-the-art method to do clustering
on the homogeneous network. However for heterogeneous
network, adjacency matrix of the same type objects are not
explicit existing. Therefore, similarity extraction methods
such as SimRank [9] should be applied first, which is an it-
erative PageRank-like method for computing structural sim-
ilarity between objects. However, the time cost for SimRank
is very high, and other methods such as LinkClus [17] have
addressed this issue. Without calculating the pairwise sim-
ilarity between two objects of the same type, RankClus
uses conditional ranking as the measure of clusters, and only
needs to calculate the distances between each object and the
cluster center.

In web search, there exists an idea of facet ranking [18, 3],
which clusters the returned results for each query into differ-
ent categories, to help users to better retrieve the relevant

documents. A commercial website that illustrates the idea
is “vivisimo.com” 1. It may seem that facet ranking also in-
tegrates ranking with clustering, however, our work is of to-
tally different idea. First, the goal of facet ranking is to help
user to better organize the results. The meaning of ranking
here is the relevance to the query. RankClus aims at find-
ing higher quality and more informative clusters for target
objects with rank information integrated in an information
network. Second, facet ranking is a two-stage methodology.
In the first stage, relevant results are collected according to
the relevance to the query, and then clustering is applied on
the collection of returned documents. RankClus integrates
ranking and clustering tightly, which are mutually improved
during the iterations.

3. PROBLEM DEFINITION
Among many information networks, bi-type information net-
work is popular in many applications. For example, conference-
author network in bibliographic database, movie-user net-
work in online movie database, and newsgroup-author net-
work in newsgroup database. In this paper, we use bi-type
network as an example to illustrate RankClus algorithm.
Accordingly, most concepts introduced are based on bi-type
information network.

Definition 1. Bi-type Information Network. Given
two types of object sets X and Y , where X = {x1, x2, . . . , xm},
and Y = {y1, y2, . . . , yn}, graph G = 〈V, E〉 is called a bi-
type information network on types X and Y , if V (G) =
X ∪ Y and E(G) = {〈oi, oj〉}, where oi, oj ∈ X ∪ Y .

Let W(m+n)×(m+n) = {woioj} be the adjacency matrix of
links, where woioj equals to the weight of link 〈oi, oj〉, which
is the observation number of the link, we thus use G =
〈{X ∪ Y }, W 〉 to denote this bi-type information network.
In the following, we use X and Y denoting both the object
set and their type name. For convenience, we decompose the
link matrix into four blocks: WXX , WXY , WY X and WY Y ,
each denoting a sub-network of objects between types of the
subscripts. W thus can be written as:

W =

(
WXX WXY

WY X WY Y

)

Definition 2. Ranking Function. Given a bi-type net-
work G = 〈{X∪Y }, W 〉, if a function f : G → (~rX , ~rY ) gives
rank score for each object in type X and type Y , where

∀x ∈ X,~rX(x) ≥ 0,
∑
x∈X

~rX(x) = 1, and

∀y ∈ Y,~rY (y) ≥ 0,
∑
y∈Y

~rY (y) = 1,

we call f a ranking function on network G.

The aim of ranking in information network is to give dif-
ferent importance weights to different objects. Thus, users
can quickly navigate to important objects. For example,
PageRank is a ranking function defined on the Web, which

1http://vivisimo.com



is a single-type information network with web pages as its
objects. For the bi-type information network defined in the
DBLP data, we will provide two ranking functions in Section
4.

For a given cluster number K, clustering is to give a cluster
label from 1 to K for each object in the target type X. We
use Xk to denote the object set of cluster k, and use X ′ to
denote an arbitrary cluster. In most bi-type networks, the
two types of objects could be rather asymmetric in cardinal-
ity. For example, in DBLP, the number of authors is around
500,000, and the number of conferences is only around 4,000.
In our method, we treat the type (of objects) that contains
less number of distinct values as target type in the in-
formation network, whereas the other as attribute type.
Clustering is only applied to the target type objects in or-
der to generate less number but more meaningful clusters;
whereas the attribute type objects only help the clustering.
Taking DBLP as an example, we recommend to only con-
sider conference as target type for clustering because (1) we
only need small number for clusters, which has the intrinsic
meaning of research area, and (2) authors’ rank score in each
conference cluster has already offered enough information.

As shown in Section 1, ranking of objects without consid-
ering which clusters they belong to often leads to dumb re-
sults. Therefore, we introduce the concept of conditional
rank, which is the rank based on a specific cluster.

Definition 3. Conditional rank and within-cluster rank.
Given target type X, and a cluster X ′ ⊆ X, sub-network
G′ = 〈{X ′ ∪ Y }, W ′〉 is defined as a vertex induced graph
of G by sub vertex set X ′ ∪ Y . Conditional rank over Y ,
denoted as ~rY |X′ , and within-cluster rank over X ′, denoted
as ~rX′|X′ , are defined by the ranking function f on the sub-
network G′: (~rX′|X′ , ~rY |X′) = f(G′). Conditional rank over
X, denoted as ~rX|X′ , is defined as the propagation score of
~rY |X′ over network G:

~rX|X′(x) =

∑n
j=1 WXY (x, j)~rY |X′(j)∑m

i=1

∑n
j=1 WXY (i, j)~rY |X′(j)

.

In this definition, conditional rank over Y and within-cluster
rank over X ′ are straightforward, which are the application
of ranking function on the sub-network G′ induced by clus-
ter X ′. Conditional rank over whole set of objects in X is
more complex, since not every object in X is in the sub-
network G′. The idea behind the concept is that when a
cluster X ′ is given, and conditional rank over Y , which is
~rY |X′ , is calculated, the conditional rank over X relative to
cluster X ′ can be determined according to current rank of Y .
For example, once DB/DM conference cluster is given, we
can then get authors’ conditional rank on DB/DM cluster,
and whether a conference’s conditional rank score relative to
DB/DM cluster is high is determined by whether many of
the authors in the conference are highly ranked in DB/DM
area. The detailed calculation and explanation of ranking
are provided in Section 4, based on two concrete ranking
functions.

Based on these definitions, our goal of this paper can be
summarized as follows: given a bi-type network G = 〈{X ∪

Y }, W 〉, the target type X, and a specified cluster number
K, our goal is to generate K clusters {Xk} on X, as well as
the within-cluster rank for type X and conditional rank for
type Y to each cluster, i.e., ~rX|Xk

and ~rY |Xk
, k = 1, 2, . . . , K.

4. RANKING FUNCTION
Ranking can give people an overall view of a certain set of
objects, which is beneficial for people to grasp the most im-
portant information in a short time. More importantly, in
this paper, conditional ranks of attribute types are served
as features for each cluster, and each object in target type
can be considered as a mixture model over these rank dis-
tributions, and the component coefficients can be used to
improve clustering. In this section, we propose two ranking
functions that could be used frequently in bi-type network
similar to conference-author network. In bibliographic net-
work, consider the bi-type information network composed
of conferences and authors. Let X be the type of confer-
ence, Y be the type of author, and specify conference as
the target type for clustering. According to the publication
relationship between conferences and authors, we define the
link matrix WXY as:

WXY (i, j) = pij , for i = 1, 2, . . . , m; j = 1, 2, . . . , n

where pij is the number of papers that author j published in
conference i, or equally, the number of papers in conference
i that are published by author j. According to the co-author
relationship between authors, we define the matrix WY Y as:

WY Y (i, j) = aij , for i = 1, 2, . . . , m; j = 1, 2, . . . , n

where aij is the number of papers that author i and author
j co-authored. The link matrix denoting the relationship
between authors and conferences WY X is equal to W T

XY ,
as the relationship between authors and conferences is sym-
metric, and WXX = 0 as there are no direct links between
conferences. Based on this conference-author network, we
define two ranking functions: Simple Ranking and Author-
ity Ranking.

4.1 Simple Ranking
The simplest ranking of conferences and authors is based
on the number of publications, which is proportional to the
numbers of papers accepted by a conference or published by
an author.

Given the information network G = 〈{X ∪ Y }, W 〉, simple
ranking generates the ranking score of type X and type Y
as follows:





~rX(x) =

∑n
j=1 WXY (x, j)∑m

i=1

∑n
j=1 WXY (i, j)

~rY (y) =

∑n
i=1 WXY (i, y)∑m

i=1

∑n
j=1 WXY (i, j)

(1)

The time complexity of Simple Ranking is O(|E|), where |E|
is the number of links.

Obviously, simple ranking is only a normalized weighted de-
gree of each object, which considers every link equally impor-
tant. In this ranking, authors publishing more papers will
have higher ranking score, even these papers are all in junk



conferences. In fact, simple ranking evaluate importance of
each object according to their immediate neighborhoods.

4.2 Authority Ranking
A more useful ranking we propose here is authority ranking
function, which gives an object higher ranking score if it has
more authority. Ranking authority merely with publication
information seems impossible at first, as citation information
could be unavailable or incomplete (such as in the DBLP
data, where there is no citation information imported from
Citeseer, ACM Digital Library, or Google Scholars). How-
ever, two simple empirical rules give us the first clues.

• Rule 1: Highly ranked authors publish many papers in highly
ranked conferences.

• Rule 2: Highly ranked conferences attract many papers from
many highly ranked authors.

Notice that these empirical rules are domain dependent and
are usually given by the domain experts who know both the
field and the data set well2.

From the above heuristics, we define the ranking score of
authors and conferences according to each other as follows.

According to Rule 1, each author’s score is determined by
the number of papers and their publication forums,

~rY (j) =

m∑
i=1

WY X(j, i)~rX(i). (2)

When author j publishes more papers, there are more nonzero
and high weighted WY X(j, i), and when the author publishes
papers in a higher ranked conference i, which means a higher
~rX(i), the score of author j will be higher. At the end of
each step, ~rY (j) is normalized by

~rY (j) ← ~rY (j)∑n
j′=1 ~rY (j′)

,

According to Rule 2, the score of each conference is deter-
mined by the quantity and quality of papers in the confer-
ence, which is measured by their authors’ ranking scores,

~rX(i) =

n∑
j=1

WXY (i, j)~rY (j). (3)

When there are more papers appearing in conference i, there
are more non-zero and high weighted WXY (i, j); if the pa-
pers are published by higher ranked author j, the rank score
for j, which is ~rY (j), is higher, and thus the higher score the
conference i will get. The score vector is then normalized:

~rX(i) ← ~rX(i)∑m
i′=1 ~rX(i′)

,

2For example, a statistician may want to change the rules
referring to conferences to journals; whereas a bibliographic
database that collects papers from all the bogus conferences
may need even more sophisticated rules (extracted from the
domain knowledge) to guard the ranking quality.

Notice that the normalization will not change the ranking
position of an object, but it gives a relative importance score
to each object. The two formulas can be rewritten using the
matrix form:





~rX =
WXY ~rY

‖WXY ~rY ‖
~rY =

WY X~rX

‖WY X~rX‖
(4)

Theorem 1. The solution to ~rX and ~rY given by the iter-
ation formula is the primary eigenvector of WXY WY X and
WY XWXY respectively.

Proof. Combining Eqs. (2) and (3), we get

~rX =
WXY ~rY

‖WXY ~rY ‖ =
WXY

WY X~rX
‖WY X~rX‖

‖WXY
WY X~rX
‖WY X~rX‖‖

=
WXY WY X~rX

‖WXY WY X~rX‖

Thus, ~rX is the eigenvector of WXY WY X . The iterative
method is the power method [5] to calculate the eigenvec-
tor, which is the primary eigenvector. Similarly, ~rY is the
primary eigenvector of WY XWXY .

When considering the co-author information, the scoring
function can be further refined by a third rule:

• Rule 3: The rank of an author is enhanced if he or she co-
authors with many authors or many highly ranked authors.

Using this new rule, we can revise Eqs. (2) as

~rY (i) = α

m∑
j=1

WY X(i, j)~rX(j) + (1− α)

n∑
j=1

WY Y (i, j)~rY (j).

(5)
where parameter α ∈ [0, 1] determines how much weight to
put on each factor based on one’s belief.

Similarly, we can prove that ~rY should be the primary eigen-
vector of αWY XWXY + (1 − α)WY Y , and ~rX should be
the primary eigenvector of αWXY (I− (1−α)WY Y )−1WY X .
Since the iterative process is a power method to calculate
primary eigenvectors, the ranking score will finally get con-
verge.

For authority ranking, the time complexity is O(t|E|), where
t is the iteration number and |E| is the number of links in
the graph. Notice that, |E| = O(d|V |) ¿ |V |2 in a sparse
network, where |V | is the number of total objects in the
network and d is the average link per each object.

Different from simple ranking, authority ranking gives im-
portance measure to each object according to the whole
network, rather than the immediate neighborhoods, by the
score propagation over the whole network.

4.3 Alternative Ranking Functions
Although in this section, we only illustrate two possible
ranking functions, the general ranking functions are not con-
fined to these two types. Also, in reality, ranking function is



not only related to the link property of an information net-
work, but also depended on the hidden ranking rules used by
people in some specific domain. Ranking functions should
be combined with link information and user rules in that
domain. For example, in many other science fields, journals
should be given higher weight when considering an author’s
rank. Finally, ranking function on heterogeneous networks
with more types of objects can be similarly defined. For ex-
ample, PopRank [13] is a possible framework to deal with
heterogeneous network, which takes into account both the
impact within the same type of objects and its relations with
other types of objects. The popularity scores of objects are
mutually reinforced through the relations with each other,
with different impact factors of different types. When rank-
ing objects in information networks, junk or spam entities
are often ranked higher than deserved. For example, au-
thority ranking can be spammed by some bogus conferences
that accept any submit papers due to their huge publica-
tion number. Techniques that could best use expert knowl-
edge such as TrustRank [7] could be used, which can semi-
automatically separate reputable, good objects from spam
ones, toward a robust ranking scheme.

5. THE RANKCLUS ALGORITHM
In this section, we introduce RankClus algorithm based
on bi-type network and ranking function defined in Section
4. Given the bi-type network G = 〈{X ∪ Y }, W 〉, suppose
that we have a random partition on target type X already,
how can we use the conditional ranks to improve the cluster-
ing results further? Intuitively, for each conference cluster,
which could form a research area, the rank of authors condi-
tional on this area should be very distinct, and quite differ-
ent from the rank of authors in other areas. Therefore, for
each cluster Xk, conditional rank of Y , ~rY |Xk

, can be viewed
as a rank distribution of Y , which in fact is a measure for
cluster Xk. Then, for each object x in X, the distribution
of object y in Y can be viewed as a mixture model over K
conditional ranks of Y , and thus can be represented as a
K dimensional vector in the new measure space. We first
build the mixture model and use EM algorithm to get the
Component coefficients for each object in Section 5.1, then
propose the distance measure between object and cluster in
Section 5.2, then summarize the algorithm in Section 5.3,
and finally give some discussions on extending RankClus
to arbitrary information networks in Section 5.4.

5.1 Mixture Model of Conditional Rank Dis-
tribution

Example 5.1 (Conditional Rank as Cluster Feature)
Conditional ranks on different clusters are very different
from each other, especially when these clusters are correctly
partitioned. Still using the data of the two-research-area ex-
ample proposed in Section 1, we rank two hundred authors
based on two conference clusters, and the two conditional
rank distributions are shown in Figure 1. From the figure,
we can clearly see that DB/DM authors rank high relative
to DB/DM conferences, while rank extremely low relative to
HW/CA conferences. The situation is similar for HW/CA
authors.

From Example 5.1, one can see that conditional rank distri-
butions for attribute type on each cluster are quite different
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Figure 1: Authors’ Rank Distribution on Different
Clusters

from each other, and can be used as measures to character-
ize each cluster. This gives us the intuition to model the
distribution for each object x in X over Y as a mixture dis-
tribution of K conditional rank distributions over Y . Here,
we only consider the simple case that there are no links be-
tween target objects, i.e., WXX = 0, and more complex
situations will be discussed in Section 5.4.

5.1.1 Mixture Model for Each Target Object
Suppose we now know the clustering results for type X,
which are X1, X2, . . . , and XK . Also, according to some
given ranking function, we have got conditional rank dis-
tribution over Y on each cluster Xk, which is ~rY |Xk

(k =
1, 2, . . . , K), and conditional rank over X, which is ~rX|Xk

(k =
1, 2, . . . , K). For simplicity, we use pk(Y ) to denote ~rY |Xk

and pk(X) to denote ~rX|Xk
in the following deduction. For

each object xi(i = 1, 2, . . . , m) in X, it follows a distribution
pxi(Y ) = p(Y |xi) to generate a link between xi and y in Y .
Moreover, this distribution could be considered as a mixture
model over K component distributions, which are attribute
type’s conditional rank distributions on K clusters. We use
πi,k to denote xi’s coefficient for component k, which in fact
is the posterior probability that xi from cluster k. Thus,
pxi(Y ) can be modeled as:

pxi(Y ) =

K∑

k=1

πi,kpk(Y ), and

K∑

k=1

πi,k = 1. (6)

πi,k in fact is the probability that object xi belonging to
cluster k, p(k|xi). Since p(k|xi) ∝ p(xi|k)p(k), and we have
already known p(xi|k), which is the conditional rank of xi

in cluster k. The goal is thus to estimate the prior of p(k),
which is the probability that a link between object x and
y belongs to cluster k. In DBLP scenario, a link is a pa-
per, and papers with the same conference and author will
be considered as the same papers (since we do not have ad-
ditional information to discriminate them). The cluster of
conference, e.g., DB conferences, can induce a subnetwork
of conferences and authors with the semantic meaning of
DB research area. p(k) is the proportion of papers that be-
longing to the research area induced by the kth conference
cluster. Notice that, we can just set the priors as uniform
distribution, and then p(k|xi) ∝ p(xi|k), which means the
higher its conditional rank on a cluster, the higher possibility
that the object will belong to that cluster. Since conditional
rank of X is the propagation score of conditional rank of Y ,
we can see that highly ranked attribute object has more
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Figure 2: Conferences’ Scatter Plot based on Two
Component Coefficients

impact on determining the cluster label of target object.

To evaluate the model, we also make an independence as-
sumption that an attribute object yj issuing a link is in-
dependent to a target object xi accepting this link, which
is pk(xi, yj) = pk(xi)pk(yj). This assumption says once a
author writes a paper, he is more likely to submit it to a
highly ranked conference to improve his rank; while for con-
ferences, they are more likely to accept papers coming from
highly ranked authors to improve its rank as well.

Example 5.2 (Component Coefficients as Object At-
tributes) Following Ex. 5.1, each conference xi is decom-
posed as a two dimensional vector (πi,1, πi,2), each dimen-
sion stands for the component coefficient. Figure 2 is the
scatter plot for each conference’s two component coefficients,
and different shapes of points represent different areas the
conferences really belong to. From the figure, we can see
that DB/DM conferences and HW/CA conferences are sep-
arated clearly under the new attributes.

5.1.2 Parameter Estimation Using EM Algorithm
Next, let’s address the problem to estimate the component
coefficients in the mixture model. Let Θ be the parame-
ter matrix, which is a m ×K matrix: Θm×K = {πi,k}(i =
1, 2, . . . , m; k = 1, 2, . . . , K). Our task now is to evaluate the
best Θ, given the links we observed in the network. For all
the links WXY and WY Y , we have the likelihood of gener-
ating all the links under parameter Θ as:

L′(Θ|WXY , WY Y ) = p(WXY |Θ)p(WY Y |Θ)

=

m∏
i=1

n∏
j=1

p(xi, yj |Θ)WXY (i,j)
n∏

j=1

n∏
j=1

p(yi, yj |Θ)WY Y (i,j)

where, p(xi, yj |Θ) is the probability to generate link 〈xi, yj〉,
given current parameter. Since p(WY Y |Θ) does not contain
variables from Θ, we only need to consider maximizing the
first part of the likelihood to get the best estimation of Θ.
Let L(Θ|WXY ) be the first part of likelihood. As it is diffi-
cult to maximize L directly, we apply EM algorithm [1] to
solve the problem.

In E-Step, we introduce hidden variable z ∈ {1, 2, . . . , K} for
each link, which indicates the cluster label that a link 〈x, y〉

is from. The complete log likelihood thus can be written as:

log L(θ|WXY , Z)

= log

m∏
i=1

n∏
j=1

(p(xi, yj , z)|Θ)WXY (i,j)

= log

m∏
i=1

n∏
j=1

[p(xi, yj |z, Θ)p(z|Θ)]WXY (i,j)

=

m∑
i=1

n∑
j=1

WXY (i, j) log(pz(xi, yj)p(z|Θ))

where, pz(xi, yj) is the probability to generate a link 〈xi, yj〉
from cluster z. By considering conditional rank of xi and yj

as the probability that they will be visited in the network
and assuming the independence between variables x and y,
pz(xi, yj) = pz(xi)pz(yj),

Given the initial parameter is Θ0, which could be set as
π0

i,k = 1
K

, for all i and k, expectation of log likelihood under
current distribution of Z is:

Q(Θ, Θ
0
) = Ef(Z|WXY ,Θ0)(log L(θ|WXY , Z))

=
K∑

k=1

m∑

i=1

n∑

j=1

WXY (i, j) log(pz=k(xi, yj)p(z = k|Θ))p(z = k|xi, yj , Θ
0
)

=
K∑

k=1

m∑

i=1

n∑

j=1

WXY (i, j) log(pk(xi, yj)p(z = k|Θ))p(z = k|xi, yj , Θ
0
)

=
m∑

i=1

K∑

k=1

n∑

j=1

WXY (i, j) log(p(z = k|Θ))p(z = k|xi, yj , Θ
0
)+

K∑

k=1

m∑

i=1

n∑

j=1

WXY (i, j) log(pk(xi, yj))p(z = k|xi, yj , Θ
0
)

For conditional distribution p(z = k|yj , xi, Θ
0), it can be

calculated using Bayesian rule as follows,

p(z = k|yj , xi, Θ
0)

∝p(xi, yj |z = k, Θ0)p(z = k|Θ0)

∝p0
k(xi)p

0
k(yj)p

0(z = k)

(7)

In M-Step, in order to get the estimation for p(z = k), we
need to maximize Q(Θ, Θ0). Introducing Lagrange multi-
plier λ, we get:

∂

∂p(z = k)
[Q(Θ, Θ0) + λ(

K∑

k=1

p(z = k)− 1)] = 0

⇒
m∑

i=1

n∑
j=1

WXY (i, j)
1

p(z = k)
p(z = k|xi, yj , Θ

0) + λ = 0

Thus, integrating with Eq. (7), we can get the new estima-
tion for p(z = k) given previous Θ0:

p(z = k) =

∑m
i=1

∑n
j=1 WXY (i, j)p(z = k|xi, yj , Θ

0)∑m
i=1

∑n
j=1 WXY (i, j)

. (8)

Finally, each parameter πi,k in Θ is calculated using Bayesian
rule:

πi,k = p(z = k|xi) =
pk(xi)p(z = k)∑K
l=1 pl(xi)p(z = l)

(9)



By setting Θ0 = Θ, the whole process can be repeated. At
each iteration, updating rules from Eqs. (7)-(9) are applied,
and finally Θ will converge to a local maximum.

5.2 Cluster Centers and Distance Measure
After we get the estimations for component efficient for each
target object xi by evaluating mixture models, xi can be rep-
resented as a K dimensional vector ~sxi = (πi,1, πi,2, . . . , πi,K).
The centers for each cluster can thus be calculated accord-
ingly, which is the mean of ~sxi for all xi in each cluster:

~sXk =

∑
x∈Xk

~s(x)

|Xk|
where |Xk| is the size of the cluster k.

Next, the distance between an object and cluster D(x, Xk)
is defined by 1 minus cosine similarity:

D(x, Xk) = 1−
∑K

l=1 ~sx(l)~sXk (l)√∑K
l=1(~sx(l))2

√∑K
l=1(~sXk (l))2

. (10)

An alternative method is to use component coefficient pi,k

as the similarity measure of object xi and cluster k directly.
However, through both our analysis and experiment results,
we found that it is not a wise choice. When initial clus-
ters are randomly partitioned, the initial conditional rank-
ing would be quite similar to each other. In this case, it’s
possible that all the objects are mixed together and all be-
long to one cluster in terms of pi,k. An example is shown in
Figure 3(b), conditional rank distributions on Cluster 1 and
Cluster 2 is similar to each other, and rank distribution on
Cluster 2 is dominating Cluster 1 in more data points. As a
result, almost every object will have a higher coefficient rel-
ative to Cluster 2. If we simply assign the object according
to this coefficient, no object will be assigned to Cluster 1.
However, our definition of cluster center and distance mea-
sure can correctly assign each object to the correct cluster
after several iterations. Our measure doesn’t totally depen-
dent on the clusters, especially when the cluster quality is
not good, it could be a disaster to completely rely on com-
ponent coefficients. However, we also consider the similarity
between objects under the new measure space, even at first
the measure feature is not that good, the similarity between
them can still somehow be retained.

5.3 RankClus: Algorithm Summarization
The general idea of RankClus is first to convert each object
into ~sx based on the mixture model of current clustering,
and then adjust objects into the nearest cluster Xk under
the new attributes. The process repeats until clusters do
not change significantly. During the process, clusters will
be improved because similar objects under new attributes
will be grouped together; ranking will be improved along
with the better clusters, and thus offers better attributes for
further clustering. In this section, we describe the algorithm
in detail.

RankClus is mainly composed of three steps, put in an
iterative refinement manner. First, rank for each cluster.
Second, estimate the parameter Θ in the mixture model,
get new representations ~sx for each target object and ~sXk

for each target cluster. Third, adjust each object in type
X, calculate the distance from it to each cluster center and
assign it to the nearest cluster.

The input of RankClus is bi-type information network G =
〈{X ∪Y }, W 〉, the ranking function f , and the cluster num-
ber K. The output is K clusters of X with within-cluster
rank scores for each x, and conditional rank scores for ean
y. The algorithm works as follows, which is summarized in
Table 4.

• Step 0: Initialization.
In the initialization step, generate initial clusters for tar-
get objects, i.e., assign each target object with a cluster
label from 1 to K randomly.

• Step 1: Ranking for each cluster.
Based on current clusters, calculate conditional rank for
type Y and X and within-cluster rank for type X. In
this step, we also need to judge whether any cluster is
empty, which may be caused by the improper initializa-
tion or biased running results of the algorithm. When
some cluster is empty, the algorithm needs to restart in
order to generate K clusters.

• Step 2: Estimation of the mixture model component co-
efficients.
Estimate the parameter Θ in the mixture model, get new
representations for each target object and centers for each
target cluster: ~sx and ~sXk . In practice, the iteration
number t for calculating Θ only needs to be set to a small
number. Empirically, t = 5 can already achieve best
results.

• Step 3: Cluster adjustment.
Calculate the distance from each object to each cluster
center using Eq. (10) and assign it to the nearest cluster.

• Repeat Steps 1, 2 and 3 until clusters changes only by a
very small ratio ε or the iteration number is bigger than
a predefined number iterNum. In practice, we can set
ε = 0, and iterNum = 20. Through our experiments,
the algorithm will converge less than 5 rounds in most
cases for the synthetic data set and around 10 rounds for
DBLP data.

Example 5.3 (Mutual Improvement of Clustering
and Ranking) We now apply our algorithm to the two-
research-area example. The conditional rank and compo-
nent coefficients for each conference at each iteration of the
running procedure are illustrated in Figure 3 through (a)-
(h). To better explain how our algorithm can work, we set an
extremely bad initial clustering as the initial state. In Clus-
ter 1, there are 14 conferences, half from DB/DM area and
half from HW/CA area. Accordingly, Cluster 2 contains the
remaining 6 conferences, which are ICDT, CIKM, PKDD,
ASPLOS, ISLPED and CODES. We can see that the par-
tition is quite unbalanced according to the size, and quite
mixed according to the area. During the first iteration, the
conditional rank distribution for two clusters are very similar
to each other (Fig. 3(a)), and conferences are mixed up and
biased to Cluster 2 (Fig. 3(b)), however we can still adjust
their cluster label according to the cluster centers and most
HW/CA conferences become into the Cluster 2 and most
DB/DM conferences become Cluster 1. At the second itera-
tion, conditional ranking is improved a little (shown in Fig.
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Figure 3: Mutual Improvement of Clusters and Ranking through Iterations

3(c)) since the clustering (Fig. 3(b)) is enhanced, and this
time clustering results (Fig. 3(d)) are enhance dramatically,
although they are still biased to one cluster (Cluster 1). At
the third iteration, ranking results are improved dramati-
cally. Clusters and ranks are further adjusted afterwards,

Table 4: RankClus Algorithm
Procedure: RankClus()
Input: Bi-type Information Network G = 〈X, Y ; W 〉,

Ranking function f ,
Cluster Number K.

Output: K clusters Xi, ~rXi|Xi
, ~rY |Xi

.

//Step 0: Initialization
1 t = 0;

2 {X(t)
i }K

i=1 = get initial partitions for X;
//Repeat Steps 1-3 until < ε change or too many iterations
3 For (iter = 0; iter < iterNum && epsi > ε; iter++)

//Step 1: Ranking for each cluster
4 if any of the clusters are empty, restart, goto Line 1;
5 For i = 1 to K

6 G
(t)
i = get subgraph from G, using X

(t)
i , Y ;

7 (~r
(t)
Xi|Xi

, ~r
(t)
Y |Xi

) = f(G
(t)
i ); ~r

(t)
X|Xi

= WXY ~r
(t)
Y |Xi

;

8 End for
//Step 2: Get new attributes for objects and cluster

9 Evaluate Θ for mixture model, thus get ~sxi
for each

object xi;
10 For i = 1 to K

11 ~s
(t)
Xk

= get centers for cluster X
(t)
k ;

12 End for
//Step 3: Adjust each object

13 For each object x in X
14 For i = 1 to K

15 Calculate Distance D(x, X
(t)
k )

16 End for

17 Assign x to Xt+1
k0

, k0 = arg mink D(x, X
(t)
k )

18 End for
18 End For

both of which are minor refinements.

At each iteration, the time complexity of RankClus is com-
prised of three parts: ranking part, mixture model esti-
mation part and clustering adjustment part. For cluster-
ing adjustment, we need to compute the distance between
each object (m) and each cluster (K), and the dimension
of each object is K, so the time complexity for this part
is O(mK2). For ranking, if we use simple ranking, the
time complexity is O(|E|). If we use authority ranking,
the time complexity is O(t1|E|), where |E| is the number
of links, and t1 is the iteration number of ranking. For mix-
ture model estimation, at each round, we need to calculate
O(K|E|+ K + mK) parameters. So, overall, the time com-
plexity is O(t(t1|E|+ t2(K|E|+K +mK)+mK2)), where t
is the iteration number of the whole algorithm and t2 is the
iteration number of the mixture model. If the network is a
sparse network, the time is almost linear with the number
of objects.

5.4 Discussion: Extensions to Arbitrary multi-
typed Information Network

In the previous sections, the reasoning of RankClus is based
on bi-type networks, with the constraint that there are no
links between target objects (i.e., WXX = 0). However,
RankClus can be applied to other information network as
well. In this section, we introduce the basic idea to use
RankClus in an arbitrary network: The key is to generate
a new set of attributes from every attribute type for each
object, and then RankClus algorithm proposed in Section
5.3 can be used directly.



1. One-type information network. For one-type infor-
mation network G = 〈{X}, W 〉, the problem can be trans-
formed into bi-type network settings G = 〈{X ∪ Y }, W 〉,
where Y = X.

2. Bi-type information network with WXX 6= 0. For bi-
type information network that WXX 6= 0, the network
can be transformed into a three-type network G = 〈{X ∪
Z ∪ Y }, W 〉, where Z = X. In this situation, two sets
of parameters ΘZ and ΘY can be evaluated separately,
by considering links of WXZ and WXY independently.
Therefore, for each object x, there should be 2K param-
eters. The first K parameters are its mixture model coef-
ficients over conditional rank distributions of X, while the
second K parameters are its mixture model coefficients
over conditional rank distributions of Y .

3. Multi-typed information network. For multi-typed
information network G = 〈{X ∪ Y1 ∪ Y2 ∪ . . . ∪ YN}, W 〉,
the problem can be solved similarly to the second case.
In this case, we need to evaluated N sets of param-
eters, by considering conditional ranks from N types:
Y1, Y2, . . . , YN . So, each object can be represented as a
NK dimensional vector.

6. EXPERIMENTS
In this section, we will show the effectiveness and efficiency
of RankClus algorithm, based on both synthetic and real
datasets.

6.1 Synthetic Data
In order to compare accuracy among different clustering
algorithms, we generate synthetic bi-type information net-
works, which follow the properties of real information net-
works similar to DBLP. Configuration parameters for gen-
erating synthetic networks with different properties are as
follows:

• Cluster number: K.

• Size of object sets and link distributions. In each cluster,
set two types of objects: Type X and Type Y . The
number of objects in X and Y are respectively Nx and
Ny. The link distribution for each object follows Zipf’s
law with parameter sx and sy for each type. Zipf’s law is

defined by f(k; s, N) = 1/ks
∑N

i=1 1/is , which denotes the link

frequency of an object that ranks in the kth position.

• Transition probability matrix T , which denotes the prob-
ability that a link is generated from any two clusters.

• Link numbers for each cluster: P , which denotes the total
number of links in each cluster.

In our experiments, we first fixed the scale of the network
and the distribution of links, but change T and P to generate
5 kinds of networks with different properties, where T deter-
mines how much the clusters are separated and P determines
the density of each cluster. We set K = 3, Nx = [10, 20, 15],
Ny = [500, 800, 700], sx = 1.01, and sy = 0.95 for all the 5
configurations. Five different pairs of T and P are set as:

• Data1: medium separated and medium density.
P = [1000, 1500, 2000],
T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Data2: medium separated and low density.
P = [800, 1300, 1200],
T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Data3: medium separated and high density.
P = [2000, 3000, 4000],
T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Data4: highly separated and medium density.
P = [1000, 1500, 2000],
T = [0.9, 0.05, 0.05; 0.05, 0.9, 0.05; 0.1, 0.05, 0.85]

• Data5: poorly separated and medium density.
P = [1000, 1500, 2000],
T = [0.7, 0.15, 0.15; 0.15, 0.7, 0.15; 0.15, 0.15, 0.7]

In order to evaluate the accuracy of the clustering results,
we adopt Normalized Mutual Information measure. For N
objects, set cluster number as K, and two clustering results,
let n(i, j), i, j = 1, 2, . . . , K, the number of objects that has
the cluster label i in the first cluster and cluster label j in the
second cluster. From n(i, j), we can define joint distribution

p(i, j) = n(i,j)
N

, row distribution p1(j) =
∑K

i=1 p(i, j) and

column distribution p2(i) =
∑K

j=1p(i, j). NMI is defined as
follows:

NMI =

∑K
i=1

∑K
j=1 p(i, j) log( p(i,j)

p1(j)p2(i)
)

√∑K
j=1 p1(j) log p1(j)

∑K
i=1 p2(i) log p2(i)

We compared RankClus implemented with two ranking
functions, which are Simple Ranking and Authority Rank-
ing, with state-of-the-art spectral clustering algorithm, which
is the k-way Ncut algorithm proposed in [15], implemented
with two similarity matrix generation methods, which are
Jaccard Coefficient and SimRank [9]. Results for accuracy is
in Figure 4. For each network configuration, we generate 10
different datasets and run each algorithm 100 times. From
the results, we can see that, two versions of RankClus out-
perform in the first 4 data sets. RankClus with Authority
ranking function is even better, since authority ranking gives
a better rank distribution, as it is able to utilize the informa-
tion of the whole network. Through the experiments, we ob-
serve that performance of two versions of RankClus and the
NCut algorithm based on Jaccard coefficient are highly de-
pendent on the data quality, in terms of cluster sperateness
and link density. SimRank has a very stable performance.
Further experiments show that the performance of SimRank
will deteriorate when the data quality is rather poor (when
average link for each target object is 40, the NMI accuracy
becomes as low as 0.6846).

In order to check the scalability of each algorithm, we set
four different size networks, in which both the object size
and link size are increasing by a factor of 2. The aver-
age time used by each algorithm for each dataset is sum-
marized in Figure 5. We can see that compared with the
time-consuming SimRank algorithm, RankClus is also very
efficient and scalable.

Impact of iteration number in the mixture model on clus-
tering accuracy is examined. Through Figure 6, we can see
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Figure 5: Efficiency Analysis

that when the iteration number is getting larger, the accu-
racy will first be improved then stable. In fact, even when
the iteration number is set to a very small number, the re-
sults are still very good.
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Figure 6: Impact of Iteration Number in Mixture
Model

6.2 Real Data: The DBLP Data Set
We use the DBLP dataset to generate a bi-type information
network for all the 2676 conferences and 20,000 authors with
most publications, from the time period of year 1998 to year
2007. Both conference-author relationships and co-author
relationships are used. We set cluster number K = 15, and
apply RankClus with authority function proposed in Sec-
tion 4.2, with α = 0.95. We then pick 5 clusters, and show
top-10 conferences from each cluster according to within-
cluster scores. For clarifying, we also add research area
labels manually to each cluster. The results are shown in
Table 5.

Please note that the clustering and ranking of conferences

and authors shown in Tables 5 and ?? have not used any
keyword nor citation information, the information popularly
used in most bibliographic data clustering or ranking sys-
tems. It is well recognized that citation information is cru-
cial at judging the influence and impact of a conference or an
author in a field. However, by exploring the publication en-
tries only in the DBLP data, the RankClus algorithm can
achieve comparable performance as citation studies for clus-
tering and ranking conferences and authors. This implies
that the collection of publication entries without referring
to the keyword and citation information can still tell a lot
about the status of conferences and authors in a scientific
field.

7. DISCUSSION
In RankClus we assume that a user will specify a tar-
get type to be the clustering type. Although according
to the view of algorithm we can specify any type as tar-
get type, some type of objects would be clustered better in
terms of semantic meaning, quality of clustering, and the ef-
ficiency. In the DBLP data set, conference is a better choice
for clustering, since it has less number of distinct values,
which means a smaller number of clusters can summarize the
whole network well; also, it has the better semantic mean-
ing of research area than authors. Moreover, considering
computational issues, we find that the convergence speed of
RankClus would be much much lower when using author
as target type.

Efficiency of RankClus could be further improved if we
wisely select the starting value. First, the quality of initial
clusters determines the number of iteration of the algorithm.
We may use some seed objects to form initial clusters to start
the RankClus processing. Second, the initial value of the
rank score is also very important to the convergence speed.
When we do Authority Ranking, Simple Ranking score could
be a good starting point. Another way to improve efficiency
is to first filtering the globally lowly ranked attribute objects,
which could reduce the scale of network. Since the lowly
ranked attribute objects only have low impact to determine
the cluster label of target objects.

RankClus is the first piece of work that utilizes ranking
as cluster feature to improve clustering results and tightly
integrates ranking and clustering. However, there are many
other issues need to be considered in the future.

First, currently we have only performed experiments on the
bi-type information network. It is still not that clear on how
we can utilize additional information and constraints in the
RankClus process, such as how to add citation informa-
tion and text information to the bibliographic data and how
we can utilize the additional information to make refined
clustering and ranking. This will be an interesting topic for
further study.

Second, the empirical rules and its associated weight compu-
tation formulas proposed in this study may not be directly
transferable to other problem domains. When applying the
RankClus methodology to other bibliographic data, such
as PubMed, we need to re-consider the empirical rules for
ranking functions. When applying the methodology to non-
bibliographic data sets, both new ranking functions and the



Table 5: Top-10 Conferences in 5 Clusters Using RankClus
DB Network AI Theory IR

1 VLDB INFOCOM AAMAS SODA SIGIR
2 ICDE SIGMETRICS IJCAI STOC ACM Multimedia

3 SIGMOD ICNP AAAI FOCS CIKM
4 KDD SIGCOMM Agents ICALP TREC
5 ICDM MOBICOM AAAI/IAAI CCC JCDL
6 EDBT ICDCS ECAI SPAA CLEF
7 DASFAA NETWORKING RoboCup PODC WWW
8 PODS MobiHoc IAT CRYPTO ECDL
9 SSDBM ISCC ICMAS APPROX-RANDOM ECIR
10 SDM SenSys CP EUROCRYPT CIVR

semantics of links need to be reconsidered.

Third, the quality of ranking function is important to the
accuracy of clustering, as it can capture the distinct feature
for clusters. However, as we can see, ranking function is
highly related to different domains, how we can automati-
cally extract rules based on a small partial ranking results
given by experts could be another interesting problem.

8. CONCLUSIONS
In this paper, we propose a novel clustering framework called
RankClus to integrate clustering with ranking, which gen-
erates conditional ranking relative to clusters to improve
ranking quality, and uses conditional ranking to generate
new measure attributes to improve clustering. As a result,
the quality of clustering and ranking are mutually enhanced,
which means the clusters are getting more accurate and the
ranking is getting more meaningful. Moreover, the clus-
tering results with ranking can provide more informative
views of data. Our experiment results show that RankClus
can generate more accurate clusters and in a more efficient
way than the state-of-the-art link-based clustering method.
There are still many research issues to be explored in the
RankClus framework. We have identified a few of them
in Section 7. Clearly, more research is needed to further
consolidate this interesting framework and explore its broad
applications.
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