
Mining Plans for Customer-Class Transformation

Qiang Yang
Department of Computer Science

Hong Kong University of Science and Technology
Clearwater Bay, Kowloon, Hong Kong

qyang@cs.ust.hk

Hong Cheng
Department of Computer Science

University of Illinois, Urbana-Champaign
Illinois 61801 USA
hcheng3@uiuc.edu

Abstract

We consider the problem of mining high-utility plans
from historical plan databases that can be used to transform
customers from one class to other, more desirable classes.
Traditional data mining algorithms are focused on finding
frequent sequences. But high frequency may not imply low
costs and high benefits. Traditional Markov Decision Pro-
cess (MDP) algorithms are designed to address this issue
by bringing in the concept of utility, but these algorithms
are also known to be expensive to execute. In this paper,
we present a novel algorithm AUPlan which automatically
generates sequential plans with high utility by combining
data mining and AI planning. These high-utility plans could
be used to convert groups of customers from less desirable
states to more desirable ones. Our algorithm adapts the
Apriori algorithm by considering the concepts of plans and
utilities. We show through empirical studies that planning
using our integrated algorithm produces high-utility plans
efficiently.

1. Introduction

In business marketing, corporations and institutions are
interested in executing a sequence of marketing actions
to change the class of a group of customers from an un-
desirable class to a more desirable one. Effective class-
transformation requires careful planning. For example, a fi-
nancial institution may derive marketing strategies for turn-
ing their reluctant customers into active ones and a telecom-
munications company may plan actions to stop their valu-
able customers from leaving. These marketing plans are
aimed at converting groups of customers from an undesir-
able class to a desirable one. In universities, web-based
distance-learning systems may provide students with future
study plans. For example, an online learning system may
devise a study plan for a student with an aim to transform
the student from knowledge poor to knowledge rich.

In the past, most planning activities for such class-
transformation tasks have been done by hand. However,
we observe that the historical plan-execution traces in a
database provide valuable knowledge which could be uti-
lized for automatic planning. These plan traces, called
plan databases, form sequence databases consisting of se-
quences of actions and states, where an action has a cost
value and a plan or state has a real-valued utility mea-
sure. High-utility plans could be discovered from the plan
databases and used as guidelines for future plan design. Ex-
tremely low-utility plans could also be useful, as they could
be used in plan-failure analysis for understanding and im-
proving failed plans. In this paper, we consider how to find
all high-utility plans from a plan database that are able to
transform customers from an undesirable class to a more
desirable one.

Consider a marketing campaign planning example. Sup-
pose that a banking company is interested in marketing to a
group of 100,000 customers in the financial market to pro-
mote a special loan signup. We start with a plan database
with historical campaign information in Table 1. Suppose
we are interested in building a three-step plan to market to
new customers. There are many candidate plans in the table
to consider in order to transform as many customers as pos-
sible from non-signup status to a signup one. The signup
status corresponds to a positive class that we would like
to move the customers to, and the non-signup status cor-
responds to the initial state of our customers. Our plan will
choose not only low-cost actions, but also highly successful
actions from the past experience. For example, a candidate
plan might be:
Step 1: Offer to reduce interest rate;
Step 2: Send flyer;
Step 3: Follow up with a home phone call.
This plan may be considered a high-utility one if it con-
verted 85% of the initially reluctant customers to more will-
ing ones while incurring only a cost of no more than $10.00
per customer.

This example introduced a number of interesting as-

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

Table 1. An example of loan signup plan
database.

Plan Action State before action Action
No. No. Salary ... Signup Taken
1 1 50K ... N Send Mail
1 2 50K ... N Send Gift
...

pects for the planning problem. First, not all people in
the group of 100,000 customers should be considered as
candidates for the conversion. Some people should not
be considered as part of marketing campaign because they
are too costly or nearly impossible to convert. Second,
the group-marketing problem is to use the same plan for
different customers in the intended customer group, in-
stead of a different action plan for each different customer.
This makes the group-marketing problem different from the
direct-marketing problem that some authors have consid-
ered in the data mining literature [8, 6]. For group or batch
marketing, we are interested in finding a plan containing no
conditional branches. We must build an N -step plan ahead
of time, and evaluate the plan according to cross-validation
from the historical records. Third, for the customers in the
group to be marketed to, there are potentially many possible
actions that we can use. Each action comes with an inher-
ent cost associated with it. Fourth, it is difficult to formu-
late this problem as a classical planning problem, because
the preconditions and effects of actions are only implicit in
the database, rather than given ahead of time by ”experts”
in a crisp logical formulation. Finally, applying sequence
mining to this database alone will not solve the problem.
Sequence mining has focused on finding sequences by fre-
quency. While in some situations highly frequent plans are
useful, they do not in general give high-utility plans.

In this paper, we formulate the above problem as a
combination of probabilistic planning and classical plan-
ning, where the key issue is to look for low-cost and high-
profit sequences of actions for converting customer groups.
Our main contribution is a novel algorithm that combines
association-rule mining and AI planning. This paper is or-
ganized as follows. Section 2 discusses related work. Sec-
tion 3 gives the problem formulation. Section 4 presents the
AUPlan algorithm. Section 5 presents the empirical results.
Section 6 concludes the paper.

2. Related Work

Research on plan mining is related with both planning
and data mining. This section reviews these two areas. First

we present the related research work in planning using MDP
models. Then we review the work of frequent sequence
mining and the previous plan mining work in the data min-
ing area.

2.1. Planning by Reinforcement Learning

Reinforcement learning refers to a class of problems and
associated techniques in which the learner is to learn how to
make sequential decisions based on delayed reinforcement
so as to maximize cumulative rewards [4, 11, 14]. In a stan-
dard reinforcement-learning model, an agent is connected
to its environment via perception and action. On each step
of interaction the agent receives as input, i, some indica-
tion of the current state, s, of the environment; the agent
then chooses an action, a, to generate as output. The ac-
tion changes the state of the environment, and the value of
this state transition is communicated to the agent through
a scalar reinforcement signal, r. The agent’s behavior, B,
should choose actions that tend to increase the long-term
sum of values of the reinforcement signal. Formally, the
model consists of

• a discrete set of environment states, S;

• a discrete set of agent actions, A;

• and a set of scalar reinforcement signals.

The agent’s task is to find a policy π, mapping states to
actions, that maximizes a measure of utility.

A reinforcement-learning task that satisfies the Markov
property is called a Markov decision process (MDP).
Markov property is formally defined as: the environment’s
response at time t + 1 depends only on the state and action
representations at time t.

Dynamic programming techniques serve as the founda-
tion and inspiration for the learning algorithms to determine
the optimal policy given the correct model. The optimal
value of a state is the expected infinite discounted sum of
reward that the agent will gain if it starts in that state and
executes the optimal policy. Using π as a complete decision
policy, it is written

V ∗(s) = max
π

E(
∞∑

t=0

γtrt) (1)

This optimal value function is unique and can be defined as
the solution to the simultaneous equations

V ∗(s) = max
a

(R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)),∀s ∈ S

(2)
It asserts that the value of a state s is the expected instan-

taneous reward plus the expected discounted value of the

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

next state, using the best available action. Given the opti-
mal value function, we can specify the optimal policy as

π∗(s) = arg max
a

(R(s, a)+γ
∑

s′∈S

T (s, a, s′)V ∗(s′)) (3)

Planning by post-processing of RL. Sun and Sessions
[13] proposed an algorithm that addressed planning prob-
lem using reinforcement learning. This algorithm can be
applied to batch marketing planning problem, but it suffers
both computational inefficiency and non-optimality prob-
lems. In contrast to existing reinforcement learning al-
gorithms that generate only reactive plans, a two-stage
bottom-up process is devised, in which first reinforcement
learning/dynamic programming is applied to acquire a reac-
tive plan and then explicit plans are extracted from the re-
active plan. Plan extraction is based on a beam search that
performs temporal projection in a restricted fashion, guided
by the value functions resulting from reinforcement learn-
ing and dynamic programming. For convenience, we call
this algorithm QPlan in this paper.

Sun and Sessions’ QPlan algorithm post-processes the
reinforcement learning result to produce a sequence of ac-
tions, but it suffers two drawbacks. First, the computational
cost of learning the optimal Q values is expensive in the
first stage. Thus, the first stage has become a bottleneck
for the entire planner. Second, the optimal policy obtained
in the first stage cannot guarantee an optimal solution as
a result of applying and searching plans using this policy.
In the post-processing step, whenever the planner picks up
an action at a time step t, it chooses the same action that
can achieve the highest expected value functions for multi-
ple states, not different actions optimal for each individual
state. However, the assumption of value functions is that
the optimal value of a state could only be obtained if it takes
the action in the current state and follow the optimal policy
forever after. Only when this assumption is satisfied, the
optimality can be achieved. Therefore, a non-conditional
plan (i.e., a sequence of actions) may not correspond to the
optimal policy at all.

2.2. Planning by Frequent Sequence Mining

Mining sequential patterns has been studied extensively
in data mining literature. These algorithms fall into several
categories, including Apriori-based algorithms [1, 12, 7],
lattice-based algorithms SPADE [16] and projection-based
pattern-growth methods such as FreeSpan [2] and PrefixS-
pan [9]. These methods are aimed at finding highly frequent
sequences efficiently.

Applying sequence mining algorithms to finding charac-
teristics on highly successful plans, Han et al [3] presented
a method for generating frequent plans using a divide-and-
conquer strategy. The method exploits multi-dimensional

generalization of sequences of actions and extracts the in-
herent hierarchical structure and sequential patterns of plans
at different levels of abstraction. These patterns are used in
turn to subsequently narrow down the search for more spe-
cific patterns.

Zaki et al.[15] developed a technique for plan min-
ing which discovers sequence-patterns indicating high inci-
dence of plan failure. The PLANMINE sequence-mining
algorithm extracts patterns of events that predict failures
in databases of plan executions. It combines several tech-
niques for pruning out un-predictive and redundant patterns
which reduce the size of the returned rule set by more than
three orders of magnitude.

3. Planning Problem Formulation

We now formulate the plan mining problem. To explain
concepts easier, we consider such a problem in the market-
ing planning domain. We first consider how to build a state
space from a given set of customer records.

As in any machine learning and data mining schemes,
the input customer records consist of a set of attributes for
each customer, along with a class attribute that describes
the customer status. A customer’s attribute may be his age,
income, gender, credit with the bank, and so on. The class
attribute may be ”applied”, which is a Boolean indicating
whether the customer has applied and is approved for loan.
As with any real customer databases, the number of at-
tributes may be extremely large; for the KDD CUP 98 data,
there are a total of 481 attributes to describe each customer.
Of the many attributes, some may be removed when con-
structing a state. For convenience, we refer to this database
table as the Customer table. Table 2 shows an example of
Customer table.

Table 2. An example of Customer table
Customer Interest Rate Flyer Salary Signup

John 5% Y 110K Y
Mary 4% N 30K Y

...
Steve 8% N 80K N

A second source of input is the historical plan database.
This is a database that describes how the previous actions
have changed each customer’s attributes as a result of the
actions’ execution. For example, after a customer receives a
promotional mail, the customer’s response to the marketing
action is obtained and recorded. As a result of the mailing,
the action count for the customer in this marketing cam-
paign is incremented by one, and the customer may have
decided to respond by filling out a general information form

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

and mailing it back to the bank. The status of the customer
at any instant of time is referred to as a state, and state may
change as a result of executing an action. Thus, the histori-
cal plan database consists of state-action sequences, one for
each participating customer. This sequence database will
serve as the training data for our planner. Table 3 is an ex-
ample of plan database.

Table 3. An example of plan database
State0 Action0 State1 Action1 State2

S0 A0 S1 A1 S5

S0 A0 S1 A2 S5

S0 A0 S1 A2 S6

S0 A0 S1 A2 S7

S0 A0 S2 A1 S6

S0 A0 S2 A1 S8

S0 A1 S3

S0 A1 S4

Given the Customer table and the plan database, our first
task is to formulate the problem as a planning problem. In
particular, we wish to find a method to map the customer
records in the customer table into states using a statistical
classifier. This task in itself is not trivial because it maps a
large attribute space into a more concise space. The prob-
lem is more complicated when there are missing values in
the database. This involves the issues of data cleaning.

After the state space is obtained, we will use a second
classifier to classify the states into either desirable or un-
desirable states based on the training data provided in the
Customer table. In our implementation, we use decision
tree as the classification algorithm.

Next, the state-action sequences in the plan database will
be used for obtaining action definitions in a state space, such
that each action is represented as a probabilistic mapping
from a state to a set of states. To make the representation
more realistic, we will also consider the cost of executing
each action.

To summarize, from the two tables we can obtain the
following information:

• fs(ri) = sj maps a customer record ri to a state sj .
This function is known as the customer-state mapping
function;

• p(+|s) is a probability function that returns the prob-
ability that state s is in a desirable class. We call this
classifier the state-classification function;

• p(sk|si, aj) returns the transition probability that, after
executing an action aj in state si, one ends up in state
sk.

We now define the utility of a given plan. Recall that a
plan is a sequence of actions, starting from an initial state
s. A plan is divided into stages, where each stage consists
of one action and a set of possible outcome states resulting
from the action. In each stage the states can be different
possible states as a result of the previous action, and the
action in the stage must be a same, single action. Given a
plan P = a1a2 . . . an and an initial state s, we define the
utility U(s, P) of the plan as follows. Let P ′ be the subplan
of P after taking out the first action a1; that is, P = a1P

′.
Then the utility of the plan P is defined recursively

U(s, P) = (
∑

s′∈S

p(s′|s, a1) ∗ U(s′, P ′)) − cost(a1) (4)

where s′ is the next state resulting from executing a1 in state
s. If s is a leaf node, then the plan from the leaf node s is
empty, then

U(s, {}) = p(+|s) ∗ REWARD (5)

p(+|s) is the probability of leaf node s being in the de-
sired class, REWARD is a predefined constant that defines
the maximum possible reward for the customer to be in any
state.

Using Equation 4 and 5, we can evaluate the utility of a
plan in the initial state.

Given a set of initial items (records in a Customer table),
our goal is to find a sequence of actions for each initial state
that converts as many of the customers in that state from
the undesirable class to the desirable one – bringing in high
benefits while incurring low costs. To make the compu-
tation more efficient, we require that the plan satisfy some
constraints. For example, we can impose the following con-
straints:

• length constraint: the length of a plan is at most N ; or

• success constraint: the success probability is over a
threshold σ.

4 The AUPlan Algorithm

Given these customer database and plan traces, the AU-
Plan algorithm, shown in Table 4, will find all high util-
ity plans in a database using a minimum utility parameter
minSU; minSU is a minimum threshold value on the prod-
uct of utility of a plan and its support value, where sup-
port carries the same meaning as in association-rule mining
[1, 12, 7]. All plans generated as output must have the prod-
uct of utility and support greater than the minSU value.
A second input parameter to our algorithm is maxlength,
which denotes the maximum length of plans in which we
wish to find the high utility ones. Like Apriori-based
association-rule mining algorithms, AUPlan searches the

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

space of action sequences in a level-wise manner. Unlike
Apriori-based algoirthms, utility-based plan mining has to
use the utility of plans to guide the search. However, the
utility measure does not satisfy the anti-monotone property.

Table 4. AUPlan algorithm
Input: A plan database, minSU, maxlength
Output: High-utility plans.

Algorithm:
1. C1 = {sjai}, sjai is all possible one-step plans in

the planbase.
2. K = 1
3. While(K <= maxlength)

3.1 Count support for each plan P in Ck.
Calculate utility for each plan P in Ck.
Lk = {P ∈ Ck|sup(P) × U(P) ≥ minSU}

3.2 Generate Ck+1 from Ck.
3.3 K = K + 1.

End while
4. L = L1 ∪ L2 ∪ ... ∪ Lk

5. Partition the frequent sequences according to their
initial states.

6. For each initial state sj

6.1 For each plan P starting with sj

Calculate its utility U(sj , P).
6.2 Select the plan with highest utility for sj .

plan(sj) = argmaxP U(sj , P)
7. Output plans.

Even though plan utility itself does not satisfy the anti-
monotone property, we can design an upper bound of utility
to guarantee the anti-monotone property and still allow sig-
nificant pruning of the search space. In addition, using the
utility upper bound ensures the mining result accurate and
complete. For a plan P , we denote the upper bound value
to be upperUtil(P). We denote the support of a plan P to
be sup(P). Pruning plans using the upper bound amounts
to pruning a plan P if upperUtil(P)×sup(P) < minSU .
The application of the utility upper bound pruning is shown
in Table 5.

Suppose the number of sequences in the database is
|N |, the average length of sequences in the form of
siajsi+1aj+1...sn in the database is l, the mining process
iterates m times. The complexity of one database scan is
O(|Ck| ∗ |N | ∗ �l/2�). The overall time complexity for m
iterations is O(m ∗ |C| ∗ |N | ∗ �l/2�), where |C| is the av-
erage size of |Ck|.

The calculation of the transition probability is realized
by matrix multiplication. We define a n by n matrix Trk for
each action ak, where n is the number of states. Trk[i][j]
represents the probability that the transition from state si to

Table 5. Candidate generation and pruning
(Step 3.2) in AUPlan

(In Step 3.2)
if(sup(P) × U(P) ≥ minSU)
{

insert(Lk, P);
for(a in action set)
{

P ′ = append a to P ;
insert(Ck+1, P ′);

}
}

else if(sup(P) × U(P) < minSU)
{

for(a in action set)
{

P ′ = append a to P ;
if (upperUtil(P ′) × sup(P) < minSU)

prune P ′;
else

insert(Ck+1, P ′);
}

}

state sj occurs under the action ak. We use a 1Xn vector V ′

to represent the probability distribution among the states.
Initially, for a starting state sj of a plan, V0[j] = 1 and
V0[i] = 0,∀i �= j. For a plan sjai+1ai+2...ai+q , we calcu-
late V ′ = V0×Tri+1×Tri+2× ...×Tri+q . The time com-
plexity of vector and matrix multiplication is O(qn2). This
is the time complexity of calculating utility for one plan.
The time complexity for utility calculation for all plans in
Ck in one iteration is O(|Ck| ∗ qn2). The overall time com-
plexity of utility calculation for all plans in m iteration is
O(

∑m
k=1 |Ck| ∗ qn2), or O(m ∗ |C| ∗ qn2), where |C| is the

average size of |Ck|.
The overall time complexity for m iterations is O(m ∗

|C| ∗ (|N | ∗ �l/2�+ qn2)), where |C| is the average size of
|Ck|.

5. Experimental Results

In order to test the hypothesis that our approach can ef-
ficiently mine good plans as compared to the optimal so-
lutions, we run a series of simulated tests to compare AU-
Plan with planning using MDP and planning by exhaustive
search.

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

5.1. Data Generation

We used the IBM Synthetic Generator
(http://www.almaden.ibm.com/software/quest/Resources/
datasets/syndata.html) to generate a Customer dataset with
two classes and nine attributes.

The positive class has 30,000 records representing suc-
cessful customers and negative has 70,000 representing un-
successful ones. Those 70,000 negative records are treated
as starting points for plan database data generation. We car-
ried out the state abstraction and mapping by feature selec-
tion, only keeping four attributes out of nine. Those four
attributes were converted from continuous range to discrete
values. The state space has 400 distinct states. A classi-
fier is trained using the C4.5 decision tree algorithm [10]
on the Customer dataset. The classifier will be used later
to decide on the class of a state. However, since our focus
here is not on training the classifier, and since the choice
of the classifier is fairly independent from the subsequent
planning algorithms, we will not delve into details here.

We generated the plan database using a second simula-
tor. Each of the 70,000 negative-class records is treated as
an initially failed customer. A trace is then generated for
the customer, transforming the customer through interme-
diate states to a final state. We defined four types of actions,
each of which has a cost and impacts on attribute transitions.
An action’s impact on attribute transitions is defined by an
Action-Impact matrix. For example, Mij is a matrix repre-
senting the impact of Action i on Attribute j. The matrix
is n by n if attribute j has n different values. The matrix
element Mij [k][l] means: of the n different values of At-
tribute j, if the original value of Attribute j is the kth value,
after action i, there is Mij [k][l] probability that the value of
Attribute i is changed to the lth value. The plan database
generation algorithm is shown in Table 6.

Given the Customer table and plan database, AUPlan
will select plans in the state space. To evaluate the qual-
ity of plans found by the algorithm, we calculate the utility
of each initial state s with the plan under state s. Then add
up these utilities under different states. The sum of plan
utility, TU , reflects the overall quality of plans returned by
the algorithm over the state space.

TU =
∑

s∈S

maxiU(s, Pi) (6)

where Pi represents different plans starting from state s.

5.2. Experimental Result

We wish to test our algorithm AUPlan on plan databases
of different sizes against the MDP-based algorithm QPlan
and an exhaustive search benchmark. Our test data is set up

Table 6. Plan database Generation Algorithm

Input: maxlength, A set of initial failed states Si,
a set of actions Ai with Action-Impact matrices.

Output: Sequences of trace data with temporal order
< Si, Aj , Si+1, Aj+1, ..., Sn >

Algorithm:
for each initially failed state S

while(trace length < maxlength)
randomly select an action a;
generate next state S′ according to S and
Action-Impact matrix of a;
trace length ++;
if(S′ is a successful state)

break;
end while

end for

using the IBM Synthetic Generator in the following man-
ner. All plan databases have a total of 70,000 plans, but dif-
ferent plan databases have different sequence length limits.
Plans in the plan database will not exceed the length limit.
This variation in sequence length allows the different plan-
mining algorithms to return plans of different utility values.
Table 7 shows the features of the five plan databases. In
these databases, Switching Rate refers to the percentage of
customers in the 70,000 who initially belong to the failed
class but can be converted successfully by some plans in
corresponding plan database. It is expected that both QPlan
and AUPlan will return solution plans with increasing util-
ity values while incurring more computation when we move
from DB1 to DB5.

Table 7. Features of different plan databases
plan database Length Limit Switching Rate

(Max # of actions) (%)
Plan DB1 5 20
Plan DB2 9 40
Plan DB3 14 60
Plan DB4 29 80
Plan DB5 100 100

We compare three algorithms. The first is a most naive
algorithm, which serves both as a benchmark for quality (it
returns the highest possible utility) and efficiency (it per-
forms an exhaustive search). We call this algorithm the
OptPlan algorithm. Given an action set A and a parameter
maxlength for the maximum length of plans one wishes to
explore, OptPlan tries all possible combinations of actions

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

in a corresponding database to find optimal plans no longer
than maxlength in length. This method will produce op-
timal solutions in terms of plan quality. The drawback of
this method is its computation cost. Suppose the number of
actions in A is |A|, the maxlength equals L. The number
of length-1 plans is |A|, length-2 plans |A|2, . . . , length-L
plans |A|L. The number of plans, and therefore the compu-
tational time, grows exponentially with maxlength.

A second algorithm we compare to is the QPlan algo-
rithm in [13]. As described in the related work section, this
algorithm runs in two stages. In the first stage, we apply Q-
learning first to get an optimal policy. We then extract plans
guided by the Q-values through a beam search. Q-learning
is carried out using ”batch reinforcement learning” [8]. It
tries to estimate the value function Q(s, a) by the value-
iteration algorithm. The major computational bottleneck of
QPlan is thus from Q-learning.

To allow QPlan to terminate at any intermediate state
that has high enough utility, we add one special null action
to the Q-learning part of the QPlan algorithm. That is, be-
sides the Q-values of each state/action pair, we learn one
more Q-value Q(s, φ) for each state s, φ means ”no action,
stop at the current state”. Q(s, φ) is the reward that would
be obtained if no action is taken at state s. It is defined as:

Q(s, φ) = p(+|s) × REWARD (7)

When the agent finds that staying at a state s will bring
higher utility than taking any actions from that state, it
should stop taking any actions wisely. This can be realized
by comparing the Q-values of Q(s, φ) and Q(s, a) for all a
in the action set. If Q(s, φ) is greater than Q(s, a) for all
a, then the agent stops at state s. Otherwise, it picks up the
action a that maximizes Q(s, a).

We run all three algorithms, QPlan, AUPlan and Opt-
Plan, on the different plan databases and obtained the CPU
time as a function of the size of plan databases. We also
compared the utility of plans returned by each algorithm.
For each plan database, we converted the utilities of QPlan
and AUPlan as the percentage of the utility of the OptPlan
algorithm, which is at 100% level.

Figure 1 shows the CPU time of different algorithms ver-
sus the size of plan databases. The top line corresponds to
the CPU time of OptPlan which is at a constant for dif-
ferent databases in this test, because we set the parame-
ter maxlength to be a constant 6 for each plan database.
As maxlength is fixed, the number of plans by exhaus-
tive search in OptP lan is also the same for different plan
databases, so is the computational cost. In this case, the
only difference between different plan databases is the tran-
sition probability p(sk|si, aj). Note that the Y-axis is dis-
played in log scale. Thus the CPU time of OptPlan shows
that exhaustive search is simply not practical at all. AUPlan
is shown to be much more efficient than QPlan. This is ex-

100

1000

10000

100000

1 2 3 4 5

Plan databases

C
P
U
 T
im
e
 (
s)

Qplan

OptPlan

AUPlan

Figure 1. CPU time of Different algorithms ver-
sus different plan databases

0

20

40

60

80

100

1 2 3 4 5

Plan databases

R
el
a
ti
v
e
U
ti
li
ty
 (
%
)

QPlan

AUPlan

OptPlan

Figure 2. Relative Utility of Different algo-
rithms vs. different plan database

pected, since AUPlan’s mining and pruning algorithms is
able to scale up the planning problems.

We next turn to a comparison on the utility of plans
found. Figure 2 shows the relative utility of different al-
gorithms versus different plan databases. OptPlan has the
maximal utility by exhaustive search. AUPlan comes next,
about 80% of the optimal solution. QPlan have less than
60% of the optimal solution.

Figure 3 shows the relative utility of different algorithms
versus maxlength parameter used in the AUPlan algorithm.
maxlength is the maximum number of actions to be al-
lowed in a solution plan. In this experiment, we fixed a
database (DB3) and varied the maxlength parameter. When
the maxlength is three, AUPlan has about 85% of the op-
timal solution. For different values of maxlength, AUPlan
clearly represents a tradeoff between the optimal solution
OptPlan and the Q-learning based solution QPlan.

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

0

20

40

60

80

100

3 4 5 6

Plan maxlength

R
el
a
ti
v
e
U
ti
li
ty
 (
%
)

Qplan

AUPlan

OptPlan

Figure 3. Relative Utility of different algo-
rithms vs. maxlength of the plans

6 Conclusion and Future Work

We proposed a plan mining algorithm that integrates
both data mining and planning to obtain high-utility plans.
We add states, actions, utilities to sequence mining algo-
rithms and returns not only the frequent sequences, but ac-
tual plans for agents to execute. In large plan databases,
scalability is an important issue. Experimental results
demonstrate that the integrated data mining and planning
approach is more efficient and effective than planning by
MDP and exhaustive search. The quality of plans by AU-
Plan is about 80% of the optimal solution in our tests.

In the future, we will consider the following directions:

• Test our algorithms on more real plan data. Our algo-
rithms could have a broad applications, such as mar-
keting domains, robot world, etc. If we could apply to
real data, such as plans executed by robots, we could
make data mining truly actionable.

• We assume the intermediate states between plan exe-
cutions could be observed. If part of the data about
states is not observable, our algorithms have to be
modified. It is possible to formulate the problem as an
approximation to POMDP [5] when the intermediate
states are partially observable.

Acknowledgment The authors are supported by a Hong
Kong Government RGC grant and the Hong Kong Univer-
sity of Science and Technology.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
P. Yu and A. Chen, editors, Proceedings of 11th Interna-
tional Conference on Data Engineering (ICDE’95), pages

3–14, Taipei, Taiwan, March 1995. IEEE Computer Society
Press.

[2] J. Han, J. Pei, Mortazavi-Asl, Q. Chen, U. Dayal, and
M.-C. Hsu. Freespan: Frequent pattern-projected sequen-
tial pattern mining. In Proceedings of the 2000 Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD’00), pages 355–359, Boston, MA, August 2000.

[3] J. Han, Q. Yang, and E. Kim. Plan mining by divide-and-
conquer. In Proceedings of SIGMOD’99 Workshop on Re-
search Issues on Data Mining and Knowledge Discovery
(DMKD’99), 1999.

[4] L. Kaelbling, M. Littman, and A. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Re-
search, 4:237–285, 1996.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Plan-
ning and acting in partially observable stochastic domains.
Technical Report CS-96-08, 1996.

[6] C. Ling and C. Li. Data mining for direct marketing: Prob-
lems and solutions. In Proceedings of the Fourth Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD’98), pages 73–79, New York, 1998.

[7] F. Masseglia, F. Cathala, and P. Poncelet. The psp approach
for mining sequential patterns. Principles of Data Mining
and Knowledge Discovery, pages 176–184, 1998.

[8] E. Pednault, N. Abe, and B. Zadrozny. Sequential cost-
sensitive decision making with reinforcement learning. In
Proceedings of the Eighth International Conference on
Knowledge Discovery and Data Mining (KDD’02), pages
259–268, Edmonton, Canada, 2002.

[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix projected pattern growth. In
Proceedings of the 2001 International Conference on Data
Engineering (ICDE’01), pages 215–226, Heidelberg, Ger-
many, April 2001.

[10] J. R. Quinlan. C4.5: Programming for Machine Learning.
Morgan Kaufmann Pbulishers, San Mateo, CA, 1993.

[11] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Upper Saddle River, NJ, 1995.

[12] R. Srikant and R. Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In P. Apers,
M. Bouzeghoub, and G. Gardarin, editors, Proceedings of
5th International Conference on Extending Database Tech-
nology (EDBT’96), volume 1057, pages 3–17, SpringerVer-
lag, March 1996.

[13] R. Sun and C. Sessions. Learning plans without a priori
knowledge. Adaptive Behavior, 8(3/4):225–253, 2001.

[14] R. Sutton and A. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 1998.

[15] M. Zaki, N. Lesh, and M. Ogihara. Planmine: Sequence
mining for plan failures. In Proceedings of the Fourth In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD’98), 1998.

[16] M. J. Zaki. Spade: An efficient algorithm for mining fre-
quent sequences. Machine Learning, special issue on Unsu-
pervised Learning, 42(1/2):31–60, Jan/Feb 2001.

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03)
0-7695-1978-4/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

