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ABSTRACT
Frequent-pattern mining has been studied extensively on
scalable methods for mining various kinds of patterns in-
cluding itemsets, sequences, and graphs. However, the bot-
tleneck of frequent-pattern mining is not at the efficiency but
at the interpretability, due to the huge number of patterns
generated by the mining process.

In this paper, we examine how to summarize a collection
of itemset patterns using only K representatives, a small
number of patterns that a user can handle easily. The K

representatives should not only cover most of the frequent
patterns but also approximate their supports. A generative
model is built to extract and profile these representatives,
under which the supports of the patterns can be easily re-
covered without consulting the original dataset. Based on
the restoration error, we propose a quality measure function
to determine the optimal value of parameter K. Polynomial
time algorithms are developed together with several opti-
mization heuristics for efficiency improvement. Empirical
studies indicate that we can obtain compact summarization
in real datasets.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms

Keywords: frequent pattern, summarization, probabilistic
model

1. INTRODUCTION
Mining frequent patterns is an important data mining

problem with broad applications, including association rule
mining, indexing, classification, and clustering (see e.g., [2,
27, 26, 8, 15]). Recent studies on frequent-pattern mining
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have seen significant performance improvements on efficient
identification of various kinds of patterns, e.g., itemsets, se-
quences, and graphs ([2, 3, 14, 7]). Patterns with other
interesting measures were also examined extensively (see
e.g., [11, 5, 20, 25, 19]). However, the major challenge of
frequent-pattern mining is not at the efficiency but at the
interpretability : the huge number of frequent patterns makes
the patterns themselves difficult to explore, thus hampering
the individual and global analysis of discovered patterns.

There are two sources leading to the interpretability issue.
First, the rigid definition of frequent patterns often gener-
ates a large number of redundant patterns, most of which
are slightly different. A pattern is frequent if and only if
it occurs in at least σ fraction of a dataset. According to
this definition, any subset of a frequent itemset is frequent.
This downward closure property leads to an explosive num-
ber of frequent patterns. For example, a frequent itemset
with n items may generate 2n sub-itemsets, all of which are
frequent. The introduction of closed frequent itemsets [20]
and maximal frequent itemsets [11, 5] can partially allevi-
ate this redundancy problem. A frequent pattern is closed
if and only if a super-pattern with the same support does
not exist. A frequent pattern is maximal if and only if it
does not have a frequent super-pattern. Unfortunately, for
any pattern α, as long as there is a small disturbance on
the transactions containing α, it may generate hundreds of
subpatterns with different supports. We term the original
pattern, α, a master pattern and its deviated subpatterns,
derivative patterns. Intuitively, it is more interesting to ex-
amine the master patterns, rather than the derivative pat-
terns. Unfortunately, there is no clear boundary between
master patterns and their derivatives.

Secondly, as long as the number of discovered patterns
is beyond tens or hundreds, it becomes difficult for a user
to examine them directly. A user-friendly program should
present the top-k distinct patterns first and arrange the re-
maining patterns in a tree structure so that a user can start
quickly from a small set of representative patterns. The
patterns delivered by the existing top-k mining algorithms
such as [12] are the most frequent closed itemsets, but not
distinct ones. Users often prefer distinct patterns with little
overlap for interactive exploration.

In this paper, we intend to solve the pattern interpretabil-
ity issue by summarizing patterns using K representatives.
There are three subproblems around this summarization
task: what is the format of these representatives? how can
we find these representatives? and what is the measure of
their quality?



A number of proposals have been made to construct a
concise and lossless representation of frequent patterns. For
example, Pasquier et al. [20] introduced the concept of closed
frequent patterns, and Calders et al. [6] proposed mining all
non-derivable frequent itemsets. These kinds of patterns are
concise in the sense that all of the frequent patterns can be
derived from them. Unfortunately, the number of patterns
generated in these two approaches is still too large to handle.

Researchers have also developed lossy compression meth-
ods to summarize frequent patterns: maximal patterns by
Gunopulos [11], top-k patterns by Han et al. [12], error-
tolerant patterns by Yang et al. [28], and condensed pattern
bases by Pei et al. [22]. Nevertheless, the discrimination be-
tween patterns is not emphasized in these studies. Generally
speaking, a user may not only be interested in a small set
of patterns, but also patterns that are significantly differ-
ent. A recent approach proposed by Afrati et al. [1] uses K

itemsets to cover a collection of frequent itemsets. Their so-
lution is interesting but leaves the support integration issue
open: It is unknown how to cover the support information
in a summarization. In this paper, we investigate this issue
and further advance the summarization concept.

Given a set I of items o1, . . . , od and a transaction dataset
D = {t1, . . . , tn}, where each transaction is a subset of I.
The pattern collection F is a set of patterns α1, . . . , αm,
αi ⊆ I. We are interested in partitioning the pattern set
into K groups such that the similarity within each group is
maximized and the similarity between the groups is mini-
mized. Frequent patterns are distinguished from each other
not only because they have different composition, but also
because they have different supports. Suppose αi and αj

exhibit strong similarity on these two criteria. It is likely
that αi and αj can be merged to one pattern, αi ∪αj . This
is the intuition behind merging two patterns (or clustering
them in the same group). We develop a generative model
M to measure these two similarity criteria simultaneously.
Based on this model, we are able to evaluate the quality of
such merging by measuring the probability that αi and αj

are generated by M.
Using the above generative model, we can arrange all of

the patterns in a tree structure using a hierarchical agglom-
erative clustering method, where patterns with the highest
similarity are grouped together first. In this hierarchical
tree, a user can flexibly explore patterns with different sum-
marization granularity. Our methods can successfully com-
press thousands of frequent patterns into hundreds or even
tens of distinct patterns.

Our major contributions are outlined as follows.

1. We propose a statistical model which is good not only
at summarizing patterns, but also at integrating their
supports. After compressing numerous patterns to K

representatives, our methods are able to recover these
patterns and their supports from the K representa-
tives.

2. A principled similarity measure based on Kullback-
Leibler divergence is developed to group highly cor-
related patterns together. We show that the summa-
rization algorithm based on this measure can complete
in polynomial time.

3. We use K representatives to summarize the pattern set
and devise a mechanism to estimate the support of fre-
quent patterns from these K representatives only. In

addition, the estimation error is used to evaluate the
summarization quality. We monitor quality changes
over different Ks in order to determine the optimal
number of representatives for a given pattern set. To
the best of our knowledge, ours is the first algorithm
that can guide the selection of K, thus eliminating the
obstacle for the applicability of pattern summariza-
tion.

4. Empirical studies indicate that the method can build
very compact pattern summarization in many real data
sets. For example, on a typical mushroom dataset1, the
method can summarize thousands of frequent patterns
accurately using around 30 patterns.

The rest of the paper is organized as follows. Section 2
introduces the concept of pattern profile for similar frequent
patterns. The details of the similarity measure, the quality
evaluation function, as well as the summarization algorithms
are introduced in Section 3. We report our experimental
results in Section 4, discuss related work in Section 5, and
conclude our study in Section 6.

2. PATTERN PROFILE
Let I be a set of items o1, o2, . . . , od. A subset of I is

called an itemset. A transaction dataset is a collection of
itemsets, D = {t1, . . . , tn}, where ti ⊆ I. For any itemset
α, we write the transactions that contain α as Dα = {ti|α ⊆
ti and ti ∈ D}.

Definition 1 (Frequent Itemset). For a transaction

dataset D, an itemset α is frequent if |Dα|
|D|

≥ σ, where |Dα|
|D|

is called the support of α in D, written s(α), and σ is the
minimum support threshold, 0 ≤ σ ≤ 1.

Frequent itemsets have the Apriori property: any subset
of a frequent itemset is frequent [2]. Since the number of
subsets of a large frequent itemset is explosive, it is more
efficient to mine closed frequent itemsets only.

Definition 2 (Closed Frequent Itemset). A fre-
quent itemset α is closed if there does not exist an itemset
β such that α ⊆ β and Dα = Dβ.

Figure 1 shows a sample dataset, where the first column
represents the transactions and the second the number of
transactions. For example, 50 transactions have only items
a, c, and d ; and 100 transactions have only items b, c, and d.
There are 1, 150 transactions in D1. If we set the minimum
support at 40%, itemset 〈abcd〉 is frequent, and so are its
sub-itemsets. There are 15 frequent itemsets, among which
4 are closed. As one can see, the number of closed frequent
itemsets is much less than that of frequent itemsets.

transaction number

acd 50
bcd 100
abcd 1000

Figure 1: D1

1http://fimi.cs.helsinki.fi/data/mushroom.dat



Note that in Definition 1, for a transaction that con-
tributes to the support of a pattern, it must contain the
entire pattern. The rigid definition of closed frequent pat-
terns causes a severe problem. A small disturbance within
the transactions may result in hundreds of subpatterns that
could have different supports. There exists significant pat-
tern redundancy since many patterns are actually derived
from the same pattern. On the other hand, a pattern could
be missed if its support is below σ while its derivative sub-
patterns pass the threshold. In this situation, it is necessary
to assemble small correlated subpatterns together to recover
it. If we relax the exact matching criterion in the support
definition and allow one item missing in a pattern, 〈abcd〉
becomes the only pattern in D1.

Inspired by this example, we find that it is very important
to group similar itemsets together to eliminate redundant
patterns. We can merge the itemsets in each group to a
master pattern. A master pattern is the union of all the
itemsets within a group. Before we formalize the format of
pattern summarization, let us first examine what a good
summarization means.

Suppose α and β can be grouped together to form a master
pattern, α∪ β. That means the supports of α, β, and α∪ β

should not be significantly different from each other. Or
more fundamentally, Dα and Dβ should be highly correlated
so that the transactions containing α will likely contain β,
and vice versa.

transaction number

a 50
bcd 100
abcd 1000

Figure 2: D2

Although the support similarity is one of the major crite-
ria in determining whether we should summarize two pat-
terns into one, there is another measure that determines how
good a summarization is. Let us compare D1 with another
dataset D2 shown in Figure 2. For these two datasets, we
can summarize all the subpatterns of 〈abcd〉 as 〈abcd〉 be-
cause their supports are very close to each other. However,
the quality of these two summarizations is different. If we
allow approximate matching between a pattern and a trans-
action, pattern 〈abcd〉 is more likely contained by transac-
tions “abc” in D1 (one item missing) than by transactions
“a” in D2 (three items missing). That means, the summa-
rization of D1 as 〈abcd〉 has better quality. This intuition
will be clarified when we explain our pattern profile model
below.

According to the above discussion, we propose using a
probability profile to describe a representative, instead of
using an itemset only. The profile has a probability distri-
bution on items.

Definition 3 (Bernoulli Distribution Vector).
Let I = {o1, . . . , od} be a set of items, and xi be a boolean
random variable indicating the selection of oi. p(x) = [p(x1),
. . . , p(xd)] is a Bernoulli distribution vector over d dimen-
sions, where x1, . . . , and xd are independent boolean random
variables.

Suppose patterns α1, α2, . . . , αl are grouped together to

form a master pattern α1 ∪ α2 ∪ . . . ∪ αl. We can esti-
mate the distribution vector that generates the dataset D′ =⋃l

i=1
Dαi .

P (D′|θ) =
∏

tj∈D′

d∏

i=1

p(xi = t
i
j), (1)

where ti
j is the value of xi in the jth transaction and θ is a

set of probability {p(xi)}. When ti
j = 1, it means that the

jth transaction has item oi.
According to maximum likelihood estimation (MLE), the

“best” generative model should maximize the log likelihood
L(θ|D′) = log P (D′|θ), which leads to

∂L(θ|D′)

∂θ
= 0 (2)

The well-known result is

p(xi = 1) =

∑
tj∈D′ ti

j

|D′|
. (3)

That is, p(xi = 1) is the relative frequency of item oi in D′.
We use a probability distribution vector derived from MLE

to describe the item distribution in a set of transactions.
Here we formulate the concept of pattern profile.

Definition 4 (Pattern Profile). Let α1, α2, . . . , αl be
a set of patterns and D′ =

⋃
i
Dαi . A profile M over

α1, α2, . . ., and αl is a triple 〈p, φ, ρ〉. p is a probability dis-
tribution vector learned through Eq. (3). Pattern φ = ∪iαi

is taken as the master pattern of α1, . . . , αl. ρ = |D′|
|D|

is

regarded as the support of the profile, also written as s(M).

a b c d

D1 0.91 0.96 1.0 1.0
D2 0.91 0.96 0.96 0.96

Table 1: Pattern Profile

If we want to build a pattern profile for 〈abcd〉 in D1 and
D2, we can derive the distribution vectors for the sample
datasets in Figures 1 and 2. The resulting profiles are shown
in Table 1. For example, p(a) = 50+1000

50+100+1000
= 0.91. Table

1 demonstrates that the profile derived from D1 has higher
quality since it is much closer to a perfect profile, a profile
with p(xi = 1) = 1.0 for oi ∈ φ. In addition, without ac-
cessing the original dataset, we can conclude that 〈bcd〉 in
D1 is more frequent than the other size-3 subpatterns of
〈abcd〉. Pattern profile actually provides more information
than the master pattern itself; it encodes the distribution of
subpatterns. The key difference between our profile model
and the itemset model proposed by Afrati et al. [1] is that
we do not represent a collection of patterns using the max-
imal pattern only; instead, we apply a profile model that
can accommodate the patterns themselves as well as their
supports. Conceptually, our profile model is similar to the
well-known PSSM model in the DNA sequence alignment
[10].

The support of a pattern in a dataset D can be regarded
as the average probability of observing a pattern from a
transaction,

p(α) =
∑

t∈D

p(α|t) ∗ p(t),



where p(t) = 1

|D|
and p(α|t) = 1 if α ⊆ t, 0 otherwise.

In our profile model, we can regard the probability of ob-
serving a pattern as the probability that the pattern is gen-
erated by its corresponding profile times the probability of
observing this profile from a transaction,

p(α|t) ∼ p(α|M) ∗ p(M|t), (4)

where we assume the conditional independence p(α|M, t) =
p(α|M). According to this model, we can estimate the sup-
port for a given pattern α from the profile it belongs to.

Definition 5 (Estimated Support). Let M be a pro-
file over a set of patterns {α1, α2, . . . , αl}. The estimated
support of αk is written as ŝ(αk),

ŝ(αk) = s(M) ×
∏

oi∈αk

p(xi = 1), (5)

where s(M) =
|Dα1

∪...∪Dαl
|

|D|
, p is the distribution vector

of M and xi is the boolean random variable indicating the
selection of item oi in pattern αk.

Surprisingly, the calculation of an estimated support is
only involved with d + 1 real values: the d-dimensional dis-
tribution vector of a profile and the number of transactions
that support the profile. This result becomes one of the
most distinguishing features in our summarization model.
It means that we can use very limited information in a pro-
file to recover the supports of a rather large set of patterns.

3. PATTERN SUMMARIZATION
Our pattern profile model shows how to represent a set of

patterns in a compact way and how to recover their supports
without accessing the original dataset. However, the prob-
lem of selecting a set of similar patterns for summarization
is not yet solved. We formalize this summarization problem
as follows.

Definition 6 (Pattern Summarization). Given a set
of patterns F = {α1, α2, . . . , αm} that are mined from a
database D = {t1, t2, . . . , tn}, pattern summarization is to
find K pattern profiles based on the pattern set F .

A potential solution to the summarization problem is to
group frequent patterns into several clusters such that the
similarity within clusters is maximized and the similarity
between clusters is minimized. Once the clustering is done,
we can calculate a profile for each cluster.

We can construct a specific profile for each pattern that
only contains that pattern itself. Using this representation,
we can measure the distance between two patterns based
on the divergence between their profiles. The distance be-
tween two patterns should reflect the correlation between
the transactions that support these two patterns. Namely,
if two patterns α and β are correlated, Dα and Dβ likely
have large overlap; and the non-overlapping parts exhibit
high similarity. Several measures are available to fulfill this
requirement. A well-known one is the Kullback-Leibler di-
vergence between the distribution vectors in the profiles of
α (Mα) and β (Mβ),

KL(p||q) =
d∑

i=1

∑

xi∈{0,1}

p(xi) log
p(xi)

q(xi)
, (6)

where p is the distribution vector of Mα and q is the dis-
tribution vector of Mβ .

When p(xi) and q(xi) have zero probability, KL(p||q) =
∞. In order to avoid this situation, we smooth the proba-
bility of p(xi) (and q(xi)) with a background prior,

p
′(xi) = λu + (1 − λ)p(xi),

where λ is a smoothing parameter, 0 < λ < 1, and u could
be the background distribution of item oi.

When KL(p||q) is small, it means that the two distribu-
tion vectors p and q are similar, and vice versa. This could
be justified by Taylor’s formula with remainder,

KL(p(xi)||q(xi)) = θlog
θ

η
+ (1 − θ)log

1 − θ

1 − η

= θ − η + θo(
θ

η
− 1) + η − θ + (1 − θ)o(

1 − θ

1 − η
− 1)

= θo(
θ − η

η
) + (1 − θ)o(

η − θ

1 − η
),

where θ = p(xi = 1) and η = q(xi = 1). When 0 < θ < 1
and 0 < η < 1, it implies that

KL(p(xi)||q(xi)) < ǫ ⇔ p(xi) ∼ q(xi).

Note that for any oi ∈ α, p(xi = 1) = 1 and for any
oi ∈ β, q(xi = 1) = 1 (after smoothing, both of them are
close to 1, but not equal to 1). When two distribution vec-
tors p and q of patterns α and β are similar, transactions
containing α will likely contain β too, and vice versa. It in-
dicates that these two patterns are strongly correlated, i.e.,
p(xi) ∼ q(xi) ⇔ Dα ∼ Dβ . Likely, patterns α and β are
derivative patterns of the same pattern α ∪ β. Therefore,
KL-divergence can serve as a distance measure for the pat-
tern summarization task. This conclusion can further be
justified by the connection of KL-divergence with the fol-
lowing generative model.

Given several profiles {Mα}, and a pattern β, we have to
decide how likely β is generated by a profile Mα, or how
likely Dβ is generated by Mα. If Dβ is generated by Mα,
then we cannot tell the difference between Dβ and the trans-
actions Dα covered by Mα. In this case, we can put patterns
α and β in one cluster. The best profile in {Mα} should
maximize

P (Dβ |Mα) =
∏

tj∈Dβ

d∏

i=1

p(xi = t
i
j),

where p is the distribution vector of Mα. It is equivalent to
maximizing L(Mα) = log P (Dβ |Mα). Let q be the distri-
bution vector of pattern β.

L(Mα)

n
=

1

n

∑

tj∈Dβ

d∑

i=1

log p(xi = t
i
j)

=

d∑

i=1

ni

n
log p(xi = 1) +

n − ni

n
log p(xi = 0)

=

d∑

i=1

∑

xi∈{0,1}

q(xi) log p(xi), (7)

where n = |Dβ | and ni is the number of transactions (in



Dβ) having item oi. We may add the entropy of q,

H(q(x)) = −
d∑

i=1

∑

xi∈{0,1}

q(xi) log q(xi),

on the left and right side of Eq. (7). Hence,

L(Mα)

n
+ H(q(x))

=
d∑

i=1

q(xi = 1) log
p(xi = 1)

q(xi = 1)
+ q(xi = 0) log

p(xi = 0)

q(xi = 0)

= −KL(q(x)||p(x)) (8)

According to Eq. (8), the best profile maximizing P (Dβ |Mα)
is the profile that minimizes KL(q(x)||p(x)). That means
that KL-divergence can measure how likely a pattern is gen-
erated from a profile, indicating that it is a reasonable dis-
tance measure for grouping profiles.

In the rest of this section, we will introduce our sum-
marization methods based on hierarchical clustering and
K-means clustering, as well as the potential optimization
heuristics. We are not going to explore the details of clus-
tering algorithms, since essentially any clustering algorithm
based on KL-divergence can be used. We will focus on the
practical issues raised by pattern summarization.

3.1 Hierarchical Agglomerative Clustering
Hierarchical clustering produces a dendrogram where two

clusters are merged together at each level. The dendrogram
allows a user to explore the pattern space in a top-down
manner and provides a global view of patterns.

Algorithm 1 Pattern Summarization: Hierarchical Clus-
tering

Input: Transaction dataset D,
Pattern set F = {α1, . . . , αm},
Number of representatives K,

Output: A set of pattern profiles MC1
, . . . , MCK

.

1: initialize k = m clusters, each of which has one pattern;
2: compute the pairwise KL divergence among C1, . . . , Ck,

dij = KL(MCi ||MCj );
3: while (k > K)
4: select dst such that s, t = argmini,jdij ;
5: merge clusters Cs and Ct to a new cluster C;
6: DC = DCs ∪ DCt ;
7: IC = ICs ∪ ICt ;
8: update the profile of C over DC by Eq. (3);
9: calculate the KL-divergence between C and

the remaining clusters;
10: k = k − 1;
11: return;

Algorithm 1 outlines the pattern summarization process
using a hierarchical clustering approach. At the beginning,
it calculates the KL-divergence between any pair of patterns.
In the following iterations, it repeats Lines 3-10 by select-
ing the two clusters which have the smallest KL-divergence
(Line 4) and merging them into one cluster. The iteration
procedure terminates when the total number of clusters be-
comes K.

A cluster C is defined as a collection of patterns, C ⊆ F .
The set of transactions that contain a pattern in C is written
as DC = ∪αDα, α ∈ C and the master pattern in C is
written as IC = ∪αα, α ∈ C. The newly merged cluster
inherits the transactions that support the original clusters
and the patterns that are owned by the original clusters. It
has a newly built profile over the merged transactions (Line
8).

The profiling construction has to scan the dataset once,
thus taking O(nd) for each merge operation, where n is the
number of transactions in D, and d is the size of the global
itemset I. The initial KL-divergence construction (Line 2)
takes O(m2d), where m is the number of patterns. For each
cluster Ci, we can maintain a distance list between Ci and
other clusters and sort them in increasing order. Whenever
a new cluster C is generated, the two merged clusters are
deleted from the distance lists in time O(m). A new distance
list is created for C and sorted in time O(mlogm). Note
that we need not insert the distance from C in the existing
distance lists. The minimum KL-divergence can be found
by checking the first element in O(m) distance lists. There-
fore, hierarchical clustering itself can be done in O(m2logm).
Hence, Algorithm 1 can finish in O(m2logm + m2d + mnd).

When the dataset is very large, it may be expensive to
recompute the profile by scanning the whole dataset. For-
tunately, it is effective to profile a new cluster through sam-
pling based on Hoeffding bound [13].

3.2 K-means Clustering
One major computation cost in hierarchical clustering is

the pair-wise KL-divergence calculation. In each iteration,
Algorithm 1 has to calculate O(m) times of KL-divergence.
In total, Algorithm 1 has to do O(m2) KL-divergence com-
putation. One approach to eliminate the quadratic cost is to
adopt K-means clustering. Using K-means, we can achieve
very fast clustering for a large number of patterns.

Algorithm 2 Pattern Summarization: K-means

Input: Transaction dataset D,
Pattern set F = {α1, . . . , αm},
Number of representatives K,

Output: A set of pattern profiles MC1
, . . . , MCk

.

1: randomly select K patterns as the initial clusters;
2: for each pattern α do

assign its membership to the cluster that has the
smallest KL-divergence KL(Mα||MCj );

3: update the profiles of newly formed clusters by Eq. (3);
4: repeat Lines 2-3 until small change in MC1

, . . .MCK
or

the summarization quality does not increase;
5: return;

Algorithm 2 outlines the major steps of the K-means al-
gorithm. In the initial step, Algorithm 2 randomly selects
K patterns as the initial cluster centers. In the following
iterations, it reassigns patterns to clusters according to the
KL-divergence criterion. The profiles of newly formed clus-
ters are then updated (Line 3 Algorithm 2). This procedure
will terminate until there is only small change in MC1

, . . . ,

and MCK
or it meets other stop conditions, e.g., the sum-

marization quality does not increase any more (see Section
3.4).



Conceptually, Algorithm 2 is similar to distributional clus-
tering [4] and divisive clustering [9]. The first difference is
that we treat each dimension as a separate distribution while
other approaches put all dimensions together and create a
multinomial model. The second difference is that our qual-
ity evaluation function (see Section 3.4) is different from the
mutual information loss function proposed by Dhillon et al.
[9]. The third difference is that distributional clustering or
divisive clustering mixes the profiles directly by assigning
equal weight to each instance, while we prefer to recompute
the profiles through the original dataset. In the experiment
section, we will illustrate the performance difference between
these two strategies.

The time complexity of Algorithm 2 is O((mkd + knd)r),
where m is the number of patterns, k is the number of clus-
ters, d is the number of distinct items, n is the number of
transactions, and r is the number of iterations. Generally K-
means clustering can complete clustering faster than hierar-
chical clustering. However, it cannot provide a hierarchical
clustering tree for pattern navigation. Another drawback of
K-means is that its output is highly related with the seed
selection (Line 1, Algorithm 2), which is undesirable in some
applications.

3.3 Optimization Heuristics
We develop two optimization heuristics to speed up the

clustering process.

3.3.1 Closed Itemsets vs. Frequent Itemsets
We can start the clustering process either from closed fre-

quent itemsets or from frequent itemsets. The following
lemma shows that either way generates the same result.

Lemma 1. Given patterns α and β, if α ⊆ β and their
supports are equal, then KL(Mβ ||Mα)=KL(Mα||Mβ) = 0.

Proof. If α ⊆ β and s(α) = s(β), then Dα = Dβ , which
leads to the above lemma.

Any frequent itemset must have a corresponding closed
frequent itemset. According to Lemma 1, their profiles have
zero KL-divergence, indicating that the clustering based on
frequent itemsets will be the same as the clustering based
on closed frequent itemsets. Therefore, we can summarize
closed frequent itemsets instead of frequent itemsets. Since
the number of closed frequent itemsets is usually less than
that of frequent itemsets, summarizing closed itemsets can
significantly reduce the number of patterns involved in clus-
tering, thus improving efficiency.

3.3.2 Approximate Profiles
Another issue is whether we should rebuild the profile

from scratch as Algorithm 1 (Line 8) and Algorithm 2 (Line
3) do. The profile updating dominates the computation in
both algorithms since it has to access the original dataset.
A potential solution is to mix two profiles directly without
checking the original dataset in Algorithm 1,

p(x) =
|Cs|

|Cs| + |Ct|
ps(x) +

|Ct|

|Cs| + |Ct|
pt(x), (9)

or weigh each pattern’s profile equally in Algorithm 2,

p(x) =
1

|C|

∑

α∈C

pα(x). (10)

This approximation can significantly improve clustering
efficiency. However, it may affect the summarization qual-
ity since the mixed profile may no longer reflect the real dis-
tribution. Traditional clustering algorithms usually assume
the instances are sampled independently (i.i.d). However, in
our case, the i.i.d. assumption for frequent patterns is not
valid. Most of the frequent patterns are not independent at
all. It may be incorrect to have an equal weight for each
pattern or weigh two clusters according to their sizes.

3.4 Quality Evaluation
One way to evaluate the quality of a profile is to calcu-

late the probability of generating its master pattern from its
profile, p(φ) =

∏
oi∈φ

p(xi = 1). The closer p(φ) to 1, the
better the quality. Because the master patterns from differ-
ent profiles have different sizes, it is pretty hard to combine
multiple p(φ)s to give a global quality assessment. We are
going to examine an additional measure in this section.

Through Eq. (5) in Section 2, we show that the support of
a pattern covered by one profile can be estimated through
its distribution vector directly. A high quality profile should
have this estimation as close as possible to the real sup-
port. When we apply this measure to a set of profiles, we
encounter an ambiguity issue since one pattern may have
different estimated supports according to different profiles.
Suppose we are given minimum information: a set of profiles,
each of which is a triple 〈distribution vector, master pattern,
support〉. The information about which pattern belongs to
which profile is not given. For any pattern α, it could be a
subset of several master patterns. In this situation, we may
get multiple support estimations for α. Which one should
we select? A simple strategy is to select the maximum one,

ŝ(αk) = maxM s(M) ×
∏

oi∈αk

pM(xi = 1). (11)

This strategy is consistent with the support recovery for a
frequent pattern given a set of closed frequent patterns. Let
F be a set of closed frequent patterns. For any frequent
pattern α, its support is the same as the maximum support
of its super-pattern β, α ⊆ β and β ∈ F .

Definition 7 (Restoration Error). Given a set of
profiles M1, . . . ,MK and a testing pattern set T = {α1, α2,

. . . , αl}, the quality of a pattern summarization can be evalu-
ated by the following average relative error, called restoration
error,

J =
1

|T |

∑

αk∈T

|s(αk) − ŝ(αk)|

s(αk)
. (12)

Restoration error measures the average relative error be-
tween the estimated support of a pattern and its real sup-
port. If this measure is small enough, it means that the
estimated support of a pattern is quite close to its real sup-
port. A profile with small restoration error can provide very
accurate support estimation.

The measure in the above definition is determined by the
testing pattern set. We may choose the original patterns
(which have been summarized into K master patterns) as
the testing case. We can also assess the quality over the
itemsets that are estimated to be frequent, i.e.,

Jc =
1

|T ′|

∑

αk∈T ′

|ŝ(αk) − s(αk)|

ŝ(αk)
, (13)



where T ′ is the collection of the itemsets generated by the
master patterns in profiles and ŝ(αk) ≥ σ.

The measure J tests “frequent patterns”, some of which
may be estimated as “infrequent”, while Jc tests “estimated
frequent patterns”, some of which are actually “infrequent”.
Therefore, these two measures are complementary to each
other. As long as Jc is relatively small, we can obtain the
support of a generated itemset with high accuracy and de-
termine whether it is frequent or not. The following lemma
shows that if we summarize closed frequent itemsets using
K profiles, the subsets generated by the master patterns in
these K profiles will cover all of the frequent itemsets.

Lemma 2. Let {M1, . . . ,MK} be a set of profiles learned
over a collection of closed frequent itemsets {α1, . . . , αm}
using hierarchical clustering or K-means clustering. For any
frequent itemset π, there must exist a profile Mk such that
π ⊆ φk, where φk is the master itemset of Mk.

Proof. For any frequent itemset π, there exists a closed
frequent itemset αi such that π ⊆ αi. αi must belong to one
cluster, say Mk. Hence, αi ⊆ φk, where φk is the master
itemset of Mk. Therefore, π ⊆ φk.

3.5 Optimal Number of Profiles
The summarization quality is related to the setting of K,

i.e., the number of profiles. A smaller K is always preferred.
Nevertheless, when the summarization is too coarse, it may
not provide any valuable information. In order to determine
the optimal number of profiles, we can apply a constraint
on the summarization result. For example, for any profile
M = (p, φ, ρ), we require p(xi) ≥ 0.9 for any i such that
oi ∈ φ. The optimal number is the smallest K that does not
violate this constraint. In this section, we examine the sum-
marization quality change to determine the optimal value of
K.

When two distribution vectors p and q calculated from
patterns α and β are close to each other, transactions con-
taining α will likely contain β too, and vice versa. Thus, Dα

is similar to Dβ and Dα ∪Dβ is similar to both Dα and Dβ .
Let r be the probability distribution vector over Dα ∪ Dβ .
When p and q are close, the mixture r will be close to them
too. Therefore, the support estimation of any pattern ac-
cording to Eq. (11) will not change much when we merge α

and β. It implies that the merge of two similar profiles will
not significantly change the summarization quality.

On the other hand, if a clustering algorithm has to merge
two profiles Mα and Mβ that have a large KL-divergence,
it may dramatically change the estimated support of a given
pattern. Therefore, when we gradually decrease the value of
K, we will observe the deterioration of the summarization
quality. By checking the derivative of the quality over K,

∂J

∂K
,

we can find the optimal value of K practically: If J increases
suddenly from K∗ to K∗−1, K∗ is likely to be a good choice
for the optimal number of profiles.

Figure 3 shows the summarization quality along the num-
ber of profiles for a real dataset, Mushroom. The support
threshold is set at 25%. We use hierarchical clustering to
summarize this pattern set. The curve indicates that there
are three optimal candidates to choose: 30, 53, and 76. A
user can select one of them for examination based on their
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Figure 4: Mushroom 25%: △J

need on the summarization quality. Figure 4 shows the qual-
ity change along the number of profiles. The derivative of J

clearly indicates three huge quality changes.

4. EMPIRICAL STUDY
In this section, we provide the empirical evaluation for the

effectiveness of our summarization algorithm. We use two
kinds of datasets in our experiments: three real datasets and
a series of synthetic datasets. The clustering algorithms are
implemented in Visual C++. All of our experiments are
performed on a 3.2GHZ, 1GB-memory, Intel PC running
Windows XP.

4.1 Real Datasets
Mushroom. The first dataset, Mushroom, is available in
the machine learning repository of UC Irvine. We obtained
a variant from FIMI repository. This dataset consists of
8124 hypothetical mushroom samples with 119 distinct fea-
tures. Each sample has 23 features. A support threshold of
25% was used to collect 688 closed frequent patterns (55452

frequent itemsets).
Figure 5 shows the average restoration error over the closed

frequent patterns (J) and the average restoration error over
the frequent itemsets generated by the resulting profiles (Jc).
The two restoration errors J and Jc are quite close. This
indicates that we can use the K representative profiles to
properly estimate the supports of the original closed pat-

2The number of frequent itemsets is slightly different from
the reported [1]; our results are verified by several public
softwares in FIMI repository, http://fimi.cs.helsinki.fi/src.
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Figure 5: Mushroom: Hierarchical Clustering

terns as well as the supports of the patterns not in the origi-
nal set but derivable from the profiles. We also examined the
standard deviation of the two restoration errors and found
they are pretty close to J or Jc. From this aspect, our sum-
marization method is stable and accurate in the restoration
of the patterns and their supports.
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Figure 6: Mushroom

Figure 6 shows the average restoration error (J) over hier-
archical clustering and K-means clustering with or without
applying the profile approximation heuristics. In KMeans-
Apx and Hierarchical-Apx, we do not go back to the dataset
to rebuild the cluster profilers. Instead, we directly interpo-
late the existing profiles as described in Section 3.3.2. Over-
all, the 688 closed patterns can be successfully summarized
into 30 profiles with good quality – the average restoration
error at 30 profiles is less than 0.1. In other words, the error
of estimating the support for a pattern is less than 10% of
that pattern’s real support, and even as low as 5% when we
summarize them into 53 profiles or over.
BMS-Webview1. The second dataset, BMS-Webview1,
is a web click-stream dataset from a web retailer company:
Gazelle.com. The data was provided by Blue Martini Soft-
ware [17]. In this experiment, we set the minimum sup-
port threshold at 0.1% and got 4,195 closed itemsets. BMS-
Webview1 is completely different from the Mushroom dataset.
It consists of many small frequent itemsets over a large set
of items (itemsets of size 1–3 make up 84.55% of the total
4,195 patterns versus 14.10% for Mushroom), which makes
the summarization more difficult.

Figure 7 shows the average restoration error over hier-
archical clustering and K-means clustering with or without
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Figure 7: BMS-Webview1

applying the profile approximation heuristics. As shown in
the figure, when we use the profile approximation heuristics
in K-means, the summarization quality is much worse than
that of building the profiles from scratch. The restoration
at K = 100 is 259% for K-means with the profile approxi-
mation while it is around 60% for hierarchical clustering or
K-means without profile approximation.

Overall, the summarization quality for BMS-Webview1
patterns is worse than that of Mushroom. When we use
1,200 profiles to summarize the patterns, the restoration
error is 17%. The difference is due to the underlying dis-
tribution of patterns. There is much redundancy between
patterns in Mushroom. By examining the 688 closed pat-
terns of Mushroom, we can easily identify ”rough” groups
of patterns, where patterns in each group look very similar
in composition and differ in support by only a very small
number. Intuitively, these patterns can be summarized ac-
curately. In BMS-Webview1, patterns are much shorter and
sparser. Apparently, it is not good to put two itemsets into
one cluster while they have very little overlap in composi-
tion. Such pattern distribution can be also explained from
the data characteristics, i.e., the click-stream dataset usu-
ally contains random and short user access sessions, where
the pattern explosive problem is not as serious as in dense
datasets like Mushroom.
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Figure 8: Replace

Replace. The third dataset, Replace, is a program trace
dataset collected from the “replace” program, one of Siemens
Programs, which are widely used in software engineering re-
search [16]. We recorded the program call and transition



information of 4,395 correct executions. Each type of pro-
gram calls and transitions is taken as one item. Overall,
there are 66 kinds of calls and transitions. The frequent
patterns mined in this dataset may reveal the normal pro-
gram execution structures, which can be compared with the
abnormal executions for bug isolation.

We set the minimum support threshold at 3% in this
experiment and obtained 4, 315 closed frequent execution
structures. Figure 8 shows the average restoration error over
hierarchical clustering and K-means clustering.

All methods except K-means clustering with profile ap-
proximation achieve good summarization quality. The qual-
ity of the three methods is quite close and the restoration
error is about 6% when we use 200 clusters. The curves
indicate that there are two optimal K values to choose: 40
and 80, since the error decreases significantly at these points
compared with their neighboring points. For K-means with
profile approximation, we further examine the summariza-
tion quality. Though the average restoration error does not
decrease as we increase the number of profiles, the standard
deviation of the error does lower – the standard deviation is
21.37% at K = 20 versus 7.39% at K = 200. It means that
the summarization quality improves as we use more profiles.

4.2 Synthetic Datasets
In this experiment, we want to study how the underlying

distribution in patterns can affect the summarization qual-
ity. We used a series of synthetic datasets with different
distributions to test it. The synthetic data generator is pro-
vided by IBM and is available at http://www.almaden.ibm.
com/software/ quest/Resources/index.shtml. Users can spec-
ify parameters like the number of transactions, the number
of distinct items, the average number of items in a transac-
tion, etc., to generate various kinds of data.

We generated seven transaction datasets, where we vary
the number of items to control the distribution of patterns in
these datasets. Each dataset has 10,000 transactions, each
of which has an average of 20 items. The number of distinct
items in each dataset varies from 40, 60, up to 160. Since
it may not be fair to compare the result using a fixed sup-
port threshold in these datasets, we intentionally obtained
the top-500 frequent closed patterns from each dataset and
summarize them into 50 and 100 profiles using hierarchical
clustering. Figure 9 shows the average restoration error J .
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Figure 9: Synthetic Data: Hierarchical Clustering

As shown in Figure 9, the summarization quality deteri-
orates as the number of distinct items in the datasets in-

creases. When the number of items is small, the dataset
has a dense distribution. There exists much redundancy
between patterns. So, they can be summarized with small
restoration errors; while for a dataset with a large num-
ber of items, the patterns are sparsely distributed. Thus,
it is harder to summarize them with reasonably good qual-
ity. This experiment shows that the summarization quality
has close relation with the patterns themselves. This result
is also observed in the previous real datasets. Dense data
with high redundancy can be summarized with good quality
while sparse patterns with little overlap cannot be grouped
together very well.
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Figure 10: Synthetic Data: Efficiency

We also tested the running time of our pattern summa-
rization methods over six synthetic datasets by varying the
number of transactions from 1,000, 10,000 up to 50,000. A
set of about 1,100 closed patterns is obtained from each
dataset using a minimum support of 10%. We tested hi-
erarchical clustering and K-means clustering with or with-
out applying the profile approximation heuristics over these
datasets. Figure 10 shows the running time. The running
time of Hierarchical-Apx and KMeans-Apx does not change
with the transaction number because we simply interpolate
the profiles as described in Section 3.3.2. The running time
of hierarchical clustering and K-means clustering without
using profile approximation heuristics increases linearly with
the number of transactions. This figure shows that profile
approximation can really improve the efficiency.

5. RELATED WORK
Lossless methods have been proposed to reduce the output

size of frequent itemset patterns. Pasquier et al. [20] devel-
oped the concept of closed frequent patterns, and Calders
et al. [6] proposed mining non-derivable frequent itemsets.
These kinds of patterns are concise in the sense that all of
the frequent patterns can be derived from these represen-
tations. Lossy compression methods were also developed in
parallel: maximal patterns by Gunopulos [11], error-tolerant
patterns by Yang et al. [28] and Pei et al. [23], and Top-k
patterns by Han et al. [12]. These methods can reduce the
pattern set size further. For example, in maximal pattern
mining, all of the frequent subpatterns are removed so that
the resulting pattern set is very compact. Besides lossless
and lossy methods, other concepts like support envelopes
[24] were also proposed to explore association patterns.

Our pattern approximation model is also related to the
probabilistic models developed by Pavlov et al. [21] for



query approximations, where frequent patterns and their
supports are used to estimate query selectivity. Mielikäinen
and Mannila [18] proposed an approximation solution based
on ordering patterns. The closest work to our study is a
novel pattern approximation approach proposed by Afrati et
al. [1], which uses k frequent (or border) itemsets to cover
a collection of frequent itemsets. Their result can be re-
garded as a generalization of maximal frequent itemsets. In
[1] Afrati et al. mentioned the support integration issue: It is
unknown how to integrate the support information with the
approximation. In this paper, we solved this problem, thus
advancing the summarization concept. Interestingly, the K

representatives mined by our approach can be regarded as
a generalization of closed frequent itemsets.

6. CONCLUSIONS
We have examined how to summarize a collection of item-

set patterns using only K representatives. The summariza-
tion will solve the interpretability issue caused by the huge
number of frequent patterns. Surprisingly, our profile model
is able to recover frequent patterns as well as their supports,
thus answering the support integration issue raised by Afrati
et al. [1]. We also solved the problem of determining the op-
timal value of K by monitoring the change of the support
restoration error. Empirical studies indicate that we can
obtain very compact summarization in real datasets. Our
approach belongs to a post-mining process; we are working
on algorithms that can directly apply our profiling model to
the mining process.
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