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ABSTRACT
Observed in many applications, there is a potential need
of extracting a small set of frequent patterns having not
only high significance but also low redundancy. The
significance is usually defined by the context of applica-
tions. Previous studies have been concentrating on how
to compute top-k significant patterns or how to remove
redundancy among patterns separately. There is limited
work on finding those top-k patterns which demonstrate
high-significance and low-redundancy simultaneously.

In this paper, we study the problem of extracting
redundancy-aware top-k patterns from a large collection
of frequent patterns. We first examine the evaluation
functions for measuring the combined significance of a
pattern set and propose the MMS (Maximal Marginal
Significance) as the problem formulation. The problem
is known as NP-hard. We further present a greedy al-
gorithm which approximates the optimal solution with
performance bound O(log k) (with conditions on redun-
dancy), where k is the number of reported patterns.
The direct usage of redundancy-aware top-k patterns
is illustrated through two real applications: disk block
prefetch and document theme extraction. Our method
can also be applied to processing redundancy-aware top-
k queries in traditional database.

Categories and Subject Descriptors: H.2.8 [Data-
base Management]: Database Applications - Data Min-
ing

General Terms: Algorithms

Keywords: Pattern Extraction, Significance, Redun-
dancy

1. INTRODUCTION
Frequent patterns are widely used in sophisticated
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data mining and database applications, including as-
sociation rule mining, classification, clustering, and in-
dexing. Recent progress on frequent-pattern mining has
seen two trends: (1) measuring significance of various
kinds of patterns, such as tf-idf scores [23] for text top-
ics and position-weighted matrix score [17] for biological
motifs; and (2) eliminating redundancy among discov-
ered patterns, e.g., lossless compression using closed [18]
or non-derivable [4] patterns, and lossy summarization
using ordered patterns [16], cover-set [1], clustering [25],
or pattern profiles [26]. These studies often emphasize
significance and redundancy separately, while many ap-
plications need to consider these two measures together.

One interesting example is correlation-directed disk
block prefetch. A disk access sequence is a sequence of
blocks, e.g., b35, b100, b9039, ..., where bi represents the
ith block on the disk. Suppose an access to b35 is repeat-
edly followed by an access to b9039, it may improve the
I/O performance if these two blocks are arranged adja-
cent to each other and fetched together when block b35

is accessed. Li et al. [14] show that correlation-directed
prefetch can improve the average I/O response time by
up to 25%. The system uses association rules as a de-
cision system: Whenever the left-hand side of a rule
is satisfied, the blocks on the right-hand side are pre-
fetched. However, there are considerable redundancy
existing in association rules, for example, one can gen-
erate more than 200k rules for one I/O trace collected
at the HP Lab [20]. Due to the resource limitation, a
system may only want to pick a subset of important
yet divergent rules. The significance of each rule can be
measured by its additional value to the existing rules.

The second example is document theme extraction [3,
15], where each document (or each sentence) is treated
as a transaction. The goal is to extract the frequent
patterns of term occurrence, called themes, buried in a
large set of documents. Given a document set, the top-
k frequent patterns returned by a mining algorithm are
not necessarily the best k themes one can find. Many
frequent term sets could overlap significantly with each
other. Such overlapping may render top-k important
themes very redundant.

As shown in the above two applications, a useful com-
pact pattern set should simultaneously demonstrate high
significance and low-redundancy. We call this kind of
patterns redundancy-aware top-k patterns.

Previous studies on pattern compression (summariza-
tion) [1, 16, 25, 26] are able to approximate a collection



of frequent patterns using a small pattern set, which
aims to minimize the frequency restoration error for
those patterns that are not selected. A close work to
this paper is the pattern ordering problem studied in
[16], where the authors rank patterns such that the top-
k patterns are able to best summarize the whole set
of frequent patterns. The major difference between our
problem and all of the previous works is that we empha-
size both significance and redundancy on the selected
top-k patterns, and the pattern significance is defined
by the context of the applications; while summarizing
the whole collection of the patterns is not our goal. The
previous works only consider pattern relevance rather
than significance, thus may not provide a solution to
redundancy-aware top-k pattern extraction.

Previous works on top-k frequent pattern mining [10]
assume patterns are independent, which unfortunately
is not the case. Figure 1(a) shows a set of frequent
patterns where each circle represents one pattern whose
significance is colored in gray scale, and the distance be-
tween two circles reflects their relevance. The intuition
of redundancy-aware top-k patterns is illustrated in Fig-
ure 1(b) as opposed to the traditional top-k patterns in
Figure 1 (c) and the k summarized patterns in Figure
1(d). Redundancy-aware top-k patterns make a trade-
off between significance and redundancy. The three pat-
terns pointed by arrow in Figure 1(b) have high signif-
icance and low redundancy. On the other hand, the
traditional top-k approach picks patterns based on sig-
nificance solely and a pattern summarization approach
picks patterns based on relevance solely.

significance

(a) a set of patterns

significance + relevance

(b) redundancy-aware
top-k

significance

(c) traditional top-k

relevance

(d) summarization

Figure 1: Redundancy-aware Top-k, Traditional

Top-k, and Summarization

In this paper, we formulate the redundancy-aware
top-k pattern extraction problem through a general rank-
ing model which integrates two measures, significance
and redundancy, into one objective function. We first
examine the evaluation functions for measuring the com-
bined significance of a pattern set and propose the MMS

(Maximal Marginal Significance) as the problem formu-
lation. The problem is known as NP-hard. We further
present a greedy algorithm which approximates the op-
timal solution with performance bound O(log k) , where

k is the number of reported patterns.
Although our work focuses on pattern extraction, the

methodology developed in this paper can also be ap-
plied to many top-k query applications [2] to help users
explore query results more effectively. More specifically,
since similar results are often ranked closely, the top-k
query results may not provide enough diversified infor-
mation to users. Our method can be used to get the
redundancy-aware top-k ranking.

The rest of the paper is organized as follows. Section 2
introduces the concept of redundancy-aware top-k pat-
tern extraction and its problem formulation. A com-
parison of the alternative objective functions is made in
Section 3. We propose an improved algorithm for the
MMS problem in Section 4. Section 5 presents two case
studies of document theme extraction and correlation-
directed prefecth. The related work is presented in Sec-
tion 6 and we conclude our study in Section 7.

2. PROBLEM FORMULATION
In this section, we first discuss measures for pattern

significance and pattern redundancy, and then propose
the formal problem formulation.

2.1 Significance and Redundancy
Here we define significance and redundancy in the

context of this paper.

Definition 1. (Pattern Significance) A significance
measure S is a function mapping a pattern p ∈ P to a
real value such that S(p) is the degree of interestingness
(or usefulness) of the pattern p.

There are several previous studies on the significance
(or interestingness) measure of patterns, which include
[11] on rule interestingness, and [22, 24, 12] on inter-
esting measure of frequent item-set or association pat-
terns. According to [22], the significance measure can
be divided into objective measures and subjective mea-
sures. Commonly used objective measures include sup-
port, confidence, lift, coherence, and tf-idf for text pat-
terns and attribute values for database tuples. Subjec-
tive measure is usually a relative score compared with
some prior knowledge or background model. It mea-
sures the unexpectedness of a pattern by computing its
divergence from the background model. [11, 12] are ex-
amples that use subjective measures.

We further extend the expression S to combined sig-
nificance and relative significance. Let S(p, q) be the
combined significance of patterns p and q, and S(p|q) =
S(p, q) − S(q) be the relative significance of p given q.
Note that the combined significance S(p, q) means the
collective significance of two individual patterns p and
q, not the significance of a single super pattern p ∪ q.

Given significance measures, we can define the redun-
dancy between two patterns.

Definition 2. (Pattern Redundancy) Given the sig-
nificance measure S, the redundancy R between two pat-
terns p and q is defined as R(p, q) = S(p)+S(q)−S(p, q).
Subsequently, we have S(p|q) = S(p) − R(p, q).

In this paper, we make the assumption that the com-
bined significance of two patterns is no less than the



significance of any individual pattern (since it is a col-
lective significance of two patterns) and does not exceed
the sum of two individual significance (since there ex-
ists redundancy). This simply says that the redundancy
between two patterns should satisfy

0 ≤ R(p, q) ≤ min(S(p), S(q)). (1)

The ideal redundancy measure R(p, q) is usually hard
to obtain. In this paper, we approximate redundancy
using distance between patterns.

Definition 3. (Pattern Distance) A distance mea-
sure D : P × P → [0, 1] is a function mapping two
patterns p, q ∈ P to a value in [0, 1], where 0 means
p, q are completely relevant and 1 means p, q are totally
independent.

The distance can be calculated based on the pattern
structure, e.g., the edit distance between two DNA se-
quences; or based on the underlying data used in the dis-
covery process, e.g., the Jaccard distance used in [13]; or
based on the distribution of the patterns, e.g., Kullback-
Leibler Divergence. If a distance is a metric measure,
i.e., it has properties of isolation, symmetry, and trian-
gle inequality, it will bring many desirable properties.
In the above example, both string edit distance and the
Jaccard distance are metrics.

More generally, the distance D(p, q) can be weighted
to reflect users’ preference on penalizing redundancy.
Since distance is the complementary of redundancy, we
use the following equation to approximate R:

R(p, q) = (1 − D(p, q)) × min(S(p), S(q)). (2)

The above function indicates that the value of R(p, q)
is bounded by [0, min(S(p), S(q))] (see Eqn. (1)).

2.2 Evaluating k Patterns
We extend our formulation to a set of k patterns. Let

G be an evaluation function measuring the significance
of a set of k patterns Pk = {p1, p2, . . . , pk}. If we assume
patterns in Pk are all independent, we have:

Gind(Pk) =
k

X

i=1

S(pi),

where S is the significance measure.
In general, there are redundancies between patterns.

Let L be a function returning redundancies among Pk:

Ggen(Pk) =

k
X

i=1

S(pi) − L(Pk).

In many cases, L is very hard to formulate. We propose
two heuristic evaluation functions Gas (average signifi-
cance) and Gms (marginal significance), which sacrifice
some generality but are more practical for computa-
tion and search. We first define our computation model
based on a new concept, redundancy graph.

Definition 4. (Redundancy Graph) Given a signif-
icance measure S and redundancy measure R, a redun-
dancy graph of a set of patterns P is a weighted graph
G(P) where each node i corresponds to a pattern pi.
The weight on node i is pattern significance S(pi) and
the weight on an edge (i, j) is the redundancy R(pi, pj).

Let the redundancy subgraph induced by the set of k
patterns be G(Pk). The natural formulation of L is to
consider all pair-wise redundancy by summing the edge

weights of G(Pk). Since there are k patterns and k(k−1)
2

edges, we further normalize it by taking average weights
on edges. Typically, the average weights associated with
a pattern pi are:

w(pi) =
1

k − 1

k
X

j=1,j 6=i

R(pi, pj).

The evaluation function Gas is defined as below:

Gas(P
k) =

k
X

i=1

S(pi) −
1

2

k
X

i=1

w(pi), (3)

where 1
2

is introduced because every redundancy R(pi, pj

is counted twice by both pi and pj . Substitute w(pi) in
Eqn. (3):

Gas(P
k) =

k
X

i=1

S(pi) −
1

k − 1

k
X

i=1

i−1
X

j=1

R(pi, pj) (4)

We refer this formulation as average significance.
An alternative formulation for L is to compute the

maximum spanning tree of G(P). Let the sum of edge
weights on the maximum spanning tree be w(MSTP).
The evaluation function Gms is defined as below:

Gms(P
k) =

k
X

i=1

S(pi) − w(MSTP). (5)

Note that the Gms formulation is a generalization of
maximal marginal relevance (MMR) heuristic in infor-
mation retrieval [5], where a document has high mar-
ginal relevance if it is both relevant to the query and
contains minimal marginal similarity to previously se-
lected documents. The marginal similarity is computed
by choosing the most relevant selected document. Dif-
ferent from Gms, this definition gives a procedural way
to evaluate a set of documents. If we use this concept
to compute the score of a set of patterns Pk (by adding
patterns p1, p2, . . . , pk incrementally), we have

MMR(Pk) = S(p1) +
k

X

i=2

(
i−1

min
j=1

S(pi|pj)).

Combining the definition of relative significance, one can
easily verify that MMR approximates L by computing
a spanning tree on G(Pk). However, the score of MMR

depends on the order on which patterns are selected.
Gms is the minimum score over all possible MMR scores.
We refer Gms formulation as marginal significance.

Correspondingly, the problems of finding redundancy-
aware top-k patterns are as follows:

Definition 5. (Maximal Average Significance) Given
a set of pattern collection P, the problem of Maximal
Average Significance (MAS) is to find k-pattern set Pk

such that Gas(P
k) is maximized.

Definition 6. (Maximal Marginal Significance) Given
a set of pattern collection P, the problem of Maximal
Marginal Significance (MMS) is to find k-pattern set Pk

such that Gms(P
k) is maximized.



3. COMPARING MAS AND MMS
In this section, we examine the two proposed evalu-

ation functions. We show that both MAS and MMS

problems are NP-hard, and adopt a well-known greedy
algorithm to compare their performance.

3.1 The Greedy Algorithm
We consider a special case of the redundancy graph

where all patterns have the same significance score, and
thus only the weights on edges take effect. The problem
of MAS is thus to find a k-pattern set where the sum
of edge weights are minimized. This problem is equiv-
alent to k-dense subgraph problem, which is known to
be NP-hard [7]. The problem of MMS is to find a k-
maximum spanning tree whose overall weights are min-
imized. Holldorsson et al. [9] show that this problem is
NP-hard.

Since it is difficult to find the optimal solutions, we
adopt a well-known greedy algorithm to examine the
performance of MAS and MMS. The algorithm incre-
mentally selects patterns from P with an estimated gain
g. A pattern is selected if it has the maximum gain
among the remaining patterns. Given a set of selected
patterns Pk, the gain of a pattern p ∈ P − Pk is:

g(p) =



S(p) − 1
|Pk|

P

q∈Pk R(p, q), for MAS,

S(p) − maxq∈Pk R(p, q), for MMS.

At beginning, the result set Pk is empty. The algorithm
picks the most significant pattern and inserts it to Pk.
When |Pk| < k, we will compute gain g(p) for every
remaining pattern p ∈ P − Pk, and select the pattern
with the maximum gain. After a pattern is inserted into
Pk, it remains in Pk.

The naive implementation of the above algorithm takes
time O(k2n). The alternative approach with time com-
plexity O(kn) can be implemented as follows. For each
remaining pattern, we can remember the previous gain
and compute the new gain by updating the redundancy
with the last pattern added to Pk. As an example, as-
sume at the ith iteration, the pattern pi is selected, and
for each pattern p ∈ P − Pk, gi(p) was computed with
respect to Pk −{pi}. To search for next candidate pat-
tern, we need to update g(p) by incorporating the newly
selected pattern pi. One can verify the following update
formulas for MAS and MMS:

gi+1(p) =



S(p) − 1
i

`

(i − 1)(S(p) − gi(p)) + R(p, pi)
´

,
S(p) − max

`

(S(p) − gi(p)), R(p, pi)
´

.

The execution of update functions takes constant time.
The algorithm is described in Algorithm 1. Finding
the most significant pattern takes time O(n). At each
iteration, we need to compute gain g(p) for each pattern
p ∈ P−Pk, and select the one with the maximum value.
Using the update functions, each iteration also takes
time O(n). The total time complexity of the greedy
algorithm is O(kn).

3.2 Comparing MAS and MMS
We examine both formulations using the same greedy

algorithm. The experiments are conducted on two real
applications: disk block prefetch and document theme

Algorithm 1 The Greedy Algorithm

Input: A set of n patterns, P
Number of output patterns, k
Significance Measure, S
Divergence Measure, D

Output: k-pattern set, Pk

1: Let p be the most significant pattern;
2: Pk = {p};
3: while (|Pk| < k)
4: Find a pattern p such that the gain g(p) is the
5: maximum among the set of patterns in P − Pk;
6: Pk = Pk ∪ {p};
7: return

extraction. For clear presentation, the results are or-
ganized in Section 5. We observe that MMS performs
much better in both experiments. There are two pos-
sible reasons that may explain the results. First, the
unified greedy algorithm may favor MMS; and second,
the formulation of MMS is more reasonable. We discuss
these two issues one by one.

Since both problems are NP-hard and the greedy al-
gorithm reports approximate solutions. We study the
performance bound of the greedy solutions with respect
to the optimal solutions. The following theorem shows
that Algorithm 1 has performance bound 2 for MAS.
Due to limited space, we omit the proof.

Theorem 1. Let the k-pattern set returned by Algo-
rithm 1 (with MAS gain) be Pk, and the optimal pattern
set be Ok. We have:

Gas(O
k) ≤ 2Gas(P

k).

To our best knowledge, the algorithm does not have
performance bound for MMS. In fact, a counter example
in Section 4.2 shows that the worst case performance
bound on MMS could be much worse than that of MAS.
This analysis indicates that Algorithm 1 does not favor
MMS and the worse performance of MAS may be caused
by the limitation of its formulation.

We further examine the top-k patterns returned by
both algorithms in our experiments. The patterns re-
turned by MAS clearly contain more redundancy. This
is because the redundancy penalty in MAS formulation
is averaged by the number of patterns k, and each pat-
tern usually has redundancy with a few other patterns.
The larger the value of k, the smaller the redundancy
penalties. One may suggest to remove the denomina-
tor (i.e., k − 1) in Eqn. (4). However, this may lead to
over penalizing in the objective function since the num-
ber of redundancy penalties is the order of square of
the number of patterns. On the other hand, the MMS

formulation is not sensitive to the value of k.
In summary, the MMS formulation is quite reason-

able. One possible extension to MMS formulation is to
allow weighted combination of the significance and re-
dundancy penalty. This actually is implicitly handled
by our definition of distance measure because we can al-
ways incorporate the user-defined weights into the dis-
tance definitions. In the rest of the paper, we mainly
focus on the MMS problem.



4. AN IMPROVED METHOD FOR MMS
Here we discuss an improved method to the MMS

problem. We assume that the distance measure satis-
fies triangle inequality. Our method is not restricted to
this constraint. However, if this condition holds, our
solution has a guaranteed performance bound.

4.1 The Computational Model
We first introduce a variant computation model based

on redundancy graph. As defined in Section 2, the re-
dundancy graph is an edge-weighted and node-weighted
undirected graph. We transform it to the directed re-
dundancy graph as follows: for each pair of patterns pi

and pj , we create a directed edge from pi to pj , and
the associated edge weight is the relative significance
S(pj |pi). The weight on each node pi is still the pattern
significance S(pi). An example of this transformation
is shown in Fig. 2 (Not all directed edges are shown in
the transformed redundancy graph).

(a) Undirected Redundancy Graph (b) Directed Redundancy Graph

S(p3)

S(p1)S(p1)

R(p1, p2)

R(p1, p3)

R(p3, p4) R(p3, p5)

S(p3|p1)

S(p4|p3)
S(p5|p3)

S(p2|p1)

S(p2)

S(p4) S(p5)

S(p2)

S(p4)
S(p5)

S(p3)

Figure 2: Directed redundancy graph

In MMS problem, Gms(P
k) is evaluated by comput-

ing the maximum spanning tree on the sub redundancy
graph G(Pk). There are k node weights and k − 1 edge
weights in the tree. We particularly select the most sig-
nificant pattern as the root of the maximum spanning
tree, and combine the other k− 1 node weights and the
k − 1 edge weights. Example 1 shows this procedure.

Example 1. In Fig. 2, suppose the set of pattern
Pk = {p1, p2, p3, p4, p5} is evaluated by the spanning tree
shown in Fig. 2 (a), and p1 is the most significant pat-
tern. Originally, Gms(P

k) =
P5

i=1 S(pi) − R(p1, p2) −
R(p1, p3) − R(p3, p4) − R(p3, p5). It is equivalent to
Gms(P

k) = S(p1) + S(p2|p1) + S(p3|p1) + S(p4|p3) +
S(p5|p3), as shown in Fig. 2 (b).

Since we transform the negative redundancy penalties
to positive relative significance, the original maximum
spanning tree on the undirected redundancy graph cor-
responds to the minimum spanning tree on the directed
redundancy graph. The MMS problem is equivalent to
searching a constrained rooted minimum spanning tree
on the directed redundancy graph such that the overall
weights on the root node and on the edges in the tree
are maximized. The constraint specifies that the root
must be the most significant pattern in the tree.

4.2 Performance Study of Algorithm 1
We study the worst case performance of MMS by Al-

gorithm 1, under the assumption that the distance mea-
sure satisfies triangle inequality. The following example
shows that this greedy approach may lead to a seri-
ous problem in some case. We rewrite the computation

equation of S(p|q) here for easy understanding of the
example: S(p|q) = S(p)− (1−D(p, q))min(S(p), S(q)).

p3

s1

s3

d13 = 1
c

d12 = c−1
c

d13

d23 = 1
c
d13

s2 = c

c−1
s3 − δ

p2

p1

Figure 3: A directed redundancy graph with 3 pat-

terns

Example 2. Consider a graph with three patterns p1,
p2, and p3 (Fig. 3). For simplicity, we use si and dij

to denote S(pi) and D(pi, pj), respectively. Let s1 ≥
s2 ≥ s3, and s2 = c

c−1
s3 − δ (where δ > 0 is a small

perturbation). Let d12 = c−1
c

d13, d23 = 1
c
d13, and d13 =

1
c
. One can verify that d12, d13, and d23 satisfy triangle

inequality. The greedy algorithm will first select pattern
p1. Since S(p3|p1) = d13s3 > d12s2 = S(p2|p1), the
algorithm will pick p3 as the next. The estimated gain
on the objective function is r = S(p3|p1). The algorithm
continues to look for the next pattern p2. The estimated
gain for adding p3 and p2 is:

S(p3|p1) + min(S(p2|p1), S(p2|p3)) ≈ 2r.

However, the real objective function of MMS is evalu-
ated by the spanning tree p1 → p2 → p3, with the gain
S(p2|p1) + S(p3|p2) ≈ r + r

c
, where c can be chosen ar-

bitrarily large. This over-estimation can be accumulated
quite large when the number of patterns increases.

The reason that the greedy approach has the over-
estimation problem is that the relative significance is not
symmetric. Given patterns p and q, we have S(q|p) ≥
S(p|q) if S(q) > S(p). If we select the less signifi-
cant pattern p first, there will be an over-estimation.
To avoid this problem, we should try to incrementally
add patterns according to significance decreasing or-
der. This motivates our alternative approximation al-
gorithm.

4.3 An Alternative Approach
We first outline the main ideas. The algorithm searches

for a specific value r, with which, the algorithm first
finds the most significant pattern (as p1), and removes
all patterns p such that S(p|p1) ≤ r; then finds the
most significant pattern in the remaining patterns (as
p2), and removes all patterns p such that S(p|p2) ≤ r,
and so on. We finally get kr patterns. Ideally, we want
to find the perfect r value such that kr = k.

The first intuition is that when r value is small, we
may have kr > k, and when r value is large, kr < k.
If the kr value is monotonic to r, then we can run a
binary search on the domain of r. Unfortunately, kr is
not monotonic to r. Fig. 4 shows a counter example
that a larger r value leads to a larger kr.

Example 3. Suppose S(p1) ≥ S(p2) ≥ . . . ≥ S(p5).
We only display the edges whose weights are less than
1.5. When r = 1.0, we get two patterns p1 and p3.
When r = 1.4, we get three patterns p1, p4 and p5.



1.0

1.4

1.0

0.5

1.0
p4

p3

p1

p2

p5

Figure 4: A Counter Example

Instead of searching for the perfect r value, we search
for a pair of trial values t and T (t < T ), such that T
leads to kT ≤ k and t leads to kt ≥ k. If the difference
T − t = ǫ is sufficiently small, we can pick k patterns
from the kt patterns with some desired property (i.e.,
Lemma 1).

We introduce the ǫ-normalization on edge weights.
For each pattern pair pi and pj , the edge weight S(pi|pj)
= S(pi)−R(pi, pj) ≤ S(pi). Suppose p1 is the most sig-
nificant pattern, we have S(pi|pj) ≤ S(p1). That is,
every edge weight is upper bounded by S(p1). We par-
tition [0, S(p1)] into B equi-width intervals, and each

interval has width ǫ = S(p1)
B

. S(pi|pj) is normalized to

S(pi|pj) = ⌊
B×S(pi|pj)

S(p1)
⌋ × ǫ. With this normalization,

we run a binary search on the normalized edge weights
whose search space is 0 to S(p1) (i.e., B intervals). Ini-
tially, kT = 1 ≤ k by T = S(p1), and kt = |P| ≥ k
by t = 0. If k(T+t)/2 ≥ k, we update t = (T + t)/2.
Otherwise, we update T = (T + t)/2. After log B times
binary search, we have T − t = ǫ and kT ≤ k ≤ kt.

We discuss how to select k patterns from kt patterns
when T − t = ǫ. Our goal is to find k patterns such
that (1) the directed-edge weight between them is lower
bounded by a positive value d, and (2) for any other
pattern q, there exists one pattern p in the selected
k patterns such that the edge weight S(q|p) is upper
bounded by a constant factor of d.

pT
1

pt
5

pt
2 pt

3 pt
4(p

t
5)pt

1

pt
2pt

1 pt
3 pt

4

kt = 5

k = 4

kT = 3
pT

2 pT
3

Figure 5: Find k patterns from (u, l)-pair

The selecting strategy is demonstrated by Fig. 5. Let
pt
1, p

t
2, . . . , p

t
kt

be the selected kt patterns (assume S(pt
1) ≥

S(pt
2) ≥ . . . ≥ S(pt

kt
)), and pT

1 , pT
2 , . . . , pT

kT
be the se-

lected kT patterns. Each pattern is around by a circle
which indicates a set of patterns removed due to the se-
lection of this pattern. Every pattern pt

i must belong to
one circle in pT

j (j = 1, 2, . . . , kT ). We select k patterns
from the kt patterns by the following rules:

1. The most significant pattern pt
i in each pT

j circle is
first selected. In our example, patterns pt

1, p
t
3 and pt

4

are selected;

2. While the number of selected patterns is less than
k, we select the most significant pt

i patterns in the

remaining patterns (i.e., we select pattern pt
2). After

k patterns are selected, the remaining pt
i will find a

selected pattern which belongs to the same circle pT
j

with pt
i. In our example, pt

5 is a remaining pattern,
and it belongs to circle pT

3 with a selected pattern
pt
4. We further merge pt

5 as well as all the patterns in
circle pt

5 to circle pt
4.

The complete procedure is summarized as Algorithm
2, which is self-explanatory. Each iteration takes time
O(kn), and the complexity to find the values of T and t
(T−t = ǫ) is O(kn log B). Generally, we use k ≤ B ≤ n.
The complexity of selecting k patterns from kt patterns
relies on the generation of kt patterns, whose complexity
is O(ktn). In most cases, kt is comparable to k.

Algorithm 2 Greedy Algorithm for MMS

Input: A set of n patterns, P
Number of output patterns, k
Significance measure, S
Divergence measure, D
Weight normalization, B

Output: k-pattern set, Pk

1: ǫ = S(p1)
B

, t = 0, T = S(P1);
2: Run the binary search with (t, T ) in space [0, S(p1)];
3: selected[i] = false (i = 1, . . . , n);
4: removed[i] = false (i = 1, . . . , n);
5: for i = 1 to k
6: if there is no pattern left //k T +t

2

< k, decrease T

7: T = T+t
2

, goto line 2;
8: Let ps be the most significant pattern s.t.

selected[s] ≡ false and removed[s] ≡ false;
9: Assign selected[s] = true, removed[s] = true;
10: for j = 1 to n
11: if (!removed[j] and !selected[j]))

12: if (S(pj |ps) ≤
T+t

2
)

13: removed[j] = true;
14: if there are patterns left //k T +t

2

> k, increase t

15: t = T+t
2

, goto line 2;
16: Generate kt patterns;
17: Select k patterns from kt patterns;
18: return;

The desired property as we claimed earlier is summa-
rized in Lemma 1.

Lemma 1. Let d = t and the selected k patterns be
p1, p2,. . . , pk (significance decreasing order). If the dis-
tance satisfies triangle inequality, then for each pi and
pj, S(pi|pj) ≥ d and S(pj |pi) ≥ d; and for each pattern
q within the circle of pattern pi, S(q|pi) ≤ 3d + 5ǫ.

Sketch of Proof. See Appendix.
The following theorem shows that Algorithm 2 has a

performance guarantee for the MMS problem.

Theorem 2. Let the k-pattern set returned by Algo-
rithm 2 be Pk, and the optimal pattern set be Ok. If the
distance measure satisfies triangle inequality, we have:

Gms(O
k) ≤ (6 +

10k

B
+ log k)Gms(P

k).



Sketch of Proof. See Appendix.
By setting B ≥ k, the performance bound of algo-

rithm 2 for MMS problem is O(log k), while the addi-
tional factor on complexity (i.e., log B) does not intro-
duce heavy computational cost. In fact, as we will show
in the experiments, the running time of Algorithm 2 is
similar to that of Algorithm 1.

5. EXPERIMENTAL RESULTS
To test the performance of the proposed algorithms,

we design two sets of experiments. The first examines
the quality of extracted top-k patterns, and the second
measures the computational performance of the pro-
posed methods. For simplicity, we refer Algorithm 1
for maximal average significance as MAS, Algorithm 1
for maximal marginal significance as MMS, and Algo-
rithm 2 (with bound) for maximal marginal significance
as MMSb. We use SIG to refer to the method extracting
top-k patterns completely based on significance (with-
out considering redundancy). In all experiments, the
number of intervals for the binary search in MMSb is
set as B = k.

5.1 Quality of Top-K Patterns
Here we demonstrate two case studies that use our

proposed methods: (1) document theme extraction, and
(2) correlation-directed disk block prefetch. For each case
study, we discuss pattern generation, significance mea-
sure, distance measure, and quality evaluation.

5.1.1 Document Theme Extraction
Theme discovery uses knowledge about the meaning

of words in a text to identify broad topics covered in
a document [3, 15]. One way to find themes from text
document is to extract the frequent patterns of term
occurrence. For example, a frequent pattern of “data-
base management” indicates that the document might
be related to a collection of database papers, whereas
a frequent pattern like “red cross” might identify the
topic of the documents as aid and relief. In this case
study, we show how to apply our methods to discover-
ing redundancy-aware top-k term occurrence patterns.

Pattern Generation: A document collection is con-
structed by a mixture of documents of four topics: 386
news articles about Tsunami, 367 research papers about
data mining, 350 research papers about bioinformatics,
and 347 blog articles about iPod Nano. A document is
broken into sentences as transactions. We mine sequen-
tial patterns [27] with a minimum support of 0.02%, and
8, 718 patterns are generated.

Significance and Distance Measure: A pattern’s sig-
nificance is modeled by a tf-idf scoring function simi-
lar to the Pivoted Normalization weighting based doc-
ument score [23]. Specifically, given a theme pattern
p = w1...wt, the significance is defined by

S(p) =

t
X

i=1

1 + ln(1 + ln(tfi))

(1 − s) + s dl
avdl

· ln
N + 1

dfi
,

where tfi equals the support of the pattern p, dfi is
the inverse sentence frequency of word wi in the whole
transaction set, dl is the average sentence length associ-
ated with P , avdl is the overall average sentence length

and s is a parameter. Given two patterns, p1 and p2,
we use the Jaccard distance measure [13]:

D(p1, p2) =1 −
|TS(p1) ∩ TS(p2)|

|TS(p1) ∪ TS(p2)|
,

where TS(p1) is the set of transactions containing pat-
tern p1.

Quality Evaluation: We run SIG, MAS, MMS and
MMSb on the original collection of 8, 718 themes to
extract top-10 results, which are displayed in Table 1.
Without considering redundancy, the top-10 results re-
turned by SIG only consist of two valuable themes (them-
es 1 and 4), and all the others are redundant. MMS and
MMSb report the identical results, where all 10 themes
have high significance score and are different from each
other. There are two redundant themes in MAS. This
suggests that the redundancy penalty by MAS formula-
tion is not enough, and some theme patterns whose high
significance scores compensate the redundancy penalties
can still survive.

5.1.2 Correlation Directed Prefetch
Block correlations are common semantic patterns in

storage systems [14]. Correlated blocks tend to be ac-
cessed relatively close to each other in an access stream.
Exploring these correlations is very useful for improv-
ing the effectiveness of storage caching, pre-fetching,
and data layout. Particularly, at each access, a stor-
age system can pre-fetch correlated blocks into its stor-
age cache so that subsequent accesses to these blocks
do not need to access disks, which is several orders of
magnitude slower than accessing directly from a stor-
age cache. A correlation pattern is a rule in the form
of “b35b100 → b9039” implying that if disk block b35 and
b100 are accessed sequentially, then disk block b9039 will
be pre-fetched (note there is always only one block-id
at the right-hand side of a rule). Since the computer
resources are limited, our task is to extract top-k im-
portant rules for prefetch purposes.

Pattern Generation: We use the rules provided by
[14]. The experiment uses a set of real system traces,
Cello-92, collected at the Hewlett-Packard Laboratories
[20]. It captured all low-level disk I/Os performed on
Cello, which is a timesharing system used by a group
of researchers at the HP Labs to do simulation, com-
pilation, editing, and e-mail. The traces include the
accesses to 8 disks. Long trace sequences are broken
into fixed-size short sequential transactions (in our ex-
periment, the window size is 50). We mine sequential
patterns from the transformed transaction database and
276, 054 rules are generated.

Significance and Distance Measure: The significance
of a rule should be measured by the performance gain
with its existence. The model of cost-benefit of pre-
fetching could be very complicated. Here we adopt a
simplified yet effective measure [14]. Given a rule l → r,
the significance of this rule is |TS(l, r)|, where TS(l, r)
is the set of transactions having l followed by r. Given
two rules, “rule1 : l1 → r1” and “rule2 : l2 → r2”, the



Table 1: Top-10 Document Themes

Top-k SIG MAS MMS MMSb

1 permission make digital permission make digital permission make digital permission make digital
copy personal grant copy personal grant copy personal grant copy personal grant

without fee distribute without fee distribute without fee distribute without fee distribute
commercial full citation commercial full citation commercial full citation commercial full citation

2 permission make digital database manage database database manage database database manage database
copy personal distribute application mine algorithm application mine algorithm application mine algorithm
commercial full citation keyword keyword keyword

3 permission make digital pattern recognition design pattern recognition design pattern recognition design
copy personal copy fee method classify evaluate method classify evaluate method classify evaluate

4 database manage database information retrieval information retrieval information retrieval
application mine algorithm storage information storage information storage information

keyword search keyword search keyword search keyword
5 database manage database permission make digital artificial intelligence artificial intelligence

mine algorithm keyword copy personal distribute learn general term learn general term
commercial full citation algorithm experimentation algorithm experimentation

6 database manage database artificial intelligence international federate international federate
application mine algorithm learn general term red cross red crescent red cross red crescent

algorithm experimentation
7 database manage database international federate australia prime minister australia prime minister

application mine keyword red cross red crescent john howard australia john howard australia
8 database manage database australia prime minister indonesia president indonesia president

mine term algorithm john howard australia susilo bambang yudhoyono susilo bambang yudhoyono
9 database manage database database manage database deputy defense secretary deputy defense secretary

mine term keyword application mine keyword paul wolfowitz paul wolfowitz
10 database manage database indonesia president thailand prime minister thailand prime minister

application mine term susilo bambang yudhoyono thaksin shinawatra thaksin shinawatra

distance measure is defined as follows:

D(rule1, rule2) =

8

<

:

1 , r1 6= r2,

1 −
|TS(l1, r1) ∩ TS(l2, r2)|

|TS(l1, r1) ∪ TS(l2, r2)|
, r1 = r2.

If two rules have different block-ids at the right-hand
side, then they are not related to each other. Other-
wise, these two rules trigger the same pre-fetching tar-
get. We compare the support sets of these two rules. If
the overlap is significant, then the relative significance
of one rule with respect to the other is small.
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Quality Evaluation: We run SIG, MAS, MMS, and
MMSb on the original collection of 276, 054 rules to ex-
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tract top-k rules, which are further fed into a simulation
system [14]. The performance is evaluated by miss ra-
tio (Fig. 6) and response time (Fig. 7). We observe
(1) both MMS and MMSb perform much better than
SIG, indicating that the redundancy-aware top-k pat-
terns contain more valuable information; (2) the MMSb

method is better than MMS, which is consistent with
our claim that MMSb is more robust; and (3) MAS

is almost identical to SIG. This is because in this ex-
periment, k is relative large, whereas redundancy only
exists among very limited number of patterns (i.e., only
the rules that have the same right-hand side are possi-
bly redundant to each other). Averaging by a very large
number of k makes the redundancy penalty negligible.



5.2 Computational Performance
Here we examine the computational performance of

the two proposed greedy algorithms for MMS. We run
the experiments on the document theme data set. The
computation times w.r.t. different top-k values are shown
in Fig. 8. Given a collection of patterns, both algorithms
scale well with respect to k. Although MMSb has higher
complexity in the worst case, its running time is com-
parable to MMS. This is because (1) it generally stops
early in each trial r where we try to find k patterns, thus
the complexity of each iteration is less than O(kn); and
(2) a pattern does not participate in further computa-
tion as soon as it is removed (while in MMS each pat-
tern will be compared with all the selected k patterns).
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6. RELATED WORK
In Section 1, we have discussed the connection of our

work with previous pattern compression (summariza-
tion) approaches and database top-k query processing.
A closely related work is the pattern ordering problem
studied in [16], where the authors also compute top-
k patterns. Their criterion of the top-k pattern set is
to provide best frequency estimation of those patterns
that are not selected. Thus the objective function to
evaluate the k pattern set is well defined. Our problem
definition is more general since we do not assume any
specific application. The greedy algorithm used in [16]
is similar to Algorithm 1.

Our work is also related to document retrieving and
ranking problem in Information Retrieval [5, 21]. The
formulation of MMS is a generalization of maximal marg-
inal relevance heuristic [5]. Different from techniques in
IR where results are generally evaluated by user study,
we propose explicit objective functions and develop an
approximate algorithm with the near optimal solution.

The problem of MAS is identical to the maximum
dispersion problem in graph algorithm. Ravi et al. [19]
show that the bound of performance guarantee of any
polynomial approximation is at least 2 and Algorithm 1
achieves this. The problem of MMS is related to finding
a minimum spanning tree in a subgraph. Finding sub-
set maximizing the minimum weight of a combinatorial
structure was first proposed by Halldorsson et al. [9].

They give approximation algorithms in the metric undi-
rected graph, where only edge weights exist. Our prob-
lem is different because patterns form a node-weighted
as well as the edge-weighted graph.

7. CONCLUSIONS
To extract redundancy-aware top-k patterns, we ex-

amined two problem formulations: MAS and MMS. We
studied a unified greedy approach to compare these two
functions and show that MMS is a reasonable formula-
tion to our problem. We further present an improved
algorithm for MMS and show that the performance is
bounded by O(log k). We present two case studies to
examine the performance of our proposed approaches.
Both MMS algorithms are able to find high-significant
and low-redundant top-k patterns. Particularly, in block
correlation experiments, we observe that our improved
algorithm performs better.

This study opens a new direction on finding both di-
verse and significant top-k answers to querying, search-
ing, and mining, which may lead to promising further
studies. One further issue is the formal study of the
evaluation functions for a pattern set. Direct mining of
top-k patterns from data is another promising direction.

8. APPENDIX
Sketch of Proof for Lemma 1.

The first result is true because all pi patterns are se-
lected from kt patterns. If i > j, we also have S(pi|pj) ≥
S(pj |pi) ≥ d. To prove the second result, we first show
two related claims. For simplicity, we use d12 and s1 to
denote D(p1, p2) and S(p1), respectively.

(a) (b)

p1 p3

p2

p1 p3

p2

Figure 9: Two directed triangles

If the distance measure satisfies triangle inequality,
then given a directed triangle as shown in Fig. 9(a),
S(p2|p1) + S(p3|p2) ≥ S(p3|p1) (Claim 1 ); and given
a directed triangle as shown in Fig. 9(b), S(p1|p2) +
S(p3|p2) ≥ S(p3|p1), where s1 ≥ s3 (Claim 2 ).

The proof of these two claims are similar. We show
one case for claim 1. If s1 ≥ s2 ≥ s3, we have S(p2|p1)+
S(p3|p2) = d12s2 + d23s3 ≥ d12s3 + d23s3 ≥ d13s3 =
S(p3|p1).

For each pattern q in the circle of pi, assume q origi-
nally belongs to circle pj , and both pi and pj belong to
circle pT

v . We have:

S(q|pi) ≤ S(q|pj) + S(pj |pi) (Claim1)

≤ S(q|pj) + S(pj |p
T
v ) + S(pi|p

T
v ) (Claim2)

≤ S(q|pj) + S(pj |pT
v ) + S(pi|pT

v ) + 3ǫ

≤ t + T + T + 3ǫ ≤ 3t + 5ǫ.

Sketch of Proof for Theorem 2.



Let us call the patterns in Pk greedy patterns and
the patterns in Ok optimal patterns. The algorithm
partitions all patterns in P into k groups. In each group,
the most significant pattern is reported (let the pattern
reported from group i be pi). The edge weight between
any pi and pj (i, j ∈ {1, 2, . . . , k}) is at least d. We
have Gms(P

k) ≥ S(p1) + (k − 1)d, where p1 is the most
significant pattern.

Assume the k optimal patterns in Ok = {q1, q2, . . . , qk}
are distributed in k′ ≤ k groups. We create a spanning
tree for Ok based on the following two rules. First, if
there are multiple optimal patterns qi

1, q
i
2, . . . , q

i
ki within

group i, we locate the most significant pattern qi
1 and in-

clude edges S(qi
j |q

i
1) for all other patterns. According to

Lemma 1, S(qi
j |q

i
1) ≤ S(qi

j |p
i)+S(qi

1|p
i) ≤ 6d+10ǫ. The

overall sum of weights inside k′ groups is (k − k′)(6d +
10ǫ).

Second, we further include edges between optimal
patterns qi

1 to make a spanning tree on Ok. This is
achieved by an iterative procedure. Let the spanning
tree corresponding to Gms(P

k) be MSTp. We can de-

compose MSTp into ⌈k′

2
⌉ paths such that the two end

nodes of each path are patterns pi, whose group con-
tains an optimal pattern qi

1. We group k′ optimal pat-

terns into ⌈k′

2
⌉ pairs. In each pair (a, b), we include

the edge S(a|b) (or S(b|a)) if S(b) ≥ S(a) (otherwise).

There are at most ⌈k′

2
⌉ edges that will be included.

The sum of weights of the included edges is: w(k′) ≤
w(MSTp) + k′(6d + 10ǫ), where w(MSTp) is the sum
of edge weights on MSTp. In each pair (a, b), we re-
move the pattern whose significance value is smaller,
and the larger one stays for the next iteration. Since
we remove half number of patterns at each iteration,
there will be at most log (k′) iterations. When there is
only one pattern left, a spanning tree over Ok is con-
structed. The overall sum of edge weights included

in this procedure is: w(k′) + w( k′

2
) + . . . + w(2) ≤

log (k′)w(MSTp) + k′(6d + 10ǫ).
Since Gms(O

k) is the minimum score of all spanning
trees on Ok, we have Gms(O

k) ≤ G′
ms(O

k). Because p1

is the globally most significant pattern, maxk
i=1S(qi) ≤

S(p1). Furthermore, Gms(P
k) = S(p1) + w(MSTp) ≥

S(p1)+ (k− 1)d, we have d ≤ 1
k−1

(Gms(P
k)−S(p1)) ≤

1
k
Gms(P

k). Finally, fr

Bǫ = S(p1), we have kǫ = k
B

Bǫ = k
B

S(p1) ≤
k
B

Gms(P
k).

Combining all of the above, we have:

Gms(O
k) ≤ G′

ms(O
k)

≤
k

max
i=1

S(qi
1) + k(6d + 10ǫ) + log (k′)w(MSTp)

≤ S(p1) + 6kd + 10kǫ + log (k′)(Gms(P
k) − S(p1))

≤ S(p1) + (6 +
10k

B
+ log k)Gms(P

k) − log kS(p1)

≤ (6 +
10k

B
+ log k)Gms(P

k).
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