Direct Mining of Discriminative and Essential
Frequent Patterns via Model-based Search Tree

Wei Fan', Kun Zhang*, Hong Cheng*, Jing Gao*,
Xifeng Yant, Jiawei Han*, Philip S. Yu#, and Olivier Verscheuref
fIBM T.J.Watson Research Center
#Xavier University of Louisiana
*University of lllinois at Urbana Champaign
#University of lllinois at Chicago
{weifan,xifeng,ov1}@us.ibm.com, kzhang@xula.edu,
{hcheng3,jgao3,hanj}@uiuc.edu, psyu@cs.uic.edu

ABSTRACT

Frequent patterns provide solutions to datasets that do not
have well-structured feature vectors. However, frequent pat-
tern mining is non-trivial since the number of unique pat-
terns is exponential but many are non-discriminative and
correlated. Currently, frequent pattern mining is performed
in two sequential steps: enumerating a set of frequent pat-
terns, followed by feature selection. Although many meth-
ods have been proposed in the past few years on how to
perform each separate step efficiently, there is still limited
success in eventually finding highly compact and discrimi-
native patterns. The culprit is due to the inherent nature of
this widely adopted two-step approach. This paper discusses
these problems and proposes a new and different method. It
builds a decision tree that partitions the data onto different
nodes. Then at each node, it directly discovers a discrimi-
native pattern to further divide its examples into purer sub-
sets. Since the number of examples towards leaf level is
relatively small, the new approach is able to examine pat-
terns with extremely low global support that could not be
enumerated on the whole dataset by the two-step method.
The discovered feature vectors are more accurate on some of
the most difficult graph as well as frequent itemset problems
than most recently proposed algorithms but the total size is
typically 50% or more smaller. Importantly, the minimum
support of some discriminative patterns can be extremely
low (e.g. 0.03%). In order to enumerate these low support
patterns, state-of-the-art frequent pattern algorithm either
cannot finish due to huge memory consumption or have to
enumerate 10" to 10° times more patterns before they can
even be found. Software and datasets are available by con-
tacting the author.

(©ACM, (2008). This is the author's version of the work. It issped
here by permission of ACM for personal use. Not for redistitm. The
definitive version was published in KDD'08. Permission tokenaligital
or hard copies of all or part of this work for personal or ctassn use is
granted without fee provided that copies are not made orilised for
profit or commercial advantage and that copies bear thiseaiid the full

citation on the first page. To copy otherwise, to republisipdst on servers

or to redistribute to lists, requires prior specific pernussand/or a fee.
KDD'08 August 24—-27, 2008, Las Vegas, Nevada. USA
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications-
Data Mining

General Terms
Algorithms

1. INTRODUCTION

Many real-world data mining problems have no pre-defined
feature vectors that can be given to data mining algorithms
to construct predictive models. Facing these challenges,
frequent-patterns (e.g., frequent itemsets [3, 13], graph min-
ing [17, 25] and sequential pattern mining [4, 21], etc) have
been proposed and actively studied as candidate feature
sets. These methods look for statistically significant struc-
tures hidden in “raw” data. The main challenge and re-
search interest for frequent pattern mining is how to dis-
cover those discriminative and essential patterns efficiently.
It has been proved that frequent-pattern enumeration is NP-
complete [26]. For some graph mining problems, when the
relative support is 5%, the number of mined closed sub-
graphs (obvious redundancy excluded), can be up to x107.
However, importantly, most discovered patterns either do
not carry much information gain or are correlated in their
predictability. On the other hand, if the support is set too
low (such as < 3%), the program simply may not finish since
the virtual memory can be exhausted.

State-of-the-art frequent pattern mining algorithms [9, 5]
employ a batch process, which first enumerates features above
the given support and then performs feature selection on
this initial pool, as shown in Figure 1 (a). Research inter-
ests in this area focus on increasing the effectiveness of each
of these steps, for example, on how to efficiently enumerate
those unique and non-overlapping patterns, how to prune
the search tree to avoid enumerating patterns that are un-
likely to carry much information gain, how to ensure that
each example is covered by sufficient number of patterns, etc.
These methods are important improvements, however, there
is still limited success in eventually finding those small set of
discriminative features, and this is due to inherent problems
of the batch process as discussed below.

First, the number of candidate patterns can still be too
large (= x10°) for effective feature selection at the second

- Mined

Discriminative

DataSet i = Patterns

1234567

(a) Two Step Batch Approach

[c —)
4 N
oty é
~— T
..[T] [C ;
select é é N 3
PR PR 5
select | ¥ ' '
@ ® @
YN e N
-------- |

Divide-and-Conquer Based Frequent Mined Discriminative
Pattern Mining Patterns

(b) Divide-Conquer Approach

Figure 1: Batch vs. Divide-Conquer

Figure 2: Information Gain in Different Subspace

step. Second, if the frequency of discriminative features
is below the support value chosen to enumerate the can-
didates, those features won’t even be considered. Third,
the discriminative power of each pattern is directly evalu-
ated against the complete dataset, but not on some sub-
set of examples that the other chosen patterns do not pre-
dict well. As demonstrated by a synthetic example using
Gaussian mixture model in Figure 2, a feature not quite
predictive on the complete dataset, can actually be quite
informative on a subspace. On the complete data space,
the solid line has high information gain since it can almost
clearly separate the two classes of data, while the dashed
line is not quite useful. However, after the solid line sepa-
rates the two classes, the dashed line can make the divided
subspaces “purer”; such that both region 1 and 3 contain
only one class of examples. In the batch mode, patterns like
the “dashed line” is unlikely to be chosen by feature selection
since the criteria usually operates on the complete dataset.
Fourth, the correlation among multiple features are not di-

and their decision boundaries

Y

0
++ @O A A
+ o+ oty AL)+ B A
o N C R T V-
+ * AL - N S
+ +\,/¥\ = = + /KJ;JJr (1 -

(a) Uncorrelated patterns (b) Decision boundary

when both patterns considered

Figure 3: Uncorrelated Patterns # higher accuracy

rectly evaluated on their joint predictability. Assume that
a feature which can correctly predict some examples is al-
ready selected, to improve the overall accuracy, the features
considered subsequently need to predict better on those ex-
amples or subspaces of the dataset that the chosen feature
cannot predict correctly. However, the batch approach does
not address this directly, but prefers features that are un-
correlated, either using covariance-based or coverage-based
criteria. When two features are uncorrelated, they may not
necessarily help each other to cover examples that each of
them does not predict well by itself. Figure 3 (a) shows a
dataset with two classes and two patterns o and 3 occurring
in the data. Red circle represents the occurrence of « in cer-
tain examples and blue triangle represents the occurrence
of B in some others. The red dashed line is the decision
boundary which separates the examples based on whether
they contain pattern « or not, while the blue dotted line is
the decision boundary separating the examples based on the
occurrences of pattern 5. The optimal boundary is repre-
sented by the solid line which could not be derived solely
based on « or . Figure 3 (b) shows the decision boundary
(in dotted dashed line) when both patterns are considered
simultaneously. Although o and 3 are uncorrelated as they
appear in disjoint examples, the selection of both at the
same step will not necessarily help improve the accuracy.
On the other hand, given that one feature or a number of
features is already chosen, the next ideal feature should be
the one that can cover the subset of examples where cur-
rently mined patterns do not cover well. Importantly, this
feature can be correlated with chosen features on all other
examples. The bottom line is that correlation criteria may
not be a direct heuristic to look for predictive features. One
should purposefully look for features that can correctly cover
subspaces where currently discovered features cannot.

To solve the inherent problems of the batch process and
find small set of highly discriminative patterns, we propose a
divide-and-conquer based approach to directly mine discrim-
inative patterns as features vectors. As shown in Figure 1
(b), the basic flow of the proposed algorithm proceeds by
constructing a “model-based” search tree. The concept of
this search tree is quite different from traditional frequent
pattern-based search tree where each node normally denotes
a sub-item and a path in the tree is a frequent pattern. In
the model-based search tree, each node maintains a discov-

ered pattern as the discriminative feature. Examples in the
original dataset are sorted and partitioned down the tree.
As each node being expanded, a frequent-pattern algorithm
is invoked only on the examples that the node is responsi-
ble of. The frequent pattern with the highest information
gain is chosen as the feature and maintained at the current
node. Then based on the containment rule, the examples
at the given node are partitioned into two disjoint subsets.
The search and tree construction terminates when 1) either
every example in the given node belongs to the same class
or 2) the number of examples is less than a given threshold.

2. MODEL-BASED SEARCH TREE

Algorithm 1 presents the recursive method that builds the
model-based search tree. The basic idea is to partition the
data in a top-down manner and construct the tree using
the best feature at each step. It starts with the whole data
set and mines a set of frequent patterns from the data. The
best pattern is selected according to some criterion and used
to divide the data set into two subsets, one containing this
pattern and the other not. The mining and pattern selection
procedure is repeated on each of the subsets until the subset
is small enough or the examples in the subset have the same
class label. After the algorithm completes, a small set of
informative features are uncovered and the corresponding
model-based search tree is constructed.

Algorithm 1 Build Model-based Search Tree

Input: 1: A set of examples D from which
features are to be mined
2: A support threshold p normalized
between 0 and 1
3: A feature discover algorithm, such as
a frequent pattern algorithm fp(...).
4: m minimum node size.
Output: 1: A selected set of features, Fs
2: A model-based search tree T

1: Call the frequent pattern algorithm, which returns
a set of frequent patterns FP = fp(D,p);

: Evaluate the fitness of each pattern a € FP;

: Choose the best pattern a,, as the feature;

Fs=FsU {Oé'rrl};

Maintain pattern a.,, as the testing feature
in current node of the tree T7;

5: D1, = subset of examples in D containing o, ;

6: Dr =D — Dyr;

7: for ¢ € {L, R}

8 if |D¢| < m or examples in D, have the same class

9: label, make T} a leaf node;
10: else
11: recursively construct Ty with D, and p;

12: return Fs; and T

2.1 Pattern Enumeration Scalability Analysis

The scale of patterns returned by frequent pattern algo-
rithm can be formulated by O((c1 - s)cys(l*p)), where s is
scaled size of the dataset (> 3) and p is the support in per-
centage. The two constants ¢; and c2 depend on both the
dataset and the particular frequent pattern algorithm, and

can be factored out. Thus, for simplicity, the scale of the
problem is approximately 0(53(17”)). Clearly, when p is set
too low and the dataset is big, the number of patterns can
be explosively large. Next, we look at how the proposed
divide and conquer-based approach can significantly reduce
the scale of the problem.

In the divide-conquer algorithm, without loss of general-
ity, let us assume equal split. In fact, according to complex-
ity analysis, unequal split will have the same big O result
as that of the equal split and the difference is only in the
constants. Then the number of patterns mined at each node
of the tree (both leaf and non-leaf) can be expressed by the
following recursive function:

(1) T(s) = "7 4 27(5/2)

The upper bound of the number of frequent patterns ever
enumerated and considered by the recursive method is shown
in the following theorem.

THEOREM 1. For a problem of size s and support p, the
recursive algorithm enumerates O(s“"(l*p)) number of pat-
terns in total during the tree construction process.

Proof. For a general recurrence problem: T'(n) = aT'(n/b)+
f(n), where @ > 1 and b > 1 are constants and f(n) is an
asymptotically positive function, the Master Theorem pro-
vides the solution to such problems. Specifically, in one of
the three cases, if f(n) = Q(n'°8» *7¢) for some constant
e > 0, and if af(n/b) < cf(n) for some constant ¢ < 1 and
all sufficiently large n, then T'(n) = ©(f(n)).

For our problem, we show that it satisfies the conditions.
First, s°~P) is an asymptotically positive function and a,b =
2 are both positive integers. Second, the problem has limited
size, so s is bounded by an integer M. Let e = M(1—p)—1,
which is greater than 0, then it is evident that s°1~?) =
Q(s'°9227<) | Finally, to prove that 2(s/2)17P)%/2 < ¢(s*1P)),
we need to show that

- 17
5" < es®(17P) g5(1-p)

428(1*p) =

which is equivalent to
(25)°07P) > 4/c

Let ¢ = 1/2, the above inequality is true since s > 3 and
p is usually a small number so that s(1 — p) > 3/2, thus
(28)3(177’) > 8. Since this case applies to our problem, we
could make the conclusion that the recursive algorithm con-
siders O(s**=P)) number of patterns. [J

It is worth noting that in the recursive algorithm, the
support p is the support at each node, i.e., support is cal-
culated among all records falling into the node. Actually, a
pattern with support p at a node will have a global support
p’, which is much smaller than p. For example, assume that
the leaf node size is 10 and p = 20%. For a problem size
n = 10000, the normalized support in the complete dataset
is 10 x 20%,/10000 = 0.02%.

To find such patterns, the traditional pattern mining al-
gorithms will return an explosive number of patterns or fail
due to resource constraints, since it will generate O(ss(lfpl))
patterns, which is a huge number. Suppose p’ is close to 0,
then 1 — p’ ~ 1 and pattern mining algorithms could ob-
tain up to s° patterns. However, the recursive algorithm
could identify such patterns without considering every pat-
tern, thus will not generate explosive number of patterns.

According to Theorem 1, the upper bound of the number
of patterns is G2 Comparing with traditional pattern
mining approaches, the “scale down” ratio of the pattern
numbers will be up to

1

§5P

(2) ~ 5t P) Jgs =

This demonstrates that the proposed recursive algorithm
could get over the barrier of explosive growth of frequent pat-
terns and successfully identify discriminative patterns with
very small support.

2.2 Bound on Number of Returned Features

Now we consider a different problem, the upper bound
on the number of discriminative features returned by the
recursive method. In the worst case, the tree is complete
and every leaf node has exactly m examples, thus the upper
bound is

3) 081 1y £ 0(s/2 — 1) = O(s) = O(n)

since m > 2 and scaled problem size is exactly the number
of examples n for the model-based search tree.

2.3 Subspace Pattern Selection

Assume we have a two-class problem with C = {0, 1} and
a pattern «. Examples with class label 1 are called positive
examples and examples from class 0 are negatives. Let Cy
and C; be the number of negative and positive examples
respectively; Py and P; be the number of occurrences of
the pattern a among negative and positive class examples
respectively. Let x denote an example from either negative
or positive class, then by definition, the information gain of
the pattern a is measured as

IG(C|X) = H(C) — H(C|X)

=— Y PlogP(c)+ > P(x) > P(cx)logP(clz)

ce{0,1} ze{0,1} ce{0,1}

where P(c = 1|z = 1) = ﬁ7 Plc=0jz=1) = POTP17

Plc = 1z = 0) = gat=p—p, Plc = 1z = 1) =
%. The key components in information gain def-
inition are the following two proportion, % and %: the
more difference between these two terms, the higher is the
information gain.

Now consider only a subset of examples are selected from
the original set. Further, assume C} and C] are the number
of negative and positive examples respectively; P and Py
be the number of occurrences of « in negative and positive
class respectively, thus Cj < C; and P} < P;, i € {0,1}.

In the original data set, if the relative frequency of « in
the positive and negative classes is very close, i.e., %’) ~ %’
then « is not discriminative and the information gain of o is
low, and should not be chosen. However, in the data subset
with some examples eliminated, the relative frequency of «
in the positive and negative class could be different, thus
making g—z < % or vice versa. In such cases, the infor-
mation gain of « in the subset could increase substantially
compared to the original dataset. Thus, a would help to
distinguish the examples in the subset. Considering multi-
ple patterns, unless the examples are being removed equally
in the same portion for every pattern, the information gain

for some patterns ought to increase. In this sense, we say

the information of a pattern « is data context sensitive, and
it is incorrect to conclude that less frequent patterns have
no information gain.

Another merit of our approach is that, as we select the
feature and partition the dataset recursively, the number of
features decreases, thus the conditional probability of select-
ing a discriminative feature increases.

2.4 Non-overfitting

The proposed approach does not overfit and this can be
shown in the following discussion as well as experiments.
First, various generalization bounds on decision tree is only
related to the number of training examples, the depth of
the tree and the number of examples at the leaf node (the
parameter m in our case), and, importantly, is unrelated to
the feature vector. In particular, the bound on balanced
trees is the smallest, and M°T is a balanced tree. So the key
factor to avoid overfitting is the choice of m. It should not
be set too small, such as 1 or 2, like traditional decision tree
learning. Second, the support of feature is independent from
overfitting. Frequent pattern is containment-based feature
and its value is either 0 or 1. A high support pattern has
most examples with value 1, while a low support pattern has
most 0 values, and this is symmetrical for a classifier. On the
other hand, low support features are important. Assuming
that the probability of the positive class is 1%. In order to
find just one single pattern to separate the two classes as
much as possible, the support of this pattern ought to be
either close to 99% or 1%. This is trivially true according to
pigeon hole principle. In other words, the support of mined
pattern is unrelated to generalization.

2.5 Optimality under Exhaustive Search

We study the optimality of M°T under exhaustive search
conditions. Assuming that we were able to enumerate all
features apriori and use MPT as a “feature selection” algo-
rithm, we show below that the set of features chosen by M°T
is still the best set of features.

Under the ideal situation of “exhaustive enumeration”, one
would consider MPT as a feature selection algorithm since
all features are given apriori. Then, the benchmark for com-
parison would be “feature selection algorithm.” Importantly,
one would be interested in comparing the quality of “selected
features” by MPT with those by bench mark feature selec-
tion algorithms. Among the large family of feature selection
algorithms, the one that is comparable, is a forward-based
feature selection with decision tree or fDT. Assume that the
large set of candidate features is {f1, f2,..., f~}, both the
forward-based feature selection fDT and the proposed algo-
rithm M°T selects some K features out of N candidates. To
be comparable, the number K is determined by M’T when
it reaches its stopping condition, i.e., (1) a node is pure or
all the examples belong to the same class (2) the number of
examples is < m.

For forward-based feature selection, assume that there are
k features chosen thus far. Then, at the next iteration, it
chooses one out of the remaining N — k features to include
with the k features that gives the highest accuracy. For sim-
plicity, we assume that the accuracy never decreases before
it reaches the parameter K. On the other hand, considering
MP®T, at each iteration, M®T chooses one feature not tested
along a decision path from the root to the current node that
gives the maximal accuracy increase for that particular sub-

space of examples within the “current node.” Assume that
at the end, both M®T and fDT have each chosen K features
independently, as follows, we prove that they choose exactly
the same set of K features.

At the first step, obviously both algorithms will choose the
same feature and build the same single node tree. Assume
after some steps, fDT and MPT have constructed exactly the
same partial tree. We prove that the next feature chosen by
both algorithms will be the same and the resulting trees will
be identical. First, neither M®T nor fDT will reconstruct
the current partial tree, but rather expand one leaf node.
For M®T, this is true by definition. For fDT, if a new fea-
ture would re-construct this partial tree, it would have been
chosen previously and already been the testing feature of a
non-terminal node of the partial tree. If one would impose
that both fDT and M®T follow the same order on which leaf
node to expand next, they would obviously choose exactly
the same feature and construct the same tree every step
along the way. Nonetheless, this order is not important if
fDT satisfies the stopping conditions of M®T. In fact, when
identical nodes from fDT and M°T get expanded, there is
only one unique best feature to choose for both M*T and
fDT. Additionally, a node from both trees does not expand
if it satisfies one of the two stopping conditions of M®T.

3. EXPERIMENTAL STUDIES

The performance of the proposed algorithm is evaluated
on both frequent itemsets and graph datasets. We exper-
imented on some of the most difficult benchmark datasets
used in the community and specifically excluded those eas-
ier cases. We compared the model-based search tree with
closed pattern mining methods (FPClose for itemset [12] and
CloseGraph for subgraph [25]) followed by feature selection,
as well as a state-of-art integrated “two-step” approach Pat-
Class [5] for frequent itemsets mining. At the time of final
copy preparation, a heuristic-based method to directly mine
frequent itemsets DDPMine [6] is just published. A com-
parison on performance is discussed at the end of Section 4.
For each dataset, the results reported below are the average
of 5-fold CV.

3.1 Itemset Mining

The main concerns on feature discovery algorithms are ef-
ficiency and accuracy. For efficiency, it is necessary to find
out if the model-based search tree is able to discover the use-
ful needles in the haystack in reasonable amount of time and
with reasonable amount of memory. Importantly, one ought
to know if traditional methods may even be able to find
these predictive patterns given reasonable amount of time
and memory. Nonetheless, it is useful to find out the num-
ber of additional features that traditional algorithms have to
produce before even reaching these patterns. These numbers
are important measures of “search quality,” i.e., blind-search
vs. targeted search. Moreover, the size of the returned fea-
ture sets is a substantial quality measure. Obviously, in
terms of model comprehensibility, a practitioner would pre-
fer a small number features. Besides various scalability is-
sues, one crucial measure for data mining is the “predictive
quality” of the features returned by the model-based search
tree. Ideally, one would like to expect an inductive model
constructed by those features more accurate or at least as
accurate as state-of-the art methods. To answer the above
questions regarding the proposed method, we used some of

Number of Features discovered

min support of Features discovered by MbT

8000 300000

total #pat MbT enumerated —+—
total #pat using MbT min support -
R R R Ko

7000
250000

6000 ><
200000 A
5000

4000 150000

3000
100000

Number of Patterns Enumerated

2000 X

50000
1000

o
0 01 02 03 04 05 06 07 08 09 1

(b) Total number of
itemsets enumerated

00 01 02 03 04 05 06 07 08 09 1
(a) Number of itemsets
mined with varying supports

DT ——
MDT -

MbT ——
0.9

0.8
0.7
0.6
05
0.4
03
0.2
01

B5 | XK,
84
83
82
81

Accuracy (%)

80
79
78

77
0 01 02 03 04 05 06 07 08 09 1

(d) Accuracy at
different supports

OO 01 02 03 04 05 06 07 08 09 1
(c) Minimal supports of itemsets
mined by M*T

Figure 4: Experiments on Adult; x-axis: Normalized
Percentage Support

the most difficult benchmark datasets, which are skewed in
prior class distribution, and large in scaled problem size in
terms of number of examples and feature space. To avoid
duplicate and useless patterns, we have employed closed pat-
tern algorithms for both frequent itemset [12] and frequent
subgraph mining [25].

Scalability to Mine Frequent Itemsets In Table 1,
we summarized the number of frequent itemsets, support
employed to mine these itemsets, and most importantly, the
minimal support among all those frequent itemsets selected
by the proposed method. For model-based search tree, this
number is not the same as, but significantly smaller than
the minimal support used to invoke the algorithm. For no-
tational convenience, the proposed algorithm is denoted by
MP®T, and #pat is the number of patterns or itemsets in this
case. Each result column is numbered for convenience.

Among all results, the most interesting numbers to com-
pare and observe are: (1) Column 4 vs. Column 5 - the
number of patterns returned by calling frequent pattern al-
gorithm, as compared to calling the proposed algorithm with
the same support. (2) Column 3 vs. Column 6 - the minimal
support used to generate M®T as compared to the minimal
support of all patterns selected and returned by M®T.

For the first point, obviously the number of patterns se-
lected by frequent pattern algorithm is much larger (up to
x10% larger) than the proposed method. In the left bar chart
of Table 1, their normalized “log” scale difference is plotted.
We cannot plot it in the original scale since up to 10% dif-
ference does not demonstrate the result of MT. Practically,
this difference ought to be interpreted as the evidence that
the proposed method is much more selective in choosing the
patterns to expand instead of “blind” enumeration. This is
obviously due to step 5 of Algorithm 1, that employs a fit-
ness function to maintain the best pattern « at the node,
thus split the data into subspaces according to the testing

1 2 3 4 5 6 7 8 9
DataSet || TrainSize || sup% sup #pat | MPT #pat || M°T sup | M°T sup% || #pat using M®T sup | ratio (5/8)
Adult 39074 20% | 7814.8 2245.4 1039.2 10 0.026% 252809 0.41%
Chess 2557 5% 1918 10430.2 46.8 34 1.33% +oo ~ 0%
Hypo 2351 80% 1881 3212 14.8 339.8 7.5% 423439 0.0035%
Sick 2240 85% 1904 4676 15.4 73.6 3.3% 4818391 0.00032%
Sonar 167 25% 42 10623.2 7.4 20 12% 95507 0.00775%
10 10
8 8
[s] 6
1 4
2 2
o (o]
Adult Chess Hypo Sick Sonar Adult Chess Hypo Sick Sonar
Bl log (HPat) N log(Mbl #Pat) \ ‘Fﬁ log(sup) N log(Mb1l sup) \
Table 1: Scalability on number of mined itemsets
result on «. This is theoretically analyzed in Section 2.1, DataSet || DT #pat | MT #pat || DT Acc [M°T Acc
and further emphasized by the “predictive quality” of these Adult 2245.4 1039.2 84.14% | 85.08%
. . . Chess 10430.2 40.8 72.85% 80.30%
features discussed thereafter in Section 3.1. Hypo 3212.2 148 99.02% 97.9%
For the second point above, evidently, witbh a much higher Sick 4676 15.4 06.68% | 97.38%
input support (such as 75% for Chess), M’T can find fea- Sonar 10623.2 7.4 79.80% | 80.78%

tures whose support are up to x10? lower in value than this
invocation parameter (that is 3.3% for Chess). Similarly,
their normalized “log” scale difference is plotted in the right
bar chart of Table 1. Practically, this means that M°T, in
effect, can “prune” the search space significantly and avoid
enumeration of less promising patterns.

Solving Combinatorial Explosion In Table 1, the
number of patterns (column 8) returned by closed frequent
pattern mining method using the minimum support among
all features selected by M®T is summarized for each dataset.
The ratio of this number as compared to the number of fea-
tures selected by M®T (column 5) is calculated in column
9. Unequivocally, their difference is at least from x10° to
x10°. Importantly, on Chess, it is impossible for the closed
pattern mining algorithm to finish using the minimal sup-
port returned by M®T. Due to combinatorial explosion, the
program simply “ate” all the memory that the Linux server
could allocate, and was then killed by the operating system.

In order to clearly demonstrate the scalability of the pro-
posed method in avoiding enumerating huge number of po-
tentially useless features, but drilling down quickly to pat-
terns with extremely low support, we ran several additional
experiments on Adult with varying supports. In Figure 4(a),
we compared the number of patterns mined by closed fre-
quent itemset algorithm and M®T as the support goes down
from 0.95 and 0.05. Clearly, the number of patterns returned
by M®T exhibits linear-like growth as a function of 1 — sup.
However, for traditional closed pattern mining algorithm,
the plot appears to be exponential in shape.

As a different way to demonstrate scalability, Figure 4(b)
plots the total number of patterns ever “enumerated” by
M°T (including all patterns enumerated at each non-leaf
node), as well as the total patterns generated by state-of-
the-art closed pattern algorithm using the minimal support
of all features selected by M’T. The latter number could
have been much larger if we had used the minimal support
of all features “enumerated” by M®T. It is evident that the
growth on the total number of patterns ever enumerated

Table 2: Accuracy on mined itemsets vs. bigger sets

with w/o feature

original original set

features features size
Data Pat- Pat- Pat-
Set MPT | Class || M®T | Class | M?T | Class
adult || 0.853 | 0.848 || 0.853 | 0.761 || 1039.2 | 45.6
chess || 0.884 | 0.871 0.82 | 0.628 25.4 13.2
hypo 0.993 | 0.993 || 0.979 | 0.992 24.2 15.8
sick 0.973 | 0.974 || 0.975 | 0.965 16.6 29.2
sonar 0.803 | 0.818 0.764 | 0.818 7.4 24.4

Table 3: Accuracy of SVM on mined itemsets

by M®T is much smaller than that of closed pattern mining
method with the same support.

Yet, the third way to demonstrate the scalability is to
examine the variation of the minimal support among all se-
lected featured by MPT as the invocation support changes.
As plotted in Figure 4(c), when the input support decreases,
the minimal support returned by the proposed algorithm
quickly goes down to nearly zero (after the invocation sup-
port is less than 60%). This explains “the quick convergence
to high accuracy” as discussed below.

Convergence Speed One practical concern is that one
does not wish to experiment very low support before the ac-
curacy converges, but rather prefer a method that converges
fast and at high support. In Figure 4(d), we plotted the
changes in accuracy as the input support goes down, com-
paring both the proposed method M®T and a decision tree
trained from the larger pattern sets returned by traditional
closed pattern mining method. It is quite straightforward to
see that at high support 70%, the proposed method already
reaches promising accuracy, which can only be achieved by
traditional approach at support < 10%.

1 2 3 4 5 6 7 8 9 10 11

Positive DT | MPT || MPT [MP°T #pat using | ratio
DataSet || #Training Dist #Test || sup | sup% || #pat | #pat sup sup% MPT sup (7/10)
NCI1 33020 1.0% 8254 9906 30% 921 7 56 0.17% 400 ~ 0%
NCI33 31991 4.1% 7997 4799 15% 630 344 32 0.10% 400 ~ 0%
NCI41 22008 5.7% 5501 2201 10% 1579 376 15 0.068% +o00 ~ 0%
NCI47 32217 5.0% 8054 3222 10% 1609 587 10 0.031% 400 ~ 0%
NCI81 32426 5.9% 8106 3243 10% 1594 685 10 0.031% 400 ~ 0%
NCI83 22217 8.3% 5553 2222 10% 1583 620 10 0.045% +o00 ~ 0%
NCI109 32424 5.1% 8102 3242 10% 1602 605 10 0.031% 400 ~ 0%
NCI123 31812 7.9% 7953 3181 10% 1616 909 10 0.031% +o00 ~ 0%
NCI145 32004 4.9% 8000 3200 10% 1591 491 15 0.047% +o00 ~ 0%
H1 34118 3.5% 8528 3412 10% 1265 504 19 0.056% +00 ~ 0%
H2 33256 1.0% 8312 3326 10% 1248 156 10 0.030% +o00 ~ 0%

Table 4: Number of mined subgraphs on Graph Data Set

Accuracy of Mined Itemsets Predictive quality of the
mined compact feature sets is measured against both (1)
much larger feature sets, and (2) those mined feature sets by
state-of-the-art “two-step” approaches. For the first, the ac-
curacy of M®T’s feature is compared against the much larger
feature sets returned by closed pattern algorithm, both with
the same invocation support. Clearly, as summarized in Ta-
ble 2, except for hypo, the much smaller feature set (x 107
to x10% smaller) can actually produce more accurate model
than a much larger feature set and the accuracy increase is
up to 8%. This clearly demonstrate both the predictive and
comprehensible quality of mined features.

To further justify the predictive quality, we have also com-
pared M®T with the most recently proposed closed pattern
mining algorithm, PatClass [5]. One important understand-
ing is that other feature discovery algorithm can be called
as the baseline pattern searching algorithm by M°T. In a
way, none of them are competing algorithm for the pro-
posed approach, but they can be “plugged” in together to
find even better patterns than the closed frequent itemset
algorithm solely used in the experimental study. Nonethe-
less, the motivation of this comparison with PatClass is to
demonstrate that even M°T calls the “non-feature selective”
(i.e, no feature selection and no pruning of search space)
closed pattern mining algorithm, it can still reach or exceed
the performance of the best “selective” two-step approach
that we are aware of. The results using SVM as the in-
ductive learner, with or without the original feature vector,
are summarized in Table 3. As can be clearly shown, their
accuracy are quite close. Both feature sets are small, and
normally, a bigger feature set incurs higher accuracy due to
more expressive power.

3.2 Graph Mining

Frequent-subgraph based graph mining has been the re-
cent active topic to use frequent pattern concept to mine
predictive subgraphs as features, thus producing accurate
inductive models that can be used in drug design, social
network analysis, etc. In normal understanding, frequent-
subgraph mining is more difficult than frequent itemsets
since the scaled problem size is usually much larger and the
graph isomorphism test itself is a non-trivial research prob-
lem. Thus, frequent-subgraph mining provides an exciting
test bed for the proposed method.

From PubChem project [2], we selected a series of graph
datasets with rather skewed distributions. As commonly

recognized by the graph mining community, these are some
of the most challenging tasks. Each of the NCI anti-cancer
screens forms a classification problem, where the class la-
bels are either active or inactive. The active class is very
rare compared with the inactive class. Another dataset is
obtained from the AIDS anti-viral screen program [1]. The
screening tests are evaluated in one of the following three
categories: confirmed active (CA), confirmed moderately ac-
tive (CM) and confirmed inactive (CI). Both CA and CM
classes are extremely rare compared with CI. Two classifica-
tion problems are formulated out of this dataset. The first
problem is designed to classify between CM+CA and CI,
denoted as H1; the second between CA and CI, denoted as
H2. The characteristic of each graph dataset is described in
columns 1-3 of Table 4.

Scalability to Mine Frequent Subgraphs Table 4
summarizes the number of subgraphs mined by traditional
closed graph mining algorithm (column 6) and the proposed
method (column 7). Over all graph sets, the number of sub-
graphs selected by closed graph mining algorithm is at least
two times and up to eleven times greater than that of M®T.
Another most remarkable pair of columns are columns 5 and
9, which are respectively the input support and the minimal
support among all subgraphs selected by M®T. Their mag-
nitude of difference is from x10? to x103.

Solving Combinatorial Explosion for Frequent Sub-
graph Mining We also examined if the closed graph min-
ing algorithm is able to generate any subgraphs if the input
support is chosen to be the minimal support of all subgraphs
selected by MPT. However, as indicated in column 10 of Ta-
ble 4, the program consumed all memory that could be al-
located by Linux, and none of them could finish. This not
only justifies the scalability of the proposed algorithm on
frequent subgraph mining, but also provides a solution to
combinatorial explosion for the same context.

Accuracy of Mined Frequent Subgraphs Similar to
frequent itemsets, performances of MT are compared with
a classifier (E.g. DT) trained with much larger number of
frequent subgraphs returned by the closed subgraph mining
algorithm with the same invocation support. The results of
the same classifier built on the mined subgraphs by M°T
are also reported. Using the subgraphs selected by M*T
(columns 7 in Table 4), and the much larger set of subgraphs
mined by the closed graph mining algorithm (columns 6 in
Table 4), Table 5 summarizes the AUC and accuracy results
of MPT and a decision tree. Since these datasets are rather

DT DT

Data DT MbPT | MPT DT MbT | MPT
Set AUC | AUC AUC Acc Acc Acc
NCI1 0.61 | 0.685 | 0.74 || 0.989 | 0.99 | 0.9389

NCI33 0.726 | 0.743 | 0.745 || 0.946 | 0.948 | 0.95
NCI41 0.738 | 0.765 | 0.763 || 0.937 | 0.942 | 0.938
NCI47 0.718 | 0.708 | 0.727 || 0.938 | 0.943 | 0.939
NCI81 0.693 | 0.696 | 0.723 || 0.923 | 0.933 | 0.93
NCI83 0.712 | 0.734 | 0.722 || 0.910 | 0.890 | 0.890
NCI109 || 0.744 | 0.699 | 0.746 || 0.935 | 0.934 | 0.938
NCI123 || 0.678 | 0.667 | 0.679 || 0.894 | 0.892 0.91
NCI145 || 0.749 | 0.747 | 0.752 || 0.938 | 0.953 | 0.948
H1 0.637 | 0.675 | 0.667 |[0.949 | 0.965 | 0.965
H2 0.681 | 0.707 | 0.695 || 0.988 | 0.988 | 0.989

Table 5: Performances of DT,M’T and DT M'T

skewed, AUC or area under curve is a more appropriate
measure than accuracy only. As highlighted in the table, the
proposed method (M®T) and the decision tree built on the
mined subgraphs by M*T (DT M’T) have achieved higher
AUC and accuracy in almost all of the graph data than the
decision tree constructed on the larger subgraph sets (DT).
Across all datasets, the average improvement in AUC is 0.04
or 4%. Importantly, the most significant improvement, 21%,
is achieved on the most skewed dataset NCI1 (1% positive).

We have also compared the AUC of the proposed method
with two benchmark results where the graphs are gener-
ated with the batch two step approach: first enumerating
closed graphs with support 5% and then use feature selec-
tion to choose the top 1000. The results are summarized
in Table 6. There are two benchmark methods involved.
Among them, “org” is trained on the frequent subgraphs
mined from the original skewed training set. On the other
hand, “rBlcd” use the subgraphs mined from a “rebalanced”
sample where skewed positives are always kept, but nega-
tives are down-sampled. Obviously, over all datasets, the
AUC scores achieved by M®T and the decision tree built on
the mined subgraphs by M®T (DT M’T) consistently dom-
inate those of org and rBled via C4.5. For seven out of
eleven graph sets, M®T or DT M’T performs significantly
better than org and rBlcd based on SVM.

4. RELATED WORK

The usage of frequent pattern in classification has been
explored by many recent studies. The association between
frequent patterns and class labels is used for prediction. Ear-
lier studies on associative classification [19, 18, 27] mainly fo-
cus on mining high-support, high-confidence rules and build-
ing a rule-based classifier. Prediction is made based on the
top ranked rule or multiple rules. A recent work on top-k
rule mining [7] discovers top-k covering rule groups for high-
dimensional gene expression profiles. A classifier RCBT is
constructed from the top-k covering rule groups and achieves
very high accuracy. Harmony [23] is another rule-based
classifier which directly mines classification rules. It uses
an instance-centric rule-generation approach and assures for
each training instance, that one of the highest-confidence
rules covering the instance is included in the rule set. In ad-
dition, [5] is a newly proposed frequent pattern-based clas-
sification method. Highly discriminative frequent itemsets
are selected to represent the data in a feature space, based
on which learning algorithm can be used for model learning.

Proposed SVM Bchmk C4.5 Bchmk
Method (> 10%) 5% + fs 5% + fs
Data DT
Set MbT MbT org rBled org rBled
NCI1 0.685 0.74 0.583 | 0.736 || 0.589 | 0.65

NCI33 0.743 0.745 0.512 | 0.737 || 0.536 | 0.648
NCI41 0.765 0.763 0.679 | 0.72 0.603 | 0.606
NCI47 0.708 0.727 0.501 | 0.75 0.63 0.64
NCI81 0.696 0.723 0.541 | 0.739 || 0.589 | 0.652
NCI83 0.734 0.722 0.633 | 0.692 || 0.594 | 0.608
NCI109 || 0.699 0.746 0.508 | 0.727 || 0.555 | 0.64
NCI123 || 0.667 | 0.679 0.517 | 0.619 || 0.606 | 0.608
NCI145 || 0.747 0.752 0.55 | 0.755 || 0.595 | 0.654
H1 0.675 0.667 0.632 | 0.661 || 0.399 | 0.556

H2 0.707 0.695 0.519 | 0.845 || 0.427 | 0.682

Table 6: AUC of M*T, DT M’T vs. Benchmarks

With no initial feature vector representation, the primary
problem in classification of complex data such as graphs is
feature invention. In recent years, much work has been car-
ried out to address the graph classification problem. Basi-
cally these studies can be divided into three approaches: (1)
structure or fragment-based approach [15, 9, 22], (2) kernel-
based approach [20, 10], and (3) boosting method [16]. Typi-
cally, the basic idea of structure or fragment-based approach
is to extract frequent substructures [15, 9], local graph frag-
ments [22], or cyclic patterns and trees [14] and use them as
descriptors to represent the graph data. Studies with kernel-
based approach aim at designing effective kernel functions
to measure the similarity between graphs.

Several recent proposals have discussed how to make fre-
quent pattern mining more conscious of memory hierarchy
and architecture, including [11, 8]. [11] proposed a cache-
conscious prefix tree which improves spacial locality and en-
hances the benefits from hardware cache line prefetching.
[8] proposed a parallel mining algorithm of sequential pat-
terns on a distributed memory system. These techniques
are related to our mining task and can be applied to fur-
ther improve the efficiency of the proposed method. Besides
these efficient algorithms on the architecture level, there are
some up-to-date methods DDPMine[6] and LEAP[24] on al-
gorithm level which directly mines the most discriminative
pattern via specially designed heuristics without mining the
complete set of frequent patterns. Since a lot of search space
can be pruned, these methods can still find many of the
most discriminative patterns, but are much more efficient
than traditional frequent pattern mining methods. The dif-
ference of this paper from DDPMine and LEAP is that the
proposed techniques are applicable to frequent patterns in
general, not limited to only either itemsets (DDPMine) or
sub-graphs (LEAP) [24]. The accuracy of DDPMine mined
itemsets as reported in Table IV of [6] are comparable and
very similar to those numbers in Table 3 of this paper on
MPT. Similar to the closed pattern mining algorithms called
by MPT in this paper, M®T can also invoke the most recently
proposed methods DDPMine (or LEAP) at its internal node
to mine candidate features to split its data space.

5. CONCLUSION

To solve the scalability issue of mining frequent pattern
as feature vectors from semi-structured and unstructured
data, traditional methods employ a two-step batch process

that first enumerates all candidate features, then performs
feature selection. This process has limited success in identi-
fying a small and compact set of features. Furthermore, dif-
ferent techniques are re-invented to reduce the search space
for different types of patterns: frequent itemsets, frequent
subgraphs, and sequential patterns. In other words, each
technique is hard to generalize across different problems.
To address these problems and others discussed in the pa-
per, we propose a divide-and-conquer approach. The pro-
posed method constructs a model-based search tree as it
recursively invokes some frequent pattern enumeration al-
gorithm. The main idea is to mine a discriminative feature
that divides a subset of examples into purer subspaces that
previously chosen patterns fail to distinguish. This process
recursively runs on smaller and smaller data subspaces un-
til either the subspace is too small or every example in the
subspace belongs to the same class. At the end of feature
discovery process, we have both a predictive decision tree
and a set of discriminative features kept in non-leaf nodes
of the tree. The proposed method can mine predictive pat-
terns with extremely low global support, scales linearly to
the scaled problem size and does not overfit.

Experimental studies have been conducted on both fre-
quent itemset and graph mining problems. We have selected
some of the most difficult datasets in each field. For exam-
ple, some graph datasets have highly skewed distribution
(1% positives) and the chemical compounds have hundreds
of edges and vertices. The baseline algorithms invoked by
model-based search tree are basic closed pattern algorithms.
For scalability, the total number of patterns both enumer-
ated during the pattern mining process and finally selected
by the proposed algorithm is up to 10® smaller than those
generated by the baseline algorithm using the same input
support. The minimal support of the patterns discovered
by the proposed algorithm can be so low (such as, 0.03%)
that calling the closed pattern mining algorithms to enu-
merate these features is impossible due to combinatorial ex-
plosion and resource constraints. For predictive quality of
those mined patterns, on the frequent itemset data, the ac-
curacy is as good as most recently proposed methods, and
significantly better than a model constructed from the large
set of patterns discovered by traditional closed pattern min-
ing. On the challenging skewed graph mining problem, the
AUC using the mined subgraphs is up to 21% higher than
comparable benchmark methods.

Future Work: (1) We generated biased dataset and found
that M®T can still find good features even when the train-
ing and testing data follow significantly different prior class
distribution. More studies are being conducted. (2) M°T is
a scalable frequent pattern mining algorithm not limited to
just itemsets and sub-graphs. It is interesting to systemati-
cally compare M®T with heuristic-based scalable algorithm
designed for different types of frequent patterns. To com-
pare with DDPMine [6] on itemsets and with LEAP [24] on
graphs, M®T can either invoke closed pattern methods [12,
25] or call DDPMine/LEAP instead at internal nodes.

Acknowledgment

The research of Kun Zhang was partially funded by Louisiana
Cancer Research Consortium.

6. REFERENCES

(1] http://dtp.nci.nih.gov. The Aids Antiviral Screen.

2]
3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

11]

(12]

13]

[14]

(15]

[16]

(17]

(18]

19]

20]

(21]

(22]

23]

[24]
25]
[26]

27]

http://pubchem.ncbi.nlm.nih.gov. The PubChem Project.
R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of VLDB, pages 487—499, 1994.
R. Agrawal and R. Srikant. Mining sequential patterns. In
Proc. of ICDE, pages 3—-14, 1995.

H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative
frequent pattern analysis for effective classification. In
Proc. of ICDE, 2007.

H. Cheng, X. Yan, J. Han, and P. Yu. Direct discriminative
pattern mining for effective classification. In Proc. of
ICDE, 2008.

G. Cong, K. Tan, A. Tung, and X. Xu. Mining top-k
covering rule groups for gene expression data. In Proc. of
SIGMOD, pages 670-681, 2005.

S. Cong, J. Han, and D. Padua. Parallel mining of closed
sequential patterns. In KDD, 2005.

M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis.
Frequent substructure-based approaches for classifying
chemical compounds. IEEE Trans. Knowl. and Data Eng.,
17(8):1036-1050, 2005.

H. Frohlich, J. Wegner, F. Sieker, and A. Zell. Optimal
assignment kernels for attributed molecular graphs. In
Proc. of ICML, pages 225-232, 2005.

A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim,

A. Nguyen, Y. Chen, and P. Dubey. Cache-conscious
frequent pattern mining on a modern processor. In VLDB,
2005.

G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’03), 2003.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. of SIGMOD, pages
1-12, 2000.

T. Horvéth, T. Géartner, and S. Wrobel. Cyclic pattern
kernels for predictive graph mining. In Proc. of KDD,
pages 158-167, 2004.

S. Kramer, L. Raedt, and C. Helma. Molecular feature
mining in hiv data. In Proc. of KDD, pages 136-143, 2001.
T. Kudo, E. Maeda, and Y. Matsumoto. An application of
boosting to graph classification. In Proc. of NIPS, pages
729-736, 2004.

M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proc. of ICDM, pages 313-320, 2001.

W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient
classification based on multiple class-association rules. In
Proc. of ICDM, pages 369-376, 2001.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. In Proc. of KDD, 1998.

P. Mahg, N. Ueda, T. Akutsu, J. Perret, and J. Vert.
Extensions of marginalized graph kernels. In Proc. of
ICML, pages 552-559, 2004.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,

U. Dayal, and M.-C. Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In
Proc. of ICDE, pages 215-226, 2001.

N. Wale and G. Karypis. Comparison of descriptor spaces
for chemical compound retrieval and classification. In Proc.
of ICDM, pages 678-689, 2006.

J. Wang and G. Karypis. HARMONY:: Efficiently mining
the best rules for classification. In Proc. of SDM, pages
205-216, 2005.

X. Yan, H. Cheng, J. Han, and P. Yu. Mining significant
graph patterns by leap search. In SIGMOD, 2008.

X. Yan and J. Han. Closegraph: mining closed frequent
graph patterns. In KDD, 2003.

G. Yang. Computational aspects of mining maximal
frequent pattern. Theoretical Computer Science, 2006.

X. Yin and J. Han. Cpar: Classification based on
predictive association rules. In Proc. of SDM, 2003.

