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ABSTRACT
Bug localization has attracted a lot of attention recently.
Most existing methods focus on pinpointing a single state-
ment or function call which is very likely to contain bugs.
Although such methods could be very accurate, it is usually
very hard for developers to understand the context of the
bug, given each bug location in isolation. In this study, we
propose to model software executions with graphs at two
levels of granularity: methods and basic blocks. An indi-
vidual node represents a method or basic block and an edge
represents a method call, method return or transition (at the
method or basic block granularity). Given a set of graphs
of correct and faulty executions, we propose to extract the
most discriminative subgraphs which contrast the program
flow of correct and faulty executions. The extracted sub-
graphs not only pinpoint the bug, but also provide an infor-
mative context for understanding and fixing the bug. Differ-
ent from traditional graph mining which mines a very large
set of frequent subgraphs, we formulate subgraph mining as
an optimization problem and directly generate the most dis-
criminative subgraph with a recently proposed graph mining
algorithm LEAP. We further extend it to generate a ranked
list of top-k discriminative subgraphs representing distinct
locations which may contain bugs. Experimental results and
case studies show that our proposed method is both effec-
tive and efficient to mine discriminative subgraphs for bug
localization and context identification.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging; H.2.8 [Database Man-
agement]: Database Applications – Data Mining

General Terms: Algorithms, Experimentation
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1. INTRODUCTION
Software bugs have been a part of day-to-day software

development. Debugging effort has been a painstaking and
expensive task to software developers. It is particularly hard
to identify, locate and fix a bug given known failures in a
system, as the bug can appear far from the point where a
failure becomes observable (e.g., when a computation result
is outputted, when the system crashes, etc.). Certainly, au-
tomating part of this debugging process can substantially
help in both easing the programmers’ effort in locating bugs
and reducing the overall cost of software development. A
past study has estimated that the cost of debugging can go
up to billions of dollars annually [18].

There have been many promising studies in the area of
fault localization and automated debugging, e.g., [12, 17,
24, 5, 14, 15]. These studies usually take as input two sets
of program traces corresponding to correct and faulty execu-
tions. A trace itself is generated by instrumenting the target
program and logging events corresponding to method invo-
cation, statement execution, basic block entry, etc., when
the instrumented program is run. Based on these two sets
of input, a set of candidate bug locations is then reported.
These studies have shown that fault localization techniques
are able to pinpoint the root causes of various bugs in many
cases.

Most research work on fault localization assumes “perfect
bug understanding” [7] – where a programmer is able to
identify a bug simply by looking at a faulty line of code in
isolation. Often, more than the exact location of a bug is
needed, rather the “context” where the bug occurs is likely
to help greatly in improving the programmers’ ability in
identifying, understanding and correcting bugs. For exam-
ple, it might be the case that executing any one of the two
statements s1 and s2 does not result in a fault. However,
when these two statements are executed one after the other,
then the fault will occur. The context of s1 being executed
before s2 is important in aiding programmers to understand
and fix the bug. Some other approaches use program slicing
to provide for context [2, 6, 11, 25]. However often the slices
are too large and include too much information which might
potentially dilute important bug-related information among
the noise.
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Based on the above motivation, Hsu et al. [7] have devel-
oped a tool, referred to as RAPID, to identify bug signatures
from correct and faulty executions of a program. A bug sig-
nature provides the context where the bug occurs. Their
approach first identifies relevant suspicious statements from
program executions by contrasting correct and faulty exe-
cutions via Tarantula [12]. A statement is suspicious if it
appears more in the faulty executions than the correct ex-
ecutions. Next, based only on the faulty executions, they
compute the longest common sub-sequences that appear in
all the faulty executions. The returned signatures are then
sorted by length and presented to the user. They have shown
that their approach is able to identify a bug involving the
path-dependent fault which is hard to identify by past tech-
niques that do not report contextual information.

In this paper, as a further step along this direction, we
develop a discriminative graph mining algorithm for identi-
fying bug signatures. A software execution can be “coiled”
to form graphs capturing the relationship between traced
events. We refer to this graph as software behavior graph.
We consider two levels of granularity: method and basic-
block. At the method level, an execution trace corresponds
to method invocations; while at the basic block level, an
execution trace corresponds to executions of basic blocks.
The higher the level of granularity, the shorter the trace is
and we are then able to analyze larger systems. The trade-
off is that at a higher level of granularity we have a less
rich input which potentially reduces the accuracy of a bug
signature identification method. Hence, we believe that dif-
ferent levels of granularity have their own pros and cons. It
would be interesting to analyze the effect of different levels
of granularity on bug signature identification results.

A behavior graph is composed of a set of nodes each cor-
responding to a method or basic block, and a set of edges
each corresponding to a relationship (call, return or transi-
tion) between the respective pair of nodes. Our proposed
graph mining approach will extract the most discriminative
subgraphs which are highly indicative of bugs and their con-
texts from behavior graphs of correct and faulty runs. The
advantages of our graph mining approach over a sequence
based approach include: (1) a graph-based representation
compactly summarizes a long execution trace while a se-
quence representation can grow very long due to loops; (2) a
discriminative graph pattern increases the expressive power
of the longest common sub-sequence used by RAPID, as we
can now express both partial and total order in one repre-
sentation, while a sub-sequence on the other hand can only
express total order; (3) our method relaxes the requirement
that a bug signature must appear in all faulty executions.
This is beneficial since a bug can have a number of repre-
sentations and be observed with different signatures in the
faulty executions; and (4) while RAPID only finds discrimi-
native single events via Tarantula, we look for discriminative
features involving multiple events.

Intuitively, a bug will cause structural differences between
the software behavior graphs of faulty and correct runs. As
a pre-processing step, we filter off non-discriminative edges
from the graph. These edges correspond to relationships be-
tween methods (or basic blocks). Different from RAPID, we
filter off non-suspicious relationships between nodes rather
than the nodes themselves. In our experiments, we find
that this is more effective in producing better quality bug
signatures as we can retain suspicious relationships between

two non-suspicious nodes. Next, we perform graph mining
on the graph dataset to extract discriminative subgraphs
which are very likely to be bug relevant.

Our discriminative graph mining approach is different from
traditional frequent graph mining, e.g., [23, 16], in the fol-
lowing aspects: (1) traditional graph mining methods take
as input a single set of graphs without labels. The whole
set of frequent subgraphs are then generated wrt. a user-
specified minimum frequency threshold, but many of them
may not be related to bugs. In contrast, we take two sets
of graphs as input from correct and faulty executions. We
then formulate our graph mining problem as an optimiza-
tion problem, i.e., to directly search for the most significant
subgraph in terms of its relevance to bugs. As a result,
our method is much more effective and efficient in localiz-
ing bugs; and (2) we further extend our method to generate
a ranked list of k most suspicious subgraphs to help users
localize bugs.

With the discriminative graph mining approach, we di-
rectly discover top-k discriminative subgraphs which can
highlight the contrasting program flows between correct and
faulty executions and preserve a partial program flow be-
tween functions/statements related to the fault. Such dis-
criminative subgraphs serve as signatures highlighting po-
tential bug locations and provide informative contexts where
bugs occur, which in turn help to guide programmers in find-
ing the source of bugs and correcting them.

In summary, our main contributions include:

1. We propose a bug signature mining framework with a
discriminative graph mining approach. Software exe-
cutions are compactly modeled as graphs. A prepro-
cessing step is employed which filters off non-discrimi-
native edges. We then formulate the bug localization
problem as a discriminative graph mining problem.
A recently proposed algorithm LEAP [22] is used to
directly find the most discriminative subgraph which
contrasts faulty executions from correct ones.

2. We further extend LEAP to mine top-k discriminative
subgraphs, since it is more informative to generate a
ranked list of multiple bug signatures than the single
best one. The method is called Top-K LEAP. We find
this strategy to be effective in ranking candidate bug
signatures.

3. We perform preliminary experimental studies on the
Siemens benchmark datasets to evaluate our method.
Experimental results demonstrate that our method is
effective in recovering bugs and their contexts. On av-
erage, we improve the precision and recall of RAPID
by up to 18.1% and 32.6% respectively. In addition,
our method is shown to be more efficient. We are able
to complete subgraph mining on every dataset within
258 seconds while RAPID is not able to complete min-
ing some datasets even after running for hours.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 defines the preliminary
concepts. Section 4 introduces our mining framework and
illustrates the benefit and effectiveness of our bug signa-
ture identification approach via discriminative graph min-
ing. Section 5 formulates the bug localization problem as a
discriminative subgraph mining problem, discusses the chal-
lenges in this mining task and uses a Top-K LEAP method
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which mines top-k subgraphs as the solution. Experimen-
tal evaluation is presented in Section 6. Section 7 discusses
some issues and future work. Section 8 concludes our study.

2. RELATED WORK
There are three closely related threads of work to our

approach. These include the pioneer of the work on bug
signature identification [7], many of the past studies on bug
localization and past studies on graph mining. The follow-
ing sub-sections describe them in more details and contrast
them with our proposed bug signature identification frame-
work via discriminative graph mining.

2.1 RAPID: Identifying Bug Signatures
RAPID is the pioneering work on bug signature identi-

fication. It mines for bug signatures using a merge be-
tween Tarantula [12] and a sequential pattern mining ap-
proach [21]. It aims to complement existing techniques pin-
pointing the exact single statement that may contain a bug
by providing the context in which a bug occurs. This con-
text is captured in the form of a signature that must hold
across all faulty executions.

Similar to other approaches on bug localization, RAPID
starts by accepting two sets of traces: faulty and correct.
RAPID obtains traces containing statements corresponding
to method entries and branch decisions. In our experimen-
tal study, we enrich the input of RAPID to include all basic
block level information, including method return. RAPID
then uses Tarantula [12] to measure the score of suspicious-
ness of statements based on the following formula:

suspiciousness(s) =

failed(s)
totalfailed

passed(s)
totalpassed

+ failed(s)
totalfailed

The operators failed(s) and passed(s) report the num-
ber of faulty program traces that include s and the number
of correct program traces that include s respectively. The
suspiciousness of a statement is proportional to the normal-
ized ratio between the number of faulty traces that contain
it versus the total number of correct and faulty traces that
contain it.

RAPID fixes the Tarantula threshold at 0.6 (i.e., 60%
likelihood of a statement being related to a failure). The
remaining suspicious statements in the faulty runs are then
collected and formatted to form a multi-set (or bag) of se-
quences of events (or statements). This bag of sequences are
then given to the state-of-the-art sequential pattern miner
BIDE [21] with a frequency threshold of 100%. With that
high threshold, BIDE will return one or more longest com-
mon subsequences (LCSs) that the set of sequences have.
These LCSs are then sorted according to length and pre-
sented to the user. Since the user is less likely to navigate
through a large number of bug signatures, we only return
top 10 results after the LCSs are sorted according to length.

In this work, we extend RAPID in several dimensions:

1. A signature might appear in all the faulty executions,
and also in many or most of the correct ones1. On the
other hand, another signature might appear in all the
faulty executions, but never or rarely in the correct

1This is possible with Tarantula threshold set at 0.6 as used
by RAPID.

ones. These two signatures are different in terms of
their discriminative power. While RAPID does not
distinguish them, our method is able to inform that the
second signature is more discriminative. To do this,
we compare and contrast faulty and correct executions
at the signature level in addition to the event level
comparison performed by RAPID by using Tarantula.

2. It might be the case that a behavior is obeyed by all
except one or a few faulty executions. RAPID does not
categorize this as a signature. In our work, we would
consider this as a signature if the behavior has enough
discriminative power to distinguish between the faulty
and correct traces. We thus tolerate minor imperfec-
tion and slight variation of signatures in the traces.

3. We use a graph-based representation rather than a
sequence-based representation to achieve: (1) scala-
bility, as we can compress long sequences to compact
graphs with loops; and (2) expressiveness, as a graph
can express more relationships than a sequence – a
graph is able to specify both total and partial order,
while a sequence is only able to specify total order.

4. Rather than sorting the returned signatures by length,
we sort the returned signatures by their discriminative
power. The algorithm is parameterized to return top-k
graphs in the descending order of their discriminative
scores.

2.2 Bug Localization
Recently, there have been a lot of studies on bug localiza-

tion and automated debugging. These studies take as input
two sets of execution traces and report candidate single-line
locations where a bug potentially occurs. Bug localization
studies include [12, 17, 24, 5, 14, 15]. Due to the space
limitation, we only list some of these promising studies and
describe them in brief.

Jones and Harrold proposed Tarantula in [12] which ranks
a program statement based on its level of suspiciousness.
Conceptually, a program statement is more suspicious if it
appears in the faulty runs more frequently than in the cor-
rect runs. Given a faulty run and a set of correct runs, Re-
nieris and Reiss presented a fault localization tool WHIT-
HER [17] that compares a faulty execution to the nearest
correct run and reports the most suspicious locations in
the program. Zeller and Hildebrandt proposed a technique
called Delta Debugging that localizes the minimum state
change that results in a bug [24]. The technique swaps part
of the memory state of the program under investigation and
iteratively searches for the minimum swap or state change
that results in a fault in a binary-search-like fashion. In a
later work, Cleve and Zeller extended the work in [24], by in-
corporating a search for cause transitions, namely locations
in the program where a state change on a variable stops be-
coming the cause for the bug (found using Delta Debugging)
and the bug is now caused by a state change on another vari-
able, in their tool called AskIgor [5]. Liblit et al. proposed
a technique to search for predicates whose true evaluation
correlates with failures [14]. While the work by Liblit et al.
only considers if a predicate is ever evaluated as true, Liu et
al. extended the work by incorporating information on the
outcome of multiple predicate evaluations in a program run
in their tool called SOBER [15].
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In contrast to the above work that reports candidate single-
line locations where a bug potentially occurs, we follow the
strategy of bug signature identification, in which a bug is
reported together with its context. The context could help
a programmer to identify, understand and fix the bug. Fur-
thermore, a graph can be thought of as a multi-dimensional
discriminative feature that separates the faulty executions
from the correct ones. Also, in contrast to the work in [17,
24, 5] we analyze the faulty and correct traces en masse since
we would like to compute for discriminative bug signatures.
Hence, we extend and complement the above past studies
on bug localization.

Some other approaches use program slicing to provide for
context [2, 6, 11, 25]. However often the slices are too large
and include too much information which might potentially
dilute important bug-related information among the noise.

Jiang and Su developed a technique to extract faulty con-
trol flow paths from program executions [11]. The tech-
nique first finds discriminative predicates, and groups these
predicates according to their similarity across multiple ex-
ecutions. A path is then traced heuristically that tries to
connect similar predicates belonging to the same group. A
final filtering step is performed to remove redundant paths
as well as paths involving an intra-procedural path. Similar
to RAPID [7], since we analyze the program traces glob-
ally, the discriminative graphs extracted by our approach
guarantee that they express feasible paths in the program
that actually run during testing. On the other hand, the
returned path by the above approach by Jiang and Su only
returns possible contexts approximated heuristically. Also,
in contrast to their work, we do not relate similar pred-
icates, but rather mine combinations of predicates in the
form of graphs that could further discriminate correct from
faulty runs. Furthermore, the graphs are able to express con-
textual information with both total-order and partial-order
relationships. A single predicate might not be discrimina-
tive, but an ordered and interacting set of predicates can be
highly discriminative.

2.3 Graph Mining
Frequent subgraphs are the subgraphs that can be dis-

covered from a collection of graphs with a frequency no less
than a user-specified support threshold. Recent studies have
developed a lot of efficient frequent subgraph mining meth-
ods through two major approaches: an Apriori-based ap-
proach and a pattern-growth approach. The Apriori-based
approach [10, 13, 20] starts with graphs of small size and
proceeds in a bottom-up manner. At each iteration, the size
of newly discovered frequent subgraphs is increased by one.
On the other hand, the pattern-growth approach [23, 3, 8,
16] extends a frequent graph by adding a new edge in every
possible position. A key difference between our discrimina-
tive graph mining method and these mining algorithms is
that, our method has two sets of graphs as input with labels
of correct and faulty. Then our method directly searches for
the most discriminative subgraphs which distinguish faulty
executions from correct ones. On the other hand, these min-
ing algorithms only have a single set of graphs without labels
as input. Given a user-specified minimum frequency thresh-
old, they will generate the whole set of frequent subgraphs
whose frequency in the input graph dataset are above the
threshold. However, most of the discovered frequent sub-
graphs may not be discriminative in terms of distinguishing

correct and faulty runs, thus are not bug relevant. Fur-
thermore, the graph mining result set could be very large,
making it very hard for end users to digest and use.

Ting and Bailey [19] proposed to mine minimal contrast
subgraphs which appear in the positive graphs but never
in the negative ones. A recent study by Christodorescu et
al. [4] uses the minimal contrast subgraph mining algorithm
for mining specifications of malicious behaviors. The idea
of identifying contrasts through graph mining is very close
to ours. The major differences are the principles of the two
mining algorithms: [19] considers only the contrast between
positive and negative graphs, but ignores the commonality
between multiple positive graphs, while our LEAP method
considers both aspects. Therefore, the discriminative sub-
graphs generated by LEAP are representative of the faulty
executions. In addition, the time complexity of [19] is quite
high – the runtime increases exponentially with the number
of input negative subgraphs (i.e., correct executions).

3. PRELIMINARY CONCEPTS
Software can be traced at different levels of granularity:

method, basic block and statement. We consider two dif-
ferent levels of granularity, namely, method and basic block.
After an instrumented program is run, a long series of events
corresponding to method or basic block, depending on the
level of granularity, is generated. These long sequential
traces can then be coiled to form software behavior graphs.

A method level behavior graph G(αm) is a directed graph
representing a method level program execution trace αm.
The vertex set denoted by V (G(αm)) includes all the meth-
ods appearing in αm. The set of edges in G(αm) is denoted
by E(G(αm)) and corresponds to a set of vertex pairs. Each
pair (vi, vj) corresponds to an edge between nodes vi and vj

in G(αm). There are two types of edge labels, namely: call
and trans. An edge (vi, vj) ∈ E(Gt(αm)) is labeled as call
if and only if method j is called by method i in αm. Simi-
larly, an edge (vi, vj) ∈ E(Gt(αm)) is labeled as trans if and
only if method j is called right after method i returns, with
no method calls being made between the two method invo-
cations in αm. The trans edges in the method level graphs
capture relationships among sibling methods called consecu-
tively. We consider these two types of edges as they capture
two different relationships among method calls and enrich
the expressiveness of both the input graphs and the mined
signatures. These in turn would enable better differentiation
of faulty and correct behaviors.

Similarly, a basic block level behavior graph G(αb) is a di-
rected graph representing a basic block program execution
trace αb. The vertex set includes all basic blocks appearing
in αb. There are three types of edge labels, namely: call,
trans and return. An edge (vi, vj) ∈ E(G(αb)) is labeled
as call if and only if it corresponds to a method invocation,
where basic block j is called by basic block i in αb. Similarly,
an edge (vi, vj) ∈ E(G(αb)) is labeled as trans if and only if
basic block j is executed right after basic block i in αb. Fur-
thermore, an edge (vi, vj) ∈ E(G(αb)) is labeled as return
if and only if it corresponds to method return, where basic
block i returns to basic block j in αb. The three edge types
capture the different control flow relationships between the
basic blocks in the program.

A software behavior graph G is a subgraph of another
graph G′ if there exists a subgraph isomorphism from G to
G′, denoted by G ⊆ G′. G′ is called a super-graph of G.
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Figure 1: Software Behavior Graphs

We call a subgraph in a software execution a partial soft-
ware behavior graph which represents a subset of func-
tions or basic blocks, and their relationships, i.e., method
call, method return or transition.

Definition 1 (Subgraph Isomorphism). For two soft-
ware behavior graphs G and G′, a subgraph isomorphism
is an injective function f : V (G) → V (G′), s.t., (1), ∀v ∈
V (G), l(v) = l′(f(v)); and (2), ∀(u, v) ∈ E(G), (f(u), f(v)) ∈
E(G′) and l(u, v) = l′(f(u), f(v)), where l and l′ are the la-
beling functions of G and G′, respectively. f is called an
embedding of G in G′.

Definition 2 (Frequency). Given a software behav-
ior graph dataset D = {G1, G2, . . . , Gn} and a subgraph g,
the supporting graph set of g is Dg = {G|g ⊆ G, G ∈ D}.
The frequency of g is

|Dg |
|D| .

Example 1. Figure 1 shows the partial software behav-
ior graphs from two different runs of the program Mozilla
Rhino with a bug of number 194364. Mozilla Rhino is an
open-source implementation of JavaScript written in Java
[1]. The bug causes Rhino to process function-expression-
statement differently from the intended behavior observed
by Microsoft Internet Explorer (MSIE) and SpiderMonkey
(SM) – Mozilla’s C implementation of JavaScript. In the
graph, each node represents a method, solid edges represent
method calls and dashed ones for transitions. It is very
clear that the faulty execution has a very different subgraph
structure from the correct execution, as highlighted with the
bounding boxes in Figure 1.

Given a program, different inputs will result in different
software behavior graphs and different outputs. Assume
that we have two sets of faulty and correct traces. In the
faulty set, some bugs are manifested for each trace; while in

the correct set, there is no appearance of any bug. We can
then generate a set of software behavior graphs of correct
executions and faulty executions respectively, for localizing
bugs and analyzing their contexts with a graph mining ap-
proach.

4. MINING BUG SIGNATURES
Our bug signature mining framework is illustrated in Fig-

ure 2. Given an instrumented program and a set of test
cases, running the program with the test cases will produce
a set of execution traces. These execution traces are then
converted to form behavior graphs either at a method level
or basic block level depending on the level of granularity
considered. A behavior graph coils a potentially very long
sequence of events into a compact representation.

These graphs are then further filtered to remove edges
which are non-suspicious. An edge corresponds to either a
method call, method return or transition (either at a basic
block or method level). An edge connects two nodes, each
corresponding to a method (or a basic block).

Given a set of behavior graphs, two edges are consid-
ered to be equivalent if they correspond to the same type
of relationship between the same pair of two methods or
basic blocks. Formally, given two graphs G1 = (V 1, E1)
and G2 = (V 2, E2), two edges e1 = (v1, v2) ∈ E1 and
e2 = (u1, u2) ∈ E2 are the same or equivalent iff:

1. Vertices v1 and u1 correspond to the same method (or
basic block), i.e., l(v1) = l′(u1), where l and l′ are
labeling functions of G1 and G2 respectively.

2. Vertices v2 and u2 correspond to the same method (or
basic block), i.e., l(v2) = l′(u2).

3. Edges e1 and e2 have the same label, i.e., l(e1) =
l′(e2).

To identify whether an edge edg is suspicious, we evalu-
ate the following parameter-free predicate suspedg, which is
evaluated to be either true or false:

suspedg =
failed(edg)

passed(edg)
>

totalfailed

totalpassed

The operators failed(edg) and passed(edg) report the
number of faulty program behavior graphs that include the
edge edg and the number of correct program traces that in-
clude the edge edg respectively. Only suspicious edges would
be retained. Any nodes that have no edges would also be
removed from the resultant pre-processed graphs.

The above approach is similar to Tarantula [12] with no-
table differences. Rather than filtering statements corre-
sponding to nodes in the graphs, we filter edges correspond-
ing to relationships between basic blocks or methods in the
input program traces. Also, different from the filtering step
of RAPID which uses Tarantula, our filtering approach is
parameter free. Hence, the result is not dependant on the
correct setting of the parameter, which can sometimes be
hard to do.

We illustrate the power of discriminative graphs in aiding
debugging by means of the following example. The code
snippet shown in Table 1 shows a simple buggy method in
C++ which tries to replace the first occurrence of either sx
or sy with sz in a string array arr of length len.
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Figure 2: Context-Based Bug Localization Framework

1: void replaceFirstOccurence (string arr [], int len, string sx, string sy, string sz) {

2: for (int i=0;i<len;i++) {

3: if (arr[i]==sx){

4: arr[i] = sz;

5: // a bug, should be a break;

6: }

7: if (arr[i]==sy)){

8: arr[i] = sz;

9: // a bug, should be a break;

10: }

11: }

12: }
Table 1: Buggy Code Snippet – An Example

1 

2 11 

3 

4 

7 

10 

8 

1 

2 11 

3 

4 

7 

10

1

2 11 

3

7

10 

8 

Figure 3: Control Flow Graph (CFG) of Code in
Table 1 and Behavior Graph of Traces 3 & 4 (left),
Behavior Graph of Trace 1 (middle), and Behavior
Graph of Trace 2 (right). All edges in the behavior
graphs are labeled as trans.

The code contains several bugs. Rather than replacing
the first occurrence of either sx or sy with sz, it replaces all
occurrences of sx and sy with sz. Consider the following set
of test cases.

No arr sx sy sz
1 {a, b} a g 1
2 {a, b} g a 1
3 {a, g} a g 1
4 {a, g} g a 1

The first two test cases result in correct execution traces,
while the third and fourth result in failures. The Control
Flow Graph (CFG) of the program is shown in Figure 3.
Each number in the CFG corresponds to the line number
where the start of the corresponding basic block is located.
Running the above test cases on the instrumented version
of the code in Table 1, produces a set of execution traces
shown below (each corresponds to a list of ids of the basic
blocks traversed during the respective execution):

3 

4 

7 

10 

8 

3 

4

7 

3 

4 

7 

10 

8 

7 

8 

10

Figure 4: Pre-processed graphs for the four execu-
tion traces. All edges are labeled as trans.

4 

7 

8 

Figure 5: The discriminative subgraph. All edges
are labeled as trans.

No Trace
1 〈1, 2, 3, 4, 7, 10, 2, 3, 7, 10〉
2 〈1, 2, 3, 7, 10, 2, 3, 7, 8, 10〉
3 〈1, 2, 3, 4, 7, 10, 2, 3, 7, 8, 10〉
4 〈1, 2, 3, 7, 8, 10, 2, 3, 4, 7, 10〉

Only four edges would be suspicious and be retained in the
pre-processed graphs. The resultant pre-processed graphs
generated are shown in Figure 4.

A discriminative graph is shown in Figure 5. It highlights
that the problem occurs when the basic block starting at
line 4 is executed with that of line 8. Note that the bug
signature is not minable by RAPID. This is the case as the
bug appears with slightly different signatures at traces 3 and
4, i.e., at trace 3, basic block 4 is executed before 8, while
at trace 4, basic block 8 is executed before 4.

5. MINING DISCRIMINATIVE GRAPHS
WITH STRUCTURAL LEAP SEARCH

Traditional graph mining algorithms [10, 13, 20, 23, 3,
16] mine all frequent subgraphs from a graph dataset with-
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out labels. With frequency as the only mining constraint,
those frequent subgraphs may not have the discriminative
power to differentiate faulty executions from correct ones.
Hence, those traditional graph mining algorithms cannot be
used directly to solve the bug signature mining problem.
In this section, we propose a novel graph mining algorithm
to directly extract discriminative subgraphs for bug signa-
ture identification. We will first formulate the graph mining
problem as an optimization problem for mining the most
discriminative subgraph. We then extend the mining algo-
rithm to mine top-k discriminative subgraphs for a ranked
list of potential bug locations.

5.1 Mining The Most Discriminative Subgraph
Given two sets of software behavior graphs from correct

and faulty executions, we aim to find some partial behav-
ior graphs which are highly indicative of bugs. Intuitively,
a partial software behavior graph is related to a bug with
high probability if it appears frequently in the set of faulty
executions, but rarely in the set of correct ones. Theoreti-
cally, we can design an objective function F (g) to evaluate
the significance of a subgraph g as an indication of a bug.
Then our goal becomes finding the optimal subgraph from
a set of correct and faulty runs wrt. the objective function
F . Formally, the problem is defined as:

Given a set of graphs with class labels, D = {G(αi), yi}n
i=1,

where G(αi) ∈ G is a software behavior graph representing
an execution and yi ∈ {±1} is the class label representing
a correct or faulty status, an objective function F , find a
subgraph g∗ such that g∗ = argmaxgF (g).

In data mining and machine learning, discriminative mea-
sures such as information gain, cross entropy and Fisher
score are popularly used to evaluate the capacity of a fea-
ture in distinguishing instances from different classes. In
this work, we use information gain as the objective function.
According to information gain, if the frequency difference of
a subgraph in the faulty executions and the correct execu-
tions increases, the subgraph becomes more discriminative.
A subgraph which occurs frequently in faulty executions but
rarely in correct executions will have a very large informa-
tion gain score, and indicate that the corresponding partial
software behavior graph is very discriminative to differenti-
ate faulty executions from correct ones. Such discriminative
graph highlights the structural contrast between faulty and
correct graphs. If we use c to denote the class labels of cor-
rect or faulty runs, and use g to represent a subgraph, then
information gain of g is defined as in Eq.(1).

IG(c|g) = H(c) − H(c|g) (1)

where H(c) = −∑
ci∈{0,1} p(ci) log p(ci) is the entropy and

H(c|g) = −∑
p(g)

∑
ci∈{0,1} p(ci|g) log p(ci|g) is the condi-

tional entropy given the subgraph g.
To find the subgraph with the highest information gain,

a naive solution could be: enumerate all possible subgraphs
from the graph dataset D = {G(αi), yi}n

i=1, then rank sub-
graphs according to their objective function scores and select
the one with the highest score. However, this method is not
scalable due to the following two reasons: (1) enumerating
all possible subgraphs generates an exponential number of
graph patterns, due to the combinatorial explosion between
graph vertices and edges; and (2) there is a lot of redundancy

Figure 6: Structural Similarity in a Graph Search
Tree

in the mining result set, due to the subgraph-supergraph
relationship. If a subgraph is very discriminative, its super-
graph with an extra edge is likely to be discriminative as
well. However, they may actually pinpoint the same bug.
Hence, it is unnecessary and infeasible to thoroughly mine
the whole set of subgraphs.

A more efficient solution is to directly mine the most dis-
criminative subgraph g∗ from D. In this scenario, the objec-
tive function of information gain needs to be integrated into
the graph mining process. When a subgraph is generated,
the information gain score is calculated. As we traverse the
search space, we always keep track of the most discrimina-
tive subgraph seen so far. The globally optimal subgraph is
returned when the search space is thoroughly explored.

Based on this idea, we adopt a recently proposed graph
mining algorithm, LEAP [22], to directly mine the most dis-
criminative subgraph from behavior graphs of correct and
faulty executions. To speedup the mining process and prune
unpromising search spaces, [22] proposed a novel concept,
structural leap search and integrated it into LEAP. This is
based on the observation that, sibling branches in the graph
pattern search tree exhibit strong similarity not only in pat-
tern composition, but also in their embeddings in the graph
datasets, thus having similar frequency distributions and ob-
jective function scores. Figure 6 illustrates the structural
similarity idea through an example pattern search space.
The left branch and right branch have a very high structural
similarity since they are generated from the same ancestor
pattern. If the similarity between these two sibling branches
exceeds a certain threshold, LEAP can skip the right branch
after it has traversed the left sibling branch, since the sub-
graphs and their objective function scores between the sib-
ling branches are likely similar. Structural leap search will
focus on searching distinct branches and reduce the need for
thoroughly searching similar branches in the pattern search
tree. It limits the chance of missing the most discriminative
subgraph, and finally generates a (near)-optimal 2 subgraph
in the search space. Although in the worst case, the number
of candidate subgraphs examined by LEAP is still exponen-
tial in terms of the size of an input graph, empirical eval-
uation demonstrated that it is very efficient and scalable.
Experimental study in [22] showed that LEAP is up to an
order of magnitude faster than the popularly used branch-
and-bound search strategy in graph mining.

2LEAP can be parameterized to mine either a near-optimal
subgraph or the optimal subgraph with a slight overhead.
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Algorithm 1 Mining Top-K Discriminative Graph Patterns
Top-K LEAP(D, F , k)

Input: Graph dataset D, objective function F , k
Output: Top-k discriminative subgraphs Gk.

1: Gk = ∅;
2: for i from 1 to k
3: g∗

i = LEAP(F, Gk);
4: if g∗

i = ∅

5: break;
6: Gk = Gk ∪ {g∗

i };
7: end for
8: return Gk;

5.2 Mining Top-K Discriminative Subgraphs
In the bug localization problem, it does not suffice to re-

port the single best location only. Rather, it would be more
informative to generate a ranked list of discriminative sub-
graphs with descending scores which are highly indicative of
bugs and their contexts. To handle such requirements, we
propose an extension from LEAP to mine top-k discrimina-
tive subgraphs. Formally, the problem is defined as:

Given a set of software behavior graphs with class labels,
D = {G(αi), yi}n

i=1, an objective function F , find k sub-

graphs Gk = {g∗
i }k

i=1 from D which maximize
∑k

i=1 F (g∗
i ).

Accordingly, the LEAP algorithm will be modified to gen-
erate k discriminative subgraphs through k iterations. Ini-
tially LEAP finds the most discriminative subgraph g∗

1 from
D wrt. the objective function F and inserts it into Gk. It
iteratively finds a subgraph g∗

i with the highest F function
score which is also different from all existing subgraphs in
Gk. Such a subgraph g∗

i is inserted into Gk and this process
is iterated for k times. Finally, Gk is returned. If there exist
less than k subgraphs from D, the search process will termi-
nate early. The extended algorithm is called Top-K LEAP,
as shown in Algorithm 1.

6. PRELIMINARY EXPERIMENTS
In this section, we describe our experiments to test the

performance of our bug signature identification approach.
We experiment with the Siemens benchmark datasets. These
datasets were developed by researchers of Siemens Corpo-
ration to test the adequacy of test coverage strategies [9].
These datasets are based on a set of seven programs which
are seeded by commonly found bugs. Each version is seeded
with one unique bug. These datasets have been used by
various research work on bug localization, e.g., [5, 14, 15].

We compare and contrast our technique with RAPID, the
state-of-the-art bug signature identification tool by Hsu et
al. [7]. In [7], the utility and power of the bug signature
identification approach have been illustrated by means of an
example. In this paper, we do more evaluation by analyzing
the entire Siemens dataset under objective quantitative per-
formance metrics. In sub-section 6.1, we describe the per-
formance metrics used and explain why they are useful. We
compare these metrics with the distance-based metric used
by studies that return single-line candidate bug locations
without the context, e.g., [5, 15] and explain the differences.

RAPID Top-K LEAP
Prog. Pre. Rec. Size Pre. Rec. Size
tcas 82.9 82.9 8.0 85.9 95.1 5.0
ptok 71.4 71.4 4.0 85.7 100 4.3
ptok2 20.0 20.0 2.7 36.0 60.0 2.9
sched 33.3 33.3 2.3 54.1 66.7 3.6
sched2 0.0 0.0 N/A 24.2 30.0 2.2
tinfo 21.7 21.7 2.5 69.6 78.3 2.4
rep 53.1 53.1 5.1 54.4 81.3 2.9

Avg. 40.4 40.4 4.1 58.5 73.0 3.3

Table 2: Result - Method Level

RAPID Top-K LEAP
Prog. Pre. Rec. Size Pre. Rec. Size
tcas 90.2 90.2 11.3 88.3 100 3.8
ptok 100 100 9.7 85.7 100 4.8
ptok2 65.0 70.0 7.2 74.0 100 3.4
sched 75.0 77.8 5.1 86.7 88.9 3.2
sched2 40.0 40.0 2.6 52.0 80.0 2.8
tinfo 56.5 56.5 15.4 55.0 87.0 3.6
rep 80.5 81.3 20.7 78.1 81.3 4.9

Avg. 72.5 73.7 10.3 74.3 91.0 3.8

Table 3: Result - Basic Block Level

6.1 Performance Metrics
The performance of our algorithm is evaluated in terms of

two commonly used measures of precision and recall. Pre-
cision refers to the proportion of returned results that high-
light the bug. Recall refers to the proportion of bugs that
can be discovered by the returned bug signatures: be it a
set of sequential patterns (as returned by RAPID [7]) or a
set of discriminative graphs (as returned by Top-K LEAP).

To evaluate precision and recall, the fourth author manu-
ally browsed through the returned bug signatures and marked
whether each of the signatures (or contexts) is correct or not.
The measures of precision and recall can then be computed.

6.2 Experimental Results
The following are the results for precision and recall for

the seven Siemens datasets. For each dataset we take the
average of precision and recall across all the buggy versions.
We compare the precision and recall of our approach with
those of RAPID. We consider the top 5 signatures among the
sorted results returned by RAPID and our approach Top-K
LEAP. We believe a bug-signature identification tool is only
practical if only a small set of results need to be analyzed.
We consider two types of datasets based on tracing at the
method and basic block levels. The results for the method
level for both RAPID and Top-K LEAP are shown in Ta-
ble 23. The corresponding results for the basic block level
are shown in Table 3. The columns Pre., Rec. and Size cor-
respond to the average precision, recall and size (in terms of
the number of nodes) of the returned signatures.

For the method level, the above results show that Top-
K LEAP has on average 18.1% higher precision and 32.6%
higher recall than RAPID. For the basic block level, Top-
K LEAP has on average 1.8% higher precision and 17.3%
higher recall than RAPID. Among the datasets, we find that
schedule2 (sched2) is the hardest one as the precision and

3We abbreviate the names of some programs: print tokens
�→ ptok, print tokens2 �→ ptok2, schedule �→ sched, sched-
ule2 �→ sched2, tot info �→ tinfo, and replace �→ rep.
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(d) print tokens2

Figure 7: Precision Plots I
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Figure 8: Precision Plots II

recall measures for both Top-K LEAP and RAPID are the
lowest at both the method and basic block levels.

We further examined the size of the returned bug signa-
tures. The average size of discriminative subgraphs returned
by Top-K LEAP over all datasets is smaller than 4 (nodes)
for both the method and basic block levels. In contrast, the
size of bug signatures returned by RAPID is larger. In ad-
dition, the average size increases significantly at the basic
block level for RAPID.

To further analyze the results, we plot the results, i.e.,
precision and recall for Top-K LEAP and RAPID at both the
method (abbr. as ME) and basic block (abbr. as BB) levels,
with respect to the top-k results returned, where k varies
from 1 to 10. We plot 5 data points corresponding to k = 1,
3, 5, 7 and 10. These graphs are shown in Figures 7–10. At
times increasing the number of signatures analyzed reduces
the precision. However, we find that this is acceptable, as
a programmer is likely to stop searching for the bug once
he/she finds a signature that captures the bug.

From the experiments, we find that Top-K LEAP is able
to complete subgraph mining on every dataset between less
than a second to a maximum of 258 seconds. On the other
hand, we find that BIDE which is used by RAPID is not able
to complete successfully for version 6 of the replace dataset
(at the basic block level). It cannot complete mining even
after we left it to run for more than 10 hours4. A major
reason for this runtime difference is the compactness of data
representation. Sequential traces are potentially very long.
This significantly slows down the sequential pattern mining
process even when the support threshold is set to 100%5.

4Similarly, for version 10 of the print tokens2 dataset (at the
basic block level), it runs for a few hours before throwing an
out of memory exception.
5As RAPID uses BIDE to mine for Longest Common Sub-
sequences (LCSs), a support threshold of 100% is used. At
a lower support threshold, the performance is worse. When
the support level is set at 70%, 6 out of the first 10 versions
of the replace dataset (at the basic block level) are not able
to run to completion even after running for an hour.

The mining process runs with potentially exponentially in-
creasing cost as the length of the traces increases. On the
other hand, our graph based approach is able to “coil” the
traces to form a compact representation in the form of be-
havior graphs.

6.3 Experience
This section describes the experience we have with the

tool on the Siemens dataset. In particular, we highlight
several graphs that we mine from the Siemens dataset to
show the power of bug signature or contextual information
via discriminative graph mining.

In version 7 of program schedule, methods upgrade process-

prio and unblock process contain two variants of a bug
shown below:

1 upgrade process prio(prio, ratio){
...

2 n = (int) (count*ratio+1);
3 if(ratio == 1.0) n--; //added code
4 proc = find nth(src queue, n);
...}

5 unblock process(prio, ratio){
...

6 n = (int) (count*ratio +1);
7 if(ratio == 1.0) n--; //added code
8 proc = find nth(src queue, n);
...}

Lines 3 and 7 of the buggy version are mistakenly added
and correspond to the bugs. When either one of the two n--;

statements is executed, the variable n will be mistakenly de-
creased by 1; the method find nth will return a wrong value
and the program may produce a wrong output. Our tech-
nique is able to find the two bugs, while RAPID can not.
The reason lies on the fact that neither of the two statements
(lines 3 and 7) happens in all of the faulty executions. A
faulty trace can only contain either line 3 or 7. Line 3 ap-
pears in almost the same number of faulty traces as line 7.
Since RAPID only captures longest common subsequence of
the faulty traces, it is not able to capture the bug. In con-
trast, our discriminative pattern mining technique is able to
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Figure 9: Recall Plots I

1 3 5 7 10
0.2

0.4

0.6

0.8

1

Top−K Signatures Analyzed

R
ec

al
l

 

 
RAPID BB
TopK LEAP BB
RAPID ME
TopK LEAP ME

(a) schedule

1 3 5 7 10

0.2

0.4

0.6

0.8

1

Top−K Signatures Analyzed

R
ec

al
l

 

 
RAPID BB
TopK LEAP BB
RAPID ME
TopK LEAP ME

(b) schedule2

1 3 5 7 10

0.2

0.4

0.6

0.8

1

Top−K Signatures Analyzed

R
ec

al
l

 

 
RAPID BB
TopK LEAP BB
RAPID ME
TopK LEAP ME

(c) tot info

1 3 5 7 10

0.5

0.6

0.7

0.8

0.9

1

Top−K Signatures Analyzed

R
ec

al
l

 

 
RAPID BB
TopK LEAP BB
RAPID ME
TopK LEAP ME

(d) replace

Figure 10: Recall Plots II

capture the bug via two signature variants capturing lines
3 and 7. This is the case as we capture for patterns that
appear more frequently in the faulty traces than the correct
traces. Each of these discriminative patterns can appear in
all, in most or in a few of the faulty traces. This allows our
technique to tolerate minor imperfection and variants of a
bug signature as verified by the above example.

Consider another example from version 18 of tot info pro-
gram. The code snippet capturing the bug is shown below:

1 InfoTbl( r, c, f, pdf ){
2 rdf = r-1; cdf = c-1; //->basic block 1
3 if ( rdf == 0 || cdf == 0 ) { //bug
4 info = -3.0; //->basic block 2
5 goto ret3;

}
6 N = 0.0; //->basic block 3
7 for ( i = 0; i < r; ++i ){
8 //->basic block 4,
9 }
10 //->basic block 5
11 if ( N <= 0.0 ){...}
12 ...
13 }

In the correct version of tot info program, line 3 of the
above code snippet checks whether any of the parameters
(rdf and cdf), corresponding to the dimensions of the InfoTbl
table, is zero or a negative number. If this is the case, an
error message needs to eventually be displayed (by returning
-3 to the main function).

Line 3 is mistakenly changed from if(rdf<=0||cdf<=0) to
the one shown in the code snippet above. Thus, when rdf

or cdf is less than zero (i.e., r or c is less than or equal to
zero), the control flow which should have gone to line 4 will
go to line 6 (marked as basic block 3).

For this bug, the sequence based technique does not find
anything, but our technique gets a context graph with a
trans edge that links basic block 3 and basic block 5, which
represents that basic block 5 is executed immediately after
basic block 3. The condition that basic block 5 is executed
right after 3 only happens in the faulty execution but never

in the correct execution. This happens when r <= 0, the
condition when the bug is manifested. The programmer
could then use this information to find the bug, e.g., by
investigating locations in the method where the parameter
r and its derivatives (e.g., rdf) are involved.

Note that basic block 1 is executed by all calls to method
InfoTbl, hence it is not discriminating. Execution of ba-
sic block 3 or basic block 5 alone does not reveal the fault.
Rather when they are executed together, the fault is re-
vealed. This is a path-dependent fault. Existing fault local-
ization techniques that report individual candidate buggy
statements are less likely to be effective. Even if they report
lines 6 and 10 respectively, they are not able to relate these
lines together to form the context of the bug.

RAPID can not find the bug signature because none of
the basic blocks related to the bug is marked as suspicious.
The preprocessing stage of RAPID only marks one basic
block not related to the bug as being suspicious in this case.
Since codes corresponding to basic block 3 and basic block

5 are executed with a similar relative frequency in both cor-
rect and faulty runs, these two blocks are not marked as
being suspicious by RAPID, which utilizes Tarantula at a
relatively low filtering threshold of 60%.

Our graph-based technique captures edges, which repre-
sent relations between basic blocks. We are then able to
find this suspicious relation between non-suspicious basic
blocks. Hence, we could then capture the corresponding
path-dependent bug that RAPID is not able to capture.

6.4 Threats to Validity
Similar to other empirical studies, there are several threats

to validity in interpreting the results. First, we employ a
manual process to identify good and bad bug signatures.
The manual labeling process might be prone to errors. Sec-
ond, we experimented with relatively small-scale C programs
in the Siemens test suite. The results might not be trans-
latable to larger programs. We have not experimented with
programs written in other programming languages either.
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However since the signatures we mine make use of discrim-
inating control flow information and the concept of control
flow is generic, the result is likely to apply to other types of
programs.

7. DISCUSSION & FUTURE WORK
In this work, we only consider the control flow information

when building graphs and extracting discriminative signa-
tures. We try to make the signature rich enough by consid-
ering various edge types so that it has enough expressiveness
to discriminate the buggy cases. We find that at times this
is not sufficient as the data flow information matters. The
same control flow could be executed by both buggy and
normal behaviors, which might differ only on the data that
flows in along this control flow. In the future, we are look-
ing into building richer graphs that incorporate both control
and data flows by incorporating predicates into the graphs.
A new mining strategy might be required.

To limit the search space in graph mining, we only mine
connected subgraphs. The connectivity constraint together
with the removal of non-suspicious edges may cause us to
miss some signatures. In the example shown in Table 1
we miss the signature that links node 8 to node 4 (only
a signature that links node 4 to node 8 is returned – the
signature is directional), as nodes 8 and 4 are separated by
a series of edges some of which are non-suspicious. In the
future, we are looking for methods to address this limitation.

So far we only use a manual labeling process to evaluate
mined graphs as good or bad. In the future, we plan to
develop a metric to measure how good or bad a returned
graph is. This measure could be defined as the graph edit
distance to the ideal bug signature.

We have described some interesting context-related bugs
that we have discovered. In the future, we plan to conduct
a larger-scale case study and/or a user-experience study to
investigate how effective the context-based bug signatures in
helping programmers to detect and fix bugs. We would also
like to investigate the utility of our approach in debugging
multi-threaded applications.

8. CONCLUSIONS
In this work, we propose a new bug signature identifica-

tion technique based on top-k discriminative graph mining.
We extend RAPID, the pioneer work on bug signature iden-
tification by Hsu et al. in the following dimensions: (1) we
propose a graph-based representation which is more com-
pact and scalable in representing long traces; (2) we mine for
graph patterns which are able to express contextual informa-
tion incorporating both partial and total ordering of events;
(3) we compare and contrast faulty and correct traces at
both event and pattern levels for producing a set of multi-
dimensional discriminative features; and (4) we allow and
account for imperfections in traces and slight variations of
bug patterns. Our work first produces two sets of graphs cor-
responding to the faulty and correct traces. These graphs
are then pre-processed to filter off non-suspicious edges. A
top-k discriminative graph mining algorithm is then run to
produce a list of candidate discriminative graphs that serve
as bug signatures identifying both the location and the con-
text of a bug. We perform a set of experiments based on
the Siemens benchmark dataset. Experimental results show
that our technique achieves up to 18.1% higher precision and
32.6% higher recall than RAPID.
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