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ABSTRACT
Measuring robustness of complex networks is a fundamental
task for analyzing the structure and function of complex
networks. In this paper, we study the network robustness
under the maximal vertex coverage (MVC) attack, where
the attacker aims to delete as many edges of the network
as possible by attacking a small fraction of nodes. First, we
present two robustness metrics of complex networks based
on MVC attack. We then propose an efficient randomized
greedy algorithm with near-optimal performance guarantee
for computing the proposed metrics. Finally, we conduct
extensive experiments on 20 real datasets. The results show
that P2P and co-authorship networks are extremely robust
under the MVC attack while both the online social networks
and the Email communication networks exhibit vulnerability
under the MVC attack. In addition, the results demonstrate
the efficiency and effectiveness of our proposed algorithms
for computing the corresponding robustness metrics.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining ; G.2.2 [Discrete mathematics]: Graph the-
ory—Graph algorithms

General Terms
Algorithm, Theory, Experimentation

Keywords
Network robustness, FM sketch, Submodular function, MVC
attack,

1. INTRODUCTION
Networks are ubiquitous. Many practical systems in na-

ture and society can be characterized by the network. Ex-
amples include (online) social networks, computer networks,
Internet, biological networks, transportation networks, and
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so on. After the seminal work by Watts and Strogatz [20]
and Barabási and Albert [2], complex networks have at-
tracted increasing attention in both industry and research
communities in the last decade. The studies on complex
network theory mainly focus on investigating the underly-
ing organizing principles, the function, and the dynamics of
the network.

In general, the function and performance of a network de-
pend on its robustness [1, 21], i.e., the ability of a network
to tolerate the nodes or links error. For example, in an
airline network, the robustness reflects its operational abil-
ity given certain airports are closed. In a computer network,
the robustness denotes its communication capacity provided
some computers in the network crash. In P2P networks, the
robustness represents the ability of a network to still work
well when some peers depart from the network. In online
social networks, the robustness signifies the ability of a net-
work to connect well when some users withdraw from the
network. In co-authorship networks, the robustness stands
for the ability of a network that the co-authorship does not
significantly reduce when some scholars leave the research
community.

When we measure a network, a fundamental problem is
how to assess its robustness. Due to a large number of ap-
plications, measuring robustness of a network receives grow-
ing attention. Early works on robustness measurement are
based on the connectivity of a network. In the literature,
there are a considerable number of connectivity metrics. Ex-
amples include the algebraic connectivity [9], super connec-
tivity [3], conditional connectivity [13], and isoperimetric
number [16]. However, the connectivity-based robustness
measures only consider the topological structure of the net-
work, but they ignore the concrete node or link error process.
This may result in some networks with lage connectivity but
they are easily attacked by intended node or link attack. To
address this problem, Albert et al. [1] study the robustness
of a network by considering some statistical properties of the
network after the deletion of a small fraction of nodes. Many
subsequent studies [5, 4, 6] follow this framework to study
the robustness of the network. However, most of them focus
on the analytical solution of the robustness metric on the
basis of some specific random graph models. More recently,
Schneider et al. [19] present a robustness metric based on the
size of the giant connected component. However, they do not
provide a detailed algorithm for computing their metric, and
the complexity for calculating their metric is unknown. To
summarize, the potential challenges for measuring the ro-
bustness of complex network include: (1) how to define a
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reasonable and intuitive robustness metric, and (2) how to
develop an efficient and effective algorithm for calculating
the robustness metric.

To address these challenges, in this paper, we study the
robustness of the complex network from an attacker’s point
of view. Specifically, we measure the robustness of a net-
work based on the minimal number of residual edges after
removing a small fixed budget of k nodes of the network.
The number of residual edges is a very natural and intuitive
metric for measuring the function and performance of the
network. Intuitively, after the removal of k nodes, the net-
work with a large number of residual edges implies that the
function and performance of the network are not extensively
damaged. As a consequence, the larger number of residual
edges suggest the better robustness of a network. On the
other hand, from the attacker’s point of view, the attacker
wants to maximize the number of edges that are deleted after
attacking a budget of k nodes. This problem is equivalent to
the maximal vertex coverage (MVC) problem on networks
[12]. We refer to such type of attack as the MVC attack.
There are many practical applications that can suffer from
such MVC attack. For instance, in computer networks, the
hacker may want to attack k workstations so as to minimize
the number of surviving links in the network. In online so-
cial networks, the attacker may want to target k users by
providing some incentives to persuade them to leave the so-
cial network so as to minimize the number of residual social
ties of the network. Consequently, it is very important to
measure the robustness of a network under the MVC attack.

Based on the MVC attack, we present two new robustness
metrics of the network, namely k-robustness and cumulative
k-robustness. More specifically, the k-robustness is defined
by the minimal fraction of the residual edges after remov-
ing k nodes, and the cumulative k-robustness is the average
k-robustness from k = 1 to k. To compute the two pro-
posed robustness metrics, we propose a randomized greedy
algorithm with near-optimal approximation guarantee for
calculating our robustness metrics efficiently. To the best
of our knowledge, our work is the first work for measuring
robustness of complex networks under the MVC attack. We
conduct extensive experimental studies on 20 real datasets.
The results show that the P2P and co-authorship networks
are extremely robust under the MVC attack, whereas the on-
line social networks, the Email communication networks, as
well as the web graph are shown to be very vulnerable under
the MVC attack. Also, the results confirm the effectiveness
and efficiency of the proposed algorithms for computing the
corresponding robustness measures.

2. PROBLEM FORMULATION
Consider an undirected and unweighted networkG = (V,E),

where V denotes a set of nodes and E denotes a set of undi-
rected edges between the nodes. Let n = |V | and m = |E|
be the number of nodes and the number of edges in G, re-
spectively. The problem that we address in this paper is to
measure the robustness of the network from an attacker’s
perspective.

We consider the following setting. Assume that there is
an attacker who wants to attack a network, and the attacker
has a budget of k nodes to attack. If a node is attacked by
the attacker, then the node and its incident edges will be
removed from the network. The attacker aims to maximize
some utility functions by attacking k nodes. From the ro-

bustness point of view, our goal is to evaluate the robustness
of the network under such attack.

In this paper, we introduce a utility function for the at-
tacker. That is, the number of edges that are removed by
attacking k nodes. In other words, the goal of the attacker
is to maximize the number of edges that are removed af-
ter deleting k nodes. Note that this problem is equivalent
to the maximal vertex coverage (MVC) problem [12] which
aims to select k nodes that cover as many edges as possible.
Therefore, we refer to such an attack as the MVC attack.
Formally, let S (S ⊆ V ) be a set of nodes, and F (S) be the
number of edges that are removed after deleting the nodes
in S. Then, the MVC attack problem can be formulated as

max
S⊆V

F (S)

s.t. |S| ≤ k.
(1)

Let F ∗(S) be the optimal solution for Eq. (1). Then, we
define the k-robustness of a network G as follows.

Definition 2.1: Given a networkG = (V,E), the k-robustness
of G is σk = 1− F ∗(S)/m.

By Definition 2.1, the k-robustness (σk) denotes the frac-
tion of residual edges after removing k nodes. Intuitively,
after removing k nodes, the larger the fraction of residual
edges is, the more robust the network is. In addition, it can
be seen that σk falls into the interval [0, 1]. If σk = 0, we say
a network is completely collapsed. We refer to the minimal
k that causes σk = 0 as the collapsed point denoted by k̃.
Clearly, k̃ equals to the minimum vertex cover number of a
network. Note that σk measures the point-wise robustness of
a network. Naturally, we define the cumulative k-robustness
as follows.

Definition 2.2: Given a network G = (V,E), the cumula-

tive k-robustness of G is σ̄k = (
∑k

i=1 σi)/k.
Unlike the k-robustness, the cumulative k-robustness evalu-
ates the average point-wise robustness. According to Defini-
tions 2.1 and 2.2, large σk and σ̄k indicate a high robustness
of the network. Note that the key subroutine to compute the
cumulative k-robustness (σ̄k) is to calculate the k-robustness
(σk). In the following section, we focus on how to compute
σk efficiently.

3. ALGORITHMS
Given a networkG, the key issue to evaluate the k-robustness

of G is to solve the MVC attack problem (Eq. (1)). Unfor-
tunately, finding the MVC on general networks has been
known to be NP-complete [7]. Hence, there is no hope to
exactly compute σk in polynomial time. In this section, we
present a randomized greedy algorithm with near-optimal
performance guarantee for computing σk efficiently. First,
we briefly describe the concept of nondecreasing submodular
set function. Let A be a finite set. A set function F defined
on the subsets of A is a nondecreasing submodular function
if the following condition holds. For any subsets B and C
such that B ⊆ C ⊆ A, and for any element j /∈ C, we have
ρj(B) ≥ ρj(C) ≥ 0, where ρj(B) represents the marginal
gain and it is defined as ρj(B) = F (B ∪ {j}) − F (B).

It is easy to check that F (S) is a nondecreasing mono-
tone submodular set function. Based on this, there exists
a greedy algorithm for solving the MVC problem (Eq. (1))
efficiently. In particular, the greedy algorithm works in k
rounds. At each round, the algorithm finds the node with
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the maximal marginal gain (ρj(S)) and adds it into the opti-
mal node set S, where S is initialized to be an empty set. By
a celebrated result [17], this greedy algorithm can achieve a
1−1/e approximate ratio. The time complexity of the greedy
algorithm is O(km), because the algorithm needs to visit all
the edges to find the node with the maximal marginal gain
in the worst case. Below, we will propose a more efficient
randomized greedy algorithm using the well-known Flajolet-
Martin (FM) sketch [10].

The FM sketch is a probabilistic counting data structure
and it can be utilized to estimate the cardinality of a multi-
set [10]. Let N be the cardinality of a multi-set A. Then,
the FM sketch only uses logN + c bits for estimating N
accurately, where c is a small constant. In particular, the
FM sketch is a bitmap with size l = logN + c. There exists
a hash function h : A → {1, · · · , l}, mapping an element a
(a ∈ A) to a bit i (i ∈ {1, · · · , l}) in the bitmap with prob-
ability Pr(h(a) = i) = 1/(2i+1). At the beginning, all the
bits in the bitmap are set to 0. Then, for processing an ele-
ment a (a ∈ A), we set the corresponding h(a)-th bit of the
bitmap to 1. Finally, an asymptotically unbiased estimator
for the cardinality N can be obtained by 2z/0.77351, where
z denotes the position of the least-significant zero bit in the
bitmap. Another important property of the FM sketch is
that it can be easily used to estimate the cardinality of the
union of two multi-sets if these two multi-sets come from the
same domain. Specifically, we construct two FM sketches
with the same size for two multi-sets respectively. To es-
timate the cardinality of the union of two multi-sets, we
only need to do a bitwise-OR between the two FM sketches,
and then estimate the cardinality based on the resulting FM
sketch. To enhance the estimation accuracy, we can make
use of multiple hash functions. For convenience, we only
consider one hash function to describe our algorithm.

The key idea of our algorithm is described as follows. For
each node u, we create an FM sketch to sketch the incident
edges of u and use it to estimate F ({u}). Then, for any set
S, F (S) can be calculated by

F (S) = |
⋃

u∈S

E({u})|, (2)

where E({u}) denotes the set of incident edges of node u.
Note that E({u}) can be represented by an FM sketch. As
a result, for any set S, we can estimate F (S) by performing
|S| times bitwise-OR operation. Our algorithm is described
in Algorithm 1. Firstly, Algorithm 1 creates an FM sketch
for each node vi ∈ V (line 2-5). In particular, for each node
vi, we initialize a bitmap FM[i], i.e., set all the bits of FM[i]
to 0 (line 3). For all the incident edges of node vi, we in-
sert them into the bitmap FM[i] by setting the corresponding
bits to 1 (line 4-5). Secondly, Algorithm 1 greedily chooses k
nodes based on their approximate marginal gain (line 6-22).
Specifically, we create two FM sketches CFM and OFM and
use them to estimate the current optimal solution and the
current marginal gain, respectively. Algorithm 1 works in k
rounds. At each round, it selects the node with the maximal
approximate marginal gain (line 12-19). To compute the ap-
proximate marginal gain of node vi (denoted by ρ̂i), we only
need to do a bitwise-OR between the FM sketches CFM and
FM[i] (line 13), which results in the FM sketch OFM. Then,
we can use the standard unbiased estimator to estimate ρ̂i
for node vi (line 14-15). After finding the node with the
maximal approximate marginal gain, we need to update the

Algorithm 1 The Randomized Greedy Algorithm

Input: Network G = (V, E) and k.
Output: A set S with k nodes, σk

1: Let h : {e1, · · · , em} → {1, · · · , l} be the hash function that
maps the edges to a position of the BITMAP, here l = logm+
c denotes the size of the BITMAP ;

2: for each node vi ∈ V do
3: Initialize a BITMAP FM[i] ← 0;
4: for each incident edge e of vi do
5: Set the h(e)-bit of FM[i] to 1;
6: S ← ∅;
7: Create two FM sketches CFM ← 0, OFM ← 0;
8: F ← 0;
9: for iter = 1 to k do
10: max← −1;
11: Idx← 0;
12: for each node vi ∈ (V \S) do
13: OFM ← (CFM) bitwise-OR (FM[i]);
14: Let z be the position of the least-significant 0 bit in

OFM;
15: ρ̂i ← 2z/0.77351 − F ;
16: if ρ̂i > max then
17: max← ρ̂i;
18: Idx← i;
19: S ← S ∪ {vIdx};
20: CFM ← (CFM) bitwise-OR (FM[Idx]);
21: Let z be the position of the least-significant 0 bit in CFM;
22: F ← 2z/0.77351;
23: return S and 1− F/m;

answer set S and the FM sketch CFM. Note that we only
need to do a bitwise-OR between the FM sketches CFM and
FM[Idx] to update the CFM (line 19-22). Here FM[Idx]
denotes the FM sketch of the node vIdx which achieves the
maximal approximate marginal gain. Finally, Algorithm 1
outputs the answer set S and the approximate σk (line 23).
Notice that to calculate the cumulative k-robustness σ̄k we
do not need to invoke Algorithm 1 k times, but invoke Algo-
rithm 1 with parameter k only once. Because we can record
all the F (line 22) obtained in each round and compute the
cumulative k-robustness. Additionally, we can use the so-
called CELF framework [15] to accelerate both the original
greedy algorithm and our randomized greedy algorithm.

Theoretically, by a similar analysis as in [11], Algorithm 1
can achieve a 1−1/e−ε approximate ratio with high proba-
bility for computing the σk on general networks. The reason
is because the FM sketch estimates the marginal gain ρi(S)
of any set S within an ε error bound with high probability
[10]. The time complexity of Algorithm 1 is O(kn + m).
First, Algorithm 1 takes O(m) time to initialize the FM
sketches for every node (line 2-5). Second, Algorithm 1 uses
O(kn) time to compute the σk. The rationale is that the
bitwise-OR (line 13) and the estimation step (line 14-15) can
be done in constant time [18]. We emphasize that O(kn+m)
is more efficient than O(km) when k cannot be ignored. An-
other advantage of Algorithm 1 is that the FM sketches for
every node can be built offline. Assume that we have built
the FM sketches for every node of a given network G. Then,
for any given k, Algorithm 1 can compute the corresponding
σk in O(kn) time. However, the original greedy algorithm
still needsO(km) time complexity for computing σk. For the
space complexity, Algorithm 1 needs to store the network G
which takes O(m+ n) space complexity. In addition, Algo-
rithm 1 maintains O(n) FM sketches which take O(n logm)
bits, because each FM sketch only takes O(logm) bits. The

1514



Table 1: Summary of the datasets

Name #nodes #edges Ref. Description

GrQc 5242 28968 [14]
Astroph 18772 396100 [14]
HepTh 9877 51946 [14] Co-authorship
HepPh 12008 236978 [14] networks
CondMat 23133 186878 [14]
DBLP 78649 382294 website
Delicious 537392 1459778 [22]
Douban 154908 654324 [22] Online
Epinions 75872 396026 [14] social
Slashdot1 77360 826544 [14] networks
Slashdot2 82168 867372 [14]
Brightkite 58228 428156 [14] Location based
Gowalla 196591 1900654 [14] social networks
EmailEnron 36692 367662 [14] Communication
EmailEuAll 265182 224372 [14] networks
Gnutella04 10876 36308 [14]
Gnutella05 8846 27572 [14] P2P
Gnutella06 8717 27790 [14] networks
Gnutella08 6301 18284 [14]
NotreDame 325729 1522178 [14] Web

size of O(n logm) bits can be dominated by the O(m + n)
graph size. So putting it all together, the space complexity
of Algorithm 1 is O(n+m), which is the same as the original
greedy algorithm.

4. EXPERIMENTS
In this section, we conduct extensive experiments on 20

real datasets to evaluate the effectiveness and efficiency of
our approaches. In the following, we first describe our ex-
perimental setup and then report our findings.

4.1 Experimental setup
Datasets: The network datasets used in our experiments
are given in Table 1. These networks can be classified into
six categories. (1) The co-authorship networks: we collect
5 physics co-authorship networks which are GrQc, Astroph,
HepTh, HepPh, and CondMat from Stanford network data
collections [14]. These 5 physics co-authorship networks rep-
resent the co-authorship over 5 different areas in physics
respectively. DBLP (http://www.informatik.uni-trier.
de/~ley/db/) is a computer science bibliographic dataset.
We built a co-authorship graph from a subset of the DBLP
data with 78,649 authors. (2) Online social networks (OSNs):
we download the Delicious (http://delicious.com/) and
Douban (http://www.douban.com/) from ASU social com-
puting data repository [22] and download the Epinions (http:
//www.epinions.com) and two Slashdot datasets (http://
slashdot.org/) from Stanford network data collections [14].
(3) Location-based social networks (LBSNs): the Brightkite
and Gowalla are two notable LBSNs. We download these
two datasets from Stanford network data collections [14]. (4)
Communication networks: we download two Email commu-
nication networks (EmailEnron and EmailEuAll) from Stan-
ford network data collections [14]. (5) P2P networks: we em-
ploy four P2P networks (Gnutella04, Gnutella05, Gnutella06,
and Gnutella08) which are originally collected from Gnutella
[14]. (6) Web graphs: we download a web graph dataset
from Stanford network data collections [14], which is origi-
nally collected from University of Notre Dame.

Parameter settings and experimental environment:

There are two parameters in Algorithm 1: the number of
hash functions and the size of the bitmap. In all of our
experiments, we set the number of hash functions and the
size of the bitmap to be 100 and 30, respectively. We conduct
our experiments on a Windows Server 2007 with 4xDual-
Core Intel Xeon 2.66 GHz CPU, and 128G memory. All the
algorithms are implemented by Visual C++ 6.0.

4.2 Experimental results
Here we report our experimental results on 20 general net-

work datasets. For the directed networks, we consider them
as the undirected networks by ignoring the direction of the
edges. We use our k-robustness and cumulative k-robustness
as two metrics. Notice that the budget of an attacker, i.e.,
k, is typically very small in practice. Hence, we mainly fo-
cus on measuring the robustness of a network under a small
budget k. Table 2 reports our results when k = 0.1% ·n and
0.2% ·n, where n = |V |. In the following, we concentrate on
analyzing the result on k = 0.1% · n and similar results can
be obtained when k = 0.2% · n.

As can be seen in Table 2, the P2P networks are more
robust than other types of networks. For example, in the
Gnutella05 dataset, after removing 0.1% of nodes, the k-
robustness and cumulative k-robustness by the Greedy al-
gorithm are 0.9838 and 0.9898, respectively. That is to say,
there are only 1.62% of edges being deleted after removing
0.1% of nodes in the worst case. This observation indicates
that removing a small fraction of peers from the P2P net-
work does not significantly affect the number of links be-
tween the peers. Similarly, the co-authorship networks (first
6 rows in Table 2) are shown to be very robust. For in-
stance, in the DBLP network, the k-robustness and cumu-
lative k-robustness by the Greedy algorithm are 0.9618 and
0.9783 after removing 0.1% of nodes, respectively. These re-
sults suggest that a small number of “important researchers”
leaving the research community will not significantly affect
the co-authorship between the scholars. In general, the on-
line social networks (rows 7-11 in Table 2) and the location
based social networks (rows 12-13) show poor robustness.
Taking the Gowalla dataset as an example, the k-robustness
and the cumulative k-robustness by the Greedy algorithm
are 0.8329 and 0.8788 when k = 0.1% · n, respectively. In
other words, after removing 0.1% of nodes, 16.7% of social
ties in the Gowalla network will be deleted. Also, the ro-
bustness of the Email communication networks, especially
the EmailEuAll network, is very poor. In the EmailEuAll
network, the k-robustness and cumulative k-robustness (for
k = 0.1% · n) by the Greedy algorithm are 0.4404 and
0.6408, respectively. In other words, after deleing 0.1%
of nodes, the number of residual edges in the EmailEuAll
network are only 44.04% of the original edges. This ob-
servation suggests that the Email communication networks
may be very vulnerable under the MVC attack. In addi-
tion, we find that the NotreDame web graph is not very
robust w.r.t. the MVC attack, as the k-robustness and cu-
mulative k-robustness (for k = 0.1% · n) by the Greedy al-
gorithm are 0.8337 and 0.8835, respectively. This result is
consistent with the previous results on the “robust yet frag-
ile” nature of the Internet [8], which means that the Inter-
net is robust to random errors but it is vulnerable w.r.t.
the intended node attacks. Over all the datasets, we find
that the k-robustness and cumulative k-robustness by the
RGreedy algorithm are very close to the k-robustness and
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Table 2: Robustness of general networks

Datasets
k = 0.1% · n k = 0.2% · n

k-robustness Cumulative k-robustness k-robustness Cumulative k-robustness
Greedy RGreedy Greedy RGreedy Greedy RGreedy Greedy RGreedy

GrQc 0.9743 0.9747 0.9841 0.9841 0.9536 0.9551 0.9729 0.9732
Astroph 0.9660 0.9675 0.9807 0.9811 0.9430 0.9449 0.9670 0.9680
HepTh 0.9791 0.9794 0.9879 0.9881 0.9620 0.9635 0.9787 0.9791
HepPh 0.9554 0.9561 0.9751 0.9754 0.9176 0.9203 0.9547 0.9559
CondMat 0.9641 0.9652 0.9785 0.9787 0.9414 0.9442 0.9652 0.9662
DBLP 0.9618 0.9643 0.9783 0.9795 0.9369 0.9427 0.9636 0.9664
Delicious 0.7390 0.7842 0.8220 0.8422 0.6512 0.7011 0.7567 0.8064
Douban 0.9345 0.9403 0.9625 0.9651 0.8924 0.9021 0.9375 0.9433
Epinions 0.8515 0.8589 0.9056 0.9088 0.7789 0.7948 0.8592 0.8667
Slashdot1 0.8825 0.8903 0.9246 0.9286 0.8223 0.8389 0.8873 0.8949
Slashdot2 0.8800 0.8862 0.9230 0.9259 0.8203 0.8336 0.8856 0.8919
Brightkite 0.8982 0.9025 0.9353 0.9368 0.8479 0.8568 0.9034 0.9074
Gowalla 0.8329 0.8401 0.8788 0.8863 0.7835 0.8002 0.8426 0.8566
EmailEnron 0.8474 0.8529 0.9061 0.9083 0.7741 0.7836 0.8575 0.8621
EmailEuAll 0.4404 0.4809 0.6408 0.6711 0.2755 0.3078 0.4924 0.5272
Gnutella04 0.9826 0.9829 0.9888 0.9889 0.9720 0.9731 0.9827 0.9831
Gnutella05 0.9838 0.9839 0.9898 0.9898 0.9733 0.9743 0.9838 0.9841
Gnutella06 0.9829 0.9833 0.9893 0.9894 0.9739 0.9751 0.9839 0.9843
Gnutella08 0.9835 0.9835 0.9894 0.9894 0.9701 0.9706 0.9820 0.9821
NotreDame 0.8337 0.8492 0.8835 0.8920 0.7761 0.8055 0.8437 0.8574

cumulative k-robustness by the Greedy algorithm, respec-
tively. More specifically, for the k-robustness and cumulative
k-robustness when k = 0.1% · n, the maximal absolute dif-
ferences between the RGreedy algorithm and the Greedy al-
gorithm are only 0.0452 (appearing in the Delicious dataset)
and 0.0303 (appearing in the EmailEuAll dataset) over all
the datasets, respectively. When k = 0.2% · n, the maximal
absolute differences for the k-robustness and cumulative k-
robustness are 0.0499 and 0.0497 (both appearing in the
Delicious dataset), respectively. These results imply that
our RGreedy algorithm is as effective as the Greedy algo-
rithm. The detailed performance analysis of the RGreedy
algorithm is deferred to the full version of this paper.
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