
Graph Classification: A Diversified Discriminative Feature
Selection Approach

Yuanyuan Zhu, Jeffrey Xu Yu, Hong Cheng, Lu Qin
The Chinese University of Hong Kong, Hong Kong, China

{yyzhu,yu,hcheng,lqin}@se.cuhk.edu.hk

ABSTRACT
A graph models complex structural relationships among object-
s, and has been prevalently used in a wide range of applications.
Building an automated graph classification model becomes very
important for predicting unknown graphs or understanding com-
plex structures between different classes. The graph classification
framework being widely used consists of two steps, namely, feature
selection and classification. The key issue is how to select impor-
tant subgraph features from a graph database with a large number
of graphs including positive graphs and negative graphs. Given the
features selected, a generic classification approach can be used to
build a classification model. In this paper, we focus on feature se-
lection. We identify two main issues with the most widely used fea-
ture selection approach which is based on a discriminative score to
select frequent subgraph features, and introduce a new diversified
discriminative score to select features that have a higher diversity.
We analyze the properties of the newly proposed diversified dis-
criminative score, and conducted extensive performance studies to
demonstrate that such a diversified discriminative score makes pos-
itive/negative graphs separable and leads to a higher classification
accuracy.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—Data min-
ing; I.5.2 [Pattern Recognition]: Design Methodology —Feature
evaluation and selection

Keywords
Graph Classification, Feature Selection, Diversity

1. INTRODUCTION
A graph models complex structural relationships among objects,

and has been prevalently used in a wide range of applications, such
as chemical compound structures in chemistry, attributed graph-
s in image processing, food chains in ecology, electrical circuits in
electricity, protein interaction networks in biology, etc. With the in-
creasing popularity of graph databases that contain a large number
of graphs in various applications, building an automated classifi-
cation model emerges as one important problem for predicting the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

unknown graphs or understanding complex structures between d-
ifferent classes. For example, with a chemical compound dataset,
chemists want to be able to predict which chemical compounds are
active and which are inactive.

The graph classification framework being widely used is first
to select a set of features by mining frequent subgraphs from the
graph database that consists of positive graphs and negative graph-
s, and then to employ a generic classification model using the set
of features selected. Such an approach has been shown achieving
promising classification accuracy [5], and the key issue is how to
select features. In order to achieve a higher classification accura-
cy, discriminative based approaches have been extensively studied
that select a set of discriminative frequent features [20, 16]. The
discriminative frequent features mined are the features that are fre-
quent in the positive graph set but are infrequent in the negative
graph set.

LEAP [20] is one of the first work that studies how to directly
mine discriminative subgraph features instead of finding the dis-
criminative features from the frequent features mined. Some re-
cent work study how to speed up the process of mining discrim-
inative subgraph features such as graphSig [16], COM [11], and
GAIA [12]. graphSig [16] provides an efficient solution for mining
discriminative subgraph features with extremely low frequencies.
First, graphSig converts graphs into feature vectors by perform-
ing a random walk with restarts on every vertex. Second, graph-
Sig divides graphs into small groups such that graphs in the same
group have similar vectors. Third, graphSig mines frequent sub-
graphs in each group with high frequency thresholds, because high
similarity among vectors in the same group indicates that the cor-
responding graphs in the group share highly frequent subgraphs.
COM [11] takes into account the co-occurrences of subgraph fea-
tures. Co-occurrences of small subgraph features are able to ap-
proximate large features and thereby significantly reduce the min-
ing time for large features. Both graphSig and COM are much
faster than LEAP. For accuracy in classifying chemical compound-
s, COM has a comparable classification accuracy to that of LEAP,
and GraphSig produces a higher accuracy than LEAP. GAIA [12]
proposes an evolutionary computation method to mine discrimina-
tive subgraph features for graph classification using a randomized
searching strategy. The randomized search strategy simulates bio-
logical evolution to select discriminative subgraph features. GAIA
is the up-to-date approach in graph classification.

All the existing works select discriminative subgraph features
by a discriminative score such as G-test [20], Fisher score [4] and
log ratio score [11, 12]. We classify them as a single feature dis-
criminative score, because they assign a score to a feature by only
considering its own occurrences in the positive/negative sets. A-

205

mong them, the log ratio score shows better classification accuracy
as reported in [11, 12].

However, the question to be asked is whether there exists a better
score with which a better set of features can be selected and a graph
classification model can be built with an even higher accuracy. The
reason to ask such a question is that there does not exist a ground
truth. First, for graph classification over a large graph database with
positive/negative graphs, the number of frequent subgraph features
is huge. It is known to be impractical to explore all the possible
subsets of frequent subgraph features for classification. Second,
it is still an open problem to identify the true optimal feature se-
lection, because the connection between the features selected and
the accuracy of the graph classification is unknown yet. Therefore,
discriminative score is important, but it may not be sufficient to
select features that make the positive and negative graphs separa-
ble. We identify two issues with the single feature discriminative
score. (Issue-1) The discriminative features selected can be highly
overlapped. They may not lead to a good classification accuracy,
because one of them is redundant in a sense that they appear fre-
quently together and share a large part between them. (Issue-2)
Some important features may be missed out, because there exist-
s a restriction on the number of discriminative features to be se-
lected and selecting highly overlapped discriminative features may
squeeze out important features which are less discriminative and
barely overlapped with other features. Although feature selection
is a well studied problem in the literature for conventional classifi-
cation tasks on high-dimensional data [4, 15, 6], such methods have
limited power for graph datasets. The underlying reasons are: each
feature is treated equivalently, and the relevance and redundancy is
evaluated by their distributions over binary vectors. However, in a
graph database, features have more complicated relationship with
each other in terms of the topological structures and the location-
s. In addition, a pattern has an exponential number of subgraphs,
which makes the patterns not uniformly distributed. This leads to a
huge redundancy and complex overlapping of patterns.

To address these two issues, in this paper, we study a new s-
core, called a diversified discriminative score. The main idea is
to explore the additional value of the diversity together with the
discriminativity. By diversity, we explore how to reduce the over-
lapping between two features that share a large part, based on an
edge-cover. In addition, to further enhance diversity, we explore
how to reduce the overlapping between a feature and a set of fea-
tures. We do this because a feature f to be selected may not have
a large overlapping with any specific feature already selected, but
it can be overlapped with the set of features already selected, i.e.,
many features in the set are partially overlapped with feature f , and
the feature set end up to be overlapped with the major part of feature
f . In other words, such a feature f may not add additional value to
make positive/negative graphs separable. The main contributions
of this paper are summarized below. In addition to the new diver-
sified discriminative score, we also analyze the properties of our
newly proposed diversified discriminative score from many view-
points. We propose algorithms to select such features, and conduct
extensive experimental studies. We show that the features selected
by the diversified discriminative score outperform the up-to-date
graph classification approach GAIA [12].

The rest of the paper is organized as follows. Section 2 gives the
problem statement. In Section 3, we discuss two main issues with
the existing discriminative scores, and propose a new diversified
and discriminative score. In Section 4, we discuss the discrimina-
tive power of our new diversified and discriminative score by in-
vestigating the statistic information of the new score in comparison
with the existing discriminative scores. We give our algorithms in

D f1 f2 f3 f4 f5 Class Label

P1 1 0 0 1 0 +
P2 1 1 1 0 1 +
P3 1 1 1 0 1 +
P4 0 1 0 1 1 +
P5 0 0 1 1 1 +
P6 0 0 1 1 1 +
N1 1 0 0 1 0 -
N2 0 1 0 1 0 -
N3 0 0 0 0 0 -
N4 0 0 0 0 1 -
N5 0 0 1 0 1 -
N6 0 0 1 0 1 -

Table 1: The Feature Containment

Section 5. We further develop an ensemble method to select fea-
tures and build classification model in Section 6. Our experimental
results are shown in Section 7. We discuss the related work in Sec-
tion 8, and conclude this paper in Section 9.

2. PROBLEM STATEMENT
Given a set of labels Σ, we model a graph as g = (V,E, l)

where V is the set of vertices, E ⊆ V × V is the set of edges, and
l is a labeling function on vertices and edges, where the label of a
vertex u ∈ V is specified by l(u) and the label of an edge (u, v)
is specified by l(u, v). We use V (g) and E(g) to denote the set
of vertices and the set of edges of a graph g, respectively, and use
|V (g)| and |E(g)| to denote the numbers of vertices and edges in
g.

Definition 2.1: Subgraph Isomorphism. Given two graphs g′ =
(V ′, E′, l′) and g = (V,E, l), g′ is subgraph isomorphic to g, if
there exists an injective function ϕ : V ′ → V such that (1) for
∀u, v ∈ V ′ and u �= v, ϕ(u) �= ϕ(v), (2) for ∀v ∈ V ′, ϕ(v) ∈ V
and l′(v) = l(ϕ(v)), and (3) for ∀(u, v) ∈ E′, (ϕ(u), ϕ(v)) ∈ E
and l(u, v) = l′(ϕ(u), ϕ(v)). �

A graph g′ is a subgraph of another graph g, denoted as g′ ⊆ g,
if g′ is subgraph isomorphic to g. Here, g is a supergraph of g′,
denoted as g ⊇ g′, if g′ is a subgraph of g.

Problem Statement: Let D = {g1, g2, · · · , gn} be a graph database
of size |D| that consists of many graphs gi, for 1 ≤ i ≤ |D|. A-
mong the graphs in D, there are a set of positive graphs, denoted
as D+ (⊆ D), and a set of negative graphs, denoted as D− (⊆ D),
where D+ ∩ D− = ∅. The feature selection problem is to select a
set of features Fs with which a model M can be built for classify-
ing unseen graphs with a high classification accuracy.

Following the existing works, we select frequent subgraphs (pat-
tern) from D as features. Given D, the frequency of a feature f is
given as

freq(f) =
|sup(f,D)|

|D|
where sup(f,D) = {gi | gi ∈ D, f ⊆ gi} is the support set of f .
The support of the subgraph f in D is |sup(f,D)|. A subgraph f is
called a frequent subgraph if freq(f) ≥ τ , where τ (0 ≤ τ ≤ 1) is
a user specified minimum support threshold. For simplicity, we use
sup(f) as an alternative notation for sup(f,D) in the following
discussions.

Example 2.1: Fig. 1 shows a graph database D = D+ ∪ D−.
Here, D+ = {P1, P2, P3, P4, P5, P6} is a set of positive graphs,
and D− = {N1, N2, N3, N4, N5, N6} is a set of negative graphs.
From this graph database, a frequent subgraph set can be mined
which might contain a large number of subgraphs. Suppose we
select a subset Fs = {f1, f2, f3, f4, f5} as the features as shown

206

B

H

CB

A

C

E

D

I

AB

I

CB

A

C

E

D

H

A C

GA F

H

D

I

B

H

G

F

A

E

B C

I

F

I

H

A

E

B C

G

P2 P4 P5P3 P6P1

AB

C G

F

FA GB

C D

HC BA

CFH AI

H

A

B

F A

I C

EB

H

A

I C

EB

H

CA DB

CB

A B

C

EA
F G H I

G

CB F

A

N1 N2 N3 N4 N5 N6

f1 f2 f5f4f3

......

Figure 1: A graph database D with 6 positive graphs Pi (1 ≤ i ≤ 6) and 6 negative graphs Nj (1 ≤ j ≤ 6), and pattern set Fs

.

in Fig. 1. Table 1 shows whether a feature f ∈ Fs is a subgraph
of Pi (1 ≤ i ≤ 6) or Nj (1 ≤ j ≤ 6). The corresponding value
is 1 if it is, otherwise 0. Then a generic classification model can be
built for the graph database based on Table 1. If we choose another
different subset F ′

s as the feature set, the graph database will be
mapped to a different vector space which might lead to building a
quite different classifier. In other words, the quality of the classifier
in terms of the accuracy for a graph database heavily depends on
the feature set Fs. �

3. DISCRIMINATIVE SCORE
Frequent features mined from the graph database D are widely

used in graph classification. As observed in many existing works,
it does not necessarily mean that all frequent features are equally
important for building a good classification model, because some
of them may occur frequently in both D+ and D−. Such frequen-
t features are not discriminative and consequently do not lead to
a good classification model. To address this issue, people explore
to use the discriminative frequent features that appear in D+ fre-
quently but appear in D− infrequently. Several statistic measures
are proposed to evaluate the discriminative power of a feature, such
as G-test [20], Fisher score [4] and log ratio score [11, 12]. We call
them as a single feature discriminative score, because they assign a
score to a feature by merely considering its own occurrences in the
positive/negative graph sets.

3.1 The Single Feature Discriminative Score
In this work, we focus on the log ratio score which has recently

been widely used due to the better classification accuracy as report-
ed in [11, 12].

Given a graph database D with a set of positive graphs, D+, and
a set of negative graphs, D−. The positive and negative frequencies
of a subgraph feature f , denoted as r+(f) and r−(f), are defined
as follows. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

r+(f) =
|sup(f,D+)|
|D+|

r−(f) =
|sup(f,D−)|
|D−|

The discriminative score of feature f by the log ratio is defined
below.

score(f) = log
r+(f)

r−(f)
(1)

It considers the log ratio of the positive and negative frequencies.
To avoid using a zero denominator, when calculating the negative
frequencies, it adds a virtual negative graph that contains any sub-
graph features.

Given the log ratio as a discriminative score, a commonly used
approach is to select the feature that has the largest discriminative

score from the unselected features iteratively. For example, the
works in [11, 12] consider to extend a subgraph to generate its su-
pergraphs only based on its discriminative score or the score incre-
ment. However, there are two main issues with the existing feature
selection approaches.

• Issue-1: Highly Overlapped Features. The discriminative
features selected can be possibly highly overlapped. In oth-
er words, two discriminative features, fi and fj , may share
a large common part. They may not lead to a good classifi-
cation accuracy, because one of them is redundant in a sense
that they appear frequently together in graphs in D, as guided
by the definition of log ratio.

• Issue-2: Missing Important Features. Some important fea-
tures may be missed out. The number of discriminative fea-
tures selected for building a classifier is often restricted due
to efficiency and effectiveness considerations. As discussed
in Issue-1, the highly overlapped discriminative features may
squeeze out the important features which are less discrimi-
native and barely overlapped with other features due to the
limited feature number.

3.2 A New Diversified Discriminative Score
Considering these two issues, in this section, we give a new di-

versified discriminative score. First, we introduce the concept of
embedding.

Definition 3.1: Embedding. Given two graphs f and g. Suppose
f ⊆ g by a subgraph isomorphic injection function ϕ. The subset
of vertices of V (g), V (g)ϕ = {ϕ(u)|u ∈ V (f)}, is a vertex em-
bedding of f in g. In a similar way, the subset of edges of E(g),
E(g)ϕ = {(ϕ(v), ϕ(u))|(v, u) ∈ E(f)} is an edge embedding of
f in g. �

With edge embedding, we consider a feature f from the view-
point of coverage. A feature f covers certain edges in g when there
is an edge embedding of f in g. With such coverage, we further
explore how many edges a feature f can cover in graph database
D, which is the union of edges covered by f in all graphs in D.

Definition 3.2: Feature Edge-Cover. Given a graph database D =
{g1, g2, · · · , gn} and a feature f , a graph gi ∈ D is covered by f
if there is an edge embedding of f in gi, and e ∈ E(gi) is covered
by f if e ∈ E(gi)ϕ. We denote the set of edges in g covered by
feature f as Ec(f, g). The feature edge-cover of f is the set of
edges that are covered by f in all graphs in D, denoted as Ce(f) =
∪gi∈sup(f)Ec(f, gi). The edge-cover score of f is the number of
edges covered by f , denoted as Sc(f) =

∑
gi∈sup(f) |Ec(f, gi)|.

We use Sc(f) and |Ce(f)| alternatively in the following discussion
since Sc(f) = |Ce(f)|. �

207

A main idea behind the feature edge-cover of f is that it consid-
ers the embedding locations in every graph gi in D. Such implicit
locations assist us to select diversified features in a sense that they
are not overlapped with the features selected already, as we will
discuss in the following. For the purpose of addressing the diver-
sity as an answer to the two issues, we introduce an edge-cover
probability. The edge-cover probability of a feature f regarding to
the entire edge set in D is defined in Eq. (2).

pc(f) =
|Ce(f)|∑

gi∈D |E(gi)| (2)

Consider the diversity from the viewpoint of independence. If the
graph features are independent of each other, the conditional prob-
ability of a feature with respect to another graph feature will be the
same prior edge-cover probability of itself. In other words, given t-
wo features f1 and f2, they are independent if pc(f2|f1) = pc(f2).
It indicates that two features can not be considered as diversified in
terms of independence, if their edge-covers are largely overlapped.
Therefore, the decision for selecting a feature f2 with a feature f1
already selected depends on the probability pc(f2|f1). Based on
this consideration, we define a conditional edge-cover probability
of feature f2 with respect to another feature f1 as follows.

pc(f2|f1) = |Ce(f1 ∩ f2)|
|Ce(f1)| (3)

where Ce(f1 ∩ f2) = Ce(f1) ∩ Ce(f1). The joint edge-cover
probability of f1 and f2 can be derived in the following.

pc(f1 ∩ f2) = pc(f2|f1) · pc(f1)

=
|Ce(f1 ∩ f2)|

|Ce(f1)| · |Ce(f1)|∑
gi∈D |E(gi)|

=
|Ce(f1 ∩ f2)|∑

gi∈D |E(gi)|

(4)

Note that the value of pc(f1 ∩ f2) is bounded by [0,1] and is also
a symmetric measure, which means that pc(f1 ∩ f2) = pc(f1|f2) ·
pc(f2) also holds. Based on Eq. (4), the union edge-cover proba-
bility of feature f1 and f2 can be derived as follows.

pc(f1 ∪ f2) = pc(f1) + pc(f2)− pc(f1 ∩ f2) (5)
We extend the union edge-cover probability from two features

to m features where m > 2. Let F = {f1, · · · , fm} be a set
of features, and let Fi = {f1, · · · , fi} be a subset of F for i =
1, . . . ,m. The edge-cover probability of feature set Fm can be
derived as follows.

pc(Fm) = pc(
m⋃
i=1

fi)

= pc(fm) + pc(Fm−1)− pc(fm ∩ Fm−1)

(6)

Thus, the diversity of fm to be selected with respect to a set of
features selected, Fm−1, can be derived below.
pd(fm) = pc(Fm)− pc(Fm−1) = pc(fm)− pc(fm ∩ Fm−1)

=
|Ce(fm)− Ce(fm ∩ Fm−1)|∑

gi∈D |E(gi)|

=
|Ce(fm)−⋃m−1

j=1 Ce(fm ∩ fj)|∑
gi∈D |E(gi)|

=

∑
gi∈sup(fm) |Ec(fm, gi)|∑

gi∈D |E(gi)|

−
∑

gi∈sup(fm) |
⋃m−1

j=1 (Ec(fm, gi) ∩ Ec(fj , gi))|∑
gi∈D |E(gi)|

(7)

Equipped with the diversity of fm, we define a new diversified
discriminative score for a new feature, fm, to be selected with a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

Fr
eq

ue
nc

y Positive Negative

(a) # of Features (Logratio)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

Fr
eq

ue
nc

y Positive Negative

(b) # of Features (D&D)
Figure 2: Cumulative Frequency of Features

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

Fr
eq

ue
nc

y Positive Negative

(a) # of Embeddings (Logratio)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

Fr
eq

ue
nc

y Positive Negative

(b) # of Embeddings (D&D)
Figure 3: Cumulative Frequency of Embeddings

feature set Fm−1 that has been selected already. Here, let p+d (fm)
be the diversity of fm for the set of positive graphs (D+), and let
p−d (fm) be the diversity of fm for the set of negative graphs (D−).
The diversified discriminative score of feature fm is defined as fol-
lows.

scored(fm) = log
p+d (fm)

p−d (fm)
(8)

Our proposed diversified discriminative score measures the feature
overlapping by evaluating their embeddings in graphs. If most of
the embeddings of a new feature fm have already been covered
by the feature subset Fm−1, the diversified discriminative score of
fm will be very low, thus fm will not be selected, even though the
log ratio score of fm can be large. The diversified discriminative
score measure can better address the two issues, namely, Issue-1
and Issue-2.

4. PROPERTY STATISTICS OF DISCRIM-
INATIVE SCORE

In this section, we discuss the discriminative power of our new
diversified discriminative score by investigating the statistic infor-
mation of our new score in comparison with the single feature
discriminative score, log ratio, using a real chemical compound
dataset containing 400 positive graphs and 1600 negative graphs.
We compare two feature sets, each containing 100 features select-
ed by two methods: Logratio and D&D. Logratio is a method that
selects frequent features with the maximum single feature discrim-
inative score defined by log ratio (Eq. (1)) iteratively. D&D is our
proposed method that selects frequent features using the diversified
discriminative score (Eq. (8)). We reemphasize the point that the
diversified discriminative score controls the feature diversity by re-
ducing the feature overlapping between features. We will discuss
D&D in detail in Section 5. Below, we show how the two feature
sets exhibit different properties in separating positive graphs from
negative graphs.

Cumulative Frequencies: For each feature set selected by either
Logratio or D&D, we count the number of features contained by
each graph in the set of positive/negative graphs, and compute a
cumulative frequency. The cumulative frequency for a number i is
the percentage of positive (or negative) graphs that have no more
than i features. We plot the cumulative frequencies in Fig. 2(a) and
Fig. 2(b), for i to be taken from 1 to 100.

For Logratio, as shown in Fig. 2(a), we can see that the positive
cumulative frequencies and the negative cumulative frequencies,

208

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 20 40 60 80 100

Po
si

tv
e

C
or

re
la

tio
n Logratio D&D

(a) # of Features in D+

 0

 200

 400

 600

 800

 0 20 40 60 80 100

N
eg

at
iv

e
C

or
re

la
tio

n Logratio D&D

(b) # of Features in D−

Figure 4: Correlation of Features

2k

4k

6k

8k

10k

 0 20 40 60 80 100

T
ot

al
 E

m
be

dd
in

g
E

dg
es Positive Negative

(a) # of Features (Logratio)

2k

4k

6k

8k

10k

 0 20 40 60 80 100

T
ot

al
 E

m
be

dd
in

g
E

dg
es Positive Negative

(b) # of Features (D&D)
Figure 5: Total Embedding Edges Statistic

based on the positive graphs and the negative graphs respectively,
are very close. This means that the feature occurrences in the posi-
tive and negative graphs are very similar, thus the features selected
by the log ratio can not help too much to distinguish the positive
graphs from the negative graphs. Therefore, there is a limit to build
a classification model with high accuracy using the single feature
discriminative score. On the other hand, for D&D, as shown in
Fig. 2(b), the gap between the positive cumulative frequencies and
the negative cumulative frequencies is larger. This means that the
selected feature set makes the positives and negatives more sep-
arable. In addition, Fig. 3(a) and Fig. 3(b) show the cumulative
frequencies of positive graphs and negative graphs containing the
feature embeddings from the two selected feature sets. We can ob-
serve similar trends on the two feature sets. And the gap between
the cumulative frequencies of positive graphs (D+) and negative
graphs (D−) becomes larger with the new diversified discrimina-
tive score as shown in Fig. 3(b).

Correlation: The correlation between two features is an important
indicator which can be evaluated by comparing their support sets
[20]. A widely used measure is Jaccard Coefficient [4], which is
defined as follows.

corr(f1, f2) =
|sup(f1) ∩ sup(f2)|

|sup(f1)|+ |sup(f2)| − |sup(f1) ∩ sup(f2)|
where corr(f1, f2) ∈ [0, 1]. Over a set of 100 features, the sum of
pairwise correlations score is a number in the range of [0,10000].
Fig. 4 shows the sum of correlation scores between features when
the number of features increases. Our new diversified discrimina-
tive score by D&D can reduce about 1/3 correlation score than that
by Logratio, which means the features selected by Logratio are
more redundant.

Total Embedding Edges: We count the total embedding edges for
a feature set, which is the union of the feature edge-covers of all
features in the feature set. Fig. 5(a) and Fig. 5(b) show the total
embedding edges by the two feature sets selected by Logratio and
D&D respectively. We can see that the gap between positive graph-
s and negative graphs with D&D in Fig. 5(b) is larger than that
with Logratio in Fig. 5(a). Thus, the feature set selected by D&D
can cover many edges in positive graphs and few edges in negative
graphs and make positive and negative graphs more separable.

Diversified Discriminative Power: Fig. 6 shows the diversified
discriminative score of the ith feature being selected. Fig. 6(b)

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100

Sc
or

e

(a) ith Feature (Logratio)

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100

Sc
or

e

(b) ith Feature (D&D)
Figure 6: Feature Diversified Discriminative Score

 0
 20
 40
 60
 80

 100

of

 F
ea

tu
re

s

Positive
Negative

Center
Boundary

(a) # of Features Distributions
(Logratio)

 0
 20
 40
 60
 80

 100

of

 F
ea

tu
re

s

Positive
Negative

Center
Boundary

(b) # of Features Distributions
(D&D)

0
0.2
0.4
0.6
0.8

1

E
m

be
dd

in
g

Pe
rc

en
ta

ge Positive
Negative

Center
Boundary

(c) Embedding Percentage Dis-
tributions (Logratio)

0
0.2
0.4
0.6
0.8

1

E
m

be
dd

in
g

Pe
rc

en
ta

ge Positive
Negative

Center
Boundary

(d) Embedding Percentage Dis-
tributions (D&D)

Figure 7: Statistic of Graphs

shows that D&D has steadily high diversified discriminative scores
for the selected features. We also show the diversified discrimina-
tive scores for the features selected by Logratio in Fig. 6(a). As
can be seen from Fig. 6(a), it has low and unstable diversified dis-
criminative scores for the selected features, due to the large overlap
between the selected features.

The Distributions: With the 100 features selected by Logratio or
D&D, we show the feature distribution and embedding distribu-
tion on a graph dataset with 200 representative graphs (100 positive
graphs and 100 negative graphs) among 2,000 graphs being tested.
Fig. 7(a) and Fig. 7(b) show the number of features contained by
each positive graph and negative graph, given the 100 feature sets
selected by Logratio and D&D, respectively. The boundary line
represents the average number of features contained by the 200
sample graphs. The two center points represent the average number
of features in positive graph set and negative graph set respectively,
where the positive center is above the boundary and the negative
center is below the boundary. The positive and negative graphs in
Fig. 7(b) spread farther apart based on the feature containment in-
formation, which indicates that our new diversified discriminative
score selects a feature set which makes positive and negative graph-
s more separable. Similarly, Fig. 7(c) and Fig. 7(d) show that the
embedding percentage in each positive graph and negative graphs.
The embedding percentage for a graph is the ratio of the number of
embedding edges in the graph to the number of graph edges. These
two figures have a similar trend as shown in Fig. 7(a) and Fig. 7(b).

Based on the statistic information given above, it is clear that
our proposed diversified discriminative score can help select more
discriminative features with little overlap, thus make the positive
and negative graphs more separable. With such a score, we are in a
much better position to address the two issues, namely, Issue-1 and
Issue-2.

209

Algorithm 1 D&D (D,F , k)

Input: A graph database D = (D+,D−), a set of frequent features F ,
and the number of features k

Output: A selected feature set Fs

1: f ← argmaxf∈Fscore(f);
2: Fs ← {f};
3: while |Fs| ≤ k do
4: f ← argmaxf∈F\Fs

scored(f);
5: Fs ← Fs ∪ {f};
6: return Fs;

Algorithm 2 D&D-Fast(D,F , k)

Input: A graph database D = (D+,D−), a set of frequent features F ,
and the number of features k

Output: A selected feature set Fs

1: Fs ← ∅;
2: H ← max-heap initialized to be ∅;
3: for all f ∈ F do
4: H.push(f, score(f));
5: while |Fs| ≤ k do
6: h← H.pop();
7: Fs ← Fs ∪ {f ′}; {f ′ is obtained from h.}
8: update (H,F ,Fs, f ′);
9: return Fs;

10: Procedure update (H,F ,Fs, f ′)
11: for all f ∈ F \ Fs do
12: C−

e (f)← C−
e (f)− C−

e (f) ∩ C−
e (f ′);

13: compute scored(f);
14: if scored(f) > head(H).scored() then
15: C+

e (f)← C+
e (f)− C+

e (f) ∩ C+
e (f ′);

16: compute scored(f);
17: H.update((f, scored(f)));
18: else
19: H.update((f, scored(f)));

5. THE ALGORITHMS
In this section, we show the algorithm, named D&D, to select

features based on the diversified discriminative score. The D&D
algorithm is given in Algorithm 1. There are three inputs: a graph
database D which contains a set of positive graphs D+ and a set of
negative graphs D−, a set of frequent features (subgraphs) mined
from the graph database D using [21], and a number k which in-
dicates how many diversified discriminative features to be selected
from F . In the D&D algorithm, first, it selects the feature f with
the largest log ratio score using score(f) (Eq. (1)). This feature
f has the highest discriminative power by itself. Then, in a while
loop, it iteratively picks up a new feature f with the largest diversi-
fied discriminative score scored(f) (Eq. (8)). This process repeats
until k features are selected.

To compute scored(f), it needs to compute pd(f) (Eq. (7))
first which involves a feature edge-cover intersection operation, as
we describe below. This operation takes two feature edge-covers,
Ce(f) and Ce(f

′), as input and produces their intersections Ce(f∩
f ′). In this operation, we need first find the graphs that contained
by both sup(f) and sup(f ′) and then compute the intersection of
edge embeddings of f and f ′ for each of these graphs. Thus, the
complexity of feature edge-cover intersection operation is O(|s|max·
|f |max), where |s|max is the maximum support size and |f |max is
the maximum feature size.

In Algorithm 1, we need to compute scored(f) for each feature
f ∈ F \ Fs to select a feature with the maximum score value in
line 4. To compute scored(f), we need to compute the intersec-
tion of Ce(f) and Ce(f

′) for each f ′ ∈ Fs and the union them.
Hence, to select a feature with the maximum diversified discrimi-

native score from F \Fs, it needs |Fs| · |F \Fs| feature edge-cover
intersection operations. To find the set of k features, the whole al-
gorithm ends up with O(k2 · |F|) feature edge-covers operations,
where k is the number of features to be selected.

To reduce the time complexity, we design a faster algorithm
which only needs O(k · |F|) feature edge-cover intersection op-
erations. The algorithm, named D&D-Fast, is shown in Algorithm
2. For each candidate feature fj , we can record its two edge-cover
scores. One is the positive edge-cover score, |C+

e (fj)|, based on
the positive graph set D+, and the other is the negative edge-cover
score, |C−

e (fj)|, based on the negative graph set D−. We update
these scores in every iteration. Let these scores for a feature fj at
the ith iteration be |C+

e (fj)i| and |C−
e (fj)i|. Suppose at the ith

iteration, a feature f ′ with the maximum diversified discriminative
score is selected. Then for each feature fj ∈ F \ (Fs ∪ {f ′}), we
update C+

e (fj)i and C−
e (fj)i as follows.

C+
e (fj)i = C+

e (fj)i−1 − C+
e (fj)i−1 ∩ C+

e (f ′)

C−
e (fj)i = C−

e (fj)i−1 − C−
e (fj)i−1 ∩ C−

e (f ′)
(9)

By updating the edge-cover score for each feature fj ∈ F \ (Fs∪
{f ′}) immediately after the selection of a new feature f ′, we avoid
computing the intersection of Ce(f) and Ce(f

′) for each f ′ ∈ Fs

from scratch, and only need O(k · |F|) feature edge-cover intersec-
tion operations.

In addition, we can further speed up the feature edge-cover in-
tersection operation by an early stop bound of scored(fj). We
use a max-heap H to maintain the current scored(fj) for each
fj ∈ F \ Fs which is sorted according to the value of scored(fj).
Each entry in the heap is with the form e = (pID, scored(fj)),
where pID is the feature ID and scored(fj) is the score to be sort-
ed in the heap. Note that we do not need to update scored(fj) for
all fj ∈ F \ Fs. We can derive an upper bound of scored(fj) as
follows.

scored(fj)i = log
p+d (fj)i

p−d (fj)i

= log
|C+

e (fj)i−1 − C+
e (fj)i−1 ∩ C+

e (f ′)|
|C−

e (fj)i−1 − C−
e (fj)i−1 ∩ C−

e (f ′)|

≤ log
|C+

e (fj)i−1|
|C−

e (fj)i−1 − C−
e (fj)i−1 ∩ C−

e (f ′)|
= scored(fj)i

(10)

where scored(fj)i is an upper bound of scored(fj)i. In Algorith-
m 2, before updating C+

e (f) for each f in the ith iteration (line 15),
we first update the edge-cover score C−

e (f) (line 12) and compute
the upper bound scored(f) (line 13). If scored(f) is larger than
maximum score in the heap, we will updating C+

e (f) and compute
scored(f). Otherwise, we will skip updating C+

e (f) and record i.
If in the i′th iteration (i < i′ < k), scored(f) is no longer larg-
er than the maximum score in the heap, we will update C+

e (f) by
considering the ith to i′th features in Fs. By this upper bound, we
can skip C+

e (f) computation for many f ∈ F \ Fs, which can
speed up the feature edge-cover intersection operation. The updat-
ed procedure is shown in Algorithm 2 (line 10-19).

6. ENSEMBLE D&D
We discuss a new ensemble approach. In the D&D method, we

select a subset of diversified and discriminative features Fs from a
given feature set. The selected features will complementarily en-
hance each other to build a good classifier. Since different feature
set Fs might lead to different classifiers. One feature set might lead
to a classifier which can correctly classify part of of training graphs,
while a different feature set might lead to another classifier which
can correctly classify a different part of training graphs. Hence,

210

after building one classifier for feature subset Fs, we adopt an iter-
ative procedure to focus on graphs that are incorrectly predicted by
previous classifiers to improve the performance.

The whole ensemble process of is a boosting like method. We
utilize the weight of graph to guide the features selection process.
We iteratively build a set of base classifiers from the training data
and perform classification by taking a weighted vote on the pre-
dictions made by each base classifier. The voting weight of a base
classifier Ci depends on its accuracy. As in [11, 12], we use the
normalized accuracy which is defined as follows.

Sensitivity =
of true positives

of positives

Specificity =
of true negatives

of negatives

Normalized accuracy =
Sensitivity + Specificity

2

(11)

The voting weight and the weights of training graphs are defined
and updated based on AdaBoost. Suppose the accuracy for classi-
fier Ci is ai, its voting weight is defined as bi = 1

2
ln(ai

1−ai
). Sup-

pose the weight of each graph is initially set to 1. Then in iteration
i, the weight of each graph gj is updated as follows

wi+1
j =

wi
j

Zi
×

{
exp−bi if gj is correctly classified

expbi if gj is misclassified
(12)

where Zi is the normalization factor used to ensure that
∑

gj∈D wi+1
j

= |D|. The weight update formula given in Eq. (12) increases the
weights of incorrectly classified graphs and decreases the weights
of those classified correctly.

After updating the weights of graphs in the iteration i, we use
such weights to guide our feature selection process in the next iter-
ation i+ 1. In doing so, we extend the edge-cover score defined in
Definition 3.2 to a weighted edge-cover score as follows.

S′
c(f) =

∑
gi∈sup(f)

wi × |Ec(f, gi)| (13)

Accordingly, the diversity of feature fm defined in Eq. (7) can be
update as follows.

p′d(fm) =

∑
gi∈sup(fm) wi × |Ec(fm, gi)|∑

gi∈D |E(gi)|

−
∑

gi∈sup(fm) wi × |
⋃m−1

j=1 (Ec(fm, gi) ∩ Ec(fj , gi))|∑
gi∈D |E(gi)|

(14)

Finally , we update the diversified discriminative score in Eq. (8)
as follows.

score′d(fm) = log
p′+d (fm)

p′−d (fm)
(15)

Based on Eq. (15), if a pattern fm covers a lot of misclassified
positive graphs, score′d(fm) will increase, so fm will have a higher
chance to be selected. If a pattern fm covers a lot of misclassified
negative graphs, score′d(fm) will decrease and fm will have less
chance to be selected. By assigning a weight to a graph, we can
choose the patterns that are in the misclassified positive graphs,
and discard the patterns that frequently occur in the misclassified
negative graphs in the next iteration to improve accuracy.

7. PERFORMANCE STUDIES
In this section, we evaluate our algorithms from three aspect-

s. First, we evaluate our D&D and ensemble D&D feature selec-
tion criteria. We compare D&D with two feature selection strate-
gies: maximum single feature discriminative score selection and

Table 2: List of Selected Bioassays

ID
Assay

ID Tumor description
Total

number of
actives

Total
number of
inactives

1 83 Breast 2287 25510
2 123 Leukemia 3123 36741
3 1 Non-Small Cell Lung 2047 38410
4 109 Ovarian 2072 38551
5 330 Leukemia 2194 38799
6 41 Prostate 1568 25967
7 47 Central Nerv Sys 2018 38350
8 145 Renal 1948 38157
9 81 Colon 2401 38236
10 33 Melanoma 1642 38456
11 167 Yeast anticancer 9467 69998

Table 3: List of Selected SCOP Families

ID
SCOP

ID Family name
Number

of selected
proteins

1 46463 Globins 51
2 47617 Glutathione S-transferase (GST) 36
3 48623 Vertebrate phospholipase A2 29
4 48942 C1 set domains 38
5 50514 Eukaryotic proteases 44

6 51012
alpha-Amylases,

C-terminal beta-sheet domain 26

7 51487 beta-glycanases 32
8 51751 Tyrosine-dependent oxidoreductases 65

9 51800
Glyceraldehyde-3-phosphate

dehydrogenase-like 34

10 52541 Nucleotide and nucleoside kinases 27
11 52592 G proteins 33
12 53851 Phosphate binding protein-like 32
13 56251 Proteasome subunits 35
14 56437 C-type lectin domains 38
15 88634 Picornaviridae-like VP 39
16 88854 Protein kinases, catalytic subunit 41

conventional feature selection strategy on high-dimensional data
which considers the relevance and redundancy of features. We de-
note the former as Logratio, and for the latter, we use the latest
work MMRFS [4] as a representative of the recent existing works
[4, 6, 15]. Second, we compare our method with three alterna-
tive graph classification approaches: GAIA [12], COM [11], and
graphSig [16]. Third, we test the performance of the algorithms on
the pattern set mined by GAIA. We implemented our algorithms,
Logratio, and MMRFS using C++ and obtained the GAIA imple-
mentation from the authors which also includes the implementation
of COM and graphSig. For our algorithm implementations, we use
LIBSVM [2] as the classification model. As widely used in previ-
ous work [12, 11, 16, 20], the classification accuracy is evaluated
with 5-fold cross validation and the normalized accuracy defined in
Eq. (11) is computed for each classifier. All tests were conducted
on a PC with 2.66GHz CPU and 3.43GB memory running Win-
dows XP.

We evaluate the algorithms on two real datasets: chemical com-
pound datasets and protein datasets, which are also used in [20, 11,
12].

Chemical datasets: Chemical compound datasets are available
at PubChem (http://pubchem.ncbi.nlm.nih.gov). In
PubChem, each dataset belongs to a certain type of cancer screen
with the outcome active or inactive. There are 11 graph datasets
classified by their biological activities and the detailed description
is provided in Table 2. These are all the bioassays used in [20] and
[12]. Each compound can be either active or inactive in a bioas-

211

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10 11

Ac
cu

rac
y

Logratio MMRFS D&D D&DE

Figure 8: Accuracy Comparison for Logratio, MMRFS, D&D
and D&DE (Balanced Chemical Datasets)

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10 11

Ac
cu

rac
y

Logratio MMRFS D&D D&DE

Figure 9: Accuracy Comparison for Logratio, MMRFS, D&D
and D&DE (Unbalanced Chemical Datasets)

say. As in [12], we randomly select 400 active compounds as the
positive set and 400 inactive compounds as the negative set as a
balanced dataset for each bioassay. We also randomly select 400
active compounds and 1,600 negative compounds as an unbalanced
dataset. The graph representation of compounds is straightforward.
We remove hydrogen atoms, represent each atom by a node labeled
with the atom type and each chemical bond by an edge labeled with
the bond type. On average, each compound graph has about 25 n-
odes and 27 edges.

Protein datasets: The protein datasets consist of protein structures
from Protein Data Bank (http://www.rcsb.org/pdb/) classified by
SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/). We use 16 pro-
tein datasets generated from all the large SCOP families with more
than 25 members (listed in Table 3). In each dataset, protein struc-
tures in a selected family are taken as the positive set. Unless oth-
erwise specified, we randomly select 256 other proteins (i.e., not
members of the 16 families) as a common negative set used by all
protein datasets. For each family, the selected proteins (as the pos-
itive graphs) and the 256 negative graphs form a dataset which is
unbalanced. We also create a balanced dataset for each family by
selecting the same number of negative graphs from the 256 pro-
teins as the number of positive ones in that family. To generate a
protein graph, each graph node denotes an amino acid, whose lo-
cation is represented by the location of its alpha carbon. There is
an edge between two nodes if the distance between the two alpha
carbons is less than 11.5 angstroms. Nodes are labeled with their
amino acid type and edges are labeled with the distances between
the alpha carbons. On average, each protein graph has 250 nodes
and 2,700 edges.

7.1 D&D Performance Analysis
In this subsection, we study the performance of our method D&D

by comparing it with two feature selection strategies: Logratio and
MMRFS. Logratio incrementally selects frequent features with
maximal single feature discriminative score. MMRFS iteratively
selects features with the maximum marginal relevance. To investi-
gate our ensemble strategy, we also compare the performance of a
single D&D and ensemble D&D of our method, denoted as D&D
and D&DE respectively. Unless other specified, for all algorithms,
we select the features from a given feature set mined by gSpan [21]
with a minimum support 10%. Since our method is independent
of the mining method, we only report the time of feature selection

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10 11

Ru
nn

ing
 T

im
e (

s)

Logratio MMRFS D&D D&DE

Figure 10: Runtime Comparison for Logratio, MMRFS, D&D
and D&DE (Unbalanced Chemical Datasets)

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10 11

Ac
cu

rac
y

D&D GAIA COM graphSig

Figure 11: Accuracy Comparison for D&D, GAIA, COM and
graphSig (Balanced Chemical Datasets)

and classification. In this subsection, we only evaluate algorithms
on chemical datasets since graphs in protein datasets are very large
and gSpan can not mine frequent patterns within reasonable time.

Fig. 8 shows the classification accuracy by different method-
s on balanced chemical datasets. Our method D&D outperforms
Logratio and MMRFS on the total 11 chemical datasets. Logratio
performs worst among all the methods. This shows that the sin-
gle feature discriminative score in feature selection is not suffi-
cient. MMRFS performs better than Logratio, which proves tak-
ing redundancy into consideration in feature selection is necessary.
MMRFS is outperformed by D&D due to its limitation on captur-
ing the graph structure. D&DE can get better accuracy than D&D.
Fig. 9 shows the classification accuracy by different methods on
unbalanced chemical datasets, which has a similar trend as Fig. 8.

The time cost for these algorithms have a similar trend on bal-
anced datasets and unbalanced datasets. Due to the lack of space,
we only show the time for unbalanced datasets since they are larg-
er than balanced datasets and usually need more time. Fig. 10
shows running time for different methods on unbalanced chemi-
cal datasets. Logratio is the fastest because it only needs to sort the
single feature discriminative score for each pattern. MMRFS is the
most costly since each time it needs to scan all the rest of features
to select the one with the maximum marginal score, and in each
marginal score computation, it needs to compute the redundancy
between the new feature with the already selected k − 1 features.
Our D&D method with the best performance on accuracy is effi-
cient, based on our proposed gradual update strategy and the early
stop bound based pruning.

7.2 Comparison with Existing Algorithms
In this section, we compare our method D&D with GAIA, COM

and graphSig on chemical datasets. For these three algorithms, we
use the parameters that deliver the best results as suggested in [12,
11, 16]. We will report the evaluation results on protein datasets in
next subsection.

Fig. 11 shows the classification accuracy by different methods on
the 11 balanced chemical datasets. Our method wins on 10 out of
the 11 datasets. This clearly demonstrates the effectiveness of our
graph features, when the feature overlap is considered based on our
proposed diversified discriminative score. With this score measure,
more important features with little overlap will be picked.

Fig. 12 shows the classification accuracy by different classifi-
cation methods on the 11 unbalanced chemical datasets. As in

212

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10 11

Ac
cu

rac
y

D&D GAIA COM

Figure 12: Accuracy Comparison for D&D, GAIA and COM
(Unbalanced Chemical Datasets)

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11

Ru
nn

ing
 T

im
e (

s)

D&D GAIA COM

Figure 13: Runtime Comparison for D&D, GAIA and COM
(Unbalanced Chemical Datasets)

[12], we did not compare with graphSig since it can not handle
unbalanced datasets. Our method wins on 9 out of the 11 datasets
and GAIA wins on the other 2. This result again demonstrates the
superiority of our diversified discriminative score. Fig. 13 shows
running time by different methods on the 11 unbalanced chemical
datasets. On most of the datasets, our method is the most efficient,
based on our proposed gradual update strategy and the early stop
bound based pruning

7.3 Performance on Patterns Mined by GAIA
Our D&D feature selection method is independent of the fre-

quent pattern mining process, because D&D can perform on any
given feature set F . We validate the power of D&D feature selec-
tion method on a given frequent pattern set mined by gSpan, which
usually contains a large number of features. In this subsection, we
investigate the performance of D&D on any given incomplete fre-
quent pattern set with a small number of features. We take the
pattern set mined by GAIA as the given pattern set, and perform
D&D to see whether it can improve the performance of classifica-
tion. We compare D&D and GAIA on both chemical datasets and
protein datasets.

Fig. 14 shows the classification accuracy for D&D and GAIA on
balanced chemical datasets. Our method obtains higher accuracy
on total 11 chemical datasets, which validates the effectiveness of
our D&D criteria on even small and incomplete pattern set. We
notice that the improvement is not as significant as on the frequen-
t pattern set compared to Logratio. The underlying reasons are:
the patterns mined by GAIA are not complete, and some important
patterns miss, which limit the classification accuracy of D&D.

Fig. 15 shows the performance for D&D and GAIA on the un-
balanced chemical datasets. D&D improves the accuracy on 10 out
of 11 datasets. Fig. 16 shows the running time by D&D and GA-
IA on 11 unbalanced chemical datasets. The time of D&D includes
GAIA’s mining time, D&D’s feature selection time and the classifi-
cation time. The result shows that we can improve the classification
accuracy with a small overhead on feature selection by D&D.

Fig. 17 shows the classification accuracy for D&D and GAIA
on the balanced protein datasets. Our method gets better accura-
cy on 15 out of 16 datasets. The improvement is more significant
compared to that on chemical datasets.

Fig. 18 shows the performance for D&D and GAIA on the un-
balanced protein datasets. D&D wins on 14 out of 16 datasets.
Fig. 19 shows the running time for D&D and GAIA on the unbal-

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10 11

Ac
cu

rac
y

D&D GAIA

Figure 14: Accuracy Comparison for D&D and GAIA (Bal-
anced Chemical Datasets)

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10 11

Ac
cu

rac
y

D&D GAIA

Figure 15: Accuracy Comparison for D&D and GAIA (Unbal-
anced Chemical Datasets)

anced protein datasets. Again, the time of D&D includes GAIA’s
mining time, D&D’s feature selection time and the classification
time. D&D only adds a small overhead on GAIA for feature selec-
tion, but improves the classification accuracy substantially.

8. RELATED WORK
In the literature, there have been a number of studies on discov-

ering or selecting different kinds of patterns to build a graph clas-
sification model. One traditional way is to mine frequent patterns
first, then select interesting features, and finally build a classifi-
cation model [4] [5] [1]. Recently people have proposed mining
algorithms that directly mine the most discriminative features effi-
ciently [20, 17, 18, 16, 11, 12]. Yan et al. [20] proposed an efficient
algorithm, called LEAP, for mining the most discriminative sub-
graph. The algorithm focuses on searching dissimilar subgraphs
using structural leap search and achieves significant speedup over
the widely used branch-and-bound approach. [17] proposed an iter-
ative subgraph mining method based on partial least squares regres-
sion (PLS), combined with a weighted pattern mining algorithm.
[18] proposed a feature selection approach on frequent subgraph-
s, called CORK, that optimizes a submodular quality criterion and
integrates the criterion into gSpan for subgraph mining. Ranu and
Singh [16] proposed GraphSig, a scalable method to mine signif-
icant (measured by p-value) subgraphs based on a feature vector
representation of graphs. The first step in the mining process is to
convert each graph into a set of feature vectors where each vector
represents a region within the graph. Prior probabilities of fea-
tures are computed empirically to evaluate statistical significance
of patterns in the feature space. Then frequent subgraph mining
techniques can be used to mine significant patterns in a scalable
manner. [11] designs a new classification method based on pattern
co-occurrence to derive graph classification rules. [12] proposes a
subgraph mining method, GAIA, which employs a novel subgraph
encoding approach to support an arbitrary subgraph pattern explo-
ration order and explores the subgraph pattern space using evolu-
tionary computation. In this manner, GAIA is able to find discrim-
inative subgraph patterns much faster than other algorithms. Most
of the above methods do not rigorously measure the feature overlap.
Different from the above studies, [24] proposes to use graph met-
rics, such as non-tree density, degree distribution, diameter, global
clustering coefficient, etc., as features for graph classification.

Graph pattern mining has been widely studied and can be catego-

213

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11

 R
un

nin
g T

im
e (

s)
D&D GAIA

Figure 16: Runtime Comparison for D&D and GAIA (Unbal-
anced Chemical Datasets)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
cu

rac
y

D&D GAIA

Figure 17: Accuracy Comparison for D&D and GAIA (Bal-
anced Protein Datasets)

rized in three types: exact graph mining such as gSpan [21], FFSM
[9], Gaston [14] and FSG [13] ; approximate graph mining such
as SUMMARIZE-MINE [3], TFP [7], Monkey [23] and sampling
method [8]. Other methods include maximal pattern mining [10]
and closed pattern mining [22].

Feature selection is a critical step for building accurate classi-
fication model [19, 6, 15, 4]. In conventional classification tasks
on high-dimensonal data, feature selection is a well studied prob-
lem in the literature, which aims to select highly relevant and less
redundant features, such as CMIM [6], mRmR [15], and MMRFS
[4]. However, such feature selection methods have limit power
when they are directly applied to graph database. This is because
these methods treat each feature as an independent unit and evalu-
ate their relationship only by their distributions over binary vectors.
While in graph database, features have complicated relationships in
terms of the topological structures and the locations. Moreover, a
pattern has an exponential number of subgraphs, and the patterns
are not uniformly distributed. This leads to a huge redundancy and
complex overlapping of patterns.

9. CONCLUSION
In this paper we study graph classification by designing a diversi-

fied discriminative feature selection approach. Our proposed score
can reduce the overlap between selected features by considering
the embedding overlaps in the graphs. We analyze the properties
of our score measure and show that the selected features make the
positive and negative graphs more separable. Experimental results
show that we can achieve a higher classification accuracy compared
with the state-of-the-art graph classification methods with our pro-
posed diversified discriminative feature selection method.

Acknowledgments The work was supported by grants of the Research
Grants Council of the Hong Kong SAR, China No. 419109, 411310, 411211
and 418512.

10. REFERENCES
[1] D. Bandyopadhyay, J. Huan, J. Liu, J. Prins, J. Snoeyink, W. Wang,

and A. Tropsha. Structure-based function inference using protein
family-specific fingerprints. Protein Science, 15(6):1537–1543, 2006.

[2] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector
machines, 2001. software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[3] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and
J. Han. Mining graph patterns efficiently via randomized summaries.
PVLDB, 2(1):742–753, 2009.

[4] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
cu

rac
y

D&D GAIA

Figure 18: Accuracy Comparison for D&D and GAIA (Unbal-
anced Protein Datasets)

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ru
nn

ing
 T

im
e (

s)

D&D GAIA

Figure 19: Runtime Comparison for D&D and GAIA (Unbal-
anced Protein Datasets)

pattern analysis for effective classification. In ICDE, pages 716–725,
2007.

[5] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent
substructure-based approaches for classifying chemical compounds.
TKDE, 17(8):1036–1050, 2005.

[6] F. Fleuret. Fast binary feature selection with conditional mutual
information. JMLR, 5:1531–1555, 2004.

[7] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed
patterns without minimum support. In ICDM, pages 211–218, 2002.

[8] M. A. Hasan and M. J. Zaki. Output space sampling for graph
patterns. PVLDB, 2(1):730–741, 2009.

[9] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraphs in the presence of isomorphism. In ICDM, pages 549–552,
2003.

[10] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal
frequent subgraphs from graph databases. In KDD, pages 581–586,
2004.

[11] N. Jin, C. Young, and W. Wang. Graph classification based on pattern
co-occurrence. In CIKM, pages 573–582, 2009.

[12] N. Jin, C. Young, and W. Wang. Gaia: graph classification using
evolutionary computation. In SIGMOD, pages 879–890, 2010.

[13] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In
ICDM, pages 313–320, 2001.

[14] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining
can make a difference. In KDD, pages 647–652, 2004.

[15] H. Peng, F. Long, and C. H. Q. Ding. Feature selection based on
mutual information: Criteria of max-dependency, max-relevance, and
min-redundancy. TPAMI, 27(8):1226–1238, 2005.

[16] S. Ranu and A. K. Singh. Graphsig: A scalable approach to mining
significant subgraphs in large graph databases. In ICDE, pages
844–855, 2009.

[17] H. Saigo, N. Krämer, and K. Tsuda. Partial least squares regression
for graph mining. In KDD, pages 578–586, 2008.

[18] M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. Smola,
L. Song, P. Yu, X. Yan, and K. Borgwardt. Near-optimal supervised
feature selection among frequent subgraphs. In SDM, 2009.

[19] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and
V. Vapnik. Feature selection for svms. NIPS, pages 668–674, 2001.

[20] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph
patterns by leap search. In SIGMOD, pages 433–444, 2008.

[21] X. Yan and J. Han. gspan: Graph-based substructure pattern mining.
In ICDM, pages 721–724, 2002.

[22] X. Yan and J. Han. Closegraph: mining closed frequent graph
patterns. In KDD, pages 286–295, 2003.

[23] S. Zhang, J. Yang, and V. Cheedella. Monkey: Approximate graph
mining based on spanning trees. In ICDE, pages 1247–1249, 2007.

[24] L. Zhu, W. K. Ng, and S. Han. Classifying graphs using theoretical
metrics: A study of feasibility. In DASFAA, 2011.

214

