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Abstract

A trust network is a social network in which edges represent the trust relationship between two nodes
in the network. In a trust network, a fundamental question is how to assess and compute the bias and
prestige of the nodes, where the bias of a node measures the trustworthiness of a node and the prestige of
a node measures the importance of the node. The larger bias of a node implies the lower trustworthiness
of the node, and the larger prestige of a node implies the higher importance of the node. In this paper, we
define a vector-valued contractive function to characterize the bias vector which results in a rich family
of bias measurements, and we propose a framework of algorithms for computing the bias and prestige of
nodes in trust networks. Based on our framework, we develop four algorithms that can calculate the bias
and prestige of nodes effectively and robustly. The time and space complexities of all our algorithms are
linear with respect to the size of the graph, thus our algorithms are scalable to handle large datasets. We
evaluate our algorithms using five real datasets. The experimental results demonstrate the effectiveness,
robustness, and scalability of our algorithms.

Introduction

In recent years, trust social networks such as Advogato (www.advogato.org), Kaitiaki (www.kaitiaki.
org.nz), Epinions (www.epinions.com), and Slashdot (www.slashdot.org) rapidly attract more and
more attention in both research and industry communities. In trust networks, users express their trust
to other users by giving a trust score to another, and users are evaluated by others based on their trust
scores. There are two types of trust networks, namely, unsigned and signed. In the unsigned trust
networks, such as Advogato and Kaitiaki, users can only express their trust to other users by giving a
non-negative trust score to others. In the signed trust networks, such as Epinions and Slashdot, users
are able to express their trust or distrust to others by giving a positive or negative trust score to others.
There are many applications in the trust networks, such as finding the trusted nodes in a network [1],
predicting the trust score of the nodes [2], and the trust based recommendation systems [3, 4]. It is
worth mentioning that the trust network studied here is unlike the problem of trust management [5–8]
which is extensively studied in the literature. For example, Richardson et al. [9] proposed an eigenvector
based algorithm for trust management in semantic web. Independent to Richardson’s work, Kamvar
et al. [10] presented a similar eigenvector based algorithm, namely Eigentrust, for trust management in
P2P networks. Guha et al. [11] studied the problem of propagation of trust and distrust in the networks.
Subsequently, Theodorakopoulos et al. [12] proposed a trust evaluation metric from an algebra viewpoint.
They used semiring to express a trust model and then modeled the trust evaluation problem as a path
problem on a directed graph. Andersen et al. [13] proposed an axiomatic approach for trust measurements.
Recently, Richters and Peixoto [14] studied the trust propagation problem on social networks based on
a metric of transitivity. Most of these studies are based on an implicit trust network, where the trust
scores are estimated by some ad hoc methods. However, in trust social networks, the trust scores are
explicitly given by the users.

In a signed/unsigned trust network, the final trustworthiness of a user is determined by how users
trust each other in a global context, and is measured by bias. The bias of a user reflects the extent up
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to which his/her opinions differ from others. If a user has a zero bias, then his/her opinions are 100%
unbiased and can be 100% taken. Consequently, the user has high trustworthiness. On the other hand,
if a user has a large bias, then his/her opinions cannot be 100% taken because his/her opinions are
often different from others. Therefore, the user has low trustworthiness. Another important measure,
the prestige of a user, reflects how he/she is trusted by others (the importance). In this work, we study
how to assess and compute the bias and prestige of the users. The challenges are: (1) how to define
a reasonable bias measurement that can capture the bias of the users’ opinions, (2) how to handle the
negative trust scores in signed trust networks, and (3) how to design a robust algorithm that can prevent
attack from some adversarial users.

As pointed out in [1], the classic eigenvector based methods [15], such as eigenvector centrality [16],
HITS [17], and PageRank [18–20], cannot be directly used to solve this problem. The reason is because
these methods cannot handle the negative edges, which exist in signed networks [21]. More recently, many
PageRank and HITS variants, such as the PageTrust [22], the signed spectral ranking [23], reputation-
based ranking [24] and the PolarityRank [25, 26] algorithms, have been extended to the case of signed
networks. All of these variants, however, cannot compute the bias of the nodes. To the best of our
knowledge, the algorithm proposed by Mishra and Bhattacharya [1] is the only algorithm that addresses
to compute both prestige and bias of nodes in trust social network. We refer to this algorithm as the
MB algorithm (or simply MB). MB is tailored for the signed trust networks, and can also be used for
the unsigned trust networks. However, MB has major drawbacks. The trustworthiness of a user cannot
be trusted due to the fact that MB treats bias of a user by relative differences between itself and others.
For instance, if a user gives all his/her friends a much higher trust score than the average of others, and
gives all his/her foes a much lower trust score than the average of others, such differences cancel out,
which leads to a zero bias for the user. This cancelation happens in either a signed or a unsigned trust
network. Therefore, MB can be attacked by the adversarial users. We will analyze it in the next section
in detail.

In this paper, we propose new bias measurements to capture the bias of the users’ opinions. First,
we define a vector-valued contractive function as a framework to represent the bias vector, which implies
a rich family of bias measurements and thereby results in a rich family of algorithms. On the basis of
our framework, we develop four new bias measurements using absolute differences instead of relative
differences to deal with bias, in order to avoid such a cancelation problem in MB. Based on the bias of
the nodes, the trustworthiness score of a node is inversely proportional to the bias score of the node, and
the prestige of a node is the average trustworthiness-weighted trust scores. In other words, if a node is
with a large bias score, then the trust scores given by this node will be assigned to small weights. Our
algorithms iteratively refine the bias and prestige scores of the nodes. The final bias and prestige vector
is obtained when the algorithm converges. The major advantages of our algorithms are as follows. First,
the bias measurement of our new algorithms are more reasonable, more effective, and more robust than
the MB algorithm. Second, similar to MB, our algorithms can also work on signed trust networks. Third,
the time and space complexity of all our algorithms are linear with respect to (w.r.t.) the size of the
networks, thereby they are scalable to handle large trust networks.

Methods

We model a trust network as a directed weighted graph G = (V,E,W ) with n nodes and m edges, where
V represents the node set, E denotes the edge set, and W denotes the weights. In graph G, a weight
Wij signifies a trust score from node i to node j. All trust scores are normalized in the range of [0, 1].
For simplicity, in the following discussions, we focus on an unsigned trust network assuming that all
edge-weights are non-negative. Our approaches can be readily generalized to signed trust networks, and
we will discuss it at the end of this section.

An example is shown in Figure 1. In Figure 1, node 5 gives a trust score 0.1 to node 1 (W51 = 0.1),
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whereas two nodes, 2 and 3, give a high trust score 0.8 to node 1 (W21 = W31 = 0.8). And node 5 gives a
trust score 0.9 to node 3 (W53 = 0.9), while two nodes, 2 and 4, give a low trust score to node 3 instead
(W23 = W43 = 0.2). This observation shows that node 5’s opinions often differ from those of others, thus
indicates that node 5 is a biased node. On the other hand, there are two nodes (2 and 3) giving a high
trust score 0.8 to node 1 (W21 = W31 = 0.8), which suggests that node 1 would be a prestigious node.
Additionally, in this example, node 3 gives 0 to node 2 (W32 = 0), which implies that node 3 does not
trust node 2 at all.

Given a trust network G, the problem we study is how to compute the bias and prestige of the nodes
based on the trust scores. As discussed, the eigenvector based methods are not applicable, and the only
existing solution is MB [1]. In the following, we briefly review MB and discuss its major drawbacks.

In MB, each node has two scores: the bias and prestige score. The bias and prestige scores of node i
are denoted by bi and ri, respectively. Formally, the bias of node i is defined by

bi =
1

2|Oi|
∑
j∈Oi

(Wij − rj), (1)

where Oi denotes the set of all outgoing neighbors of node i. The idea behind is that a node will be
assigned to a high bias score if it often behaves differently from others. The prestige score of node i (ri)
is given by

ri =
1

|Ii|
∑
j∈Ii

(Wji(1−max{0, bj × sign(Wji)})), (2)

where Ii denotes the set of all incoming neighbors of node i, and sign(Wji) denotes the sign of an edge
from node j to node i, which can be positive (trust) or negative (distrust).

The MB algorithm works in an iterative fashion, and the corresponding iterative system is
rk+1
i = 1

|Ii|
∑
j∈Ii

(Wji(1−max{0, bkj × sign(Wji)}))

bk+1
j = 1

2|Oj |
∑

i∈Oj

(Wji − rk+1
i )

(3)

There are two major drawbacks in MB. First, in Eq. (1), the differences (Wij−rj) for different outgoing
neighbors j ∈ Oi can be canceled out, thus will result in unreasonable bias measures. Reconsider the
example (Figure 1), node 5 gives 0.1 to node 1, while both node 2 and node 3 give 0.8 to node 1. With
these three edges (5 → 1, 2 → 1, and 3 → 1), the trust score given by node 5 is significantly lower than
those of others with a difference 0.1− 0.8 = −0.7. However, consider the other three edges 2 → 3, 4 → 3,
and 5 → 3, we can find that the trust score given by node 5 is significantly larger than those of the other
two nodes (nodes 2 and 4) with a difference 0.7. The positive and negative differences can be canceled
out by Eq. (1), and this will cause node 5 to be trusted with a lower bias score. However, intuitively, node
5’s opinions often differ from those of others, thereby it should be assigned to a large bias score. Table 1
shows the bias scores by MB after each iteration. We can clearly see that node 5 gets the minimal bias
scores (0.014), which contradicts to the intuition.

Second, as also pointed in [1], MB is easy to be attacked by the adversarial nodes. For example, some
nodes can maintain their bias scores closely to 0 by giving high trust scores to the nodes with low prestige
scores and giving the low trust scores to the nodes with high prestige scores (as node 5 in Figure 1).
In [1], Mishra and Bhattacharya present a statistical method for detecting such adversarial nodes. But
the statistical method is independent to MB, thus it cannot reduce the influence of the adversarial nodes
in MB. In addition, the proof for the convergence of the MB presented in [1] is not rigorous. In the present
paper, we rigorously prove the convergence of our framework using the Cauthy convergence theorem [27].
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Our New Approach

Here we propose a framework of algorithms for computing the bias and prestige of the nodes in trust
networks. In our framework, every node i has two scores: the bias score (bi) and the prestige score (ri).
We use two vectors b and r to denote the bias vector and prestige vector, respectively. Specifically, we
define the bias of node j by

bj = (f(r))j , (4)

where r is the prestige vector of the nodes, f(r) : Rn → Rn is a vector-valued contractive function, which
is defined in Definition 1, and (f(r))j denotes the j-th element of vector f(r). We restrict 0 ≤ f(r) ≤ e,
where e ∈ Rn and e = [1, 1, · · · , 1]T .
Definition 1: For any x, y ∈ Rn, the function f : Rn → Rn is a vector-valued contractive function if the
following condition holds.

|f(x)− f(y)| ≤ λ||x− y||∞e (5)

where λ ∈ [0, 1), || • ||∞ denotes the infinity norm.
Since λ ∈ [0, 1), the vector-valued function f exhibits contractive property w.r.t. the infinity norm of

the vector, we refer to it as the vector-valued contractive function. It is worth noting that the vector-
valued contractive function we define is a generalization of the contraction mapping in the fixed point
theory [28]. In [28], the contraction mapping is defined on a 1-dimensional variable and the domain of
the contraction mapping is also a 1-dimensional value. Our vector-valued contractive function is defined
on an n-dimensional vector and its domain is also an n-dimensional vector. The contraction mapping
is very useful for iterative function systems [28]. Our vector-valued contractive function sheds light on
studying the iterative vector-valued function systems in trust networks.

As can be seen in Eq. (4), the bias vector b is obtained by a vector-valued contractive function
defined on the prestige vector r. The advantage of the definition of bias is that it makes our framework
general, which will result in a rich family of bias measurements. Later, we will give four different bias
measurements and each of these measurements is shown to be a vector-valued contractive function.

With the bias of the nodes, the trustworthiness of node j is given by 1 − bj , which is inversely
proportional to the bias score of node j. We compute the prestige score of node i by averaging the
trustworthiness-weighted trust scores given by the incoming neighbors of node i. In particular, the
prestige score ri for a node i is given by

ri =
1

|Ii|
∑
j∈Ii

Wji(1− (f(r))j), (6)

where Ii is the set of all incoming neighbors of node i. Our framwork iteratively refines the prestige
vector and the bias vector using the following iterative system:{

rk+1
i = 1

|Ii|
∑
j∈Ii

Wji(1− bkj )

bk+1
j = (f(rk+1))j

(7)

where rk+1
i denotes the prestige of node i in the (k+1)-th iteration and bk+1

j denotes the bias of node j in

the (k+1)-th iteration. Initially, we set f(r0) = 0, which implies 0 ≤ rk ≤ 1. The iterative system defined
in Eq. (7) converges into a unique fixed prestige and bias vector in an exponential rate of convergence.
The detailed convergence analysis of the proposed approach can be found in the supplementary document.

Instances of f(r)

Here we first show that MB is a special instance of our framework on unsigned trust networks. Then,
based on our framework, we present four new algorithms that can circumvent the existing problems of
MB.
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To show that MB on the unsigned trust network is a special instance of our framework, we show that
fmb(r) is a vector-valued contractive function. The fmb(r) is defined by

(fmb(r))j = max{0, 1

2|Oj |
∑
i∈Oj

(Wji − ri)},

for j = 1, 2, · · · , n. In particular, we have the following theorem. All the proofs can be found in the
supplementary document.

Theorem 1: For any r ∈ Rn, and r ≤ e, fmb is a vector-valued contractive function with the decay
constant λ = 1/2 and 0 ≤ fmb ≤ e.

As analysis in the previous section, MB yields unreasonable bias measurement and it is easy to be
attacked by the adversarial nodes. In the following, we propose four new algorithms that can tackle the
existing problems in MB. Specifically, we give two classes of vector-valued contractive functions: the L1

distance based vector-valued contractive functions and the L2 distance based vector-valued contractive
functions. All functions can be served as (f(rk+1))j in Eq. (7). That is to say, all of these functions can
be used to measure the bias of the nodes.

L1 distance based contractive functions: We present two vector-valued contractive functions based
on the L1 distance measure: f1(r) and f2(r). Specifically,

(f1(r))j =
λ

|Oj |
∑
i∈Oj

|Wji − ri|, (8)

for all j = 1, 2, · · · , n. In the following theorem, we show that f1 is a vector-valued contractive function.

Theorem 2: For any r ∈ Rn, and r ≤ e, f1 is a vector-valued contractive function with 0 ≤ f1 ≤ e.
Based on f1, the bias of node j is determined by the arithmetic average of the differences between the

trust scores given by node j and the corresponding prestige scores of the outgoing neighbors of node j.
The rationale is that the nodes whose trust scores often differ from those of other nodes will be assigned
to high bias scores. In f1, the difference is measured by the L1 distance, thus we refer to this algorithm
as the L1 average trustworthiness-weighted algorithm (L1-AVG). The corresponding iterative system is
given by 

rk+1
i = 1

|Ii|
∑
j∈Ii

Wji(1− (f1(r
k))j)

(f1(r
k+1))j =

λ
|Oj |

∑
i∈Oj

|Wji − rk+1
i |. (9)

It is important to note that, unlike MB, L1-AVG uses the L1 distance to measure the differences, thus
the differences between the trust score and the corresponding prestige score cannot be canceled out. It
therefore can readily prevent attacks from the adversarial nodes that give the nodes with high prestige
low trust scores and give the nodes with low prestige high trust scores. Table 2 shows the bias scores of
the nodes for the example in Figure 1 by L1-AVG. For fair comparison with MB, we set λ = 0.5 in all of
our algorithms in this experiment. We can clearly see that node 5 achieves the highest bias score, which
conforms with our intuition. Also, we can observe that L1-AVG converges in 5 iterations, because the
rate of convergence of our framework is exponential.

The second L1-distance based vector-valued contractive function is defined by

(f2(r))j = λmax
i∈Oj

|Wji − ri|, (10)

for all j = 1, 2, · · · , n. Below, we show that f2 is a vector-valued contractive function.

Theorem 3: For any r ∈ Rn, and r ≤ e, f2 is a vector-valued contractive function with 0 ≤ f2 ≤ e.
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In f2, since the bias of node j is determined by the maximal difference between the trust scores
given by node j and the corresponding prestige score of the outgoing neighbors of node j, we refer to this
algorithm as the L1 maximal trustworthiness-weighted algorithm (L1-MAX). The corresponding iterative
system is as follows. 

rk+1
i = 1

|Ii|
∑
j∈Ii

Wji(1− (f2(r
k))j)

(f2(r
k+1))j = λmax

i∈Oj

|Wji − rk+1
i |.

(11)

With Eq. (10), we can see that L1-MAX punishes the biased nodes more heavily than L1-AVG, as it takes
the maximal difference to measure the bias. In other words, in L1-MAX, the node that only gives one
unreasonable trust score will get high bias score. Like L1-AVG, L1-MAX can also prevent attacks from
the adversarial nodes who give the nodes with high prestige low trust scores, and give the nodes with low
prestige high scores. Table 3 shows the bias scores of the nodes for the example in Figure 1 by L1-MAX.
We can see that node 5 gets the highest bias score as desired. L1-MAX converges in 5 iterations, because
the rate of convergence of our framework is exponential.

L2 distance based contractive functions: We propose two contractive functions based on the square
of L2 distance measure. For convenience, we refer to these functions as L2 distance based contractive
functions. Since the L2 distance based algorithms are defined in a similar fashion as the L1 distance
based algorithms, we omit explanation unless necessary. The first L2 distance based contractive function
is given by the following equation.

(f3(r))j =
λ

2|Oj |
∑
i∈Oj

(Wji − ri)
2, (12)

for all j = 1, 2, · · · , n. We can also prove the f3 is a vector-valued contractive function.

Theorem 4: For any r ∈ Rn, and r ≤ e, f3(r) is a vector-valued contractive function with 0 ≤ f3(r) ≤
e.

Similarly, in f3, the bias of node j is determined by the arithmetic average of the difference between
the trust scores given by node j and the corresponding prestige score of the outgoing neighbors of node j.
However, unlike f1 and f2, in f3, the difference is measured by the square of L2 distance. Thus, we refer
to this algorithm as the L2 average trustworthiness-weighted algorithm (L2-AVG). The corresponding
iterative system is 

rk+1
i = 1

|Ii|
∑
j∈Ii

Wji(1− (f3(r
k))j)

(f3(r
k+1))j =

λ
2|Oj |

∑
i∈Oj

(Wji − rk+1
i )2.

(13)

The second L2 distance based vector-valued contractive function is defined by

(f4(r))j =
λ

2
max
i∈Oj

(Wji − ri)
2, (14)

for all j = 1, 2, · · · , n. Likewise, we have the following theorem.

Theorem 5: For any r ∈ Rn, and r ≤ e, f4(r) is a vector-valued contractive function with 0 ≤ f4(r) ≤
e.

The corresponding iterative system is
rk+1
i = 1

|Ii|
∑
j∈Ii

Wji(1− (f4(r
k))j)

(f4(r
k+1))j =

λ
2 max

i∈Oj

(Wji − rk+1
i )2.

(15)
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Similar to L1-MAX, we refer to this algorithm as the L2 maximal trustworthiness-weighted algorithm
(L2-MAX).

We depict the prestige scores by different algorithms in Table 4. We can observe that the rank of
the prestige scores by our algorithms is the same as the rank by AA (Arithmetic average) algorithm in
Figure 1, and also it is strongly correlated to MB. Note that all of our algorithms give zero prestige score
to node 2, as node 2 obtains zero trust score from his/her incoming neighbors. It is worth mentioning that
the time and space complexity of all the proposed algorithms are linear, implying that all the algorithms
are able to scale to large datasets. The detailed complexity analysis are given in the supplementary
document.

Generalizing to signed trust networks

Our algorithms can be generalized to signed trust networks. In signed trust networks, there exist two
types of edges: the positive edge and the negative edge. In other words, the weights of positive (negative)
edges are positive (negative). In practice, many trust networks, such as Slashdot and Epinions, are
signed trust networks, where the negative edges signify distrust. Without loss of generality, we assume
that the weights of the edges have been scaled into [-1, 1]. Based on the convergence analysis given in the
supplementary document, one can easily show that all the proposed algorithms converge into a unique
fixed point in the context of signed trust networks. Moreover, the rate of convergence is exponential.
Notice that this result holds if the function f is a vector-valued contractive function. In signed trust
networks, it is easy to check that the functions f1 and f2 are still the vector-valued contractive functions,
but the f3 and f4 are not. However, we can readily modify them to the vector-valued contractive functions,
which are denoted by f∗

3 and f∗
4 respectively, by adjusting the decay constant. Specifically, we have

(f∗
3 (r))j =

λ
4|Oj |

∑
i∈Oj

(Wji − ri)
2

(f∗
4 (r))j =

λ
4 max

i∈Oj

(Wji − ri)
2.

It is easy to verify that f∗
3 (r) and f∗

4 (r) are vector-valued contractive functions in signed trust networks.

Results

We first briefly describe our experimental settings and then report our findings.

Setup: We conduct our experiments on five real datasets. (1) Kaitiaki dataset: We collect the Kaitiaki
dataset from Trustlet (www.trustlet.org). This dataset is a trust network dataset, where the trust
statements are weighted at four different levels (0.4, 0.6, 0.8, and 1.0). (2) Epinions dataset: We download
it from Stanford network analysis data collections (http://snap.stanford.edu). It is a signed trust
network dataset, where the users can trust or distrust the other users. (3) Slashdot datasets: we collect
three different datasets from Stanford network analysis data collections. All of these three datasets are
signed trust networks, where the users can give trust or distrust scores to the others. Table 5 summarizes
the detailed statistical information of the datasets. We set the decay constant λ = 0.5 for a fair comparison
with MB. For the decay constant of the PageRank algorithm, we set it to 0.85, as it is widely used in
web search. All the experiments are conducted on a Windows Server 2008 with 4x6-core Intel Xeon 2.66
Ghz CPU, and 8G memory. All algorithms are implemented by MATLAB 2010a and Visual C++ 6.0.

Comparison of bias score: Here we compare the bias scores by our algorithms with the bias scores by
MB. First, we use the variance of the trust scores given by node i to measure the bias of the node i, as
used in [1]. Specifically, we define the variance as follows:

var(i) =
1

|Oi|
∑
j∈Oi

(Wij − r̄j)
2, (16)
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where r̄j = 1
|Ij |

∑
i∈Ij

Wij . Second, we rank the nodes by their variance and use this rank as the “ground

truth”. Note that there is no ground truth for the bias score of the nodes in any datasets. We use the
variance as the ground truth. The reason is twofold. On one hand, the variance is an intuitive metric for
measuring the bias of the node, and the node having a larger variance implies that the node has a larger
bias score. On the other hand, the variance has been used for analyzing the bias of the node in trust
networks [1]. Third, we rank the nodes by their bias scores obtained by our algorithms and obtained by
MB, respectively. Specifically, for MB, we rank the nodes by the absolute value of the bias scores (|bi|
in Eq. (1)). Finally, we compare our algorithms with MB in terms of AUC (the area under the ROC
curve) [29] and Kendall Tau [30] metric, where the AUC metric is used to evaluate the top-K rank (in our
experiments, we consider the top-5% nodes) and the Kendall Tau metric is employed to evaluate the rank
correlation between the rank by the proposed algorithms and the ground truth. Additionally, we remark
that, to measure the bias, the variance is based on the average trust score (r̄j), while our algorithms are
based on the iteratively refined prestige score. The iteratively refined prestige score is better than the
average trust score to reflect the actual rank of a node, because the iteratively refined prestige score takes
into account the multi-hop neighbors’ trust scores. Therefore, in this sense, our proposals are better than
the variance to measure the bias of the nodes in trust social networks.

Table 6 and Table 7 show the comparison of bias by our algorithms and MB under AUC and K-
endall Tau metric, respectively. From Table 6, we can see that L1-AVG and L2-AVG achieve the best
performance. In signed trust networks, the performance of our algorithms are significantly better than
MB. For example, L2-AVG boosts AUC over MB by 4.7%, 11%, 9.9%, and 9.7% in Epinions, Slashdot1,
Slashdot2 and Slashdot3, respectively. The results indicate that our algorithms are more effective than
MB for computing the bias of the nodes. This is because the bias measurements of our algorithms are
more reasonable than the bias measurement of MB. Interestingly, L1-AVG and L2-AVG achieve the same
performance under the AUC metric. In general, L1-AVG and L2-AVG outperform L1-MAX and L2-MAX
in our datasets. From Table 7, we can observe that all the algorithms exhibit positive correlation to the
ground truth. L2-AVG achieves the best performance in Kaitiaki, Epinions, Slashdot1, and Slashdot3
datasets, while in Slashdot2 dataset L1-AVG achieves the best performance. It is important to note that
all of our algorithms significantly outperform MB in signed networks. For instance, L2-AVG improves
Kendall Tau over MB by 11.9%, 6.8%, 10.1%, 12.3%, and 13.9% in Kaitiaki, Epinions, Slashdot1, Slash-
dot2 and Slashdot3, respectively. The results further confirm that our algorithms are more effective than
MB for computing the bias of the node in trust networks.

Comparison of prestige score: This experiment is designed to compare the prestige scores by our
algorithms with those by MB. Similarly, there is no ground truth in the datasets, thus we use the rank
by the arithmetic average (AA), HITS [18], and PageRank [17] algorithms as the baselines. The reasons
are as follows. First, AA, HITS and PageRank algorithms are three widely used ranking algorithms
which have been successfully used for measuring the prestige (or centrality) of users in social networks.
Second, in singed trust networks, many previous studies [1, 23] have shown that rankings by the HITS
and PageRank algorithms and by their signed variants exhibit a very high correlation. For example,
in [23], the authors reported that the ranking by the signed spectral ranking algorithm highly correlates
with the ranking by the PageRank algorithm. In [1], the authors shown that the ranking by the MB
algorithm also highly correlates with the rankings by both HITS and PageRank algorithms. Therefore, in
this sense, the HITS and PageRank algorithms can still act as good references for measuring the prestige
in signed trust networks.

Specifically, we compare the rank correlation between the rank by our algorithms (here we rank the
nodes according to their prestige scores) and the rank by the baselines using Kendall Tau metric. Here,
AA ranks the nodes by the average trust scores obtained from the incoming neighbors, and HITS ranks
the nodes by their authority scores. In signed trust networks, we remove the signed edges for HITS and
PageRank, as these algorithms cannot work on signed trust networks directly. Similar evaluation method
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has been used in [1]. Figure 2 and Figure 3 depict the comparison of prestige score by our algorithms
and MB on Kaitiaki and signed trust networks, respectively.

From Figure 2, we can clearly see that our algorithms achieve the best rank correlation to AA. By
comparing the Kendall Tau between different algorithms (our algorithms and MB) and HITS, we find that
L1-AVG achieves the best rank correlation. However, by comparing the Kendall Tau between different
algorithms and PageRank, we clearly find that L1-MAX achieves the best rank correlation. From Figure 3,
we can also observe that our algorithms achieve the best rank correlation to AA. By comparing the rank
correlation between different algorithms and HITS/PageRank, we find that our algorithms are slightly
better than MB on the signed trust network datasets. These results suggest that our algorithms are more
effective to measure the prestige of the nodes than MB. Interestingly, all of our algorithms achieve the
same performance in signed trust networks.

Robustness testing: To evaluate the robustness of different algorithms, we consider two different types
of attacks which could be existent in trust social networks. The first attack model is the dishonest voting
attack where the dishonest user randomly give high trust score to his/her out-neighbors whose average
trust score is low, and randomly give low trust score to his/her outgoing neighbors whose average trust
score is high. The second attack model is the clique attack where a small group of users form a clique
and give the highest trust score to one another so as to increase their prestige scores and decrease their
bias scores. The detailed evaluation method is as follows. First, we add some noisy data into the original
datasets. Specifically, we randomly select some nodes as the spamming nodes, and then modify the trust
scores given by the spamming nodes. In the dishonest voting attack model, we revise the trust score
given by the spamming nodes as follows. For each spamming node, we randomly give high trust score
to his/her out-neighbors whose average trust score is low, and randomly give low trust score to his/her
outgoing neighbors whose average trust score is high. In the clique attack model, we randomly and evenly
partition the spamming nodes into three different types of groups where the size of the first, the second,
and the third type of group are 3, 5, and 7 respectively. For instance, if we have selected 30 spamming
nodes, then we randomly divide these nodes into 6 groups (i.e., two groups with size 3, two groups with
size 5, two groups with size 7). Then, in each group, the nodes give the highest trust score to one another.
For two nodes in the same group, if there already exists a trust score, then we revise the trust score by
the highest trust score. We have also conducted experiments on other types of group (eg. group with size
10), but the results (not shown) exhibit no significant difference. Second, we perform our algorithms and
MB on both original and noisy datasets, and then calculate the Kendall Tau for each algorithm. Here
the Kendall Tau is computed on two ranks that are yielded by an algorithm on the original datasets and
the noisy datasets, respectively. Finally, we compare the Kendall Tau among all algorithms. Intuitively,
the larger Kendall Tau the algorithm achieves, the more robust the algorithm is.

We test our algorithms and MB on both original and noisy datasets with 5% to 20% spamming ratio.
Figure 4 and Figure 5 show the robustness of the bias and the prestige of the algorithms by Kendall
Tau vs. spamming ratio on Epinions dataset, respectively. Similar results can be obtained from other
datasets. First, let us analyze the results by different algorithms under the dishonest voting attack. From
Figure 4(a) and Figure 5(a), we can clearly see that all of our algorithms are significantly more robust
than MB under the dishonest voting attack. For the bias, L2-MAX achieves the best robustness, followed
by the L1-MAX, L2-AVG, L1-AVG, and then MB. For the prestige, all of our algorithms achieve the same
robustness, and are significantly more robust than MB. These results confirm our analysis in the previous
section. Moreover, the gap of robustness between our algorithms and MB increases as the spamming
ratio increases, which suggests that our algorithms are more effective than MB on the datasets with high
spamming ratio. In general, the robustness of the algorithms decrease as the spamming ratio increases.
Second, we discuss the results by different algorithms under the clique attack. As can be seen from
Figure 4(b) and Figure 5(b), our algorithms are slightly better than MB. However, unlike the previous
results, the robustness of MB is very close to those of our algorithms. Moreover, we can see that the
robustness of all the algorithms under the clique attack are worse than the robustness of all the algorithms
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under the dishonest voting attack. For example, in Figure 4, if the spammer ratio is 0.05, the robustness
of MB is around 0.75 under the dishonest voting attack, while under the clique attack the robustness
of MB nearly decreases to 0.65. Similar results can be observed for the proposed algorithms. These
results indicate that our algorithms and MB could suffer from the clique attack. Therefore, designing
new algorithms that can defend clique attack will be an interesting future direction.

Scalability: We evaluate the scalability of our algorithms on the Epinions dataset. Similar results can
be obtained from other datasets. For evaluating the scalability, we first generate three subgraphs in terms
of the following rule. First, we randomly select 25% nodes and the corresponding edges of the original
graph as the first dataset, and then add another 25% nodes to generate the second dataset, and then
based on the second dataset, we add another 25% nodes to generate the third dataset. Then, we perform
our algorithms on this three datasets and the original dataset. Figure 6 shows our results. From Figure 6,
we can clearly see that our algorithms scales linearly w.r.t. the size of the graph. This result conforms
with our complexity analysis in the previous section.

Effect of parameter λ: We discuss the effectiveness of parameter λ in our algorithms on Kaitiaki
dataset. Similar results can be observed from other datasets. Figure 7 shows the effectiveness of our
algorithms w.r.t. λ, where the effectiveness is measured by the rank correlation between our algorithms
and the baselines using the Kendall Tau metric. Specifically, Figure 7(a) depicts the bias correlation
between our algorithms and the variance based algorithm (Eq. (16)) under various λ, while Figure 7(b),
(c), and (d) show the prestige correlation between our algorithms and AA, HITS, and PageRank under
different λ, respectively. From Figure 7(a), we find that L2-MAX is quite robust w.r.t. λ, while the
performance of L2-AVG decreases as λ increases. In addition, we find that L1-AVG and L1-MAX are
slightly sensitive w.r.t. λ, because the differences between the maximal and minimal bias correlation of
these two algorithms do not exceed 0.1. For the prestige scores (Figure 7(b), (c), and (d)), we can clearly
see that L2-AVG and L2-MAX are more robust w.r.t. λ, whereas L1-AVG and L1-MAX are sensitive
w.r.t. λ. For instance, consider the prestige correlation with PageRank (Figure 7(d)), we can observe that
the performance of L1-AVG decreases as λ increases. However, the performance of L1-MAX increases
as λ increases when λ ≤ 0.8, and otherwise it decreases as λ increases. To summarize, the L2 distance
based algorithms are more robust w.r.t. the parameter λ than the L1 distance based algorithms.

Discussion

Bias and prestige are two essential features in trust networks, therefore it is crucial to have an efficient
and effective algorithm to compute them. In this paper, we define a vector-valued contractive function to
characterize the bias vector for every node in the trust network. Based on this, we propose a framework
of algorithms for computing the bias and prestige of nodes in trust networks in an iterative way. The
proposed framework allows us to develop new bias measures which can circumvent the major drawbacks
in the existing algorithm. Moreover, our framework can converges into a unique and fixed point with
an exponential rate. We believe that the proposed framework can be used to measure and analyze the
bias and prestige of nodes in trust networks, which could be very useful for trust-based recommendation
systems and many other trust-based application domains.

There are several open questions that are deserved to further investigation. First, all of our algorithms
currently only work on static trust networks. However, many real-world trust social networks evolve
over time, thereby it remains a challenging problem to generalize our framework to time-evolving trust
networks. Recently, some proposals on incremental PageRank algorithm have been proposed [31, 32].
Similar ideas could be also used to devise incremental counterparts of our algorithms. Second, trust
social network is a decentralized social system, where the users can only interact with their immediate
neighbors. In such decentralized social systems, an interesting question is that whether or not a user in
trust social networks can estimate his/her global prestige and bias scores by only using the local trust
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scores. To answer this question, one potential solution is to extend our framework to a decentralized one.
The ideas from gossip-based algorithms such as [33, 34] could be used to solve this problem. Finally, as
shown in the experiments, the proposed algorithms and MB suffer from the clique attack. Therefore,
devising robust algorithms that can defend such clique attacks would be an interesting future direction.
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Figure 1. A trust network. A circle denotes a node, an arrow represents a trust relationship
between two nodes, and the associated weight denotes the trust score.
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Figure 2. Comparison of prestige by our algorithms and MB algorithm in Kaitiaki
dataset. Three methods (AA, HITS, PageRank) are used as baselines for measuring the rank of
prestige. The higher Kendall Tau value exhibits higher rank correlation between different algorithms
and the baselines.

Table 1. Bias scores by the MB algorithm. The table shows the bias scores by the MB algorithm
in the trust network given in Figure 1. The MB algorithm converges in 4 iterations. Note that node 5
achieves the lowest bias score.

Iteration node 1 node 2 node 3 node 4 node 5

1 0.350 0.042 0.121 0.250 0.042
2 0.350 0.015 0.129 0.232 0.015
3 0.350 0.014 0.129 0.231 0.014
4 0.350 0.014 0.129 0.231 0.014
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Figure 3. Comparison of prestige by our algorithms and MB algorithm in signed trust
networks.

Table 2. Bias scores by the L1-AVG algorithm. The table shows the bias scores by the L1-AVG
algorithm in the trust network given in Figure 1. The L1-AVG algorithm converges in 5 iterations, and
node 5 achieves the highest bias score.

Iteration node 1 node 2 node 3 node 4 node 5

1 0.115 0.200 0.292 0.111 0.207
2 0.005 0.130 0.137 0.060 0.220
3 0.019 0.117 0.098 0.054 0.233
4 0.018 0.113 0.089 0.054 0.237
5 0.018 0.113 0.089 0.054 0.237
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(a) Dishonest voting attack
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Figure 4. Robustness of bias by our algorithms and MB algorithm in Epinions dataset
under (a) dishonest voting attack and (b) clique attack models. The curves show the
robustness of bias by our algorithms and MB algorithm at different spammer ratio. The larger Kendall
Tau value implies that the algorithm is more robust. The robustness decreases as the spammer ratio
increases. Note that the robustness of our algorithms are consistently better than the MB algorithm
under both (a) dishonest voting attack and (b) clique attack models.
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Figure 5. Robustness of prestige by our algorithms and MB algorithm in Epinions dataset
under (a) dishonest voting attack and (b) clique attack models. The curves show the
robustness of prestige by our algorithms and MB algorithm at different spammer ratio.
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Figure 6. Scalability of the proposed algorithms. The curves show that the running time of our
algorithms increases linearly as the number of nodes increases.

Table 3. Bias scores by the L1-MAX algorithm. The table shows the bias scores by the L1-MAX
algorithm in the trust network given in Figure 1. The L1-MAX algorithm converges in 5 iterations, and
node 5 achieves the highest bias score.

Iteration node 1 node 2 node 3 node 4 node 5

1 0.115 0.343 0.343 0.165 0.407
2 0.000 0.215 0.215 0.050 0.311
3 0.020 0.179 0.179 0.061 0.289
4 0.017 0.169 0.169 0.065 0.285
5 0.017 0.169 0.169 0.065 0.285

Table 4. Prestige scores by different algorithms. The table shows the prestige scores by different
algorithms in the trust network given in Figure 1.

Algorithm node 1 node 2 node 3 node 4 node 5

AA 0.567 0.000 0.433 0.600 0.350
HITS 1.000 0.000 0.401 0.391 0.027
PageRank 0.224 0.030 0.305 0.141 0.300
MB 0.532 0.000 0.433 0.523 0.350
L1-AVG 0.502 0.000 0.352 0.541 0.336
L1-MAX 0.461 0.000 0.331 0.492 0.335
L2-AVG 0.558 0.000 0.416 0.594 0.349
L2-MAX 0.556 0.000 0.414 0.591 0.348
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Figure 7. Effect of λ. (a) The curves show the bias by our algorithms at different λ parameter
values. (b-d) The figures show the prestige (compared with different baselines) by our algorithms at
different λ parameter values.

Table 5. Summary of the datasets. Kaitiaki is a unsigned trust network dataset, while Epinions,
Slashdot1, Slashdot2, and Slashdot3 are signed trust network datasets.

Name Nodes Edges Ref.

Kaitiaki 64 178 website
Epinions 131,828 841,372 [21]
Slashdot1 77,350 516,575 [21]
Slashdot2 81,867 545, 671 [21]
Slashdot3 82,140 549,202 [21]
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Table 6. Comparison of bias by our algorithms and MB algorithm under AUC metric (top
5% nodes of the dataset). The AUC metric is used to measure the top 5% rank of bias by our
algorithms and MB algorithm. The larger AUC value implies the better performance.

Datasets L1-AVG L1-MAX L2-AVG L2-MAX MB

Kaitiaki 1.000 0.937 1.000 0.925 1.000
Epinions 0.994 0.982 0.994 0.982 0.949
Slashdot1 0.993 0.970 0.993 0.970 0.895
Slashdot2 0.992 0.975 0.992 0.975 0.903
Slashdot3 0.992 0.975 0.992 0.975 0.903

Table 7. Comparison of bias by our algorithms and MB algorithm under Kendall Tau
metric. The Kendall Tau metric is used to measure the rank of bias by our algorithms and MB
algorithm. The larger Kendall Tau value indicates the better performance.

Datasets L1-AVG L1-MAX L2-AVG L2-MAX MB

Kaitiaki 0.728 0.713 0.812 0.709 0.726
Epinions 0.781 0.754 0.783 0.754 0.733
Slashdot1 0.811 0.776 0.812 0.776 0.734
Slashdot2 0.722 0.688 0.721 0.688 0.642
Slashdot3 0.820 0.787 0.821 0.787 0.721
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1 Analysis of the proposed framework

Convergence of the proposed framework: We analyze the convergence properties of the following
iterative system {

rk+1
i = 1

|Ii|
∑
j∈Ii

Wji(1− bkj )

bk+1
j = (f(rk+1))j

(1)

Specifically, we show the prestige vector will converge into a unique fixed point as stated in Theorem 1.
Similar arguments can be used to prove the bias vector also converges into a unique fixed point. First,
we prove the following lemma.

Lemma 1: For any node i, |rk+1
i − rki | ≤ λk||r1 − r0||∞.

Proof: We prove Lemma 1 by induction. Let k = 1, we have

|r2i − r1i | = | 1
|Ii|

∑
j∈Ii

Wji((f(r
0))j − (f(r1))j)|

≤ 1
|Ii|

∑
j∈Ii

Wji|(f(r0))j − (f(r1))j |

≤ λ
|Ii|

∑
j∈Ii

Wji||r1 − r0||∞

≤ λ||r1 − r0||∞,

where the second inequality is due to the definition of vector-valued contractive function, and the last
inequality is by |Wij | ∈ [0, 1]. Assume the lemma holds when k = t. We show that the lemma still holds
when k = t+ 1.

|rt+2
i − rt+1

i | = | 1
|Ii|

∑
j∈Ii

Wji((f(r
t))j − (f(rt+1))j)|

≤ 1
|Ii|

∑
j∈Ii

Wji|(f(rt))j − (f(rt+1))j |

≤ λ
|Ii|

∑
j∈Ii

Wji||rt+1 − rt||∞

≤ λ||rt+1 − rt||∞
≤ λt+1||r1 − r0||∞,

where the second inequality is due to the definition of vector-valued contractive function and the last
inequality holds by the induction assumption. This completes the proof. �

With Lemma 1, we prove the convergence property.

Theorem 1: The iterative system defined in Eq. (1) converges into a unique fixed point.
Proof: We first prove the convergence of the iterative system (Eq. (1)), and then prove the uniqueness.
Specifically, for ε > 0, there exists N such that

λN <
(1− λ)ε

||r1 − r0||∞
.

Then, for any s > t ≥ N , we have
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|rsi − rti | ≤ |rsi − rs−1
i |+ |rs−1

i − rs−2
i |+ · · ·+ |rt+1

i − rti |
≤ λs−1||r1 − r0||∞ + λs−2||r1 − r0||∞ + · · ·+

λt||r1 − r0||∞

≤ ||r1 − r0||∞λt
s−t−1∑
k=0

λk < ||r1 − r0||∞λt
∞∑
k=0

λk

= ||r1 − r0||∞λt 1
1−λ

≤ ||r1 − r0||∞λN 1
1−λ

≤ ε,

where the first inequality holds by the triangle inequality, and the second inequality is due to Lemma 1.
Then, by Cauchy convergence theorem [1], we conclude that the sequence rkα converges to a fixed point.
For the uniqueness, we prove it by contradiction. Suppose Eq. (1) has at least two fixed points. Let r(1)

and r(2) be two fixed points, and M = |r(1)i − r
(2)
i | = ||r(1) − r(2)||∞. Then, we have

M = | 1
|Ii|

∑
j∈Ii

Wji((f(r
(1)))j − (f(r(2)))j)|

≤ 1
|Ii|

∑
j∈Ii

Wji|((f(r(1)))j − (f(r(2)))j)|

≤ λ
|Ii|

∑
j∈Ii

Wji||r(1) − r(2)||∞

≤ λ||r(1) − r(2)||∞ = λM.

Since λ ∈ [0, 1), thus M < M , which is a contradiction. This completes the proof. �
The rate of convergence: We show that our framework will converge in exponential rate by the
following lemmas.

Lemma 2: ||r∞ − rk||∞ ≤ λk||r∞ − r0||∞.
Proof: We prove the lemma by induction. For k = 1, let |r∞i − r1i | = ||r∞ − r1||∞, then we have

|r∞i − r1i | = | 1
|Ii|

∑
j∈Ii

Wji((f(r
0))j − (f(r∞))j)|

≤ 1
|Ii|

∑
j∈Ii

Wji|(f(r0))j − (f(r∞))j)|

≤ λ
|Ii|

∑
j∈Ii

Wji||r∞ − r0||∞ ≤ λ||r∞ − r0||∞

The last inequality holds by the definition of vector-valued contractive function. Suppose k = t, we have
||r∞ − rt||∞ ≤ λt||r∞ − r0||∞. Then, when k = t+ 1, for any node u of the graph, we have

|r∞u − rt+1
u | = | 1

|Iu|
∑
j∈Iu

Wju((f(r
t))j − (f(r∞))j)|

≤ 1
|Iu|

∑
j∈Iu

Wju|(f(rt))j − (f(r∞))j)|

≤ λ
|Iu|

∑
j∈Iu

Wju||r∞ − rt||∞

≤ λ||r∞ − rt||∞ ≤ λt+1||r∞ − r0||∞.

Thus, we have ||r∞ − rt||∞ ≤ λt+1||r∞ − r0||∞. This completes the proof. �
Lemma 3: ||ra − rb||∞ ≤ 1.
Proof: By definition, for any t, f(rt) ≤ e holds. Thus, we conclude ||ra − rb||∞ ≤ 1. �

With the above lemma, we readily have the following corollary.

Corollary 1: ||r∞ − rk||∞ ≤ λk.
By Corollary 1, our algorithms converge in exponential rate. We can determine the maximal steps

that are needed for convergence. Assume ri is the true prestige score of node i. Our goal is to show that
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after a particular number of iterations k, the prestige score given by our algorithm converges to ri as
desired. Formally, for ε → 0, let |ri − rki | ≤ ε. By Corollary 1, we can set

k = logλ ε. (2)

This implies that the number of iterations k is a very small constant to guarantee convergence of our
framework.

2 Other missing proofs

Theorem 2: For any r ∈ Rn, and r ≤ e, fmb is a vector-valued contractive function with the decay
constant λ = 1/2 and 0 ≤ fmb ≤ e.
Proof: For any r, s ∈ Rn and j, let

∆j = |(fmb(r))j − (fmb(s))j |
= |max{0, 1

2|Oj |
∑

i∈Oj

(Wji − ri)}−

max{0, 1
2|Oj |

∑
i∈Oj

(Wji − si)}|.

Consider the following four cases:
(A) 1

2|Oj |
∑

i∈Oj

(Wji − ri) ≤ 0 and 1
2|Oj |

∑
i∈Oj

(Wji − si) ≤ 0. Obviously, ∆j = 0 ≤ 1
2 ||r − s||∞.

(B) 1
2|Oj |

∑
i∈Oj

(Wji − ri) ≥ 0 and 1
2|Oj |

∑
i∈Oj

(Wji − si) ≥ 0. We have

∆j = | 1
2|Oj |

∑
i∈Oj

(si − ri)|

≤ 1
2|Oj |

∑
i∈Oj

|si − ri|

≤ 1
2|Oj |

∑
i∈Oj

||r − s||∞

= 1
2 ||r − s||∞.

(C) 1
2|Oj |

∑
i∈Oj

(Wji − ri) ≥ 0 and 1
2|Oj |

∑
i∈Oj

(Wji − si) ≤ 0. By 1
2|Oj |

∑
i∈Oj

(Wji − si) ≤ 0, we have∑
i∈Oj

Wji ≤
∑

i∈Oj

si. Then, we have

∆j =
1

2|Oj |
∑

i∈Oj

(Wji − ri)

≤ 1
2|Oj |

∑
i∈Oj

(si − ri)

≤ 1
2|Oj |

∑
i∈Oj

|si − ri|

≤ 1
2 ||r − s||∞.

(D) 1
2|Oj |

∑
i∈Oj

(Wji − ri) ≤ 0 and 1
2|Oj |

∑
i∈Oj

(Wji − si) ≥ 0. Similar to the case (3), we have ∆j ≤

1
2 ||r − s||∞.
To summarize, for any j, we have ∆j ≤ 1

2 ||r − s||∞. Hence, fmb is a vector-valued contractive function
with λ = 1/2. Since 0 ≤ Wji ≤ 1 and r ≤ e, thus 0 ≤ fmb ≤ e. This completes the proof. �
Theorem 3: For any r ∈ Rn, and r ≤ e, f1 is a vector-valued contractive function with 0 ≤ f1 ≤ e.
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Proof: For any r, s ∈ Rn, we have

|(f1(r))j − (f1(s))j |
= | λ

|Oj |
∑

i∈Oj

|Wji − ri| − λ
|Oj |

∑
i∈Oj

|Wji − si||

= λ
|Oj | |

∑
i∈Oj

(|Wji − ri| − |Wji − si|)|

≤ λ
|Oj |

∑
i∈Oj

|ri − si|

≤ λ||r − s||∞

Since 0 ≤ r ≤ e, 0 ≤ Wji ≤ 1 and 0 ≤ λ < 1, thus 0 ≤ f1 ≤ e. �
Theorem 4: For any r ∈ Rn, and r ≤ e, f2 is a vector-valued contractive function with 0 ≤ f2 ≤ e.
Proof: For any r, s ∈ Rn, let |Wju− ru|= max

i∈Oj

|Wji− ri|, and |Wjv −sv|= max
i∈Oj

|Wji−si|, then we have

|(f2(r))j − (f2(s))j |
= |λmax

i∈Oj

|Wji − ri| − λmax
i∈Oj

|Wji − si||

≤ λmax{||Wju − ru| − |Wju − su||, ||Wjv − rv| − |Wjv − sv||}
≤ λmax{|ru − su|, |rv − sv|}
≤ λ||r − s||∞

Since 0 ≤ r ≤ e, 0 ≤ Wji ≤ 1 and 0 ≤ λ < 1, thus 0 ≤ f2 ≤ e. �
Theorem 5: For any r ∈ Rn, and r ≤ e, f3(r) is a vector-valued contractive function with 0 ≤ f3(r) ≤
e.
Proof: For any r, s ∈ R, and r ≤ e, s ≤ e, we have

|(f3(r))j − (f3(s))j |
= | λ

2|Oj |
∑

i∈Oj

(Wji − ri)
2 − λ

2|Oj |
∑

i∈Oj

(Wji − si)
2|

≤ λ
2|Oj |

∑
i∈Oj

|(Wji − ri)
2 − (Wji − si)

2|

= λ
2|Oj |

∑
i∈Oj

|(si − ri)(2Wji − ri − si)|

≤ λ
|Oj |

∑
i∈Oj

|si − ri|

≤ λ||r − s||∞

Since 0 ≤ r ≤ e, 0 ≤ Wji ≤ 1 and 0 ≤ λ < 1, thus 0 ≤ f3 ≤ e. �
Theorem 6: For any r ∈ Rn, and r ≤ e, f4(r) is a vector-valued contractive function with 0 ≤ f4(r) ≤
e.
Proof: For any r, s ∈ R, and r ≤ e, s ≤ e, let (Wju − ru)

2 = max
i∈Oj

(Wji − ri)
2, and (Wjv − sv)

2 =

max
i∈Oj

(Wji − si)
2, then we have

|(f4(r))j − (f4(s))j |
= |λ2 max

i∈Oj

(Wji − ri)
2 − λ

2 max
i∈Oj

(Wji − si)
2|

≤ λ
2 max{|(Wju − ru)

2 − (Wju − su)
2|,

|(Wjv − sv)
2 − (Wjv − rv)

2|}
= λ

2 max{|(su − ru)(2Wju − ru − su)|,
|(sv − rv)(2Wjv − rv − sv)|}

≤ λmax{|su − ru|, |sv − rv|}
≤ λ||r − s||∞
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Since 0 ≤ r ≤ e, 0 ≤ Wji ≤ 1 and 0 ≤ λ < 1, thus 0 ≤ f4 ≤ e. �

3 Complexity of the proposed algorithms

We analyze the time and space complexities of L1-AVG. For the other algorithms, it is not hard to show
that the time and space complexities are the same as L1-AVG. First, the time complexity for computing
the prestige score of node i in one iteration is O(|Ī||Ō|), where |Ī| and |Ō| denote the average in-degree
and out-degree of all nodes respectively. The amortized time complexity in one iteration is O(m), where
m denotes the number of edges in the graph. Therefore, the total time complexity of L1-AVG is O(km),
where k denotes the number of iterations that are needed to guarantee convergence. As analyzed in
Section 1, k is a very small constant. And k = 15 can guarantee the algorithms converge as shown in our
experiments. The analysis implies that the time complexity of our algorithms is linear w.r.t. the size of
the graph. Second, we only need to store the graph, the prestige vector (r), and the contractive function
f(r), thus the space complexity is O(m + n). In summary, our algorithms have linear time and space
complexities, thereby they can be scalable to large graphs.
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