ClSpan: Comprehensive Incremental Mining Algorithms of Closed
Sequential Patterns for Multi-Versional Software Mining

Ding Yuarl, Kyuhyung Leé, Hong Cheng, Gopal Krishna, Zhenmin L,
Xiao Ma', Yuanyuan Zholi and Jiawei Hah
TUniversity of Illinois at Urbana-Champaign, Urbana, lllinois, USA
fCleanMake Inc., Urbana, lllinois, USA
{dyuan3, kyuhlee, hcheng3, gkrishn2, zli4, xiaoma2, yyzhou, hanj}@cs.uiuc.edu

Abstract 1 Introduction

Recently, frequent sequential pattern mining algorithms halvd Motivation Frequent sequential pattern mining [16,
been widely used in software engineering field to mirk83, 12, 15] is an important and active research topic in
various source code or specification patterns. In practidata mining with broad applications, including mining web
software evolves from one version to another in its life spdngs, customer shopping transaction analysis, and DNA
The effort of mining frequent sequential patterns acrossquences, etc.
multiple versions of a software can be substantially reduced These years also saw an increasing trend of utilizing fre-
by efficient incremental mining. This problem is challenginguent pattern mining in source code mining [5, 7,14, 1, 9, 6]
in this domain since the databases are usually updated iraalll software specification mining [8]. These tools tokenize
kinds of manners including insertion, various modificatioribe source code in certain ways into a sequence database rep-
as well as removal of sequences. Also, different mining toskssentation, and mine the frequent patterns in order to extract
may have various mining constraints, such as low minimurarious information such as copy-pasted code segments [5],
support. None of the existing work can be applied effectiveyP| usage [14, 1], programming rules [6], etc. For example,
due to various limitations of such work. For example, o@P-Miner [5] is a tool to effectively detect copy-pasted code
recent work, IncSpan, failed solving the problem becausedégments and copy-paste related bugs from source code. It
could neither handle low minimum support nor removal difst tokenizes each statement of source code into an integer,
sequences from database. and maps the code into a sequential database, where each
In this paper, we propose a novel, comprehensigequence corresponds to a basic block of the source code.
incremental mining algorithm for frequent sequenti@y mining the closed frequent sequences with the minimum
pattern, ClSpan (@mprehensive Hcremental 8quential support,min_sup, of 2, which suggests that the code seg-
Paternmining). ClSpan supports both closed and completgent was at least repeated once, the tool detects all the copy-
incremental frequent sequence mining, with all kinds phsted code segments within the source code.
updates to the database. Compared to IncSpan, CISpanin reality, database evolves in an incremental manner.
tolerates a wide range for minimum support threshold (Ber example, the latest major version of Linux Kernel,
low as 2). Our performance study shows that in addition 206.X series, consists of more than 150 versions in total,
handling more test cases on which IncSpan fails, CISpahich would be transformed into more than 150 similar
outperforms IncSpan in all test cases which IncSpan codlatabases. The difference between these databases could
handle, including various sequence length, number in¥olve removal, various kinds of modifications and insertion
sequences, modification ratio, etc., with an average of ®#sequences, corresponding to removal, modification and
times speedup. We also tested CISpan’s performanceirgertion of code segments into the source code. If we mine
databases transformed from 20 consecutive versionseath updated database from scratch, the majority of time and
Linux Kernel source code. On average, CISpan outperforepmace would be spent on repetition of the previous mining
the non-incremental CloSpan by 42 times. process, which is something we should and could optimize.
In our result, we will demonstrate that by using our ClSpan
Keywords: Incremental mining, Software Engineeringalgorithm, we can reduce the mining time of the updated
Cross Module Mining, Frequent pattern version database transformed from Linux Kernel source code
by 42 times on average.

Because of the significance of this problem, many Our initial motivation comes from the effort to opti-
studies have contributed to making sequential pattern mmize CP-Miner [5] to work in an incremental manner to
ing incremental [4, 10, 17, 3]. Our recent work, Incanalyze software evolution patterns. In CP-Miner, after to-
Span [4], demonstrated it significantly outperforms the nokenizing the program into a sequential database, it applies
incremental sequential mining algorithm [12] and the prevGloSpan [15] to mine all the closed frequent sequences out
ously proposed incremental algothim [10], and thus is cdinem the database. The evolution of software results into
sidered the state-of-the-art of incremental sequential pattemoval, modification and insertion of sequences in our
mining. When mining the original database, IncSpan ndatabase, and thain_sup for CP-Miner is 2. After a care-
only buffers the frequent sequences, but also sequencesftiiaturvey of the previous work, we concluded that none of
are semi-frequentwhich are likely to become frequent inexisting work, to the best of our knowledge, could be applied
the new version. Later when mining the new version, only solve our problem effectively. Bearing this motivation in
sequences with support over a certain threshold will liketyind, we set our foot to develop a comprehensive solution to
become frequent out of un-buffered sequences. incremental frequent sequential pattern mining problem.

However, during our attempts to apply IncSpan into
the code mining tools, we found that IncSpan is neith&r2 Challenge Any update to a database can be modeled
general enough to handle real life database evolution nor r@alremovals and insertions of sequences. If a sequence
life mining requirement (for example, CP-Miner requires old database is modified ta’ in the new database, it
minimum support threshold to be 2). In addition, theould be treated as removed from old database and is
performance of IncSpan is far from optimal. The limitatiomserted into the new database. Thus from now on we will
and cost of IncSpan can be summarized as follows. simply refer to all kinds of updates to removal and insertion

. of sequences.
o Failure to handle .remO_/aI of sequences. IncSpan . The reason for the almost non-existence of work for a
could only handle insertion of sequences or append'@&nprehensive and efficient solution to incremental sequen-

items into the tail of each sequence. The databaﬁ%?mining is the complexity of this problem. In the follow-

IIE real worlld \tﬁould evolve (;n (fjart n;ore varied Wayf’rng é(;ve will use examples to show why removal and insertion
or example, the source code database we encountef; quences are hard.

would involve removal, various kinds of modifications The immediate intuition to handle the removal case

S:ftc: as adding or removing items, as well as INSertignuid be simply decrease the support of each frequent se-
otthe sequences. guence that has support from a removed sequence in the re-

o Difficulties for mining frequent sequences with low sult. If the Updated Support falls below the threshold, remove
minimum support. IncSpan bufferssemi-frequent that sequence from the result. In complete frequent sequence

sequences, sequences with support betwgenx mining, this would generate correct result. However, doing
min_sup, min_sup) Where 4 is the buffer ratio be- SO is quite expensive, since the number of complete frequent

tween 0 and 1. When thein_sup itself is small, Inc- Sequences would be exponential. Things become more com-

Span would end up buffering huge amount of senflex in case of closed frequent sequence mining, that this
frequent sequences, and significantly degrade the gaProach couldn’t even guarantee the correctness of the re-
formance. In the CP-Miner context, thein_sup is 2. Sult.

In this extreme case, IncSpan will not be effective .
. . . xample.Table 1 is a sample sequence database, referred
all, since it has to buffer semi-frequent sequences wi

asD in this paper when the context is clearntfn_sup = 2

?gfpé)r:;ﬁ;?z; 2;9 32::; ﬁldtrﬁ‘sgruiint?\is dlgtgg)zggab(?aﬁ?en as default in this paper), closed frequent sequences in
P q " D areintable 2. Now in the new database, if sequence 0 of

¢ Unable to mine closed sequencesn many context, D is removed, then simply updating of the result would yield
we only care about closed sequences. Given the clofegiresultin table 3. The result in table 3 is incorrect, since
frequent sequences, we can always derive the setpaftern: < (ab) >: 2 is no more closed. The correct closed
complete frequent sequences. In CP-Miner's conteftgquent sequences are shown in table 4
it reports only the closed frequent sequences, which

represent the largest copy-pasted code region. Complexity for the insertion case becomes even worse

than the removal case. The main challenge is that those
e Require difficult parameter tuning. In the IncSpan originally infrequent sequences may now become frequent,
algorithm, user has to specify the semi-frequent buffef which we have no clue of from the original result. For
ratio, u. However, without the knowledge of the detailexample, if we are going to insert a new sequercéf) >,
of the algorithm, it is difficult for users to tune this to amnto D, it will turn the original infrequent item(f) into
optimal buffer ratio. a frequent item, since in original databaBe (f) already

SeqID | Sequence Pattern | Support| Support List

0 < (ab)(d) > < (ab) > 2 1,2
1 < (ab)(c)(d) > < (ad)(c) > 2 1,2
2 | < (@) >

Table 3: Incorrect closed sequences forafter seq O is

Table 1: A Sample Sequence Databése deleted by simply updating the result

Pattern | Support| Support List Pattern | Support| Support List

<(ab) > 3 (0,12 <@>[2 |12

< (ab)(c) > 2 1,2

< (ab)(d) > 2 0,1 Table 4: Correct closed sequences forafter seq O is

deleted.

Table 2: Closed frequent sequencesifor

means the performance will not degrade by accumulatively
applying ClSpan on a series of database.
has a support of 1. However, this information don't appear our CiSpan is a comprehensive algorithm for incremen-
either in the final mining result nor some intermediate dag sequential pattern mining. Our contributions are summa-

structure, e.g. prefix tree. rized as following:
Rather than mining everything from scratch, IncSpan

solves the insertion problem by buffering some infrequente ClSpan can handle all kinds of updates to the database,
sequences with relatively high probability to become fre- not limited only to insertion and appendage.

quent in the updated database, and thus reduces some search

space in incremental mining. Despite the fact that IncSpar® CISpan can mine both closed and complete frequent
can only handle the removal case, it also suffers from other Sequences. We have both versions implemented.
defects that are fatal in certain circumstances. Since IncSpan)))
doesn’t maintain any tree-like data structure, it will be very ® CISpan_can gff_ectlvely mine frequent sequences with
expensive to perform closeness checking. It is necessary to 2/l POSSible minimum support threshold, even as low as

design a more general and effective solution to the incremen- E: Oulr<evallljat|on on rec?l Qatgbass trant?]form_eq from
tal mining problem. inux Kernel source code is based on the minimum

support of 2, in which case IncSpan simply becomes

1.3 Our Contribution In this paper, we propose ClSpan, ~ non-incremental.

a Comprehensivericremental mining algorithm of Closed
Sequential Paern We attack this problem in a divide
and conquer manner, separating insertion case and removal
case apart from each other. The key idea behind CISpan

is to build a tree-like data structure namétremental o e provide an effective algorithm for software evolu-
lattice to store all the frequent sequences appearing in the o study. Tools using sequential mining algorithms
inserted sequences, while for removal case directly update can now be extended with CiSpan to analyze software
the intermediate mining data structure, namely prefix lattice, ayojution patterns. We also demonstrated the effect of

of the original database. Both of these two operations gpplying CiSpan into one of the code mining tools, CP-
are very cheap. Foincremental lattice the number of Miner, as a case study.

nodes is limited by involving only items within the inserted

sequences. Handling the removed sequences is even cheapewWe compare ClSpan’s complete frequent sequence min-
since it will only be a side effect of recovering the origindhg version with IncSpan, since IncSpan cannot mine closed
prefix lattice, which is a compact representation of all tHeequent sequences. For every test case which IncSpan can
frequent sequences within the database. Then we mdigish mining, ClSpan could also successfully mine, with a
the original prefix lattice with the incremental lattice, appligetter performance. For all these test cases, CISpan outper-
closed checking algorithm to mine closed sequences, dmans IncSpan by an average 3.4 times speedup.

finally output the frequent sequences. By disabling the We also test ClSpan's performance with original
closed checking step, we can also output the complete GEtSpan on our real database from source code. Inc-
of frequent sequences. The final merged lattice in CISp@pan simply cannot handle this case at all. On average,
is exactly the same as the one mining from scratch, whisle see42 times speedup of incremental mining compared

e CISpan performs linearly to a wide range of various
support threshold, sequence length, sequence number
and modification rate.

to CloSpan [15] on the real source code database trans-
formed from Linux kernel. We also evaluate CISpan’s per-
formance on multiple increments of source code database,

which shows that even for 20 versions’ difference, CISpan < £>3

still performs4.5 times faster than mining from scratch us- %l ' 1

ing CloSpan. Qo oS

2 Preliminary Concept <q“>:3 <c:>:2 <d:>:2 <c: >2 <Eis >2
Let IT = {4y,i2,...,ix} be a set of all items. A subset of !

IT is called antemset A sequence =< t1,ta,...,tn > Q

(t; € IT) is an ordered list. Théength [(s), is the total 2 d -

number of items in the sequence, i.&s) = >, |t]. <G> <G>

A sequencex =< ay,as,...,a, > iS asub-sequencef Figure 1: Prefix tree oD.

another sequenge =< b4, bo, ..., b, >, denoted as C (3,
if and only if 341,45, ..., 4, SUCh thatl < iy < ip < ... <
im <mnanda; C b;,,as2 C b;,,...,and a,, T b;, .

A sequence databasB, = {si, s2, ..., $n}, IS a set of
sequences. Theupportof a sequence in D is the number
of sequences iy which containy, supporta) = |{s|s € D
and o C s}|. Thesupport listof a sequencer in D is a
list of sequence IDs containing. So the length oSupport
list for « is the supportof «. Given a minimum support
threshold, min.sup a sequence ifrequentif its support root
is no less thamtminsup The set offrequent sequential é
patterns, FSincludes all the frequent sequences. The set
of closed frequent sequential patterisdefined as follows,

Figure 2 is the data structure in CloSpan, namgtdegfix
sequence lattice Subtree sharing of two nodes is simply
done by pointing to the sanahildren pointer In this case,
node< b, >: 3 and< b; >: 3 share the same subtree, thus
we only need to produce and store the subtree once.

<a_:ﬁ>:3 <h, >3

CS = {ala € FS and /38 € FS such that o T 3 1

and support(a) = support(8)}. SinceCS includes no Q.
sequence which has a super-sequence with the same support, .~
we haveC'S C F'S. The problem otlosed sequence mining 3 <¢>2 <d;>2

is to find C'S above a minimum support threshold. Table 2 !
shows the closed frequent sequencedian table 1.

The projected database of a sequenceonsists of all T
the suffix of sequences that containformal definition in ~ <&>2 <t>2
CloSpan [15]). For example, the projected database for Figure 2: Prefix sequence lattice bf
< (b)) >IN Dis Depys = {< (d) >,< (c)(d) >, <
(Ce)(f) >}; andD<(a)(c)> = {< (d) >, < (6)(f) >}'

A prefix tree Tis a tree that represents the set of frequent We define that a sequeneeappearsin a databased
subsequences in a database. Each nodeT has a tag if « is a subsequence of one bfs sequences. Formally
labelled withs or i. s means the node is a starting iterappearsin D if and only if 3s such thats € D and « C s,
in an itemset;i means the node is an intermediate item or simplysupporf«) > 1in D.
an itemset. Figure 1 shows the prefix tree for The
representation for each node follows the formitem : 3 ClSpan Overview

support >. Each circle in the figure representefldren Gijven the original databas® and an updated database,
pointer of each node, which points to a vector filled byy cispan models all updates as removal of sequences
pointers to all the children nodes. from D and insertion of sequences f&'. For example,

A closer examination at Figure 1 would reveal the fagiple 5 shows the updated databdeafter modification
that the subtrees of the two nodesb; >: 3and< b; >: 3 of sequence 0 in the example databdde ClSpan will
are exactly the same. This is because the projected databasgfe| this update to a removal of sequence @imnd an
D<(p)> and D (ap)> are exactly the same. It would be gnsertion of sequence 0 ifY'. Figure 4 illustrates the update
waste if we produce and store two copies of the subtreesyiBdel fromD to D’. We usel/ to represent the unchanged
thIS case. C|OSpan [15] Optimizes the prefiX tree by makiggquence set |D and D” R for the removed Sequence set
nodes with same projected database share the same chilqlﬁeD., andI for the inserted sequence setZii. All kinds of

Incremental Lattice Building

oL
— 00
N S / Eliminate ~ Output
U Unclosed
- Sequences P
_—
Removed Sequences Handling Shelefe <oesid
L,
D A _
Al
U GGG et e
® 384 0
8 6 0 0OJ0
R g
@

Figure 3: Overview of CISpan.L; is the incremental lattice, anf,, is the original prefix lattice after being updated for removed
sequencesL’ is the merged lattice. Arrows from the database to the lattices indicate where the nodes in the lattices come from. Each
node inL; corresponds to an item appeardiwhile nodes inl.;, are items appear iti. Arrow from lattice L, to databasé’ indicates

that we calculate the support of sequencek.ifrom D’ as a whole, not only id.

possible updates fab are covered in this simple model. overview of CISpan. We handle the removal and insertion of
sequences separately. For the insertion case, we build a small
D D' lattice calledncremental prefix latticel;, that contains only
} | the frequent sequencappearingn I. For the removal case,
we update the nodes correpondingly when retrieving the lat-
tice L,. We refer to this updated lattice,. Then we merge
updatedZ! with L;, and form a latticd.’ for D’. Our merg-
ing algorithm guarantees that this is exactly the same as
the one if we mineD’ from scratch using CloSpan. Finally,
R we output all the frequent sequences based oo output
only the closed frequent sequences, we apply the non-closed
sequence elimination algorithm in CloSpan [15]band
output only the closed frequent sequence set.
We definel S as all the frequent sequencesiit that
appearin I. More formally, IS = {s|support(s) in
D' > min_sup and 3s" such that s € I and s C s'}. The

Figure 4: Database update model.

SeqID | Sequence

0 < (a)(f) > incremental lattice; contains all the sequencesis. We
1 < (ab)(c)(d) > also definel/'S as sequences that are frequentin More
2 < (ab)(ce)(f) > formally, US = {s|support(s) in U > min_sup}. L.

contains all the sequences inS. Lemma 3.1 forms the
Table 5: Sample Sequence Databfte fundamental of our divide and conquer idea.
While mining D from scratch using CloSpan, we storIe'EN”vIA 31 FS=I5UUS
the intermediate prefix latticé,. Becausel,, is an acyclic
graph rather than a tree, simple recursive traversal is Robof. Based on the definition,,S C F'S andUS C F'S,
enough to store the subtree sharing information. CISpem/S U US C FS. Assume a sequence € F'S that
solves this by numbering each node with a unique node dD¢ IS U US. Thena ¢ IS anda ¢ US. Sincea ¢ IS,
in the lattice, so for each node we can exactly identify eveltyen all ofa’s support must be frorty.S; and sincex ¢ U S,
child node through the node ID. then o must not be frequent i®/.S, which meansy isn’t
When miningD’ incrementally, CISpan algorithm fol-frequentinD’. This is contradictory to the assumption. Thus
lows a divide and conquer strategy. Figure 3 shows thve have:F'S =1SuUUS. O

4 Incremental Lattice Building In cross module mining, thé; is built in the CloSpan

As shown in section 1, inserted sequences may introdiie@nner. The difference with CloSpan is that every sequence
new frequent items. Following is another example to furthi L: has to be not only frequent, but also has to satisfy the
reveal that the complexity of inserted sequences is not oR$SS module mining property

limited to introducing new frequemtems PROPERTY4.1. Cross Module Mining Property: If se-

Example.Figure 5 shows a prefix tree for differenfli®ncex appearsn I, then we sayr satisfies cross module
database®; = {< (a)(b) >,< (a)(c) >,< (b)(c) >}; Mining property.

Dy = {< (b)(a) >, < (¢)(a) >,< (b)(c) >}; D3 = {<
(b)(a) >, < (a)(c) >, < (c)(b) >}, etc. All these databases,
have the same prefix tree, and they share the same freq
sequencesF'S = {< (a) >: 2,< (b) >: 2,< (¢) >: 2}.
Now if we insert a new sequence, =< (a)(b)(c) > , to
each of these databases, different databases will yield ﬂjﬁ
ferent frequent sequences. Notedipall of the items were

The reason we name this stepss module minings

givenD’ is formed by 2 modules] and U, we only

HARE the sequences appear/inhowever we have toross

the moduldo count its support front/ and! together.
Algorithm 1 illustrates the framework of cross module

ning. We scan the database once, and find all the frequent

. o) . items that appear i, and the incremental lattice only
frequent in original databases. Now given that all items Udntains these items. Note we still count the support of an

inserted sequences were frequent in original database, in the completel’, not only in I. IncCloSpan as
also given the original mining data structure, the prefix U&Rown in algorithm 2, is the recursive function that builds
in Figure 5, we still can’t tell the final result without Iookingthe incremental latticel,;. It follows the same behavior
into the whole database. as originalCloSpan with only difference that in addition
to checking the next level item is frequent or not, it further
root . .
checks whether the corresponding sequence appearsrin
C% not (line 7, first condition). This is simply done by checking
" y ey whether the ID of each sequence containing within I
<a>2 2 <¢>2 or not. Every sequence if; must be frequent and must

inserted sequence iB'. In this case] = {< (a)(f) >}.

The fundamental reason for the complexity of inseAlgorithm 1 Cross Module Mining D', min_sup, L;)

tion is that by only buffering information about frequent serequire: A database)’, partitioned byl andU; andmin_sup.

guences, inserted sequences may always turn some origimalire: The incremental prefix latticé,

un-buffered sequences into frequent ones. In other words, ScanD’ once, find every item such that

by buffering only frequent sequences (or their tree-like rep- o at |east one sequence containirig D’ appearsin I, and

resentation, e.g., prefix lattice), we cannot avoid scanning the

whole database in order to mine the final frequent sequences. _
IncSpan solves the insertion problem by buffering ad2: for e;’fiy ?ic_h item do

. C s i>:

g!t.lonal semi-frequent sequences with relatively high proba;’—: IncCloSpan &, D' min._sup. L)

ility to become frequent in the updated database, and thgsend for

reduces some search space in incremental mining. Even

though, it still needs to scan the whole database for new

items. Also when update percentage becomes relatively

high, some originally infrequent sequences are likely to be- mft

come frequent, in which case that buffering semi-frequent loR

sequences cannot help much. Ty
The bottleneck of prefix tree based algorithms [12, 15, <g>3 <f>2

4] is multiple scans of the whole database. The number é

of scans of the database is proportional to the number of

nodes in the prefix tree. After identifying this, our design <f,>2

philosophy is to build a concise prefix lattice with sufficierftigure 6: Incremental Prefix lattice fdp’. Only sequence

information we need to handle the inserted case. In practiee(a)(f) > is inserted.

thisincremental prefix latticel;, contains only the frequent

sequences D’ that appearin I. We name this process

Cross Module Mining

e iisfrequentinD’.

Algorithm 2 IncCloSpan{, D, min_sup, L;) we have a latticel!, containing all the frequent sequences
Require: A sequence, a projected DBD’,, andmin_sup in U. Figure 7 is thel;, when we mineD’ based orD.

Ensure: The incremental prefix latticg;.
1: Inserts into L;; root
2. Check whether a discovered sequentexists s.t. s and s’ é

share the same projected database;

. if suchs’ existsthen <a>2 2 <¢>2
Share thechildren pointerof s’ with s in L;;
return;

end if

: ScanD/, once, find every item such that

Noahk~ow

e atleast one sequence containinig D, appearsn I, and

e iis frequentinD’, and NV

e scan be extended too; i or s ¢ 1; Figure 7: Retrieved Prefix lattice oD. Sequence<
8 if no validi availablethen (ab)(d) > is removed, causing support fer (as) >,
9 retumn: < (bs) > and < (b;) > to decrease. Also the3 (d;) >
10: end if nodes are removed.

11: for each validi do
12: Call IncCloSpan{ o; i, D}, ;, min_sup, Li);

13: end for LEMMA 5.1. Every sequence iti.S must also appear i/,.
14: for each validi do

15: Call IncCloSpan{ o i, D%, _;, min_sup, L;); 6 Merging the two lattices

16: end for

With L, and L] built up, we now can claim the following

17: return;
theorem based on lemmas 3.1, 4.1 and 5.1.

. . THEOREM6.1. Completeness: Every sequencehiy is
LEMMA 4.1. Every sequence ihS must also appear id;, cgntained inZ,; or L, or both.

and its information (support, support list, etc) is the same a:
in case of miningD’ from scratch. This theorem guarantees that we have the complete infor-
] _mation about thet’S. However, there may be competing

Lemma 4.1 shows the nice property bf. Notonly it jnformation betweerf.; and L/, so the goal of the merging
completely solves all the complexities for the insertion casggorithm would be to eliminate all competing/redundant in-
it also retains the final prefix lattice structure as well as §rmation, and finally generate a lattic/, that is the same
information of these nodes appearing/in as one mining from scratch.

We claim that it is very cheap to build, given that The principle for the merging algorithm is based on
the modification ratio is not large. Sindeis very small |emma 4.1, that whenever there is competing information,
compared to the whole database, there are only a smglshould follow the information iti.;. Since the majority

number of items withinl, so our incremental prefix lattice isgf nodes will be inZ’, so we should mergg; into L/ while
also small. So we only have a small number of scans of {giking throught g{ndL/ simultaneously. ’
A :

from Linux kernel 2.6.20.1 source code, there will be onjyrefix |attice, we need to mark each node whether we have
206 nodes in the incremental prefix lattice (based on thgeady visited it or not. When we reach two nodes with
result from 2.6.20), compared to 697430 nodes in origingfferent values of this mark, it suggests we need to merge or

prefix lattice. split the nodes i, in some way.
We start by callindVerge(oRoot, iRoot) ,and the
5 Handle the removed sequences algorithm will visit all the nodes ir; and the corresponding

Removed sequences are simply handled as a side effect wdres inL!. We first replace the support and support list in
we retrieve the original latticel,,. When we retrieve eachoNode with the ones inNode (line 1), ensuring that the
node inL,, we check each sequence ID in the support list mfformation is updated according Ig. Then for every child
this node. If we findk of them are inR, then we decreaseofiNode , namelyiChild , we find the corresponding node
the support of this node by. After decreasing support, if wein oNode, namelyoChild . If there is no such child in
find that the support of a node falls belemin_sup, then we oNode, we add a new one (line 10 to 12).

simply remove this node and all its sub-Ilattice fréam After Based on the visit history of the two childrengited

we are done with retrieval and removed sequences updadiie), there could be totally four cases. Different strategies

Algorithm 3 Merge (oNode, iNode)

Require: Two nodes inL,, (oNode) and; (iNode).
Ensure: L; is merged intal,.

1

10:
11:
12:
13:
14:

15:
16:
17:

18:
19:
20:
21:

22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

copy iNode’s support and support list to oNode;

2: oNode.visiteds true;

3: iNode.visited< true;

4: if iNode has no childrethen
5:
6
7
8
9

return;

: end if
: for iChild< every child of iNodedo

oChild < find_child_from(oNode, iChild);
if oChild= EMPTY then
oChild <= new node same as iChild;
addchild (oNode, iChild);
oChild.visited< false;
end if
if (oChild.visited = false) AND (iChild.visited = false)
then
iChild.lastvisit < oNode;
MEeRGHoCHhild, iChild);
else if (oChild.visited= false) AND (iChild.visited = true)
then
oNode.Children= iChild.lastvisit.Children;

iChild.lastvisit <= oNode; 3.

return;
else if (oChild.visited= true) AND (iChild.visited=
then
Make a new copy of oNode.Children and all the children
nodes;
oNode.Childfen<= the new copy of previous step;
oChild < find_child_from(oNode, iChild);
iChild.lastvisit <= oNode;
MERGHOCHhild, iChild);
else
if oChild is not a child of iChild.lastisit then
oNode.Children= iChild.lastvisit.Children;
end if
iChild.lastvisit <= oNode;
return;
end if
end for

false)

are applied to different cases.

1. Case 1: Both unvisited

Line 15 - 16 in algorithm 3 corresponds to this most
trivial case. All we need to do is to recursively call
Merge again. 4

. Case 2: MergeFigure 8 illustrates the cas€hild

is visited whileoChild is not. Line 18 - 20 in algo-
rithm 3 corresponds to this case. This indicates we
need to merge nodes i,. In this case, we need the

information about which node to merge with. This in-
formation is kept in a pointdast_visited within
every node inL;. Every time aniChild is vis-

@

Flgure 8: Example of the merge case.

Last_visit |child

ited, itslast_visited points to the curremNode.
Thus we could do merging by simply modifying the
Children pointer of oNode to point to the one in
last_visit (Line 18). After the merging of nodes,
we don't need to further continue the recursion on this
branch, since it has already been visited once previ-
ously.

Case 3: Split

@ iChild

Figure 9: Example of the split case.

R ..
oChild

Figure 9 and line 22 - 26 in algorithm 3 correspond to
the case whewChild is visited yetiChild is not.
This indicates we need to split nodes fir}. In this
case, we need to make a new copy of @taldren
pointer ofoNode, and all the children nodes in it. Note
we have to make a copy @hildren from oNode
rather thaniNode , because the former may contain
more children. Then we continue the recursion.

. Case 4: Both visited

When bothiChild andoChild are visited (line 28

- 32), it is not safe if we directly stop searching this
branch. There may be a tricky case that the graph
structure ofL; and L/ are not corresponding to each
other. Figure 10 illustrates one example. In figure
10, bothiChild andoChild are visited. However,
the structures of the two lattices are not the same. We

We have to prove that’ also satisfies these 2 properties.
The first property is simply proved in theorem 6.1. If two

iNode sequencesy andj have the same projection database, then
Y they must have the same support listti. Then thisa (or
@ 8) could eitherappearin I or not. If so, they will share
@ O the same sub-lattice ih;, and by construction we retain this
é ; structure inL’. If not, then they share the same sub-lattice in
‘ R hild the original lattice,L,, and we don't even visit these nodes
@ §>‘ e during merging, so the structure is also retaired.
| X/
R ' :
I “oChild 7 Evaluation

Figure 10: Example to show a case that both node are visit¥e evaluate the performance of CISpan from two aspects.
in L. First, we compare the performance of CISpan with Inc-
Span [4]. Because IncSpan can only handkertion and
appendoperation to database, so we only generate test cases
)])) . that IncSpan can handle. On every test case which IncSpan
can detect this by testing whetheChild is the child 5 handle, our experimental result suggests ClSpan can also
of last_visit ~(Line 28). If not, then we need tOpangie that, with better performance. The performance gap
restructurel,, simply by modifying theChildren pereen CiSpan and IncSpan gets larger as performance de-
pointer ofoNode (Line 29). grades. Among all the test cases we used, CISpan outper-

) .) formed IncSpan by an average of 3.4 times and maximum of
The merged prefix latticd,’, now contains the complete 5 times

set of frequent sequencesif. Figure 11 shows the merge Then we compare CISpan integrated in CP-Miner to
. : - p h
Eref'x Ia7ttlze of L; ihownf'lnl F'Q“fe 6 ar]cLO .s%ov]:/n In CloSpan on real databases transformed from 20 consecutive
|gureh N ssum;/t € pretix at?c_e WE gteLt,'r_' min gl rorrr: versions of Linux Kernel source code. IncSpan cannot mine
scratch Is name we claim thatl’ Is exactly the this kind of databases at all since it cannot handle removal

scratch?
/ H / H
same agd ., ;. Which means after the merge’, contains ¢ sequences, and also it becomes non-incremental when

complete and non-redundant information.

root

L
e

<a;;:3 <b:>:2 <é:>:2 <f,>2

A

<blﬂ>:2 <c:>:2 <\f:>:2
!
<G >12 <d:>:2

Figure 11: Merged.’ for D’.

THEOREM6.2. Soundness and Completeness:
L'=1r

scratch

Proof. Recall the properties of

/ .
scratch®

1. Contains all the frequent sequencegih

minimum support threshold is 2. On average, CISpan is 42
times (with a maximum 230 times) faster than mining from
scratch using CloSpan.

Our test bed was equipped with Dual core Intel Pentium
D 3.0GHz processor, 1024KBytes L2 cache and 2 GBytes
main memory. CISpan, IncSpan and CloSpan algorithms are
written in C++ and compiled with -O3 optimization.

7.1 Performance Comparison with IncSpanAll the ex-
periments in this section is based on synthetic dataset
generated by IBM data generator tool. The synthetic
dataset generator can be retrieved from an IBM website,
http://www.almaden.ibm.com/cs/quest . The
parameters we used in the experiment are as follows [2]:

e D - Number of sequences (in 1000s)

e C - Average itemset per sequence

e T - Average number of items in item set
e N - Number of different items (in 12000s)

In order to use IncSpan, only two models of updates, in-
serting new sequences and appending items to sequences are
used. We first generate the dataset using the default parame-

2. If two sequences have the same projection databases suggested by the provider to the tool, D100C10T2.5N10.

then they share the same sub-lattice.

Then we examine the effect of changing each parameter on

D100C10T2.5N10, Mod rate 20% D100C10T2.5N10, MinSup 0.05%

75
800 F— ' ' InlcSpan T 60 L I I I I I InICSp/a;IQ/Aﬁ‘RL/ —
2 600 | ClSpan - 1 2 &l _GiSpan -

2 400 | - 2 ol P i
= 200 F A _ . = 15 F;i,‘,_ﬁ—;:':':"'ﬁ,, Y NP N N N N - =3
0 D S 0 1 1 1 1 I I I I

0.004 0.005 0.01 0.05 0.1 0.5 5 1 3 5 7 9 11 15 20 25 30
Minimum Support (%) Modification Ratio (%)
(a) (b)
D100T2.5N10, ModRate 20%, MinSup 0.05% C10T2.5N10, ModRate 20%, MinSup 0.05%
500 T T T TS T 250 T T TS T
400 | ncopan —*— 7| 200 | ncopan —*—"]
NG A
2 300 |- ClSpan . 2 150 | ClSpans==]
£ 200 | L. A £ 100 |- Pl 3
Eoq00)p e A Fosok e e
0 S s S i 1 I PO S e | |
10 12 14 16 18 20 25 10 50 100 300 500 700
Average Length of Sequence Number of Sequence (X1000)
(c) (d)

D100C10T2.5, ModRate 20%, MinSup 0.05%

500 F T T T T T
400 | IncSpan ——|
2 ClSpan ---4,+
o 300 |) i
ig 200 |- e _
100 | e i
0 Li% """" 7 SR L SR . SR fo--o-- 4
5 10 20 30 40 50 100
Number of Different ltems (X1000)
(e)

Figure 12:Performance results

the performances of CISpan and IncSpan. We set the semi- Figure 12(e) shows performance of each algorithm with
frequent buffer ratio in IncSpan as 0.8, as suggested by Mgrious numbers of unique items (N). For example, when
We also tested the effect of modification rate and minimuN+10, data set will contains 10,000 unique items. When
support rate in evaluation. Modification rate stands for p&i=100, CISpan is 16 times faster than IncSpan. From the
centage of updated sequence from original date set. result we can see CISpan is almost not affected at all by the
Figure 12(a) shows the performance of both CiSpammber of unique items, while the performance of IncSpan
and IncSpan when minimum support varies. We used diegrades as the number gets larger.
fault dataset D100C10T2.5N10 with modification rate 20%.
When minimum support gets larger, both algorithms get b&t2 Linux Kernel Mining In this section, we use the real
ter performance. database transformed from Linux Kernel source code to
Figure 12(b) shows effect of modification rate. Modievaluate ClSpan. A recent major version of Linux Kernel,
fication rate is the percentage of updated sequences. Fonvexsion 2.6.20.x is chosen, that contain totally 21 different
ample, if data set has 100,000 sequences (D100) and 10)080x kernel code, from 2.6.20, 2.6.20.1, 2.6.20.2, ... to
of them were updated, the modification rate is 10%. In2:6.20.20. We integrated ClISpan algorithm within CP-
Span’s performance is much more sensitive to modificatibtiner, with modifications to other steps to mine the source
rate change as compared to ClSpan. code incrementally. We first mine the 2.6.20 version from
Figure 12(c) shows how each algorithm is affected lsgratch using CP-Miner. After that, we apply incremental
length of sequence (parametexT). For all the test casesmining to later 20 versions.We first mine them in an iterative
where the average length varied from 10 to 25, ClSparanner, which means incremental mining is based on the
outperforms IncSpan and the performance gap gets langemediate previous version’s result. Then we test CISpan
and larger. in an accumulative manner, that is, we mine every version
In Figure 12(d), we evaluate both CISpan and IncSphased on the result of 2.6.20.
on various total number of sequences (parameter D). In figure 13(a), we first compare incremental mining

@ Mine from scratch B ClSpan

180 mmm Time—e— Memory Usage 180
2500 1405 21603 21557 21472 21491 21457 21441 21411 —
150 1508
2000 120 120%
2 1500 g 9 90 3
E = z
1000 60 60 §
500 30 30 2
2.9 1658 | 30,2 61.4 58.9 93 64.5 105 . .
o ,
ANY O X D 0 A D 9 0 XN 0D X0 00 RO D
“VQ'.\ (LQ‘?/ (LQ‘.’J (,9‘?‘ {79‘{2 (,9?3 q,Q/'\ (19% ©@~b,}b- %(,9-%(@~b,}q-b,_,{e- @,_9-6(_,9@,_,9- 'L"\ {LQC‘ WQ'.\ (15;‘\ {LQ',‘ (]9’.\ @i\ {]9.\ (LQ'.‘ (]9’.\ {19‘.7/
Q° Q° Q° Q° Q° Q° Q° Q° 9 a7 a” @¥ 9® 97 P 9P P (0707 107 (07 07 (0707 00T 107 90" o0
Linux Kernel Version Linux Kernel Version
(a) Mining from scratch VS CISpan (b) CISpan mining based on previous version

[Time —&— Memory Usage
100 Il Change Log Size —#— Number of Incremented node 60000 o 170
50000
40000
30000
20000 -
10000 100 110

80
60

Size (KB)

40

of incremented
node
Time(s)

=
S
Memory Usage(MB)

20

0 4
S 0¥ 97 o ? o0 o o2 e O X SR

X NI AT O X O O A 29 0 AL D XL A 0O
N e DD F LD DD S S DS DS S
a2 0% q® 02 2 2 q2 a2 0% & oV oV oV, 6", 6", 6", 6" 0¥ o o 0® 02 02 92 q® q® P q® P &V, 0¥ o¥ &’ &’ 0¥, 6V oY o7, 6F, 6!

R A S A A A 97 97 97 9 97 97 9”97 9”7 97 o

Linux Kernel Version Linux Kernel Version

(c) Log size and # of incremented nodes for each version (d) CISpan mining based on kernel 2.6.20
Figure 13:Incremental Mining of Linux Kernel 2.6.20.1 - 2.6.20.20

performance with mining from scratch. Since it takes arou8d Related Work

40 minutes each time we mine the_z kernel source code frcpqgcenﬂy' several algorithms have been proposed for incre-

scratch, we only compared 8 versions (2.6.20.1 to 2.6.20:8ntal mining and maintenance of sequential patterns, with

of kernel code mining from scratch to incremental mining,q major approaches: (1) levelwise mining with candidate

On average, CISpan outperforms CloSpan by 42 times. generate-and-test; and (2) incremental mining by keeping
We then incrementally mine all 20 versions one aft@iyck of additional information.

another iteratively, e.g., mining 2.6.20.1 based on 2.6.20’s [10] and [17] are two studies belonging to the first cate-
result, 2.6.2_0.2 based on 2.6.20.1’3 result, etc. Figure 13ég}y_ Both methods perform incremental mining with a can-
shows the time consumption and memory usage. On av§ftate generate-and-test approach — the ize-1) candi-

age, it takes 35 sec and 128.25 MBytes memory for eaghtes are generated from the sizéequent sequences. Al-
pass of incremental mining. Figure 13(c) shows the sizetfbugh the number of database scans could be potentially re-
change log files and the size of incremental lattife, in - duced with some careful handling based on some mathemat-
number of nodes. Change log is a log or history of changgg| geductions, this approach still involves multiple scans

made to last version. Generally, big change log file suggegishe whole database, as well as the generation of a large
large amount of changes of source code from previous V§{imber of candidates.

sion, and correspondingly in CISpan it suggests ldrgeOn [3], [11] and [4] belong to the second category
average, the prefix lattice we get mining Linux Kernel codg; keeping track of additional information for incremental
from scratch contains 701,339 number of nodes. This fRming. Chang et al. [3] proposed an incremental approach
sult shows in real life database, the performance of CISpgamyyffer the CSTree of the old database. This approach is
is sensitive to the change ratio of database. For example jRyq capable of mining the closed frequent sequences.
cremental mining time for version 2.6.20.2 is significantly Parthasarathy et al. [11] proposed ISM which is
greater than other versions, due to the largest change logdil@ed on SPADE, by maintaining a sequence lattice of an
size of that version. _ ~ old database. The sequence lattice includes the frequent
Next, we incrementally mine the 20 kernel versions iquences and a negative border which includes sequences
an accumulative manner, that is, each time it is based \9Rich are infrequent but their subsequences are frequent.
2.6.20’s mining result. Figure 13(d) shows time and mem- [4] proposed IncSpan which is based on PrefixSpan by
ory usage.We can see from the result that the performapggering a set of semi-frequent sequences. A semi-frequent
increases steadily with the accumulative changes ofversiQ_g&J1uence is an infrequent sequence but its frequency is no
In the end, when mining the last version, 2.6.20.20, C|Sp§ﬁ‘lallertham*mm,sup wherey € [0,1]. When a sequence
takes 470 seconds and 173 MB of memory, which is still 4atapase grows, the semi-frequent sequences have a higher
times faster than mining from scratch. probability to become frequent. Therefore, by buffering
those patterns, the number of database scan and projection

operations could be effectively reduced. [4] H. Cheng, X. Yan, and J. Han. Incspan: Incremental mining
When the existing methods are applied to the software of sequential patterns in large database.Ptoc. 2004 Int.

source mining, there are three main limitations: (1) Cannot Conf. on Knowledge Discovery and Data Mining (KDD'04)

handle the removal of sequences; (2) Cannont handle a low 2004. _

minimum support ag which is meaningful in applications [°] Z- Li. S.Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for

such as copy-pasted code detection; and (3) output too many finding copy-paste and related bugs in operating system code.

frequent sequences which would slow down the incremental In Proceedings of the Sixth Symposium on Operating System
q q Design and Implementation (OSDI'Q4jages 289-302, 2004.

mining process. Our proposed ClSpan algorithm C_OU|] Z. Li and Y. Zhou. PR-Miner: Automatically extracting
effectively handle these three challenges. It effectively” mpjicit programming rules and detecting violations in large
reduces the number of mining results by generating closed software code. Il3th ACM SIGSOFT Symposium on the

sequential patterns in the incremental mining process. Foundations of Software Engineering (FSE’'0Sgpt 2005.
[7] V.Livshits and T. Zimmermann. Dynamine: Finding common
9 Conclusions error patterns by mining software revision histories, 2005.

D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of iterative

B n a real world problem, in thi rwe pr)
ased on a real world problem, i this paper we p oposeci% patterns for software specification discovery. KBD '07:

comprehensive lncremental_ mining a_lgorlthm for Sequentl_al Proceedings of the 13th ACM SIGKDD international confer-
f:latabase, that can be effectively z_:lpplled_ tq our sowaare MIN- ence on Knowledge discovery and data minipgges 460—
ing tool. CISpancould handle various mining requirements 469 New York, NY, USA, 2007. ACM Press.

in real world database evolution, including general update] s. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
model, closed sequence mining, low minimum support, etc. Y. Zhou. Muvi: Automatically inferring multi-variable access

It outperforms the previously proposed incremental mining correlations and detecting related semantic and concurrency
algorithmIncSpanby a wide margin. Integrated within our ~ bugs. InProceedings of the 21st ACM Symposium on Operat-
code mining tool, we show CISpan also outperforms the non- ing Systems Principles (SOSP@rtober 2007.

incremental method CloSpan by an average of 42 timesldfl F- Masseglia, P. Poncelet, and M. Teisseire. Incremental
real Linux Kernel source code. Armed with this effective in- E:(‘)'\';‘v?eggze(%fg)“j‘gEf‘r:;elzrggén large databasesData an
Cremgntal mining qlgorlthm, our Immedlf’ﬂe goal s to appi 1] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas.
CP-Miner to investigate software evolution patterns, whi

. L . . Incremental and interactive sequence miningCIKM, pages
is very significant for software engineering researchers. In 551 555 1999,

the future, we will also appply CISpan into more softwaig,;] j. pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
mining tools as well as utilizing these tools to mine software and M.-C. Hsu. PrefixSpan mining sequential patterns effi-

evolution patterns. ciently by prefix projected pattern growth. pages 215-226.
[13] R. Srikant and R. Agrawal. Mining sequential patterns:
10 Acknowledgements Generalizations and performance improvements. In P. M. G.

Apers, M. Bouzeghoub, and G. Gardarin, editd?syc. 5th
Int. Conf. Extending Database Technology, EDB®lume
1057, pages 3-17. Springer-Verlag, 25-29 1996.

We thank the anonymous reviewers for useful feedback, the
Opera group for useful discussions and paper proofreading.

This research is supported by NSF CCF-0325603 grant, N[ﬂj T. Xie and J. Pei. Mapo: mining api usages from open source
CNS-0615372 grant, NSF CNS-0347854 (career award), and repositories. IMSR '06: Proceedings of the 2006 interna-

Motorola gift grants. tional workshop on Mining software repositorjgsages 54—
57, New York, NY, USA, 2006. ACM Press.
[15] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed
sequential patterns in large datasets, 2003.
[16] M. J. Zaki. SPADE: An efficient algorithm for mining
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining api patterns frequent sequenceMachine Learning42(1/2):31-60, 2001.
as partial orders from source code: from usage scenariodkl M- Zhang, B. Kao, D. W.-L. Cheung, and C. L. Yip. Efficient
specifications. IFESEC-FSE '07 pages 25-34, New York, algorithms for incremental update of frequent sequences. In
NY, USA, 2007. ACM Press. Pacific-Asia Conference on Knowledge Discovery and Data
[2] R. Agrawal and R. Srikant. Mining sequential patterns. In Mining, pages 186-197, 2002.
P. S. Yu and A. S. P. Chen, editorfS|eventh International
Conference on Data Engineeringages 3—14, Taipei, Taiwan,
1995. IEEE Computer Society Press.
[3] L. Chang, D. Yang, T. Wang, and S. Tang. Imcs: Incremental
mining of closed sequential patterns. In G. Dong, X. Lin,
W. Wang, Y. Yang, and J. X. Yu, editorddPWeb/WAIM
volume 4505 ofLecture Notes in Computer Sciengeages
50-61. Springer, 2007.

References

