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Abstract

Recently, frequent sequential pattern mining algorithms have
been widely used in software engineering field to mine
various source code or specification patterns. In practice,
software evolves from one version to another in its life span.
The effort of mining frequent sequential patterns across
multiple versions of a software can be substantially reduced
by efficient incremental mining. This problem is challenging
in this domain since the databases are usually updated in all
kinds of manners including insertion, various modifications
as well as removal of sequences. Also, different mining tools
may have various mining constraints, such as low minimum
support. None of the existing work can be applied effectively
due to various limitations of such work. For example, our
recent work, IncSpan, failed solving the problem because it
could neither handle low minimum support nor removal of
sequences from database.

In this paper, we propose a novel, comprehensive
incremental mining algorithm for frequent sequential
pattern, CISpan (Comprehensive Incremental Sequential
Patternmining). CISpan supports both closed and complete
incremental frequent sequence mining, with all kinds of
updates to the database. Compared to IncSpan, CISpan
tolerates a wide range for minimum support threshold (as
low as 2). Our performance study shows that in addition to
handling more test cases on which IncSpan fails, CISpan
outperforms IncSpan in all test cases which IncSpan could
handle, including various sequence length, number of
sequences, modification ratio, etc., with an average of 3.4
times speedup. We also tested CISpan’s performance on
databases transformed from 20 consecutive versions of
Linux Kernel source code. On average, CISpan outperforms
the non-incremental CloSpan by 42 times.

Keywords: Incremental mining, Software Engineering,
Cross Module Mining, Frequent pattern

1 Introduction

1.1 Motivation Frequent sequential pattern mining [16,
13, 12, 15] is an important and active research topic in
data mining with broad applications, including mining web
logs, customer shopping transaction analysis, and DNA
sequences, etc.

These years also saw an increasing trend of utilizing fre-
quent pattern mining in source code mining [5, 7, 14, 1, 9, 6]
and software specification mining [8]. These tools tokenize
the source code in certain ways into a sequence database rep-
resentation, and mine the frequent patterns in order to extract
various information such as copy-pasted code segments [5],
API usage [14, 1], programming rules [6], etc. For example,
CP-Miner [5] is a tool to effectively detect copy-pasted code
segments and copy-paste related bugs from source code. It
first tokenizes each statement of source code into an integer,
and maps the code into a sequential database, where each
sequence corresponds to a basic block of the source code.
By mining the closed frequent sequences with the minimum
support,min sup, of 2, which suggests that the code seg-
ment was at least repeated once, the tool detects all the copy-
pasted code segments within the source code.

In reality, database evolves in an incremental manner.
For example, the latest major version of Linux Kernel,
2.6.X series, consists of more than 150 versions in total,
which would be transformed into more than 150 similar
databases. The difference between these databases could
involve removal, various kinds of modifications and insertion
of sequences, corresponding to removal, modification and
insertion of code segments into the source code. If we mine
each updated database from scratch, the majority of time and
space would be spent on repetition of the previous mining
process, which is something we should and could optimize.
In our result, we will demonstrate that by using our CISpan
algorithm, we can reduce the mining time of the updated
version database transformed from Linux Kernel source code
by 42 times on average.



Because of the significance of this problem, many
studies have contributed to making sequential pattern min-
ing incremental [4, 10, 17, 3]. Our recent work, Inc-
Span [4], demonstrated it significantly outperforms the non-
incremental sequential mining algorithm [12] and the previ-
ously proposed incremental algothim [10], and thus is con-
sidered the state-of-the-art of incremental sequential pattern
mining. When mining the original database, IncSpan not
only buffers the frequent sequences, but also sequences that
are semi-frequent, which are likely to become frequent in
the new version. Later when mining the new version, only
sequences with support over a certain threshold will likely
become frequent out of un-buffered sequences.

However, during our attempts to apply IncSpan into
the code mining tools, we found that IncSpan is neither
general enough to handle real life database evolution nor real
life mining requirement (for example, CP-Miner requires
minimum support threshold to be 2). In addition, the
performance of IncSpan is far from optimal. The limitation
and cost of IncSpan can be summarized as follows.

• Failure to handle removal of sequences. IncSpan
could only handle insertion of sequences or appending
items into the tail of each sequence. The databases
in real world would evolve in far more varied ways.
For example, the source code database we encountered
would involve removal, various kinds of modifications
such as adding or removing items, as well as insertion
of the sequences.

• Difficulties for mining frequent sequences with low
minimum support. IncSpan bufferssemi-frequent
sequences, sequences with support between[µ ×
min sup, min sup) where µ is the buffer ratio be-
tween 0 and 1. When themin sup itself is small, Inc-
Span would end up buffering huge amount of semi-
frequent sequences, and significantly degrade the per-
formance. In the CP-Miner context, themin sup is 2.
In this extreme case, IncSpan will not be effective at
all, since it has to buffer semi-frequent sequences with
support 1, that are all the subsequences in the database
(exponential of sequence number in the database).

• Unable to mine closed sequences.In many context,
we only care about closed sequences. Given the closed
frequent sequences, we can always derive the set of
complete frequent sequences. In CP-Miner’s context,
it reports only the closed frequent sequences, which
represent the largest copy-pasted code region.

• Require difficult parameter tuning. In the IncSpan
algorithm, user has to specify the semi-frequent buffer
ratio,µ. However, without the knowledge of the details
of the algorithm, it is difficult for users to tune this to an
optimal buffer ratio.

Our initial motivation comes from the effort to opti-
mize CP-Miner [5] to work in an incremental manner to
analyze software evolution patterns. In CP-Miner, after to-
kenizing the program into a sequential database, it applies
CloSpan [15] to mine all the closed frequent sequences out
from the database. The evolution of software results into
removal, modification and insertion of sequences in our
database, and themin sup for CP-Miner is 2. After a care-
ful survey of the previous work, we concluded that none of
existing work, to the best of our knowledge, could be applied
to solve our problem effectively. Bearing this motivation in
mind, we set our foot to develop a comprehensive solution to
incremental frequent sequential pattern mining problem.

1.2 ChallengeAny update to a database can be modeled
as removals and insertions of sequences. If a sequenceα
in old database is modified toα′ in the new database, it
could be treated asα removed from old database andα′ is
inserted into the new database. Thus from now on we will
simply refer to all kinds of updates to removal and insertion
of sequences.

The reason for the almost non-existence of work for a
comprehensive and efficient solution to incremental sequen-
tial mining is the complexity of this problem. In the follow-
ing we will use examples to show why removal and insertion
of sequences are hard.

The immediate intuition to handle the removal case
would be simply decrease the support of each frequent se-
quence that has support from a removed sequence in the re-
sult. If the updated support falls below the threshold, remove
that sequence from the result. In complete frequent sequence
mining, this would generate correct result. However, doing
so is quite expensive, since the number of complete frequent
sequences would be exponential. Things become more com-
plex in case of closed frequent sequence mining, that this
approach couldn’t even guarantee the correctness of the re-
sult.

Example.Table 1 is a sample sequence database, referred
asD in this paper when the context is clear. Ifmin sup = 2
(taken as default in this paper), closed frequent sequences in
D are in table 2. Now in the new database, if sequence 0 of
D is removed, then simply updating of the result would yield
the result in table 3. The result in table 3 is incorrect, since
pattern:< (ab) >: 2 is no more closed. The correct closed
frequent sequences are shown in table 4

Complexity for the insertion case becomes even worse
than the removal case. The main challenge is that those
originally infrequent sequences may now become frequent,
of which we have no clue of from the original result. For
example, if we are going to insert a new sequence,< (f) >,
into D, it will turn the original infrequent item(f) into
a frequent item, since in original databaseD, (f) already



SeqID Sequence

0 < (ab)(d) >
1 < (ab)(c)(d) >
2 < (ab)(ce)(f) >

Table 1: A Sample Sequence DatabaseD

Pattern Support Support List
< (ab) > 3 0, 1, 2
< (ab)(c) > 2 1, 2
< (ab)(d) > 2 0, 1

Table 2: Closed frequent sequences forD

has a support of 1. However, this information don’t appear
either in the final mining result nor some intermediate data
structure, e.g. prefix tree.

Rather than mining everything from scratch, IncSpan
solves the insertion problem by buffering some infrequent
sequences with relatively high probability to become fre-
quent in the updated database, and thus reduces some search
space in incremental mining. Despite the fact that IncSpan
can only handle the removal case, it also suffers from other
defects that are fatal in certain circumstances. Since IncSpan
doesn’t maintain any tree-like data structure, it will be very
expensive to perform closeness checking. It is necessary to
design a more general and effective solution to the incremen-
tal mining problem.

1.3 Our Contribution In this paper, we propose CISpan,
a Comprehensive Incremental mining algorithm of Closed
Sequential Pattern. We attack this problem in a divide
and conquer manner, separating insertion case and removal
case apart from each other. The key idea behind CISpan
is to build a tree-like data structure namedincremental
lattice to store all the frequent sequences appearing in the
inserted sequences, while for removal case directly update
the intermediate mining data structure, namely prefix lattice,
of the original database. Both of these two operations
are very cheap. Forincremental lattice, the number of
nodes is limited by involving only items within the inserted
sequences. Handling the removed sequences is even cheaper
since it will only be a side effect of recovering the original
prefix lattice, which is a compact representation of all the
frequent sequences within the database. Then we merge
the original prefix lattice with the incremental lattice, apply
closed checking algorithm to mine closed sequences, and
finally output the frequent sequences. By disabling the
closed checking step, we can also output the complete set
of frequent sequences. The final merged lattice in CISpan
is exactly the same as the one mining from scratch, which

Pattern Support Support List
< (ab) > 2 1, 2
< (ab)(c) > 2 1, 2

Table 3: Incorrect closed sequences forD after seq 0 is
deleted by simply updating the result

Pattern Support Support List
< (ab)(c) > 2 1, 2

Table 4: Correct closed sequences forD after seq 0 is
deleted.

means the performance will not degrade by accumulatively
applying CISpan on a series of database.

Our CISpan is a comprehensive algorithm for incremen-
tal sequential pattern mining. Our contributions are summa-
rized as following:

• CISpan can handle all kinds of updates to the database,
not limited only to insertion and appendage.

• CISpan can mine both closed and complete frequent
sequences. We have both versions implemented.

• CISpan can effectively mine frequent sequences with
all possible minimum support threshold, even as low as
2. Our evaluation on real database transformed from
Linux Kernel source code is based on the minimum
support of 2, in which case IncSpan simply becomes
non-incremental.

• CISpan performs linearly to a wide range of various
support threshold, sequence length, sequence number
and modification rate.

• We provide an effective algorithm for software evolu-
tion study. Tools using sequential mining algorithms
can now be extended with CISpan to analyze software
evolution patterns. We also demonstrated the effect of
applying CISpan into one of the code mining tools, CP-
Miner, as a case study.

We compare CISpan’s complete frequent sequence min-
ing version with IncSpan, since IncSpan cannot mine closed
frequent sequences. For every test case which IncSpan can
finish mining, CISpan could also successfully mine, with a
better performance. For all these test cases, CISpan outper-
forms IncSpan by an average 3.4 times speedup.

We also test CISpan’s performance with original
CloSpan on our real database from source code. Inc-
Span simply cannot handle this case at all. On average,
we see42 times speedup of incremental mining compared



to CloSpan [15] on the real source code database trans-
formed from Linux kernel. We also evaluate CISpan’s per-
formance on multiple increments of source code database,
which shows that even for 20 versions’ difference, CISpan
still performs4.5 times faster than mining from scratch us-
ing CloSpan.

2 Preliminary Concept

Let IT = {i1, i2, ..., ik} be a set of all items. A subset of
IT is called anitemset. A sequences =< t1, t2, ..., tm >
(ti ⊆ IT ) is an ordered list. Thelength, l(s), is the total
number of items in the sequence, i.e.,l(s) =

∑n
i=1 |ti|.

A sequenceα =< a1, a2, ..., am > is a sub-sequenceof
another sequenceβ =< b1, b2, ..., bn >, denoted asα v β,
if and only if ∃i1, i2, ..., im, such that1 ≤ i1 < i2 < ... <
im ≤ n anda1 ⊆ bi1 , a2 ⊆ bi2 , ..., and am ⊆ bim

.
A sequence database,D = {s1, s2, ..., sn}, is a set of

sequences. Thesupportof a sequenceα in D is the number
of sequences inD which containα, support(α) = |{s|s ∈ D
and α v s}|. The support listof a sequenceα in D is a
list of sequence IDs containingα. So the length ofsupport
list for α is the supportof α. Given a minimum support
threshold,min sup, a sequence isfrequent if its support
is no less thanmin sup. The set offrequent sequential
patterns, FS, includes all the frequent sequences. The set
of closed frequent sequential patterns, is defined as follows,
CS = {α|α ∈ FS and 6 ∃β ∈ FS such that α v β
and support(α) = support(β)}. SinceCS includes no
sequence which has a super-sequence with the same support,
we haveCS ⊆ FS. The problem ofclosed sequence mining
is to findCS above a minimum support threshold. Table 2
shows the closed frequent sequences forD in table 1.

The projected database of a sequenceα consists of all
the suffix of sequences that containα (formal definition in
CloSpan [15]). For example, the projected database for
< (b) > in D is D<(b)> = {< (d) >,< (c)(d) >,<
(ce)(f) >}; andD<(a)(c)> = {< (d) >,< (e)(f) >}.

A prefix tree Tis a tree that represents the set of frequent
subsequences in a database. Each nodep in T has a tag
labelled withs or i. s means the node is a starting item
in an itemset;i means the node is an intermediate item in
an itemset. Figure 1 shows the prefix tree forD. The
representation for each node follows the form:< item :
support >. Each circle in the figure represents achildren
pointer of each node, which points to a vector filled by
pointers to all the children nodes.

A closer examination at Figure 1 would reveal the fact
that the subtrees of the two nodes< bs >: 3 and< bi >: 3
are exactly the same. This is because the projected databases
D<(b)> andD<(ab)> are exactly the same. It would be a
waste if we produce and store two copies of the subtrees in
this case. CloSpan [15] optimizes the prefix tree by making
nodes with same projected database share the same children.

:3sa< > :3sb< >

:3ib< >

:2sc< >

:2sc< >

:2sc< >

:2sc< >

:2sd< >

:2sd< >

:2sd< >

root

:2sd< >

Figure 1: Prefix tree ofD.

Figure 2 is the data structure in CloSpan, namelyprefix
sequence lattice. Subtree sharing of two nodes is simply
done by pointing to the samechildren pointer. In this case,
node< bs >: 3 and< bi >: 3 share the same subtree, thus
we only need to produce and store the subtree once.

:3sa< > :3sb< > :2sc< >

:2sc< > :2sd< >

root

:3ib< > :2sc< > :2sd< >

:2sd< >

Figure 2: Prefix sequence lattice ofD.

We define that a sequenceα appearsin a databaseD
if α is a subsequence of one ofD’s sequences. Formally,α
appearsin D if and only if ∃s such thats ∈ D and α v s,
or simplysupport(α) ≥ 1 in D.

3 CISpan Overview

Given the original databaseD and an updated database,
D′, CISpan models all updates as removal of sequences
from D and insertion of sequences toD′. For example,
table 5 shows the updated databaseD′ after modification
of sequence 0 in the example databaseD. CISpan will
model this update to a removal of sequence 0 inD and an
insertion of sequence 0 inD′. Figure 4 illustrates the update
model fromD to D′. We useU to represent the unchanged
sequence set inD andD′, R for the removed sequence set
in D, andI for the inserted sequence set inD′. All kinds of
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SeqID Sequence

0 < (a)(f) >
1 < (ab)(c)(d) >
2 < (ab)(ce)(f) >

Table 5: Sample Sequence DatabaseD′

While miningD from scratch using CloSpan, we store
the intermediate prefix latticeLo. BecauseLo is an acyclic
graph rather than a tree, simple recursive traversal is not
enough to store the subtree sharing information. CISpan
solves this by numbering each node with a unique node ID
in the lattice, so for each node we can exactly identify every
child node through the node ID.

When miningD′ incrementally, CISpan algorithm fol-
lows a divide and conquer strategy. Figure 3 shows the

overview of CISpan. We handle the removal and insertion of
sequences separately. For the insertion case, we build a small
lattice calledincremental prefix lattice, Li, that contains only
the frequent sequencesappearingin I. For the removal case,
we update the nodes correpondingly when retrieving the lat-
tice Lo. We refer to this updated latticeL′

o. Then we merge
updatedL′

o with Li, and form a latticeL′ for D′. Our merg-
ing algorithm guarantees that thisL′ is exactly the same as
the one if we mineD′ from scratch using CloSpan. Finally,
we output all the frequent sequences based onL′. To output
only the closed frequent sequences, we apply the non-closed
sequence elimination algorithm in CloSpan [15] toL′ and
output only the closed frequent sequence set.

We defineIS as all the frequent sequences inD′ that
appear in I. More formally, IS = {s|support(s) in
D′ ≥ min sup and ∃s′ such that s′ ∈ I and s v s′}. The
incremental latticeLi contains all the sequences inIS. We
also defineUS as sequences that are frequent inU . More
formally, US = {s|support(s) in U ≥ min sup}. L′

o

contains all the sequences inUS. Lemma 3.1 forms the
fundamental of our divide and conquer idea.

LEMMA 3.1. FS = IS ∪ US

Proof. Based on the definition,IS ⊆ FS andUS ⊆ FS,
so IS ∪ US ⊆ FS. Assume a sequenceα ∈ FS that
α 6∈ IS ∪ US. Thenα 6∈ IS andα 6∈ US. Sinceα 6∈ IS,
then all ofα’s support must be fromUS; and sinceα 6∈ US,
then α must not be frequent inUS, which meansα isn’t
frequent inD′. This is contradictory to the assumption. Thus
we have:FS = IS ∪ US. �



4 Incremental Lattice Building

As shown in section 1, inserted sequences may introduce
new frequent items. Following is another example to further
reveal that the complexity of inserted sequences is not only
limited to introducing new frequentitems.

Example.Figure 5 shows a prefix tree for different
databasesD1 = {< (a)(b) >,< (a)(c) >,< (b)(c) >};
D2 = {< (b)(a) >,< (c)(a) >,< (b)(c) >}; D3 = {<
(b)(a) >,< (a)(c) >,< (c)(b) >}, etc. All these databases
have the same prefix tree, and they share the same frequent
sequences:FS = {< (a) >: 2, < (b) >: 2, < (c) >: 2}.
Now if we insert a new sequence,α =< (a)(b)(c) > , to
each of these databases, different databases will yield dif-
ferent frequent sequences. Note inα, all of the items were
frequent in original databases. Now given that all items in
inserted sequences were frequent in original database, and
also given the original mining data structure, the prefix tree
in Figure 5, we still can’t tell the final result without looking
into the whole database.

:2sc< >:2sb< >

root

:2sa< >

Figure 5: Prefix tree for various possible databases.

The fundamental reason for the complexity of inser-
tion is that by only buffering information about frequent se-
quences, inserted sequences may always turn some original
un-buffered sequences into frequent ones. In other words,
by buffering only frequent sequences (or their tree-like rep-
resentation, e.g., prefix lattice), we cannot avoid scanning the
whole database in order to mine the final frequent sequences.

IncSpan solves the insertion problem by buffering ad-
ditional semi-frequent sequences with relatively high proba-
bility to become frequent in the updated database, and thus
reduces some search space in incremental mining. Even
though, it still needs to scan the whole database for new
items. Also when update percentage becomes relatively
high, some originally infrequent sequences are likely to be-
come frequent, in which case that buffering semi-frequent
sequences cannot help much.

The bottleneck of prefix tree based algorithms [12, 15,
4] is multiple scans of the whole database. The number
of scans of the database is proportional to the number of
nodes in the prefix tree. After identifying this, our design
philosophy is to build a concise prefix lattice with sufficient
information we need to handle the inserted case. In practice,
this incremental prefix lattice, Li, contains only the frequent
sequences inD′ that appear in I. We name this process
Cross Module Mining.

In cross module mining, theLi is built in the CloSpan
manner. The difference with CloSpan is that every sequence
in Li has to be not only frequent, but also has to satisfy the
cross module mining property.

PROPERTY4.1. Cross Module Mining Property: If se-
quenceα appearsin I, then we sayα satisfies cross module
mining property.

The reason we name this stepcross module miningis
that givenD′ is formed by 2 modules,I and U , we only
mine the sequences appear inI, however we have tocross
the moduleto count its support fromU andI together.

Algorithm 1 illustrates the framework of cross module
mining. We scan the database once, and find all the frequent
items that appear inI, and the incremental lattice only
contains these items. Note we still count the support of an
item in the completeD′, not only in I. IncCloSpan, as
shown in algorithm 2, is the recursive function that builds
the incremental lattice,Li. It follows the same behavior
as originalCloSpan, with only difference that in addition
to checking the next level item is frequent or not, it further
checks whether the corresponding sequence appears inI or
not (line 7, first condition). This is simply done by checking
whether the ID of each sequence containingi is within I
or not. Every sequence inLi must be frequent and must
appearsin I. Figure 6 is the incremental lattice for the
inserted sequence inD′. In this case,I = {< (a)(f) >}.

Algorithm 1 Cross Module Mining (D′,min sup, Li)
Require: A databaseD′, partitioned byI andU ; andmin sup.
Ensure: The incremental prefix latticeLi

1: ScanD′ once, find every itemi such that

• at least one sequence containingi in D′ appearsin I, and

• i is frequent inD′.

2: for every such itemi do
3: s ⇐< i >;
4: IncCloSpan (s, D′

s, min sup, Li)
5: end for

:3sa< > :2sf< >

:2sf< >

root

Figure 6: Incremental Prefix lattice forD′. Only sequence
< (a)(f) > is inserted.



Algorithm 2 IncCloSpan(s,D′
s,min sup, Li)

Require: A sequences, a projected DBD′
s, andmin sup

Ensure: The incremental prefix latticeLi.
1: Inserts into Li;
2: Check whether a discovered sequences′ exists s.t. s and s′

share the same projected database;
3: if suchs′ existsthen
4: Share thechildren pointerof s′ with s in Li;
5: return ;
6: end if
7: ScanD′

s once, find every itemi such that

• at least one sequence containingi in D′
s appearsin I, and

• i is frequent inD′
s, and

• s can be extended tos �i i or s �s i;

8: if no validi availablethen
9: return ;

10: end if
11: for each validi do
12: Call IncCloSpan(s �i i, D′

s�ii, min sup, Li);
13: end for
14: for each validi do
15: Call IncCloSpan(s �s i, D′

s�si, min sup, Li);
16: end for
17: return ;

LEMMA 4.1. Every sequence inIS must also appear inLi,
and its information (support, support list, etc) is the same as
in case of miningD′ from scratch.

Lemma 4.1 shows the nice property ofLi. Not only it
completely solves all the complexities for the insertion case,
it also retains the final prefix lattice structure as well as all
information of these nodes appearing inI.

We claim that it is very cheap to buildLi given that
the modification ratio is not large. SinceI is very small
compared to the whole database, there are only a small
number of items withinI, so our incremental prefix lattice is
also small. So we only have a small number of scans of the
databaseD′. For example, for the real database transformed
from Linux kernel 2.6.20.1 source code, there will be only
206 nodes in the incremental prefix lattice (based on the
result from 2.6.20), compared to 697430 nodes in original
prefix lattice.

5 Handle the removed sequences

Removed sequences are simply handled as a side effect when
we retrieve the original lattice,Lo. When we retrieve each
node inLo, we check each sequence ID in the support list of
this node. If we findk of them are inR, then we decrease
the support of this node byk. After decreasing support, if we
find that the support of a node falls belowmin sup, then we
simply remove this node and all its sub-lattice fromLo. After
we are done with retrieval and removed sequences update,

we have a lattice,L′
o, containing all the frequent sequences

in U . Figure 7 is theL′
o when we mineD′ based onD.

:2sc< >

:2sc< >

:2sc< >

:2sa< > :2sb< >

:2ib< >

root

Figure 7: Retrieved Prefix lattice ofD. Sequence<
(ab)(d) > is removed, causing support for< (as) >,
< (bs) > and < (bi) > to decrease. Also the 3< (ds) >
nodes are removed.

LEMMA 5.1. Every sequence inUS must also appear inL′
o.

6 Merging the two lattices

With Li andL′
o built up, we now can claim the following

theorem based on lemmas 3.1, 4.1 and 5.1.

THEOREM 6.1. Completeness: Every sequence inFS is
contained inLi or L′

o, or both.

This theorem guarantees that we have the complete infor-
mation about theFS. However, there may be competing
information betweenLi andL′

o, so the goal of the merging
algorithm would be to eliminate all competing/redundant in-
formation, and finally generate a lattice,L′, that is the same
as one mining from scratch.

The principle for the merging algorithm is based on
lemma 4.1, that whenever there is competing information,
we should follow the information inLi. Since the majority
of nodes will be inL′

o, so we should mergeLi into L′
o while

walking throughLi andL′
o simultaneously.

In order to preserve the children-sharing property of the
prefix lattice, we need to mark each node whether we have
already visited it or not. When we reach two nodes with
different values of this mark, it suggests we need to merge or
split the nodes inL′

o in some way.
We start by callingMerge(oRoot, iRoot) , and the

algorithm will visit all the nodes inLi and the corresponding
ones inL′

o. We first replace the support and support list in
oNode with the ones iniNode (line 1), ensuring that the
information is updated according toLi. Then for every child
of iNode , namelyiChild , we find the corresponding node
in oNode, namelyoChild . If there is no such child in
oNode, we add a new one (line 10 to 12).

Based on the visit history of the two children (visited
value), there could be totally four cases. Different strategies



Algorithm 3 Merge (oNode, iNode)
Require: Two nodes inL′

o (oNode) andLi (iNode).
Ensure: Li is merged intoL′

o.
1: copy iNode’s support and support list to oNode;
2: oNode.visited⇐ true;
3: iNode.visited⇐ true;
4: if iNode has no childrenthen
5: return;
6: end if
7: for iChild⇐ every child of iNodedo
8: oChild⇐ find child from(oNode, iChild);
9: if oChild= EMPTY then

10: oChild⇐ new node same as iChild;
11: addchild (oNode, iChild);
12: oChild.visited⇐ false;
13: end if
14: if (oChild.visited = false) AND (iChild.visited = false)

then
15: iChild.last visit ⇐ oNode;
16: MERGE(oChild, iChild);
17: else if (oChild.visited= false)AND (iChild.visited= true)

then
18: oNode.Children⇐ iChild.last visit.Children;
19: iChild.last visit ⇐ oNode;
20: return;
21: else if (oChild.visited= true)AND (iChild.visited= false)

then
22: Make a new copy of oNode.Children and all the children

nodes;
23: oNode.Childfen⇐ the new copy of previous step;
24: oChild⇐ find child from(oNode, iChild);
25: iChild.last visit ⇐ oNode;
26: MERGE(oChild, iChild);
27: else
28: if oChild is not a child of iChild.lastvisit then
29: oNode.Children⇐ iChild.last visit.Children;
30: end if
31: iChild.last visit ⇐ oNode;
32: return;
33: end if
34: end for

are applied to different cases.

1. Case 1: Both unvisited

Line 15 - 16 in algorithm 3 corresponds to this most
trivial case. All we need to do is to recursively call
Merge again.

2. Case 2: MergeFigure 8 illustrates the caseiChild
is visited whileoChild is not. Line 18 - 20 in algo-
rithm 3 corresponds to this case. This indicates we
need to merge nodes inL′

o. In this case, we need the
information about which node to merge with. This in-
formation is kept in a pointerlast_visited within
every node inL′

i. Every time aniChild is vis-

root

a

b

root

a

b

b

iNode

oChild

a

iChild

oNode

a

Last_visit

'oL iL

Figure 8: Example of the merge case.

ited, itslast_visited points to the currentoNode.
Thus we could do merging by simply modifying the
Children pointer of oNode to point to the one in
last_visit (Line 18). After the merging of nodes,
we don’t need to further continue the recursion on this
branch, since it has already been visited once previ-
ously.

3. Case 3: Split

root

a

b

root

a

b

b

oNode

iChild

a

oChild

iNode

a

'oL iL

Figure 9: Example of the split case.

Figure 9 and line 22 - 26 in algorithm 3 correspond to
the case whenoChild is visited yetiChild is not.
This indicates we need to split nodes inL′

o. In this
case, we need to make a new copy of theChildren
pointer ofoNode, and all the children nodes in it. Note
we have to make a copy ofChildren from oNode
rather thaniNode , because the former may contain
more children. Then we continue the recursion.

4. Case 4: Both visited

When bothiChild andoChild are visited (line 28
- 32), it is not safe if we directly stop searching this
branch. There may be a tricky case that the graph
structure ofLi andL′

o are not corresponding to each
other. Figure 10 illustrates one example. In figure
10, bothiChild andoChild are visited. However,
the structures of the two lattices are not the same. We
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Figure 10: Example to show a case that both node are visited
in L′

o.

can detect this by testing whetheroChild is the child
of last_visit (Line 28). If not, then we need to
restructureL′

o, simply by modifying theChildren
pointer ofoNode (Line 29).

The merged prefix lattice,L′, now contains the complete
set of frequent sequences ofD′. Figure 11 shows the merged
prefix lattice ofLi shown in Figure 6 andL′

o shown in
Figure 7. Assume the prefix lattice we get in miningD′ from
scratch is namedL′

scratch, we claim thatL′ is exactly the
same asL′

scratch, which means after the merge,L′ contains
complete and non-redundant information.

:3sa< > :2sc< >

:2sc< > :2sd< >

root

:2sc< >

:2sf< >

:2sf< >

:2sb< >

:2ib< >

Figure 11: MergedL′ for D′.

THEOREM 6.2. Soundness and Completeness:
L′ = L′

scratch

Proof. Recall the properties ofL′
scratch:

1. Contains all the frequent sequences inD′.

2. If two sequences have the same projection database,
then they share the same sub-lattice.

We have to prove thatL′ also satisfies these 2 properties.
The first property is simply proved in theorem 6.1. If two
sequences,α andβ have the same projection database, then
they must have the same support list inD′. Then thisα (or
β) could eitherappear in I or not. If so, they will share
the same sub-lattice inLi, and by construction we retain this
structure inL′. If not, then they share the same sub-lattice in
the original lattice,Lo, and we don’t even visit these nodes
during merging, so the structure is also retained.�

7 Evaluation

We evaluate the performance of CISpan from two aspects.
First, we compare the performance of CISpan with Inc-
Span [4]. Because IncSpan can only handleinsertion and
appendoperation to database, so we only generate test cases
that IncSpan can handle. On every test case which IncSpan
can handle, our experimental result suggests CISpan can also
handle that, with better performance. The performance gap
between CISpan and IncSpan gets larger as performance de-
grades. Among all the test cases we used, CISpan outper-
formed IncSpan by an average of 3.4 times and maximum of
15 times.

Then we compare CISpan integrated in CP-Miner to
CloSpan on real databases transformed from 20 consecutive
versions of Linux Kernel source code. IncSpan cannot mine
this kind of databases at all since it cannot handle removal
of sequences, and also it becomes non-incremental when
minimum support threshold is 2. On average, CISpan is 42
times (with a maximum 230 times) faster than mining from
scratch using CloSpan.

Our test bed was equipped with Dual core Intel Pentium
D 3.0GHz processor, 1024KBytes L2 cache and 2 GBytes
main memory. CISpan, IncSpan and CloSpan algorithms are
written in C++ and compiled with -O3 optimization.

7.1 Performance Comparison with IncSpanAll the ex-
periments in this section is based on synthetic dataset
generated by IBM data generator tool. The synthetic
dataset generator can be retrieved from an IBM website,
http://www.almaden.ibm.com/cs/quest . The
parameters we used in the experiment are as follows [2]:

• D - Number of sequences (in 1000s)

• C - Average itemset per sequence

• T - Average number of items in item set

• N - Number of different items (in 1000s)

In order to use IncSpan, only two models of updates, in-
serting new sequences and appending items to sequences are
used. We first generate the dataset using the default parame-
ters suggested by the provider to the tool, D100C10T2.5N10.
Then we examine the effect of changing each parameter on
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Figure 12:Performance results

the performances of CISpan and IncSpan. We set the semi-
frequent buffer ratio in IncSpan as 0.8, as suggested by [4].
We also tested the effect of modification rate and minimum
support rate in evaluation. Modification rate stands for per-
centage of updated sequence from original date set.

Figure 12(a) shows the performance of both CISpan
and IncSpan when minimum support varies. We used de-
fault dataset D100C10T2.5N10 with modification rate 20%.
When minimum support gets larger, both algorithms get bet-
ter performance.

Figure 12(b) shows effect of modification rate. Modi-
fication rate is the percentage of updated sequences. For ex-
ample, if data set has 100,000 sequences (D100) and 10,000
of them were updated, the modification rate is 10%. Inc-
Span’s performance is much more sensitive to modification
rate change as compared to CISpan.

Figure 12(c) shows how each algorithm is affected by
length of sequence (parameter C×T). For all the test cases
where the average length varied from 10 to 25, CISpan
outperforms IncSpan and the performance gap gets larger
and larger.

In Figure 12(d), we evaluate both CISpan and IncSpan
on various total number of sequences (parameter D).

Figure 12(e) shows performance of each algorithm with
various numbers of unique items (N). For example, when
N=10, data set will contains 10,000 unique items. When
N=100, CISpan is 16 times faster than IncSpan. From the
result we can see CISpan is almost not affected at all by the
number of unique items, while the performance of IncSpan
degrades as the number gets larger.

7.2 Linux Kernel Mining In this section, we use the real
database transformed from Linux Kernel source code to
evaluate CISpan. A recent major version of Linux Kernel,
version 2.6.20.x is chosen, that contain totally 21 different
Linux kernel code, from 2.6.20, 2.6.20.1, 2.6.20.2, ... to
2.6.20.20. We integrated CISpan algorithm within CP-
Miner, with modifications to other steps to mine the source
code incrementally. We first mine the 2.6.20 version from
scratch using CP-Miner. After that, we apply incremental
mining to later 20 versions.We first mine them in an iterative
manner, which means incremental mining is based on the
immediate previous version’s result. Then we test CISpan
in an accumulative manner, that is, we mine every version
based on the result of 2.6.20.

In figure 13(a), we first compare incremental mining
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Figure 13:Incremental Mining of Linux Kernel 2.6.20.1 - 2.6.20.20

performance with mining from scratch. Since it takes around
40 minutes each time we mine the kernel source code from
scratch, we only compared 8 versions (2.6.20.1 to 2.6.20.8)
of kernel code mining from scratch to incremental mining.
On average, CISpan outperforms CloSpan by 42 times.

We then incrementally mine all 20 versions one after
another iteratively, e.g., mining 2.6.20.1 based on 2.6.20’s
result, 2.6.20.2 based on 2.6.20.1’s result, etc. Figure 13(b)
shows the time consumption and memory usage. On aver-
age, it takes 35 sec and 128.25 MBytes memory for each
pass of incremental mining. Figure 13(c) shows the size of
change log files and the size of incremental lattice,Li, in
number of nodes. Change log is a log or history of changes
made to last version. Generally, big change log file suggests
large amount of changes of source code from previous ver-
sion, and correspondingly in CISpan it suggests largeLi. On
average, the prefix lattice we get mining Linux Kernel code
from scratch contains 701,339 number of nodes. This re-
sult shows in real life database, the performance of CISpan
is sensitive to the change ratio of database. For example, in-
cremental mining time for version 2.6.20.2 is significantly
greater than other versions, due to the largest change log file
size of that version.

Next, we incrementally mine the 20 kernel versions in
an accumulative manner, that is, each time it is based on
2.6.20’s mining result. Figure 13(d) shows time and mem-
ory usage.We can see from the result that the performance
increases steadily with the accumulative changes of versions.
In the end, when mining the last version, 2.6.20.20, CISpan
takes 470 seconds and 173 MB of memory, which is still 4.5
times faster than mining from scratch.

8 Related Work

Recently, several algorithms have been proposed for incre-
mental mining and maintenance of sequential patterns, with
two major approaches: (1) levelwise mining with candidate
generate-and-test; and (2) incremental mining by keeping
track of additional information.

[10] and [17] are two studies belonging to the first cate-
gory. Both methods perform incremental mining with a can-
didate generate-and-test approach – the size-(k + 1) candi-
dates are generated from the size-k frequent sequences. Al-
though the number of database scans could be potentially re-
duced with some careful handling based on some mathemat-
ical deductions, this approach still involves multiple scans
of the whole database, as well as the generation of a large
number of candidates.

[3], [11] and [4] belong to the second category
by keeping track of additional information for incremental
mining. Chang et al. [3] proposed an incremental approach
to buffer the CSTree of the old database. This approach is
also capable of mining the closed frequent sequences.

Parthasarathy et al. [11] proposed ISM which is
based on SPADE, by maintaining a sequence lattice of an
old database. The sequence lattice includes the frequent
sequences and a negative border which includes sequences
which are infrequent but their subsequences are frequent.

[4] proposed IncSpan which is based on PrefixSpan by
buffering a set of semi-frequent sequences. A semi-frequent
sequence is an infrequent sequence but its frequency is no
smaller thanµ∗min sup whereµ ∈ [0, 1]. When a sequence
database grows, the semi-frequent sequences have a higher
probability to become frequent. Therefore, by buffering
those patterns, the number of database scan and projection



operations could be effectively reduced.
When the existing methods are applied to the software

source mining, there are three main limitations: (1) Cannot
handle the removal of sequences; (2) Cannont handle a low
minimum support as2 which is meaningful in applications
such as copy-pasted code detection; and (3) output too many
frequent sequences which would slow down the incremental
mining process. Our proposed CISpan algorithm could
effectively handle these three challenges. It effectively
reduces the number of mining results by generating closed
sequential patterns in the incremental mining process.

9 Conclusions

Based on a real world problem, in this paper we proposed a
comprehensive incremental mining algorithm for sequential
database, that can be effectively applied to our software min-
ing tool. CISpancould handle various mining requirements
in real world database evolution, including general update
model, closed sequence mining, low minimum support, etc.
It outperforms the previously proposed incremental mining
algorithmIncSpanby a wide margin. Integrated within our
code mining tool, we show CISpan also outperforms the non-
incremental method CloSpan by an average of 42 times on
real Linux Kernel source code. Armed with this effective in-
cremental mining algorithm, our immediate goal is to apply
CP-Miner to investigate software evolution patterns, which
is very significant for software engineering researchers. In
the future, we will also appply CISpan into more software
mining tools as well as utilizing these tools to mine software
evolution patterns.
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