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Abstract. Shortest paths and shortest path distances are important primary
queries for users to query in a large graph. In this paper, we propose a new ap-
proach to answer shortest path and shortest path distance queries efficiently with
an error bound. The error bound is controlled by a user-specified parameter, and
the online query efficiency is achieved with prepossessing offline. In the offline
preprocessing, we take a reference node embedding approach which computes
the single-source shortest paths from each reference node to all the other nodes.
To guarantee the user-specified error bound, we design a novel coverage-based
reference node selection strategy, and show that selecting the optimal set of refer-
ence nodes is NP-hard. We propose a greedy selection algorithm which exploits
the submodular property of the formulated objective function, and use a graph
partitioning-based heuristic to further reduce the offline computational complex-
ity of reference node embedding.

In the online query answering, we use the precomputed distances to provide a
lower bound and an upper bound of the true shortest path distance based on the
triangle inequality. In addition, we propose a linear algorithm which computes
the approximate shortest path between two nodes within the error bound. We
perform extensive experimental evaluation on a large-scale road network and a
social network and demonstrate the effectiveness and efficiency of our proposed
methods.

1 Introduction

Querying shortest paths or shortest path distances between vertices in a large graph
has important applications in many domains including road networks, social networks,
biological networks, the Internet, and so on. For example, in road networks, the goal
is to find shortest routes between locations or find nearest objects such as restaurants
or hospitals; in social networks, the goal is to find the closest social relationships such
as common interests, collaborations, citations, etc., between users; while in the Inter-
net, the goal is to find the nearest server in order to reduce access latency for clients.
Although classical algorithms like breadth-first search (BFS), Dijkstra’s algorithm [1],
and A∗ search algorithm [2] can compute the exact shortest paths in a network, the
massive size of the modern information networks and the online nature of such queries
make it infeasible to apply the classical algorithms online. On the other hand, it is space
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inefficient to precompute the shortest paths between all pairs of vertices and store them
on disk, as it requires O(n3) space to store the shortest paths and O(n2) space to store
the distances for a graph with n vertices.

Recently, there have been many different methods [3,4,5,6,7,8,9,10,11,12] for es-
timating the shortest path distance between two vertices in a graph based on graph
embedding techniques. A commonly used embedding technique is reference node em-
bedding, where a set of graph vertices is selected as reference nodes (also called land-
marks) and the shortest path distances from a reference node to all the other nodes in a
graph are precomputed. Such precomputed distances can be used online to provide an
estimated distance between two graph vertices. Although most of the above mentioned
methods follow the same general framework of reference node embedding, they differ
in the algorithmic details in the following aspects: (1) reference node selection – some
(e.g., [6,7,10,11,12]) select reference nodes randomly, while others (e.g., [3,4,8,9]) pro-
pose heuristics to select reference nodes; (2) reference node organization – [8,10,11,12]
proposed a hierarchical embedding where reference nodes are organized in multiple
levels, while most of the other methods use a flat reference node embedding; and (3) an
error bound on the estimated shortest path distances – [6,10] analyzed the error bound
of the estimated distances with random reference node selection, while most of the other
methods have no error bounds or guarantees of the estimated distances.

A theoretical error bound can guarantee the precision of the estimated distance, but
the derivation of an error bound is closely related to the reference node selection strat-
egy. Random selection [6,7] or heuristic selection strategies (e.g., based on degree or
centrality) [9] cannot derive an error bound to control the precision of the estimated
distance. In this paper, we propose a reference node embedding method which provides
a distance estimation within a user-specified error bound ε. Specifically, we formulate a
coverage-based reference node selection strategy, i.e., every node in a graph should be
“covered” by some reference node within a radius c = ε/2. The coverage property will
lead to a theoretical error bound of ε. Importantly, allowing a user-specified error bound
increases the flexibility of our method in processing queries at different error tolerance
levels – when a user specifies an error bound ε he can tolerate, we can compute the
corresponding radius c for coverage and then the number of reference nodes that are
necessary to ensure the error bound. On the other hand, if a user specifies the number
of reference nodes he selects, we can find the corresponding value of c and the error
bound. We will also show through experimental study that by adjusting the radius c, we
can achieve a tradeoff between the theoretical error bound and the offline computational
time of the reference node embedding process.

Our main contributions are summarized as follows.

– We take the reference node embedding approach and formulate the optimal refer-
ence node set selection problem in a coverage-based scheme. The coverage-based
strategy leads to a theoretical error bound of the estimated distance. We show that
selecting the minimum set of reference nodes is an NP-hard problem and then pro-
pose a greedy solution based on the submodular property of the proposed objective
function.

– The reference node embedding can be used to compute an upper bound and a lower
bound of the true shortest path distance between any two vertices based on the
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triangle inequality. We show that the estimated distance is within a user-specified
error bound of the true distance. To further reduce the offline computational com-
plexity of the embedding approach, we propose a graph partitioning-based heuristic
for reference node embedding with a relaxed error bound.

– Based on the estimated distances, we propose a linear algorithm to compute the ap-
proximate shortest path between two vertices. This algorithm improves the shortest
path query efficiency of A∗ search by three to five orders of magnitude, while the
distance of the approximate shortest path is very close to the exact shortest distance.

– We performed extensive experiments on two different types of networks including
a road network and a social network. Although these two types of networks exhibit
quite different properties on vertex degree distribution, network diameter, etc., our
methods can achieve high accuracy and efficiency on both types of networks.

The rest of the paper is organized as follows. Section 2 introduces preliminary concepts
and formulates the distance estimation problem. Section 3 presents our proposed algo-
rithms for reference node selection, shortest path distance estimation and approximate
shortest path search. A graph partitioning-based heuristic technique for reference node
embedding with a lower offline complexity is proposed in Section 4. Section 5 presents
extensive experimental results. We survey related work in Section 6 and conclude in
Section 7.

2 Preliminaries and Problem Statement

The input is an edge weighted graph G = (V, E, w), where V is a set of vertices, E is
a set of edges, and w : E → R+ is a weighting function mapping an edge (u, v) ∈ E
to a positive real number w(u, v) > 0, which measures the length of (u, v). We denote
n = |V | and m = |E|. For a pair of vertices s, t ∈ V , we use D(s, t) to denote the true
shortest path distance between s and t. If (s, t) ∈ E, D(s, t) = w(s, t). In this work,
we focus on undirected graphs. Our problem can be formulated as follows.

Problem 1 (Distance Estimation with a Bounded Error). Given a graph G and a user-
specified error bound ε as input, for any pair of query vertices (s, t), we study how to
efficiently provide an accurate estimation of the shortest path distance ̂D(s, t), so that
the estimation error | ̂D(s, t) − D(s, t)| ≤ ε.

To efficiently provide a distance estimation, the basic idea is to use a reference node
embedding approach. Consider a set of vertices R = {r1, . . . , rl} (R ⊆ V ), which
are called reference nodes (also called landmarks). For each ri ∈ R, we compute the
single-source shortest paths to all vertices in V . Then for every node v ∈ V , we can use
a l-dimensional vector representation as

−→
D(v) = 〈D(r1, v), D(r2, v), . . . , D(rl, v)〉

This approach is called reference node embedding. This embedding can be used to
compute an upper bound and a lower bound of the true shortest path distance between
two vertices (s, t). In the rest of the paper, we will discuss the following questions:
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1. Given a graph G and an error bound ε, how to select the minimum number of
reference nodes to ensure the error bound ε in the distance estimation?

2. How to estimate the shortest distance with an error bound given a query (s, t)?
3. How to efficiently compute an approximate shortest path P given a query (s, t)?

3 Proposed Algorithm

The quality of the estimated shortest path distance is closely related to the reference
node selection strategy. Given a graph G and an error bound ε, we will first formulate a
coverage-based reference node selection approach to satisfy the error bound constraint.
We will then define an objective function over a set of reference nodes and discuss how
to select the minimum set of reference nodes according to the objective function.

3.1 Reference Node Selection

Definition 1 (Coverage). Given a graph G = (V, E, w) and a radius c, a vertex v ∈ V
is covered by a reference node r if D(r, v) ≤ c.

The set of vertices covered by a reference node r is denoted as Cr, i.e., Cr = {v|v ∈
V, D(r, v) ≤ c}. In particular, we consider a reference node r is covered by itself, i.e.,
r ∈ Cr, since D(r, r) = 0 ≤ c. Here we formulate the problem of optimal reference
node selection.

Problem 2 (Coverage-based Reference Node Selection). Given a graph G = (V, E, w)
and a radius c, our goal is to select a minimum set of reference nodes R∗ ⊆ V , i.e.,
R∗ = argminR⊆V |R|, so that ∀v ∈ V − R∗, v is covered by at least one reference
node from R∗.

Given a user-specified error bound ε, we will show in Section 3.3, when we set
c = ε/2, the coverage-based reference nodes selection method can guarantee that the
error of the estimated shortest path distance is bounded by ε.

 

1r  

2r  

3r  

Fig. 1. Coverage-based Reference Node Selection



Querying Shortest Path Distance with Bounded Errors in Large Graphs 259

Example 1. Figure 1 shows a graph with three reference nodes r1, r2 and r3. The three
circles represent the area covered by the three reference nodes with a radius c. If a
vertex lies within a circle, it means the shortest path distance between the vertex and
the corresponding reference node is bounded by c. As shown in the figure, all vertices
can be covered by selecting the three reference nodes.

Besides the coverage requirement, a reference node set should be as compact as
possible. To evaluate the quality of a set of reference nodes R, we define a gain function
over R.

Definition 2 (Gain Function). The gain function over a set of reference nodes R is
defined as

g(R) = |
⋃

r∈R
Cr| − |R| (1)

In Figure 1, g({r1}) = 5, g({r2}) = 3, g({r3}) = 2 and g({r1, r2, r3}) = 8.
The gain function g is a submodular function, as stated in Theorem 1.

Definition 3 (Submodular Function). Given a finite set N , a set function f : 2N → R
is submodular if and only if for all sets A ⊆ B ⊆ N , and d ∈ N \ B, we have
f(A ∪ {d}) − f(A) ≥ f(B ∪ {d}) − f(B).

Theorem 1. For two reference node sets A ⊆ B ⊆ V and r ∈ V \B, the gain function
g satisfies the submodular property:

g(A ∪ {r}) − g(A) ≥ g(B ∪ {r}) − g(B)

Proof. According to Definition 2, we have

g(A ∪ {r}) − g(A) = |CA ∪ Cr| − (|A| + 1) − |CA| + |A|
= |CA ∪ Cr| − |CA| − 1
= |Cr − CA| − 1

where Cr − CA represents the set of vertices covered by r, but not by A.
Since A ⊆ B, we have Cr − CB ⊆ Cr − CA, hence |Cr − CB| ≤ |Cr − CA|.

Therefore, the submodular property holds. �

As our goal is to find a minimum set of reference nodes R∗ to cover all vertices in
V , it is equivalent to maximizing the gain function g:

max
R

g(R) = max
R

(|
⋃

r∈R
Cr| − |R|) = |V | − min

R
|R| = g(R∗)

In general, maximizing a submodular function is NP-hard [13]. So we resort to a greedy
algorithm. It starts with an empty set of reference nodes R0 = ∅ with g(R0) = 0.
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Then it iteratively selects a new reference node which maximizes an additional gain, as
specified in Eq.(2). In particular, in the k-th iteration, it selects

rk = arg max
r∈V \Rk−1

g(Rk−1 ∪ {r}) − g(Rk−1) (2)

The algorithm stops when all vertices in V are covered by the reference nodes. The
greedy algorithm returns the reference node set R.

Continue with our example. According to the greedy selection algorithm, in the
first step, we will select r1 as it has the highest gain. Given R1 = {r1}, we have
g({r1, r2}) − g({r1}) = 1 and g({r1, r3}) − g({r1}) = 2. So we will select r3 in
the second step. Finally we will select r2 to cover the remaining vertices. Note that to
simplify the illustration, we only consider selecting reference nodes from r1, r2, r3 in
this example. Our algorithm actually considers every graph vertex as a candidate for
reference nodes.

To effectively control the size of R, we can further relax the requirement to cover
all vertices in V . We observe that such a requirement may cause |R| unnecessarily
large, in order to cover the very sparse part of a graph or the isolated vertices. So we
set a parameter Cover Ratio (CR), which represents the percentage of vertices to be
covered. The above greedy algorithm terminates when a fraction of CR vertices in V
are covered by R.

3.2 Shortest Path Distance Estimation

Given R, we will compute the shortest path distances for the node pairs {(r, v)|r ∈
R, v ∈ V }. This is realized by computing the single-source shortest paths for every
r ∈ R. Given a query node pair (s, t), we have

|D(s, r) − D(r, t)| ≤ D(s, t) ≤ D(s, r) + D(r, t)

for any r ∈ R, according to the triangle inequality. Figure 2 shows an illustration of
the shortest path distance estimation between (s, t), where the circle represents the area
covered by a reference node r with a radius c. In this example, s is covered by r, while
t is not.

By considering all reference nodes, we have tighter bounds

D(s, t) ≤ min
r∈R

(D(s, r) + D(r, t)) (3)

and
D(s, t) ≥ max

r∈R
|D(s, r) − D(r, t)| (4)

 

r  

c≤  

s  

t  

Fig. 2. Distance Estimation
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Both the upper bound minr∈R(D(s, r)+D(r, t)) and the lower bound maxr∈R |D(s, r)
− D(r, t)| can serve as an approximate estimation for D(s, t). We denote them as ̂DU

and ̂DL, respectively. However, [4] reported that the upper bound achieves very good
accuracy and performs far better than the lower bound in the internet network. We con-
firmed this observation on both a social network and a road network in our experiments.
Thus we adopt the shortest path distance estimation as

̂DU (s, t) = min
r∈R

(D(s, r) + D(r, t))

3.3 Error Bound Analysis

In this section, we will show that, given a query (s, t), when s or t is covered within
a radius c by some reference node from R, the estimated distance ̂DU (s, t) is within a
bounded error of the true distance D(s, t).

Theorem 2. Given any query (s, t), the error of the estimated shortest path distance
̂DU (s, t) can be bounded by 2c with a probability no smaller than 1−(1−CR)2, where
c is the coverage radius and CR is the cover ratio.

Proof. Given a query (s, t) and a reference node set R, assume s is covered by a ref-
erence node, denoted as r∗, i.e., D(s, r∗) ≤ c. Without loss of generality, we assume
D(s, r∗) ≤ D(r∗, t). Note that the following error bound still holds if D(s, r∗) >
D(r∗, t). The error of the estimated shortest path distance between (s, t) is bounded by

err(s, t) = ̂DU (s, t) − D(s, t)
= min

r∈R
(D(s, r) + D(r, t)) − D(s, t)

≤ D(s, r∗) + D(r∗, t) − D(s, t)
≤ D(s, r∗) + D(r∗, t) − |D(s, r∗) − D(r∗, t)|
= 2D(s, r∗)
≤ 2c

The first inequality holds because minr∈R(D(s, r) + D(r, t)) ≤ D(s, r∗) + D(r∗, t);
and the second inequality holds because we have the lower bound property D(s, t) ≥
|D(s, r∗) − D(r∗, t)|.

The error bound holds when either s or t, or both are covered by some reference
nodes. When neither s nor t is covered by some reference nodes within a radius c,
err(s, t) is unbounded. The probability for this case is (1 − CR)2. However, in this
case, if a reference node r happens to lie on the shortest path from s to t, we have the
estimated distance ̂DU (s, t) = D(s, t), i.e., the error is still bounded by 2c. Therefore,
the probability that the error of an estimated distance is unbounded is at most (1−CR)2.
Thus we have P (err(s, t) ≤ 2c) ≥ 1 − (1 − CR)2. �

Given a user-specified error bound ε, we will have P (err(s, t) ≤ ε) ≥ 1− (1−CR)2,
when we set c = ε/2.
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3.4 Approximate Shortest Path Computation

With the shortest distance estimation, we propose a heuristic algorithm SPC to compute
an approximate shortest path P for a query (s, t). The SPC algorithm works as follows:
let r = arg minv∈R(D(s, v)+D(v, t)). We use such r to break down the path into two
segments as P (s, t) = SP (s, r)+SP (r, t). Here, SP (s, r) represents the exact shortest
path from s to r. To compute SP (s, r) in linear time, we can follow the criterion

next(s) = arg min
v∈N(s)

(D(s, v) + D(v, r))

where N(s) denotes the the neighbor set of s and next(s) denotes the successive neigh-
bor of s that lies on the shortest path from s to r. Here we determine next(s) based on
the exact shortest distances D(s, v) and D(v, r). We iteratively apply the above crite-
rion to find every vertex on the shortest path from s to r. Similarly, to compute SP (r, t),
we can follow the criterion

prev(t) = arg min
v∈N(t)

(D(r, v) + D(v, t))

where prev(t) is the preceding neighbor of t that lies on the shortest path from r to t.
The SPC algorithm computes an approximate shortest path whose distance equals

̂DU (s, t). The time complexity is O(|R| + deg · |P |), where O(|R|) is the time for
finding the reference node r to break down the path, and deg is the largest vertex degree
in the graph.

4 Graph Partitioning-Based Heuristic

For the reference node embedding method we propose above, the offline complexity is
O(|E| + |V | log |V |) to compute the single-source shortest paths for a reference node
v ∈ R. It can be simplified as O(n log n) (n = |V |) when the graph is sparse. There-
fore, the total embedding time is O(|R|n log n), which could be very expensive when
|R| is large. In this section, we propose a graph partitioning-based heuristic for the
reference node embedding to reduce the offline time complexity with a relaxed error
bound. To distinguish the two methods we propose, we name the first method RN-basic
and the partitioning-based method RN-partition.

4.1 Partitioning-Based Reference Node Embedding

The first step of RN-partition is reference node selection, which is the same as described
in Section 3.1. In the second step, we use KMETIS [14] to partition the graph into K
clusters C1, . . . , CK . As a result, the reference node set R is partitioned into these K
clusters. We use Ri to denote the set of reference nodes assigned to Ci, i.e., Ri =
{r|r ∈ R and r ∈ Ci}. It is possible that Ri = ∅ for some i. For a cluster Ci with
Ri = ∅, we can select the vertex from Ci with the largest degree as a within-cluster
reference node, to improve the local coverage within Ci. Note that the number of such
within-cluster reference nodes is bounded by the number of clusters K , which is a small
number compared with |R|.
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The idea of the partitioning-based reference node embedding is as follows. For the
cluster Ci, we compress all reference nodes in Ri as a supernode SNi and then compute
the single-source shortest paths from SNi to every vertex v ∈ V . The reference node
compression operation is defined as follows.

Definition 4 (Reference Node Compression). The reference node compression oper-
ation compresses all reference nodes in Ri into a supernode SNi. After compression,
for a vertex v ∈ V \Ri, (SNi, v) ∈ E iff ∃r ∈ Ri, s.t. (r, v) ∈ E, and the edge weight
is defined as w(SNi, v) = minr∈Ri w(r, v).

Then the shortest path between SNi and v is actually the shortest path between a
reference node r ∈ Ri and v with the smallest shortest path distance, i.e.,

D(SNi, v) = min
r∈Ri

D(r, v)

and we denote the closest reference node r ∈ Ri to v as rv,i, which is defined as

rv,i = arg min
r∈Ri

D(r, v)

Note D(SNi, v) = D(rv,i, v) = minr∈Ri D(r, v). In the following, we will use
D(SNi, v) and D(rv,i, v) interchangeably.

The time complexity for computing shortest paths from the supernodes in each of the
K clusters to all the other vertices in V is O(Kn log n). In addition, we compute the
shortest path distances between every pair of reference nodes within the same cluster.
The time complexity of this operation is O(|R|n/K log n/K), if we assume the nodes
are evenly partitioned into K clusters. We further define the diameter d for a cluster as
follows.

Definition 5 (Cluster Diameter). Given a cluster C, the diameter d is defined as the
maximum shortest distance between two reference nodes in C, i.e.,

d = max
ri,rj∈C

D(ri, rj)

where D(ri, rj) is the shortest distance between ri and rj .

Then the diameter of the partitioning C1, . . . , CK is defined as the maximum of the
K cluster diameters, i.e.,

dmax = max
i∈[1,K]

di

4.2 Partitioning-Based Shortest Path Distance Estimation

Given a query (s, t), for the supernode SNi representing a cluster Ci, based on the
triangle inequality we have

D(s, t) ≤ D(s, SNi) + D(rs,i, rt,i) + D(t, SNi)
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Fig. 3. Distance Estimation in RN-partition

Figure 3 shows an illustration of the shortest path distance estimation between (s, t)
in RN-partition, where the circle represents a cluster Ci. Note that in general s and rs,i

may not necessarily belong to the same cluster, and the shortest path distance D(s, rs,i)
may not necessarily be bounded by the radius c. But these factors will not affect the
distance estimation strategy.

By considering all K clusters, we have a tighter upper bound

D(s, t) ≤ min
i∈[1,K]

(D(s, SNi) + D(rs,i, rt,i) + D(t, SNi))

We denote this estimated distance upper bound as ̂DP
U (s, t).

4.3 Error Bound Analysis

In the following theorem, we will show that, when s or t is covered within a radius c
by some reference node from a cluster Ci for some i, the estimated distance ̂DP

U (s, t)
is within a bounded error of the true distance D(s, t).

Theorem 3. Given any query (s, t), the error of the estimated shortest path distance
̂DP

U (s, t) by RN-partition can be bounded by 2(c+dmax) with a probability no smaller
than 1− (1−CR)2, where c is the coverage radius, CR is the cover ratio and dmax is
the maximum cluster diameter.

Proof. Given a query (s, t), assume s is covered by at least one reference node from R
within a radius c. Without loss of generality, assume such a reference node is from the
cluster Ci for some i and denote it as rs,i. According to the triangle inequality, we have

D(rs,i, t) − D(s, t) ≤ D(s, rs,i) ≤ c

By adding D(s, rs,i) on both sides, we have

D(s, rs,i) + D(rs,i, t) − D(s, t) ≤ 2D(s, rs,i) ≤ 2c (5)

Denote the closest reference node in Ci to t as rt,i. Then we have

D(rt,i, t) − D(rs,i, t) ≤ D(rs,i, rt,i) ≤ dmax

Since rs,i, rt,i belong to the same cluster, their distance is bounded by dmax. By adding
D(rs,i, rt,i) on both sides, we have

D(rs,i, rt,i) + D(rt,i, t) − D(rs,i, t) ≤ 2D(rs,i, rt,i) ≤ 2dmax (6)
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By adding Eq.(5) and Eq.(6), we have

D(s, rs,i) + D(rs,i, rt,i) + D(rt,i, t) − D(s, t) ≤ 2(c + dmax)

As we have defined ̂DP
U (s, t) = mini∈[1,K](D(s, SNi) + D(rs,i, rt,i) + D(t, SNi)),

the error of the estimated shortest path distance between (s, t) is bounded by

errP (s, t) = ̂DP
U (s, t) − D(s, t)

≤ D(s, rs,i) + D(rs,i, rt,i) + D(rt,i, t) − D(s, t)
≤ 2(c + dmax)

The error bound holds when either s or t, or both are covered by some reference
nodes with a radius c. When it happens that neither s nor t is covered by some reference
nodes, Eq.(5) does not hold in general, thus errP (s, t) is unbounded. The probability
for this case is (1 − CR)2. For a similar reason as explained in Theorem 2, i.e., even
when neither s nor t is covered, if there are reference nodes rs,i, rt,i, for some i, on
the shortest path from s to t, we can still have an accurate estimation which satisfies
the error bound. Therefore the probability that the error of an estimated distance is
unbounded is at most (1 − CR)2. Thus, we have P (errP (s, t) ≤ 2(c + dmax)) ≥
1 − (1 − CR)2 �

Compared with RN-basic, RN-partition reduces the offline computational complexity
to O(Kn log n + |R|n/K log n/K). As long as we choose a reasonably large K such
that |R|/K ≤ K , the complexity of RN-partition is dominated by O(Kn log n). As
a tradeoff, the error bound is relaxed from 2c to 2(c + dmax). The cluster diameter
dmax is determined by the size of the graph and the number of clusters K . Table 1
compares RN-basic and RN-partition on time/space complexity and the error bound. In
experimental study, we will study the relationship between K , the offline computation
time and the accuracy of the estimated distances.

Table 1. Comparison between RN-basic and RN-partition

RN-basic RN-partition
Offline Time Complexity O(|R|n log n) O(Kn log n + |R|n/K log n/K)

Offline Space Complexity O(|R|n) O(Kn + |R|2/K)

Distance Query Complexity O(|R|) O(K)

Error Bound 2c 2(c + dmax)

5 Experiments

We performed extensive experiments to evaluate our algorithms on two types of net-
works – a road network and a social network. The road network and the social network
exhibit quite different properties on: (1) degree distribution, i.e., the former roughly fol-
lows a uniform distribution while the latter follows a power law distribution; and (2)
network diameter, i.e., the social network has the shrinking diameter property [15] and
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the small world phenomenon, which, however, do not hold in the road network. All
experiments were performed on a Dell PowerEdge R900 server with four 2.67GHz six-
core CPUs and 128GB main memory running Windows Server 2008. All algorithms
were implemented in Java.

5.1 Comparison Methods and Evaluation

We compare our methods RN-basic and RN-partition with two existing methods:

– 2RNE [8] by Kriegel et al. uses a two level reference node embedding which ex-
amines K nearest reference nodes for both nodes in a query to provide a distance
estimation. We select reference nodes uniformly and set K = 3.

– Centrality [9] by Potamias et al. selects reference nodes with low closeness central-
ity. According to [9], the approximate centrality measure is computed by selecting
a sample of S random seeds, where we set S = 10, 000 in our implementation.

For a node pair (s, t), we use the relative error to evaluate the quality of the estimated
distance

rel err(s, t) =
| ̂DU (s, t) − D(s, t)|

D(s, t)

As it is expensive to exhaustively evaluate all node pairs in a large network, we ran-
domly sample a set of 10, 000 node pairs in the graph as queries and evaluate the aver-
age relative error on the sample set.

5.2 Case Study 1: Road Network

We use the New York City road network, which is an undirected planar graph with
264, 346 nodes and 733, 846 edges. A node here represents an intersection or a road
endpoint while the weight of an edge represents the length of the corresponding road
segment. The data set can be downloaded from http://www.dis.uniroma1.it/∼
challenge9/.

The degrees of most nodes in the road network fall into the range of [1, 4] and the
network has no small world phenomenon. For the 10, 000 random queries we generate,
we plot the histogram of the shortest path distance distribution in Figure 4. The average
distance over the 10, 000 queries is davg = 26.68KM. So if we set the radius c =
0.8KM, the average relative error can be roughly bounded by 2c/davg = 0.06.

Parameter Sensitivity Test on CR. In this experiment, we vary the cover ratio CR
and compare the average error, the reference node set size and offline index time by
RN-basic and RN-partition with K = 100, 250, 500, respectively. We fix the radius
c = 0.8KM.

Figure 6 shows the average error of RN-basic and RN-partition with different K
values. The average error of RN-basic is below 0.01 and slightly decreases as CR in-
creases. The average error of RN-partition decreases very sharply when the number of
partitions K increases and becomes very close to that of RN-basic when K = 500.
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Figure 7 shows that the number of reference nodes |R| increases linearly with CR.
As RN-basic and RN-partition have the same reference node selection process, the num-
ber is the same for both methods. When CR = 1.0, we need 9, 000 reference nodes to
cover the road network with 264, 346 nodes.

Figure 8 shows the offline index time in logarithmic scale for RN-basic and RN-
partition to compute the single-source shortest paths from every reference node. RN-
partition reduces the index time of RN-basic by one order of magnitude. In addition, as
the number of reference nodes |R| increases linearly with CR, the index time of RN-
basic also increases linearly with CR, because the time complexity is O(|R|n log n).
On the other hand, the index time of RN-partition remains quite stable as CR increases,
because RN-partition only computes the shortest paths from each of the K clusters as
the source.
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Fig. 14. Average Query Time
vs. |R| on Road Network

Parameter Sensitivity Test on c. In this experiment, we vary the radius c and compare
the average error, the reference node set size and offline index time by RN-basic and
RN-partition with K = 100, 250, 500, respectively. We fix the cover ratio CR = 1.0.

Figure 9 shows the average error of RN-basic and RN-partition with different K
values. We can make the following observations from the figure: (1) RN-partition (K =
500) achieves an average error very close to that of RN-basic when c ≥ 0.8KM; (2) The
average error of RN-basic monotonically increases with c, which is consistent with the
theoretical error bound of 2c; and (3) Different from RN-basic, the average error of
RN-partition shows a decreasing trend with c. When c is very small, the number of
reference nodes is very large. So RN-partition may choose suboptimal reference nodes
for distance estimation, which leads to a larger error.

Figure 10 shows that the number of reference nodes |R| decreases with c. When
c < 0.4KM, |R| decreases sharply with c. Figure 11 shows the offline index time of
RN-basic and RN-partition in logarithmic scale. As |R| decreases with c, the index time
of RN-basic also decreases with c. RN-partition reduces the index time of RN-basic by
two orders of magnitude or more when c < 0.2KM but the difference becomes smaller
as c increases. RN-basic cannot finish within 10 hours when c ≤ 0.08KM. On the other
hand, the index time of RN-partition increases moderately when c decreases to 0.2KM
or below.

Comparison with 2RNE and Centrality. We compare our approaches with 2RNE [8]
and Centrality [9] in terms of average error, index time and average query time, as we
vary the number of reference nodes. For our methods, we set CR = 1.0. From Figure 12
we can see that both RN-basic and RN-partition (for most cases) outperform 2RNE and
Centrality by a large margin in terms of average error. Figure 13 shows that RN-partition
reduces the index time of the other three methods by up to two orders of magnitude. The
index time of RN-basic, 2RNE and Centrality increases linearly with |R|, as they all
have the same time complexity of O(|R|n log n), while RN-partition slightly increases
the index time. Figure 14 shows that the query time of RN-partition and 2RNE remain
almost constant, while that of RN-basic and Centrality increase linearly with the number
of reference nodes.

Shortest Path Query Processing. In this experiment, we evaluate the efficiency and
quality of the SPC procedure for computing the shortest paths. For comparison, we
implemented A∗ algorithm using ̂DL as the h function, since it provides a lower bound
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Table 2. Comparison between SPC and A∗ on Road Network

Average Error Average Query Time (millisec)
SPC 0.012 0.19
A∗ 0 141.79

distance estimation. We evaluate both methods on the 10, 000 random queries. We set
|R| = 20, 000. Table 2 shows that SPC finds approximate shortest paths with an average
error of 0.012 while A∗ computes the exact shortest paths. But SPC is about 750 times
faster than A∗, since it is a linear algorithm.

5.3 Case Study 2: Social Network

We download the DBLP dataset from http://dblp.uni-trier.de/xml/ and construct an undi-
rected coauthor network, where a node represents an author, an edge represents a coau-
thorship relation between two authors, and all edge weights are set to 1. This graph has
several disconnected components and we choose the largest connected one which has
629, 143 nodes and 4, 763, 500 edges. The vertex degree distribution follows the power
law distribution.

We randomly generate 10, 000 queries and plot the histogram of the shortest path
distance distribution in Figure 5. The average distance between two nodes over the
10, 000 queries is davg = 6.34, which conforms with the famous social networking rule
“six degrees of separation”. Given 2c/davg as a rough estimation of the relative error
bound, if we set c = 3, the relative error bound is 2 × 3/6.34 = 94.64%. Therefore,
we only test our methods given c ∈ {1, 2}, to control the relative error bound in a
reasonably small range. Note that c = 1 defines the coverage of a node based on the
number of its neighbors, i.e., degree; while c = 2 measures the coverage based on the
number of neighbors within two hops.

Parameter Sensitivity Test on CR. We vary the cover ratio CR and compare the
average error, the reference node set size and offline index time by RN-basic and RN-
partition with K = 100, 200, 300, respectively. We fix the radius c = 1.
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Figure 15 shows that the average error of RN-basic is in the range of [0.009, 0.04]
and it decreases quickly as CR increases. The average error of RN-partition is slightly
higher than that of RN-basic and it decreases as K increases.

Figure 16 shows the number of reference nodes |R| as we vary CR in the range of
[0, 1.0]. Different from the road network which shows a linear relationship between |R|
and CR, we observe that |R| increases slowly when CR is small, but much faster when
CR is large. This is due to the power law degree distribution in the social network –
we first select the authors with the largest number of collaborators as reference nodes;
but in the later stage, with the decrease of node degrees, we need to use more reference
nodes to achieve the same amount of coverage.

Figure 17 shows the offline index time for RN-basic and RN-partition. We observe
that the index time of RN-basic increases quickly when CR increases. When CR = 0.6,
RN-basic is about 10 times slower than RN-partition. We also observe that the index
time of RN-partition slightly increases with CR when K = 100. This is because a large
portion of time is spent on computing the shortest path distances between all pairs of
reference nodes within the same partition. When CR increases, the number of reference
nodes falling into the same partition is larger, which causes the time increase.

Parameter Sensitivity Test on c. In this experiment, we vary the radius c ∈ {1, 2}
and compare the average error, the reference node set size and offline index time by
RN-basic and RN-partition (K = 300). We fix CR = 0.6. Table 3 shows that the
number of reference nodes is reduced by 100 times when c is increased to 2. As a result,
the offline index time for RN-basic is also reduced by 100 times with the increase of c
because the time complexity is O(|R|n log n). The index time for RN-partition is seven
times smaller than RN-basic when c = 1, but slightly higher when c = 2 due to the
within partition computational overhead. The average error of RN-partition is slightly
higher than that of RN-basic, and the error of both methods increases with c, which is
consistent with the theoretical error bound.

Table 3. Parameter Sensitivity Test on Radius c on Social Network

RN-basic RN-partition
Radius c |R| Average Error Index Time (sec) Average Error Index Time (sec)

1 3653 0.009 3778.17 0.030 485.88
2 31 0.138 30.70 0.144 65.71
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Comparison with 2RNE and Centrality. We compare our approaches with 2RNE
and Centrality in terms of average error, index time and average query time, as we vary
the number of reference nodes. For our methods, we set c = 1. Figure 18 shows that
RN-basic achieves the smallest error, followed by Centrality and RN-partition. 2RNE
performs the worst, because it selects reference nodes uniformly, rather than selecting
reference nodes with large degrees. Figure 19 shows that the index time of RN-partition
remains stable when |R| increases, while the time of the other three methods increases
linearly with |R|. Figure 20 shows that the query time of RN-partition and 2RNE remain
almost constant, while that of RN-basic and Centrality increase linearly with the number
of reference nodes.

Shortest Path Query Processing. We compare SPC with A∗ on shortest path query
on the 10, 000 random queries on the DBLP network. We set |R| = 4, 000. Table 4
shows that SPC finds approximate shortest paths with an average error of 0.008 while
A∗ computes the exact shortest paths. But SPC is about 100, 000 times faster than A∗.

Table 4. Comparison between SPC and A∗ on Social Network

Average Error Average Query Time (millisec)
SPC 0.008 0.046
A∗ 0 4469.28

6 Related Work

Dijkstra’s algorithm [1] computes the single-source shortest path in a graph with non-
negative edge weights with a time complexity of O(|E| + |V | log |V |). The Floyd-
Warshall algorithm [16] computes the shortest paths between all pairs of vertices with
a dynamic programming approach. Its time complexity is O(|V |3). The A∗ search al-
gorithm [2,17] uses some heuristics to direct the search direction.

In the literature, graph embedding techniques have been widely used to estimate the
distance between two nodes in a graph in many applications including road networks
[5,8], social networks and web graphs [7,9,11,12] and the Internet [3,4]. Kriegel et al.
[8] proposes a hierarchical reference node embedding algorithm for shortest distance
estimation. Potamias et al. [9] formulates the reference node selection problem to se-
lecting vertices with high betweenness centrality. [3] proposes an architecture, called
IDMaps which estimates the distance in the Internet and a related work [4] proposes
a Euclidean embedding approach to model the Internet. [6] defines a notion of slack
– a certain fraction of all distances that may be arbitrarily distorted as a performance
guarantee based on randomly selected reference nodes. [10] and its follow up studies
[11,12] provide a relative (2k − 1)-approximate distance estimation with O(kn1+1/k)
memory for any integer k ≥ 1. A limitation of many existing methods is that, the
estimated shortest path distance has no error bound, thus it is hard to guarantee the
estimation quality. In contrast, our approach provides an absolute error bound of the
distance estimation by 2c in RN-basic or by 2(c + dmax) in RN-partition.



272 M. Qiao, H. Cheng, and J.X. Yu

Computing shortest paths and processing k-nearest neighbor queries in spatial net-
works have also received a lot of attention. Papadias et al. [18] propose to use the
Euclidean distance as a lower bound to prune the search space and guide the network
expansion for refinement. [19] uses first order Voronoi diagram to answer KNN queries
in spatial networks. Hu et al. [20] propose an index, called distance signature, which
associates approximate distances from one object to all the other objects in the net-
work, for distance computation and query processing. Samet et al. [21] build a shortest
path quad tree to support k-nearest neighbor queries in spatial networks. [22] proposes
TEDI, an indexing and query processing scheme for the shortest path query based on
tree decomposition.

7 Conclusions

In this paper, we propose a novel coverage-based reference node embedding approach
to answer shortest path and shortest path distance queries with a theoretical error bound.
Our methods achieve very accurate distance estimation on both a road network and a
social network. The RN-basic method provides very accurate distance estimation, while
the RN-partition method reduces the offline embedding time of RN-basic by up to two
orders of magnitude or more with a slightly higher estimation error. In addition, our
methods outperform two state-of-the-art reference node embedding methods in pro-
cessing shortest path distance queries.
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