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Sparse Hashing for Fast Multimedia Search
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Hash-based methods achieve fast similarity search by representing high-dimensional data with compact
binary codes. However, both generating binary codes and encoding unseen data effectively and efficiently
remain very challenging tasks. In this article, we focus on these tasks to implement approximate similarity
search by proposing a novel hash based method named sparse hashing (SH for short). To generate inter-
pretable (or semantically meaningful) binary codes, the proposed SH first converts original data into low-
dimensional data through a novel nonnegative sparse coding method. SH then converts the low-dimensional
data into Hamming space (i.e., binary encoding low-dimensional data) by a new binarization rule. After
this, training data are represented by generated binary codes. To efficiently and effectively encode unseen
data, SH learns hash functions by taking a-priori knowledge into account, such as implicit group effect of
the features in training data, and the correlations between original space and the learned Hamming space.
SH is able to perform fast approximate similarity search by efficient bit XOR operations in the memory
of a modern PC with short binary code representations. Experimental results show that the proposed SH
significantly outperforms state-of-the-art techniques.
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1. INTRODUCTION

Similarity (or nearest neighbor) search is used to quickly find the most similar data
points of a given data point [Huang et al. 2011]. Existing indexing techniques (e.g.,
kd-tree, R-tree and others) are effective in conducting exact similarity search within
low-dimensional data. Recently, it has been shown that hash based methods perform
fast approximate similarity search well for high-dimensional data [Kulis and Darrell
2009; Raginsky and Lazebnik 2009; Wang et al. 2010b] and were applied for many
kinds of real applications, such as image retrieval [Baluja and Covell 2010; Kulis and
Darrell 2009], document analysis [Zhang et al. 2010b], near-duplicate detection [Liu
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Fig. 1. The framework of hash based methods (including the proposed SH). The ordered numbers from (1)
to (4) represent the process of mapping the inputs, generating binary codes, learning hash functions and
encoding unseen data, respectively.

et al. 2013; Song et al. 2011; Shang et al. 2010], and so on. For example, spectral hashing
[Weiss et al. 2008] encodes all the data points with compact binary codes as well as
ensures similar data points to have similar codes such that approximate similarity
search is performed on binary codes by quick bit XOR operations in the memory of
a modern PC. Even for an exhaustive search on all binary codes, such approximate
similarity search is very fast.1

The general framework of traditional hash based methods (e.g., [Weiss et al. 2008;
Zhang et al. 2010b]) in Figure 1 includes four sequential steps: First, original data
are mapped into a low-dimensional real-valued space by the machine learning tech-
niques, for instance, manifold dimensionality reduction [Belkin et al. 2006; He and
Niyogi 2003]. Second, the derived low-dimensional data are converted into binary codes
by some approaches, such as thresholding method [Salakhutdinov and Hinton 2009;
Zhang et al. 2010b]. Third, hash functions are learned for encoding unseen data. The
used methods include SVM method [Zhang et al. 2010b], Nystrom method [Drineas
and Mahoney 2005], Laplace-Beltrami eigenvalue function method [Weiss et al. 2008],
among others. Finally, unseen data are encoded with binary codes by the learned hash
functions.

Hash-based methods for approximate similarity search have been focused on learn-
ing effectively compact binary codes, that is, effectively and efficiently encoding high-
dimensional data into binary codes. Generally, encoding process should meet the con-
straints [Norouzi and Fleet 2011; Weiss et al. 2008], namely, preserve similarity (i.e.,
similar data points in original space have similar codes in Hamming space), be efficient
(i.e., fewer bits are used to represent a data point, and there is fast indexing and search
speed for any a new input), be equivalent (i.e., each bit has equal chance to be 1 or 0),
and be independent (i.e., different bits are independent of each other).

In this article, we propose a novel sparse hashing (SH) method to perform fast ap-
proximate similarity search. For generating interpretable (or semantically meaning-
ful) binary codes, SH first converts original feature space of data into low-dimensional
space, by proposing a nonnegative sparse coding method, namely, SH LARS algorithm.
This process makes each data point to be represented by short binary codes. More con-
cretely, the SH LARS converts original data into a low-dimensional space (aka basis

1Here the notion of “very fast” for exhaustive search of hash codes is relative. An exhaustive search has
a linear time complexity, although Hamming distance can be computed efficiently. To achieve sub-linear
complexity, one way is to further build indexing structures on hash codes so that only a small portion of hash
codes are compared with the query.
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space) spanned by the bases. In the basis space, each data point is sparsely repre-
sented by the bases, and the corresponding weight is sparse and nonnegative. At the
same time, the local similarity of each data point in original space is preserved. SH
then converts the low-dimensional data into equivalent-dimensional Hamming space
(i.e., binarizing the low-dimensional data) by designing a simple encoding rule, by
which each data point is represented by the bases. This process ensures that the local
similarity of the data in the low-dimensional space is preserved as much as possible.

To effectively encode unseen data, SH learns hash functions between original data
and the learned binary codes by an integrated regression method, namely ENCW
algorithm, which is a combination of Elastic Net (EN) [Zou and Hastie 2005] and
Curds and Whey (CW) methods [Breiman and Friedman 1997]. The proposed ENCW
learns more effective hash functions by taking two types of a-priori knowledge into
account, that is, the implicit group effect among training features via EN method,
and the correlations between original space and the learned Hamming space via CW
method. Existing methods (e.g., Weiss et al. [2008] and Zhang et al. [2010b]) do not
consider any a-priori knowledge to generate hash functions. With the learned hash
functions, encoding unseen data only involves a single matrix-vector multiplication.
This makes the encoding process highly efficient.

The contributions of the proposed SH framework are presented as follows.

—The proposed SH method explores the characteristics of nonnegative sparse coding
to generate highly interpretable binary codes. Most existing methods (e.g., spectral
hashing [Weiss et al. 2008] and self-taught hashing [Weiss et al. 2008; Zhang et al.
2010b]) also generate negative values in the subspace which can hardly be inter-
preted for real-world data such as image color histograms.

—SH performs approximate similarity search effectively and efficiently. To effectively
generate binary codes of training data, SH preserves the local similarity structures of
training data as well as achieves minimal reconstruction error of training data from
original space to low-dimensional space. To effectively encode unseen data, SH learns
hash functions by taking two kinds of a-priori knowledge into account. To efficiently
encode unseen data, SH only involves a single matrix-vector multiplication. This
enables SH to be utilized in real applications.

—The experimental results on five real-world datasets show that SH significantly
outperforms state-of-the-art techniques (e.g., the methods in [Weiss et al. 2008; Zhang
et al. 2010b; Salakhutdinov and Hinton 2009; Zhang et al. 2010a]) in terms of the
search quality.

In the remainder of the article, we review the related literature in Section 2. In the
subsequent sections, we outline the motivation for our research, followed by details of
the SH method. The experimental results are reported in Section 5. Section 6 concludes
the article.

2. RELATED WORK

Methods for similarity search generally can be categorized into two types: exact simi-
larity search methods and approximate similarity search methods.

Exact similarity search methods include kd-tree, M-tree, cover tree, metric tree,
QUC-tree [Shen et al. 2009] and extended B+ tree [Huang et al. 2009], among other
related methods. These methods usually partition data space recursively to implement
exact similarity search in low-dimensional feature space. For example, kd-tree method
prebuilds space-partitioning index structures, and R-tree method pre-defines data-
partitioning index structures. However, although some literatures (e.g., [Muja and
Lowe 2009]) made kd-trees available for searching for approximate nearest neighbor,
tree-based methods often leads their complexity to a linear scan in the worst case while
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attempting to speed up the computation of similarity search. In this case, tree-based
similarity search methods do not perform better than the naive method, that is, a linear
scan of the entire dataset, when the dimensionality is slightly high (e.g., >10) [Song
et al. 2011; Zhang et al. 2010b]. The dimensionality in real applications is usually very
high. In such a scenario, approximate similarity search methods are good alternatives
as they can dramatically speed up high-dimensional approximate similarity search
into virtually constant time by utilizing hash based methods [Stein 2007; Zhang et al.
2011].

Hash based methods are designed to map original data to a low-dimension Hamming
space for approximate similarity search, meanwhile preserving the semantic similarity
structure of the data in original space as much as possible. The key point of hash based
methods is to generate compact hash codes via developing a hashing method. Existing
hash based methods include unsupervised method (e.g., Weiss et al. [2008] and Zhang
et al. [2010b]), supervised method (e.g., Jain et al. [2008] and Mu et al. [2010]) and
semisupervised method (e.g., Wang et al. [2010a]).

Since the proposed SH in this article belongs to unsupervised method, we give it a
brief review in the following part of this section.

The most well-known unsupervised hash based method is probably locality-sensitive
hashing (LSH) [Andoni and Indyk 2008; Charikar 2002] and its extensions, such as
p-norms [Datar et al. 2004], learned metrics [Jain et al. 2008], and image kernels
[Grauman 2007] and among the others [Tao et al. 2009; Raginsky and Lazebnik 2009].
LSH-based methods generate compact hash codes by employing random projection.
That is, LSH-based methods map the close data in Euclidean space to with similar
binary codes by employing linear random projection followed by a random thresholding
method. LSH-based methods theoretically guarantee that approximate results may
be found within sub-linear time to the total number of data points. However, while
increasing the code length in LSH-based methods, Hamming distance between two
binary codes will asymptotically approach to their Euclidean distances. It is not feasible
in real applications [Weiss et al. 2008].

Recent, unsupervised hash based methods generate compact hash codes via employ-
ing the techniques on machine learning. That is, they improve the drawbacks of LSH-
based methods by replace random projection with some novel methods. For example,
Torralba et al. [2008] showed that both stacked-restricted boltzmann machine (stacked-
RBM for short) method and similarity sensitive coding (SSC) method work significantly
better than LSH-based methods while applying to real applications containing tens of
millions of data points. He et al. [2011] developed a new hashing algorithm to explicitly
optimize search accuracy as well as search time. Liu et al. [2011] proposed a novel
anchor graph hashing method to automatically discover the neighborhood structure
inherent in the data, aim at learning appropriate compact codes.

The most similar unsupervised hash based methods to the proposed SH are spectral
hashing (SpH) [Weiss et al. 2008] and self-taught hashing (STH) [Zhang et al. 2010b]).
They have been demonstrated to outperform over LSH, stacked-RBM and SSC for
finding originally similar items. This is because they can usually perform real-time
search for millions of data with a single modern PC by maintaining all the binary
codes in the memory. To encode training data into binary codes, SpH tries to preserve
the global similarity structures defined in original space. STH preserves the local
similarity structures. To obtain binary codes of unseen data points, that is, encoding
test data, SpH assumes that the data should follow uniform distribution, which is very
restrictive in real applications. STH works well with any data distribution, and thus is
more practical than SpH. However, STH generates hash functions without considering
any a-priori knowledge. In contrast, the proposed SH preserves the local similarity
structures of original space of the data, as well as achieves minimal reconstruction
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error in the derived low-dimensional space. To encode unseen data, SH learns hash
functions between original space and Hamming space, by considering the implicit group
effect among the features as well as the correlations between training data and the
learned Hamming space. The reasonable a-priori knowledge improves the effectiveness
of approximate similarity search, as well as induces the efficient encoding unseen data.

3. MOTIVATION

3.1. The Limitations of Traditional Spectral Hashing

Traditional hash-based methods have limitations for improvement. These limitations
are mostly related to the generation of interpretable (or semantically meaningful)
binary codes, and the encoding of unseen data.

On the one hand, existing methods (e.g., SpH or STH) generate nonzero coefficients
(i.e., nonzero coordinates) in low-dimensional real-valued space, then binarize the low-
dimensional real-valued data by some methods, such as thresholding method. Although
thresholding method is frequently used in practice (e.g., Zhang et al. [2010b] and
Weiss et al. [2008]), it can be potentially misleading in various respects [Zass and
Shashua 2006] because it is often difficult to interpret the derived results. For example,
a negative value in the image color histogram can be hardly explained. Hence, it is
desirable to generate interpretable binary codes.

On the other hand, since existing hash based methods do not provide explicit mapping
functions for encoding unseen data, the “out of sample extension” problem occurs. To
solve this issue, existing hash based methods directly learn mapping functions (i.e.,
hash functions) between original space and Hamming space. For example, STH learns
hash functions via SVM without considering any a-priori knowledge. In this case, we
expect to learn effective hash functions by making the full use of a-priori knowledge.
Moreover, the efficiency of STH should be improved for encoding unseen data as SVM
needs to first map unseen data into the spanned space of training data, in which hash
functions are learned. This makes the encoding inefficient.

3.2. The Advantages of Sparse Coding

Sparse coding can be used to represent each image (including training data and unseen
test data) with the common parts (i.e., the bases) learned from training images [Raina
et al. 2007]. Such an image representation has several interesting advantages. First,
the learned bases are high-level because they can be used to represent the images
including unseen images (e.g., test data). This can avoid the issue of overfitting, which
is often found in existing hash based methods. Second, such a representation is more
abstract as the learned bases can describe all images. Third, the learned bases can be
well extracted for other different data types [Dai et al. 2008; Lee et al. 2009], such as
optical characters, speech audio, and document scripts. Last but not least, the bases
are the common parts between training data and test data such that sparse coding can
avoid the issue on underfitting or overfitting.

3.3. Motivation

According to this analysis, in this article we employ sparse coding with designed con-
straints (i.e., preserving the local similarity structure and generating nonnegative
sparse codes) to deal with the limitations of traditional hash-based methods, then ap-
ply Elastic Net model [Zou and Hastie 2005] to learn hash functions and apply Curds
and Whey method [Breiman and Friedman 1997] to strengthen the performance of the
learned initial hash functions.

Both sparse representation and nonnegative data are desirable in real applications
[Zass and Shashua 2006]. For example, in computer vision, derived coordinates may
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correspond to pixels, and nonnegative sparse representation is related to the extraction
of relevant parts from images. In machine learning, sparseness is closely related to
feature selection, while nonnegativity may relate to probability distributions. In real
applications, sparse representation usually makes the proposed algorithm efficiently
on storage and speed [Lee et al. 2007; Ghosh 2011], while nonnegative data are with
better semantic interpretation. For example, many real applications (e.g., absolute
temperatures, light intensities, probabilities, sound spectra, among others) need to
have a nonnegative weight.

3.4. Framework

The proposed SH framework (presented in Figure 1) for fast approximate similar-
ity search includes four steps, namely, mapping the inputs, generating binary codes,
learning hash functions and encoding unseen data. Of these four steps, the first two are
proposed for generating effective codes, and the last two for efficiently and effectively
encoding unseen data. The corresponding methods for the four steps are SH LARS
algorithm, a proposed binarization rule, ENCW algorithm and the process of encoding
unseen data respectively.

In the first step, SH converts original data into a low-dimensional space by learning
a succinct (i.e., parsimonious) and high-level representation of the inputs. During the
learning process, the constraints (i.e., similarity preservation and nonnegative sparse
codes) are taken into account. Similarity preservation is necessary to ensure that se-
mantically similar data points in original space are still similar in low-dimensional
space. Nonnegative constraint is used for generating semantic binary codes. With the
sparse coding model, each data point is succinctly represented by high-level bases. The
high-level characteristics can avoid the issue of overfitting or underfitting. However, in
traditional hash based methods (e.g., SpH or STH), when test data are with different
distribution to training data, either the issue of overfitting or the issue of underfit-
ting often occurs. Representing each data point parsimoniously makes the proposed
SH more efficient. Unlike the traditional dimensionality reduction methods, such as
PCA, which should satisfy orthogonality constraints among features, SH independently
generates nonnegative sparse codes (see details in Section 4.1.2).

In the second step, SH converts the low-dimensional and nonnegative real-valued
data into Hamming space by proposing a new binarization rule. That is, positive values
in the low-dimensional space are converted to 1 in the Hamming space, and zeros are
converted to 0. Note that SH does not have negative real-valued data in the low-
dimensional space, which is different from existing methods.

In the third step, SH implements unvariate regression between original space and
each bit vector in the learned Hamming space to learn one hash function for each
bit vector, by proposing the ENCW algorithm. ENCW first employs EN model, which
conducts regression by considering implicit group effect among the features of training
data, to learn the relationship between original training data and each bit vector
in Hamming space. After receiving initial regression results, CW model utilizes the
correlations between original space and learned Hamming space to obtain a more
accurate encoding. Thus, the proposed ENCW algorithm can more effectively encode
unseen data by making the best use of a-priori knowledge.

Finally, unseen data can be easily encoded by the learned hash functions. The learned
hash functions are more efficient because the encoding process is only a single matrix-
vector multiplication.

3.5. Notation

The notation used in this article is represented as follows: feature space is in uppercase
italic, a scalar is in lowercase italic, a column vector is in lowercase bold, a matrix is
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in uppercase bold, transposes of a vector (or a matrix) are indicated by a superscript T,
and the inverse of a matrix is represented by a superscript −1.

4. APPROACH

4.1. Mapping the Inputs

4.1.1. Objective Function. In order to maintain the data into the memory of a PC, we
represent each original data point with short binary codes. Meanwhile, we expect that
similar data in original space are still similar in low-dimensional space. In this article,
the proposed SH utilizes nonnegative sparse coding method2 to sparsely represent each
data point, as well as adds similarity preservation constraint into nonnegative sparse
coding model.

Sparse coding is a popular reconstruction technique due to the ability of the succinct
representation to save time [Tibshirani 1994; Mairal et al. 2010]. The reconstruction
estimation for sparse coding can be obtained by minimizing the loss function under a
penalized constraint, that is,

min
s

‖x − Bs‖2
2 + λ‖s‖1, (1)

where ‖.‖p is the �p vector norm, x ∈ Rd represents the data point in original space,

B ∈ Rd×m represents the bases, and s ∈ Rm is sparse codes (i.e., the weights of the
bases, or the coordinates of the data point in low-dimensional space) of x with respect
to B. m is the number of reduced dimensionality (or the number of bases, or the number
of bits in Hamming space). ‖s‖1 ensures the sparsity, that is, many of si(i = 1, . . . , m)
are zeros while adjusting the values of λ (where λ > 0 is a regularization parameter).

SH first uses least square loss function to achieve minimal reconstruction error dur-
ing the reconstruction process, see the first term in Equation (1). Usually, an efficient
hash based method for fast approximate similarity search should preserve similarity
in original space. That is, similar data points in original space should be mapped with
similar codes.

In the existing hash based methods, SpH [Salakhutdinov and Hinton 2009] preserves
the global similarity structures of training data to implement fast similarity search.
Actually, local similarity structures are often more important than global one [Roweis
and Saul 2000]. For example, Wu and Schölkopf [2007] reported that local learning
algorithms are often better than global ones. Moreover, in real applications, we often
prefer to index the top k similar data points to the query data point rather than
retrieve all of its similar data points. Furthermore, the local similarity structures can
be extended to global similarity structures by setting the value of k as the value of the
number of training data, that is, k = n. Hence, in this article, we focus on preserving the
local similarity structure by building a k-nearest-neighbor graph for each data point.

More specifically, following the idea in Belkin et al. [2006], we use a heat kernel

wij = e− ‖xi−x j ‖2

σ (σ is a tuning parameter, we set σ = 1 in this article) to build a weight
matrix W. The value of wij is used to measure the closeness of two points xi and x j .
We set wii = 0 to avoid the problem of scale in this article.

Given a weight matrix W, we use the Euclidean distance to measure the smoothness
between si and s j (where si (or s j) is sparse codes of xi (or x j) respectively in

2Unlike the approach in [Hoyer 2004] and others, in which both the bases and sparse codes are nonnegative,
SH only requires nonnegative sparse codes. Hence, the proposed method can also be one of the methods on
positive Lasso [Efron et al. 2004].
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low-dimensional space), that is,

1
2

∑
i, j

‖si − s j‖2wi j =
∑
i, j

si DiisT
i −

∑
i, j

sisT
j wi j

= tr(SDST ) − tr(SWST )
= tr(SLST ). (2)

We denote D as a diagonal matrix. The entries of D are the column (or row, since
W is symmetric) sum of W, that is, Dii = ∑

j wij . Obviously L = D − W is a Laplacian
matrix.

In this article, both local similarity structures of training data presented in Equa-
tion (2) and nonnegative constraint are added into sparse coding model in Equation (1).
More concretely, given a training data matrix X = (xij) ∈ Rd×n (each column repre-

sents a data point), we want to learn the bases B ∈ Rd×m and the corresponding sparse
codes S ∈ Rm×n from training data X with the constraints, such as preserving local
similarity structure, and generating nonnegative sparse codes. The objective function
of the proposed SH is defined as:

min
{B,S}

‖X − BS‖2
F + αtr(SLST ) + λ

∑n
i=1 ‖si‖1 s.t. ‖B j‖2 ≤ 1, S � 0. (3)

‖.‖F means Frobenius matrix norm. S � 0 (or s � 0) indicates each element in matrix
S (or vector s) is nonnegative. ‖B j‖2 ≤ 1, j = 1, . . . , m is to prevent B from having
arbitrarily large values which would lead to very small values of S.

For generating semantic binary codes, the proposed objective function in Equation (3)
reconstructs each data point to achieve the objectives, such as obtaining minimal recon-
struction error (i.e., first term in Equation (3)), preserving the local similarity structure
(i.e., second term in Equation (3)), and generating nonnegative sparse codes (i.e., S � 0).
The constraint on minimal reconstruction error is to achieve minimal loss after the re-
construction process. The constraint on local similarity preservation is to ensure that
each data point with its k-nearest neighbors is still similar in low-dimensional space.
The constraint of nonnegative sparse codes is for generating semantic binary codes.
Moreover, the nonnegative sparse coding model usually imposes fewer constraints than
Lasso model [Tibshirani 1994]. This enables the objective function in Equation (3) to
be solved quickly. However, SpH only preserves global similarity and STH only pre-
serves local similarity for mapping the inputs to low-dimensional real-valued space.
Moreover, when the value of the parameter α reaches a larger value, the objective func-
tion in Equation (3) can be regarded as only considering the constraint on preserving
local similarity structure of the data. This indicates that STH is a special case of the
proposed SH method. In this way, SpH is also a special case of the proposed SH method
when the value of k is set as the value of the number of training data and the parameter
α reaches a larger value.

4.1.2. Implementation of the Objective Function. Two variables (i.e., B, and S) in Equa-
tion (3) should be optimized. The objective function in Equation (3) is not jointly convex
for both B and S. Hence, following the work in [Lee et al. 2007; Gao et al. 2010; Zheng
et al. 2011], we optimize B and S alternatively in an iterative process.

When S is fixed in Equation (3), we learn the bases B by optimizing the following
objective function with a conjugate gradient decent method presented in Lee et al.
[2007],

min
B

‖X − BS‖2
F s.t. ‖B j‖2 ≤ 1, j = 1, . . . , m. (4)
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Note that we initialize sparse codes S as the results of the general sparse coding.
When fixing B to learn S, we optimize each column vector s in S one by one rather

than optimize all the vectors in S simultaneously because different bits should be
independently generated according to the constraints of hashing. Thus, the objective
function in Equation (3) on one column vectors s becomes

min
s

‖x − Bs‖2
2 + α(2sT (Sli) − sT liis) + λ

m∑
j=1

‖sj‖1 s.t. s � 0. (5)

where li is the i-th column of L, and lii is the element in the i-th column and i-th row
of L.

To solve s in Equation (5), unlike the works in Lee et al. [2007] which is focused on
the general sparse coding framework3, SH generates nonnegative sparse codes for each
data point. In this article, we first convert Equation (5) to standard form of Lasso [Efron
et al. 2004; Olshausen and Field 1996] by Theorem 1 and then obtain the optimal s by
Algorithm 1.

THEOREM 4.1. The objective function in Equation (5) is equivalent to:

min
s

‖x̃ − B̃s‖2
2 + λ

m∑
j=1

‖sj‖1 s.t. s � 0., (6)

where B̃
T

B̃ = (BT B + αliiI), x̃ = (B̃
T

)
−1

(BT x + αSwi), x̃ ∈ Rd.

PROOF. We denote S−i = (s1, . . . , si−1, si+1, . . . , sn) as S without the column vector si,
and l−ii (d−ii and w−ii) as the column vector li (di and wi) without the element lii (dii
and wii). Due to wii = 0, we know l−ii = d−ii −w−ii = −w−ii, then S−il−ii = −S−iw−ii =
−S−iw−ii − swii = −Swi. Thus

2sT (Sli) − sT liis = 2sT (s S−i)
(

lii
l−ii

)
− sT liis

= sT liis + 2sT S−il−ii

= sT liis − 2sT (Swi).

Hence,

min
s

‖x − Bs‖2
2 + α(2sT (Sli) − sT liis)

⇐⇒ min
s

sT (BT B + αliiI)s − 2sT (BT x + αSwi)

⇐⇒ min
s

‖x̃ − B̃s‖2
2.

Note that, B̃T B̃ is a positive semi-definite matrix. In this article we employ Cholesky
decomposition method to obtain B̃ ∈ Rm×m.

According to Lykou and Whittaker [2010], Equation (6) is a convex problem and the
KKT conditions are necessary and sufficient conditions for a global optimum. In this
article, we solve the nonnegative Lasso in Equation (6) by designing a revised least
angle regression (LARS) algorithm (referred to as SH LARS algorithm) presented in
Algorithm 1.

3In this article, general sparse coding means that the generated sparse codes can be any real-valued.
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ALGORITHM 1: SH LARS algorithm
Input: x and B
Output: s
Normalize B; center x;
s1, . . . , sm = 0;
c = BT x; C = maxj{c j}; j = argmaxj{c j}; AS = { j};
repeat

GA = (BT B)−1;AA = (1T
AGA1A)

− 1
2 ;uA = B(AAGA1A);

a = BT uA; c = BT (x − uA); C = maxj{c j};
if |AS| < k then

γ = min{ j /∈AS}{
C−c j
AA−aj

}
else

γ = C
AA

. // γ : the maximal length of the next step updated
end
Lasso Modification //same as in [Efron et al. 2004];
Update AS //same as in [Efron et al. 2004];

until meeting the pre-defined conditions;
return s;

As a forward selection method, the SH LARS starts with all the coefficients si =
0 (i = 1, . . . , m) (line 2) after finishing the pre-processing (line 1), and the finds the first
predictor s̄p (where s̄p ∈ {s1, . . . , sm}) which is most correlated to B (line 3). Further-
more the SH LARS takes the largest step possible in the direction of s̄p until another
predictor s̄q has as much correlation with the current residual. Instead of continuing
along s̄p, the SH LARS proceeds in the equiangular direction between s̄p and s̄q, until
a third predictor s̄r earns its way into the most correlated set AS. The SH LARS then
proceeds equiangularly between s̄p, s̄q and s̄r, that is, along the least angle direction,
until a fourth predictor enters, and so on (Repeat from line 4 to line 11). The SH LARS
stops after meeting the predefined conditions, that is, reaching convergence.

After the alternative optimization we have illustrated, we get the bases B and the
sparse codes S of training data.

4.2. Generating Binary Codes

In the step of mapping the inputs, SH maps original data to low-dimensional real-
valued space to obtain the bases and sparse codes of training data. Meanwhile, the
local similarity structure for each data point is preserved from original space to low-
dimensional real-valued space.

We need to further represent each data point with binary codes for the purpose
of saving storage and facilitating efficient search later. We also need to design the
binarization rule to generate interpretable binary codes. In this step, SH converts
the low-dimensional data into compact Hamming space by a simple binarization rule:
encoding each positive value in low-dimensional nonnegative real-valued space into
1, and zero into 0. For example, a data point A(0.4,0,0.1,0.7) (top row in Figure 2) is
encoded as ‘1011’ (bottom row in Figure 2) in Hamming space.

The proposed binarization rule can be naturally interpreted for real-world data.
In low-dimensional real-valued space, each data point is sparsely represented by the
bases. The positive weight (i.e., sparse codes) in the i-th dimension means that the data
point is composed by the i-th basis. The value of the weight means the important degree
of the i-th basis to the data point. The zero weight in the i-th dimension indicates that
the data point does not contain the i-th basis. For example, given a data point A (0.4, 0,
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+ 0 * + 0.1 * + 0.7 *

Data point Basis 1 Basis 2 Basis 3 Basis 4

= 0.4 *

+ 0 * + 1 * + 1 *

1011 Basis 1 Basis 2 Basis 3 Basis 4

= 1 *

Fig. 2. An illustrated example of the proposed binarization rule. Top row: the data point is sparsely rep-
resented by four bases in low-dimensional real-valued space. Bottom row: the data point is represented in
low-dimensional Hamming space.

0.1, 0.7), it is represented by three bases (i.e., first, third and fourth basis) and does not
contain the second basis as the corresponding weight in the second dimension is zero.
The important degrees of three bases are 0.4, 0.1 and 0.7. Hence, we can say that the
data point A is composed by three bases in low-dimensional nonnegative space. Note
that existing hashing methods (e.g., STH) which transfers the values less than the
median to 0 and the values greater than the median to 1 do not make such semantic
interpretation, because their negative values in the low-dimensional space cannot nat-
urally explain the ‘contain’ relationship. According to the proposed binarization rule,
the data point A (i.e., ‘1011’, presented in the bottom row in Figure 2) is still composed
of the same three bases in Hamming space. We can also easily know that the data
composed by the same bases are similar in low-dimensional nonnegative space. For ex-
ample, data point B (0.51, 0.51, 0.51, 0.51) and C (0.49, 0.49, 0.49, 0.49) are similar in
low-dimensional nonnegative space because they are composed of all four bases. They
are encoded as ‘1111’ in Hamming space and still similar in Hamming space because
their Hamming distance is zero.

Although the SH method does not satisfy all the constraints of hash-based methods
(e.g., each bit has equal chance to be 1 or 0), SH can achieve better performance and
generate more semantic codes by relaxing such a constraint into the case in which each
bit has an arbitrary probability.

4.3. Learning Hash Functions

4.3.1. The “Out of Sample Extension” Issue. After converting training data into binary
codes, hash based methods need to learn hash functions for encoding binary codes for
unseen data, that is, test data. That is because training process does not generate
explicit mapping functions for encoding unseen data. This problem is referred to as
“out-of-sample extension” , whose existing solutions include Nystrom method [Drineas
and Mahoney 2005], Laplace-Beltrami eigenvalue function method [Salakhutdinov and
Hinton 2009], SVM method [Zhang et al. 2010b], among others.

Nystrom method for encoding unseen data is computationally expensive since an
exhaustive similarity search is performed over the whole training data. This makes it
impractical in real applications. Laplace-Beltrami eigenvalue function method is faster
than Nystrom method, but it assumes the data should follow uniform distribution. SVM
method overcomes these limitations and is faster than Laplace-Beltrami eigenvalue
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function method for encoding unseen data. However, the learning process for generating
hash functions by SVM method does not consider any a-priori knowledge.

SH can generate explicit functions by mapping test data into the bases space via
the propose objective function in Equation (6). Yet such a process requires the running
of iterative minimization algorithm, which is always accompanied by expensive com-
putation cost. Hence, an alternative is necessary. To efficiently encode unseen data,
we learn hash functions to encode unseen data. Note that the proposed SH can gener-
ate explicit mapping functions for encoding unseen data, that is, via Equation (6). In
this article, to efficiently encoding unseen data, we design a new method (namely the
ENCW algorithm) to learn hash functions.

Unlike SVM method for solving the “out of sample extension” issue, SH first employs
Elastic Net (EN) model [Zou and Hastie 2005], which can take into account implicit
group effect among the features of training data, to conduct regression between training
data and each column (i.e., bit vector) in Hamming space, for generating hash function
of each bit vector. Then the initial result is fed into CW model [Breiman and Friedman
1997] for improving initial encoding accuracy.

4.3.2. ENCW Method. To solve the issue of “out-of-sample extension,” we learn explicit
hash functions between original training features and binary codes learned from the
first two steps in the proposed framework presented in Figure 1. Note that the proposed
method is still unsupervised because the label information (i.e., the binary codes of
training data) is learned rather than given in advance.

More specifically, given d-dimensional training data and the learned m-dimensional
binary codes, we build m explicit hash functions (i.e., classifiers) via the proposed
ENCW method, which first performs unvariate regression (or classification) m times via
EN model and then implements Curds and Whey (CW) method for improving encoding
accuracy. The EN model learns one classifier between the d-dimensional training data
and one vector (i.e., column) of the learned m-dimensional binary codes once. Then it
outputs m hash functions. The CW method uses canonical correlation analysis (CCA)
model to improve the encoding performance of m hash functions.

Both EN model and Lasso model are usually used for performing unvariate regres-
sion [Breiman and Friedman 1997; Ghosh 2011]. In this article, we select EN model
rather than Lasso [Efron et al. 2004] because, first, EN model can simultaneously
achieve accuracy and sparsity. Second, EN model encourages grouping effect, where
strongly correlated predictors (or encoders) tend to be in or out of the model together
[Ghosh 2011]. However, Lasso tends to select only one variable from implicit group and
does not care which one is selected. Third, EN model is particularly useful when the
number of predictors (or encoders) (d) is much bigger than the number of observations
(n) [Zou and Hastie 2005]. In such a case, Lasso selects at most n variables before
it saturates, because of the nature of the convex optimization problem. However, EN
selects all of them for reconstruction process. All the scenarios are often found in real
applications. Hence, employing EN model to use such a-priori knowledge is reasonable.

In the proposed EN model, for any fixed nonnegative λ1 and λ2, denoting the learned
m-dimensional binary codes as Y, where Y ∈ Rn×m is centered, that is,

∑n
i=1 yi = 0,

denoting d-dimensional standardized training data as X ∈ Rd×n, that is,
∑n

i=1 xj,i = 0,
for each column y ∈ Rn in Y, the EN model is defined as:

min
βi

‖yi − XT βi‖2
2 + λ1‖βi‖1 + λ2‖βi‖2, (7)

where βi (βi ∈ Rd
, i = 1, . . . , m) is the elastic net estimator (or coefficient), that is,

the transformation coefficient of the i-th hash function (or classifier). Therefore, given
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unseen data point xt, we obtain its binary codes of the i-th hash function by yt
i =

sign(xtβi). Denoting β = (β1, . . . , βm), m binary codes of xt can be encoded by sign(xT
t β).

The Curds and Whey method (CW) [Breiman and Friedman 1997] employs canonical
correlation analysis (CCA) to make full use of information in correlated responses, for
improving the encoding (or classification) of the learned hash functions via the EN
model. The CW method has been shown (e.g., Breiman and Friedman [1997]) that
encoding errors of the hash functions are substantially reduced when the responses are
correlated, while maintaining accuracy if they are uncorrelated. Actually, the responses
yi (where i = 1, . . . , m) are correlated because they are dependent on the variables X.
Therefore, it is reasonable for using CW method to boost encoding performance given
initial results derived from EN model.

Following the literature [Breiman and Friedman 1997], CW method searches for an
optimal matrix C (C ∈ Rm×m and m is the number of hash functions) to make the use of
the disparity of m classifiers learned from the EN model. The pseudo of ENCW method
is presented in Algorithm 2.

ALGORITHM 2: ENCW algorithm
Input: X, Y, xt, λ1, λ2
Output: ŷt
Perform CCA on X and Y;
Calculate matrix W by Equation (9);
for each yi in Y do

Compute vector βi by Equation (7),
end
Compute ŷt = xtβCT ;

More specifically, first, CW method performs CCA [Hotelling 1936] between Y and X
to obtain ri = max corr(Yui, XT vi), i = 1, . . . , m (m = min(m,n), actually, m � n), U =
{u1, . . . , um} and V = {v1, . . . , vm}. ui and vi are the vectors such that the correlation
between the linear combinations of the response Yui and XT

t vi is maximized.
Second, we set W = diag{w1, . . . , wm} as an m×mdiagonal matrix of shrinkage factors

with

wi = max
{

(1 − f )(r2
i − f )

(1 − f )2r2
i + f 2(1 − r2

i )
, 0

}
, i = 1, . . . m, (8)

where ri is the canonical correlations between yi and X, and f = d/n.
Third, according to Breiman and Friedman [1997], the optimal matrix C is obtained

by:

C = U−1WU. (9)

Finally, given unseen data point xt and β = (β1, . . . , βm) learned from the EN model,
m binary codes of xt can be encoded by sign(xtβCT ).

4.4. Encoding Unseen Data

SH generates the binary codes of training data by Algorithm 1, and hash functions by
Algorithm 2. Given a test data point xt, SH maps it into Hamming space and obtains
its m-bit binary codes by sign(xT

t β(U−1WU)T ).
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4.5. Complexity

The complexity of SH is mainly decided by the processes, that is, constructing kNN
graph, the LARS algorithm, the binarization rule, and the encoding process.

Building kNN graph takes O(n2k) (where n is training size) [Cormen et al. 2001]. The
complexity of LARS algorithm is relevant to the dimensionality d (or the number of bits
m), and the number of training size n. If d < n, the complexity of LARS is O(d3 + d2n)
which is linear to the number of training size. If d > n, its complexity is O(d3) which
is irrelevant to n [Efron et al. 2004]. Moreover, according to Theorem 1 and Algorithm
2, the proposed algorithms (i.e., SH LARS and ENCW) are relevant to m rather than
d. Actually, we know d 	 m in the real applications and m � n in our experiments,
for example, the value of m is 64. Hence, the proposed LARS method in this article is
O(m3 + m2n) for ENCW algorithm and O(m3 + m2d) for SH LARS algorithm, which is
at most linear to the number of training data. The proposed binarization rule encodes
the real value to the binary codes with constant time. However, the theresholding
method (e.g., the median-based binarization in SpH and STH) usually takes O(mn)
time. Therefore the overall computational complexity of the training process is roughly
quadratic to the number of training size. That is, the complexity of the training process
is focused on constructing the kNN graph, which is equivalent to STH.

The encoding process of SH for a given query is simply to classify the test data us-
ing those m learned classifiers and then to assemble the output m binary labels into
m-bit binary codes. Actually, the encoding process of SH is a single matrix-vector mul-
tiplication. However, for the STH method with linear SVM, the overall computational
complexity of the encoding process for each test case is linear to the size of the test case.

5. EXPERIMENTAL ANALYSIS

In this section, we empirically evaluate the proposed SH method and compare it
with recent methods, including LSH [Charikar 2002], STH [Zhang et al. 2010b], LSI
[Salakhutdinov and Hinton 2009], LCH [Zhang et al. 2010a], MLH [Norouzi and Fleet
2011], and SpH [Weiss et al. 2008]. To separately test the reconstruction process and
the process of learning hash functions, we use two versions of SH, namely, SH ENCW
and SH SVM. SH ENCW implements Algorithm 1 and Algorithm 2 together. SH SVM
implements Algorithm 1 and uses SVM for learning hash functions.

First, we evaluate the score of F1-measure of the proposed method (i.e., SH ENCW)
on different Hamming ball radius, for testing the stability of the proposed SH ENCW
algorithm. Then we compare the proposed methods (i.e., SH ENCW and SH SVM)
with the comparison algorithms in terms of precision-recall curves, on the different
bits for representing each data point. Furthermore, we test the individual effects of the
SH LARS algorithm (i.e., Algorithm 1) and the ENCW algorithm (i.e., Algorithm 2).
Finally, we compare the proposed method to the comparison algorithms on encoding
time, aim at testing the efficiency of encoding unseen data.

5.1. Experimental Setting

5.1.1. Data. We conduct experiments on four real datasets, that is, USPS,4
Reuters21578,5 20Newsgroups,6 and MNIST.7

The Reuters21578 corpus is a set of documents that appeared on the Reuters
newswire in 1987. In our experiments, we discard the documents appearing in more
than one category, and keep only the largest 10 categories. We use 7285 documents in

4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#usps.
5http://www.daviddlewis.com/resources/testcollections/reuters21578/.
6http://people.csail.mit.edu/jrennie/20Newsgroups/.
7http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
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total, then employ the ModeApte split method to generate 5228 documents (72%) as
training data and 2057 documents (28%) as test data. The 20Newsgroups corpus was
collected and originally used for document analysis. In this article, it contains 18846
documents, evenly distributed across 20 categories, and 11314 documents (60%) for
training data and 7532 documents (40%) for test data. In our experiments, both docu-
ments datasets are represented by a bag-of-words with a 500-word vocabulary. Hence,
the size of original datasets Reuters21578 and 20Newsgroups are 7285 and 18846, and
the number of features is 500.

USPS and MNIST are image databases. Both of them are handwritten digit
databases. USPS contains 9298 images in 10 categories in which 7291 images are
training data and 2007 are test data, and the raw feature of images has 16×16 pixel in-
tensities. The raw feature of images in MNIST has 14×14 pixel intensities. We selected
10000 samples as training data and 10000 samples as test data in our experiments.

5.1.2. Parameters’ Setting. In this article, we should set the parameters, such as α, λ
and m in Algorithm 1, λ1 and λ2 in Algorithm 2. The code length is set from 4-bit
to 64-bit (i.e., 4-bit, 8-bit, 16-bit, 32-bit and 64-bit respectively). We perform fivefold
cross validation to find the best parameter pair between α (α = [0.1, 0.3, 0.5, 0.7])
and λ (λ = [0.001, 0.1, 10, 100]), and between λ1 (λ1 = [0.001, 0.1, 10, 100]) and λ2
(λ2 = [0.001, 0.1, 10, 100]) in Algorithm 2. We set k = 25 to construct the k nearest
neighbor graph.

5.1.3. Evaluation. Given a dataset in each experiment, the whole dataset is mapped
into the Hamming space by the learned hash functions. Given a test data points, its
binary codes are firstly generated by the learned hash functions, and then compared
with the binary codes for all the data points in the dataset. The top k (k = 25) data
points in the dataset with the smallest Hamming distances to the test data point are
retrieved. We then compute standard retrieval performance measured by standard re-
trieval performance measures: precision, recall, and harmonic mean (i.e., F1-measure).

precision = the number of retrieved relevant data points
the number of all retrieved data points

(10)

recall = the number of retrieved relevant data points
the number of all relevant data points

. (11)

Following the setting in [Zhang et al. 2010b], to determine whether or not a re-
trieved data point is relevant to the given test data points, we adopt the following two
evaluation methodologies:

(1) retrieving original nearest neighbors—the k most similar data points in training
data for each test data point. That is, we select 25 of the most similar data points
in training data as the ground truth.

(2) retrieving same-topic data points—the k most similar data points in training data
with the same category as test data points.

5.2. Results

5.2.1. F1-Measures of SH ENCW on Different Hamming Distance. We first test the score
of F1-measure of SH ENCW for retrieving the original nearest neighbors and same-
topic data respectively. We set the Hamming ball radius (i.e., the maximum Hamming
distance between any retrieved data point and test data point) from 0 to 3. The results
are presented in Figure 3 and Figure 4.

As can be seen, the score of F1-measure for each curve (i.e., fixed Hamming ball
radius with different code length from 4 bits to 64 bits) first increases to its peak value,
and then begins to decrease. Before reaching to peak value, the score of F1-measure
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Fig. 3. The score of F1 measure of SH ENCW for retrieving original nearest neighbors. Note that, the value
of horizontal axis indicates code length. For example, ‘3’ means the code length is 2(1+3) = 16 bits.

in the curves with the larger Hamming ball radius is smaller than in the ones with
a smaller Hamming ball radius. After decreasing from the peak value, the score of
F1-measure in the curves with larger Hamming ball radius is bigger than in the ones
with a smaller Hamming ball radius.

When the data are represented by shorter binary codes, there are many data points
with the same binary codes. That is, their Hamming distance is zero. The top k similar
data points to each query are almost all found in the data points with small Hamming
distance to the query data point. Such a scenario leads to the result that the score of
F1-measure in the curves with smaller Hamming distances is larger than in the curves
with larger Hamming distance. After achieving their corresponding peak values, the
case is contrary.

Hence, according to the presented experimental results, we know the following.

—When the code length and the Hamming ball radius increase, SH is able to achieve
higher scores of F1-measure. However, more computational cost is required. Thus
we set Hamming ball radius as 1 in the following experiments.
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Fig. 4. The score of F1 measure of SH ENCW for retrieving same-topic data. Note that, the value of
horizontal axis indicates code length. For example, ‘3’ means code length is 2(1+3) = 16 bits.

—The peak value of each curve shows that we only need to represent original data
with reasonably short codes. For example, the best score of F1 measure in Figure 3
and Figure 4 is found in the case with moderate bit length, that is, 16 and 32 bits,
respectively.

5.2.2. Precision-Recall Comparison on Different Algorithms. Figure 5 and Figure 6 compare
SH with existing hash based methods in terms of their precision-recall curves, for
retrieving original nearest neighbors and same-topic data points respectively, while
fixing Hamming ball radius as 1.

There are five points in each curve. Each point means a precision-recall pair on a
fixed bit length (i.e., from 4 bits to 64 bits). Usually, the top upper point represents the
precision-recall pair of the algorithm with 64-bit representation and the lowest point
with 4 bits. The higher the place of the point, the more effective the method is.

It is clear that on all data sets, the SH (including SH ENCW and SH SVM) outper-
form STH, LSI, LSH, LCH, and SpH (that has already been shown to outperform LSH
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Fig. 5. The precision-recall curves of for retrieving original nearest neighbors.

[Charikar 2002; Andoni and Indyk 2008] and stacked-RBM [Torralba et al. 2008; Weiss
et al. 2008]). We also found that the SH SVM is a litter worse than MLH, which is a
supervised hashing method. But the SH ENCW outperforms MLH.

We believe that our SH ENCW performs better than the comparison algorithms for
the following reasons.

—SH ENCW satisfies the local similarity preservation criterion as well as achieves the
minimal reconstructor error, thus loses less information than other algorithms.

—The learned hash functions for encoding test instances avoid the issue of overfitting.
—The proposed framework make the best use of reasonable a-priori knowledge. Al-

though utilizing a-priori knowledge makes the learning process more informative,
the learning process can easily induce noise. However, reasonable utilization of a-
priori knowledge (e.g., the two kinds of a-priori knowledge used in the article) always
improves the effectiveness of learning process.
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(a) 20Newsgroups
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(b) Reuters21578
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(c) MNIST
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(d) USPS

Fig. 6. The precision-recall curves for retrieving same-topic data.

5.2.3. Comparison of SpH, STH, SH SVM and SH ENCW. As can be seen from Figure 5 and
Figure 6, algorithm SH SVM outperforms STH method, and SH ENCW is better than
SH SVM, SpH and STH.

Actually, SH SVM employs Algorithm 1 (i.e., SH LARS) in training process, and SVM
(same as STH) for learning hash functions. Hence, the experimental results of SH SVM,
STH, and SpH show that the proposed sparse hashing by employing Algorithm 1 is
better than the existing hashing methods which only take one constraint (i.e., global
similarity for SpH and local similarity for STH) into account. The reason is that the
proposed sparse hashing can lose less information and generate more efficient models
than the existing techniques, due to adding more constraints into the training process.

Comparing SH SVM to SH ENCW, SH ENCW employs ENCW method (i.e.,
Algorithm 2) to learn hash functions. The experimental results show that ENCW
method is more effective than SVM method. That is because that ENCW method
takes into account a-priori knowledge (i.e., implicit group effect within the encoders
and the correlations between original data and learned binary codes of training data).
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Table I.
Time cost (seconds) for generating 64-bit (or 128-bit) binary codes for the dataset USPS (or GIST) on the
comparison algorithms. The illustrated values are the overall time for encoding 2,007 (or 1,000) test data points
in dataset USPS (or GIST).

Algorithms USPS’s Training Cost USPS’s Test Cost GIST’s Training Cost GIST’s Test Cost
SH ENCW 111.363 0.013 155.433 0.006

STH 67.489 1.342 1945.773 7.462
MLH 4578.602 0.023 13451.628 0.007
SpH 1.137 0.099 114.902 0.074
LCH 10.719 0.039 47.864 0.018
LSI 4.556 0.019 28.665 0.008
LSH 0.524 0.011 4.975 0.004

Moreover, we also demonstrate that adding such a-priori knowledge is reasonable.
However, SVM method does not consider any prior knowledge to learn hash functions.

5.2.4. Encoding Time. SH for approximate similarity search is fast on an ordinary PC
with 2.93GHz CPU and 16GB RAM. The time cost of our Matlab implementation of
64-bit on dataset USPS is presented in the second column and the third column of
Table I.

As can be seen, SH takes the second most training cost. That is because SH needs
to implement LARS algorithm twice (i.e., SH LARS algorithm and EN method respec-
tively) and CCA method. Fortunately, training process is usually off-line. Moreover,
in real applications, training cost of SH can be reduced by some improvements. For
example, we can learn initial bases in Algorithm 1 and implement CCA in advance. We
can also employ other fast algorithms to solve LARS algorithm, such as online learning
method [Mairal et al. 2010].

Due to a single matrix-vector multiplication for encoding unseen data, SH incurs
less test cost. Hence, SH method can be utilized in real applications.

5.3. Results on a Large-Scale Dataset

In this section, we use a large dataset ANN-GIST 1M dataset from [Jégou et al. 2011]
(referred to as GIST) to evaluate the quality of approximate nearest neighbors search.
In GIST, each image is represented by a single global GIST descriptor. GIST provides
1 million images in the base set and 1,000 images in the test set. Since the training
process for most compared methods cannot scale to large training datasets, we use a
sampling method to generate the training set.

Following the setting in Song et al. [2011], we randomly sampled 10,000 images from
the base set as the training set to learn the model. Then the remaining images in the
base set and the test images are transferred into binary codes via the learned hash
functions. We repeat each algorithm ten times and report the median result in the ten
results.

In the experimental setting, the code length is set as {16, 32, 48, 64, 80, 96, 112, 128}.
According to the literature in Jégou et al. [2011], we set k = 100 to construct the k
nearest neighbor graph. We set the Hamming ball radius as {0, 8, 16, 32}. The rest
settings are the same as the ones in Section 5.1.2.

We first test the score of F1-measure of SH ENCW for retrieving the original nearest
neighbors and present the results in Figure 7. We then compare the proposed SH with
the comparison algorithms and present the results in terms of their precision-recall
curves for retrieving original nearest neighbors in Figure 8, while fixing Hamming
ball radius as 16. Furthermore, we show the impact of different sample size on the
evaluation F1 measure on all algorithms and report the result in Figure 9. We also
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Fig. 7. The score of F1 measure of SH ENCW for retrieving original nearest neighbors. Note that the value
of horizontal axis indicates code length.
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Fig. 8. The precision-recall curves on the large scale dataset GIST.

show the time cost for all comparison algorithms at GIST in the last two columns of
Table I.

As can be seen from Figure 7 and Figure 8, the results on the large-scale dataset are
similar to the ones on the small datasets, which confirm that the proposed SH methods
are also effective for large datasets.

In the last experiment, we also test the effect of sampling size in the training process.
We set sample size as [2000, 5000, 10000, 20000, 50000] while fixing Hamming radius
as 8 and code length as 80. According to the results in Figure 9, we can see that the F1
results increase quickly as the sample size grows from 2000 to 10000, and get marginal
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Fig. 9. The score of F1 measure of all algorithms for different sample size on the large scale dataset GIST.

improvements when the sample size becomes greater than 10000. It is clear that a
larger sample set leads to higher accuracy. However, given the high training cost,
a reasonably small sample size achieving satisfactory results is preferred. In GIST
dataset, the sample size of 10000 seems a good choice, since larger sample sizes do not
improve the results significantly.

6. CONCLUSION

The article proposed a novel sparse hashing framework for fast approximate similarity
search. The proposed SH framework explores the properties of nonnegative sparse cod-
ing to generate interpretably binary codes as well as to achieve minimal reconstruct
error. Moreover, SH adds the similarity preservation constraint into sparse coding
model for preserving local similarity restructures of the data. Furthermore, SH pro-
vides an effective and efficient method for encoding unseen data. The experimental
results on five real-world datasets show that SH outperforms state-of-the-art tech-
niques significantly. In future, we will focus on generating approximate hash functions
during training process with the aim to make the “out of sample extension” issue re-
dundant. We are also interested in applying the proposed method for the application
of near-duplicate detection.
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