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ABSTRACT
The goal of graph clustering is to partition vertices in a large graph
into different clusters based on various criteria such as vertex con-
nectivity or neighborhood similarity. Graph clustering techniques
are very useful for detecting densely connected groups in a large
graph. Many existing graph clustering methods mainly focus on
the topological structure for clustering, but largely ignore the ver-
tex properties which are often heterogenous. In this paper, we pro-
pose a novel graph clustering algorithm, SA-Cluster, based on both
structural and attribute similarities through a unified distance mea-
sure. Our method partitions a large graph associated with attributes
into k clusters so that each cluster contains a densely connected
subgraph with homogeneous attribute values. An effective method
is proposed to automatically learn the degree of contributions of
structural similarity and attribute similarity. Theoretical analysis is
provided to show that SA-Cluster is converging. Extensive experi-
mental results demonstrate the effectiveness of SA-Cluster through
comparison with the state-of-the-art graph clustering and summa-
rization methods.

1. INTRODUCTION
Clustering is a useful and important unsupervised learning tech-

nique widely studied in literature [1, 6, 9, 17]. The general goal
of clustering is to group similar objects into one cluster while par-
titioning dissimilar objects into different clusters. Clustering has
broad applications including the analysis of business and financial
data, biological data, time series data, spatial data, and so on.

Graph as an expressive data structure is popularly used to model
structural relationship between objects in many application domains
such as web, social networks, sensor networks and telecommuni-
cation, etc.. Graph clustering is an interesting and challenging re-
search problem which has received much attention recently [16,19,
26]. Clustering on a large graph aims to partition the graph into sev-
eral densely connected components. Typical applications of graph
clustering include community detection in social networks, identifi-
cation of functional related protein modules in large protein-protein
interaction networks, etc.. Many existing graph clustering methods
mainly focus on the topological structure of a graph so that each
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partition achieves a cohesive internal structure. Such methods in-
clude clustering based on normalized cut [19], modularity [16] or
structural density [26]. On the other hand, one recent graph sum-
marization method [22] aims to partition the graph according to
attribute similarity, so that nodes with the same attribute values are
grouped into one partition.

A major difference between graph clustering and traditional re-
lational data clustering is that, graph clustering measures vertex
closeness based on connectivity (e.g., the number of possible paths
between two vertices) and structural similarity (e.g., the number
of common neighbors of two vertices); while relational data clus-
tering measures distance mainly based on attribute similarity (e.g.,
Euclidian distance between two attribute vectors).

In many real applications, both the graph topological structure
and the vertex properties are important. For example, in a so-
cial network, vertex properties describe roles of a person while
the topological structure represents relationships among a group of
people. The graph clustering and summarization approaches men-
tioned above consider only one aspect of the graph properties but
ignore the other. As a result, the clusters thus generated would ei-
ther have a rather random distribution of vertex properties within
clusters, or have a rather loose intra-cluster structure. An ideal
graph clustering should generate clusters which have a cohesive
intra-cluster structure with homogeneous vertex properties, by bal-
ancing the structural and attribute similarities. Let us look at an
example as follows.

Figure 1 (a) shows an illustrating example of a coauthor graph
where a vertex represents an author and an edge represents the
coauthor relationship between two authors. In addition, there are
an author ID and primary topic(s) associated with each author. The
research topic is considered as an attribute to describe the vertex
property. As we can see, authors r1–r7 work on XML, authors r9–
r11 work on S kyline and r8 works on both. Given a cluster number
k = 2, we could partition the graph into 2 clusters in several possi-
ble ways depending on the clustering criteria:

• Structure-based Clustering. Figure 1 (b) shows a clus-
tering result based on vertex connectivity, i.e., coauthor re-
lationship. Authors within clusters are closely connected;
however, they could have quite different topics, e.g., half
work on XML and the other half work on S kyline in one
of the clusters.

• Attribute-based Clustering. Figure 1 (c) shows another
clustering result based on attribute similarity, i.e., topics. Au-
thors within clusters work on the same topics; however, the
coauthor relationship may be lost due to the partitioning so
that authors are quite isolated in one of the clusters.

• Structural/Attribute Clustering. Figure 1 (d) shows the
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Figure 1: A Coauthor Network Example with an Attribute “Topic”

clustering result based on both structure and attribute infor-
mation. This clustering result balances the structural and
attribute similarities: authors within one cluster are closely
connected; meanwhile, they are homogeneous on research
topics. This is the result we want to achieve in this work.

The problem we study in this paper is to cluster a large-scale
graph associated with attributes based on both structural and at-
tribute similarities. The goal is to partition the graph into k clusters
with cohesive intra-cluster structures and homogeneous attribute
values. The problem is quite challenging because structural and
attribute similarities are two seemingly independent, or even con-
flicting goals – in our example, authors who collaborate with each
other may have different properties, such as research topics, po-
sitions held, and prolific values; while authors who work on the
same topics may come from different groups, so they never collab-
orate and may even compete. It is not clear how to balance these
two objectives. A possible solution is to design a distance function
between two vertices vi and v j as

d(vi, v j) = α · dS (vi, v j) + β · dA(vi, v j) (1)

where dS (vi, v j) and dA(vi, v j) measure the structural distance and
attribute distance respectively, while α and β are the weighting fac-
tors. Although this method is simple, it is hard to set/tune the pa-
rameters as well as interpret the weighted distance function. For
our example in Figure 1 (a), it is not clear to a user whether the
weight of coauthor relationship should be larger or smaller than the
weight of research topic similarity. It is even harder for the user to
decide the weights quantitatively.

In this paper, we seek to integrate the structural and attribute sim-
ilarities into a unified framework through graph augmentation. We
insert a set of attribute vertices to a graph G. An attribute vertex
v jk represents an attribute-value pair (a j, a jk). If a vertex vi has the
value a jk on attribute a j, an attribute edge is added between vi and
v jk. To avoid confusion, original vertices are called structure ver-
tices and original edges are called structure edges. With such graph
augmentation, we express the attribute similarity as vertex vicinity
in the graph: two vertices which share an attribute value are con-
nected by a common attribute vertex. In the augmented graph, two
structure vertices vi and v j are close either if they are connected
through many other structure vertices, or if they share many com-
mon attribute vertices as neighbors, or both. Then we are able to de-
sign a distance measure which estimates the pairwise vertex close-
ness in the graph through both structure and attribute edges. In this
paper, we propose to use the neighborhood random walk model to
estimate the vertex closeness on the augmented graph. We could
then perform graph clustering based on the random walk distance.
In this problem formulation, we identify the following challenges.

1. Adjust the degree of contributions of structural and at-
tribute similarities. A structure edge and an attribute edge
may have different importance in random walk paths. Differ-
ent attributes may also have different contributions in random
walk distance due to their different clustering tendencies. For
example, research topic could be a good attribute for group-
ing researchers with similar topics, while attributes like affil-
iation and gender may not have good clustering tendencies.
To model the degree of contributions of attributes, we assign
a weight to each attribute. Then we need a mechanism to dif-
ferentiate the weights of different attribute edges and need a
learning algorithm to automatically adjust the weights as we
partition the graph.

2. Guarantee clustering convergence. We will design a clus-
tering objective function and aim to improve it towards con-
vergence. But as the attribute edge weights are adjusted, the
random walk distances are affected. So if we interleave the
graph clustering process and attribute edge weight adjust-
ment for progressive refinement of the cluster quality, will
the clustering process converge?

We will address the challenges listed above and propose our
graph clustering algorithm based on a unified neighborhood ran-
dom walk distance. The main contributions of this paper are sum-
marized below.

1. We study the problem of clustering attributed graphs. We
propose a unified distance measure to combine structural and
attribute similarities. Attribute vertices and edges are added
to the original graph to connect vertices which share attribute
values. A neighborhood random walk model is used to mea-
sure the vertex closeness on the augmented graph through
structure edges and attribute edges.

2. Theoretical analysis is provided to quantify the contribution
of attribute similarity to the unified random walk distances
for measuring vertex closeness.

3. We propose a weight self-adjustment method to learn the de-
gree of contributions of different attributes in random walk
distances. We also prove that the edge weights are adjusted
towards the direction of clustering convergence.

4. We perform extensive evaluation of our proposed clustering
approach by using real large graphs, demonstrating that our
method is able to partition the graph into high-quality clus-
ters with cohesive structures and homogeneous attribute val-
ues. In addition, we show through experiments that our clus-
tering algorithm converges very quickly.



The rest of this paper is organized as follows. Section 2 intro-
duces the preliminary concepts and formulates the attributed graph
clustering problem. Section 3 presents a unified framework based
on neighborhood random walk to integrate structural and attribute
similarities. We propose an adaptive clustering algorithm for the
attributed graph in Section 4. Section 5 presents extensive exper-
imental results, followed by related work on graph clustering and
graph mining in Section 6. Finally, Section 7 concludes the paper.

2. PROBLEM STATEMENT
An attributed graph is denoted as G = (V, E,Λ), where V is the

set of vertices, E is the set of edges, and Λ = {a1, ..., am} is the set
of m attributes associated with vertices in V for describing vertex
properties. Each vertex vi ∈ V is associated with an attribute vector
[a1(vi), ..., am(vi)] where a j(vi) is the attribute value of vertex vi on
attribute a j. We denote the size of the vertex set as |V | = N.

Attributed graph clustering is to partition an attributed graph
G into k disjoint subgraphs Gi = (Vi, Ei,Λ), where V =

⋃k
i=1 Vi

and Vi
⋂

V j = φ for any i , j. A desired clustering of attributed
graph should achieve a good balance between the following two
properties: (1) vertices within one cluster are close to each other
in terms of structure, while vertices between clusters are distant
from each other; and (2) vertices within one cluster have similar
attribute values, while vertices between clusters could have quite
different attribute values.

In the attributed graph clustering problem, there are two main
issues: (1) a distance measure, and (2) a clustering algorithm. We
will discuss these two issues in the following sections.

3. DISTANCE IN AN ATTRIBUTED GRAPH

3.1 Structural Closeness Measure
In a large graph G, some vertices are close to each other while

some other vertices are far apart based on connectivity. If there
are multiple paths connecting two vertices vi and v j, then they are
close. On the other hand, if there are very few or no paths between
vi and v j, then they are far apart. In this paper, we use neighborhood
random walk distances to measure vertex closeness.

Definition 1. [Neighborhood Random Walk Distance] Let P be
the N ×N transition probability matrix of a graph G. Given l as the
length that a random walk can go, c ∈ (0, 1) as the restart probabil-
ity, the neighborhood random walk distance d(vi, v j) from vi to v j

is defined as

d(vi, v j) =
∑

τ:vi v j
length(τ)≤l

p(τ)c(1 − c)length(τ) (2)

where τ is a path from vi to v j whose length is length(τ) with tran-
sition probability p(τ).

The matrix form of the neighborhood random walk distance is

Rl =

l∑

γ=1

c(1 − c)γPγ (3)

Here, P is the transition probability matrix for graph G, and R is the
neighborhood random walk distance matrix. According to Eq.(3),
the recursive form of the random walk distance matrix is

Rl =

l∑

γ=1

c(1 − c)γPγ = c(1 − c)lPl + Rl−1 (4)
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Figure 2: Attribute Augmented Graph with Topics

Then the structural closeness between two vertices vi and v j is

dS (vi, v j) = Rl(i, j)

3.2 A Unified Distance Measure
In an attributed graph, each vertex is associated with a set of

attributes Λ = {a1, ..., am}, which describe the properties of the ver-
tex. A straightforward way to combine structural and attribute sim-
ilarities is to to use a weighted distance function as in Eq.(1) with
two weighting factors α and β. Although this method is very sim-
ple, it is not easy to set the parameters and interpret the weighted
distance function. Instead of modeling structural similarity and at-
tribute similarity separately, we propose to use a unified distance
measure based on the neighborhood random walk model to com-
bine the structural closeness and attribute similarity. Before defin-
ing the distance measure, we define an attribute augmented graph.

Definition 2. [Attribute augmented graph] Given an attributed
graph G = (V, E,Λ) where Λ = {a1, ..., am}. The domain (the set
of possible values) of attribute ai is Dom(ai) = {ai1, ..., aini } where
|Dom(ai)| = ni. An attribute augmented graph is denoted as Ga =

(V∪Va, E∪Ea) where Va = {vi j}m, ni
i=1, j=1 is the set of attribute vertices.

An attribute vertex vi j ∈ Va represents that attribute i takes the jth

value. An edge (vi, v jk) ∈ Ea iff a j(vi) = a jk, i.e., the structure
vertex vi takes a value of a jk on attribute a j. An edge (vi, v j) ∈ E
is called a structure edge and an edge (vi, v jk) ∈ Ea is called an
attribute edge.

In the attribute augmented graph, we add a set of “dummy” ver-
tices Va where each dummy vertex represents an < attribute, value >
pair. An edge is added between a vertex vi ∈ V and a vertex v jk ∈ Va

if vertex vi takes the kth value on attribute j. Since each vertex
vi ∈ V has m attribute values, there are totally |V | ·m attribute edges
added to the original graph G. Figure 2 is an attribute augmented
graph on the author-topic example. Two attribute vertices v11 and
v12 representing the topics “XML” and “Skyline” are added. Au-
thors with corresponding topics are connected to the two vertices
respectively in dashed lines. With the attribute edges, authors who
are originally isolated become much closer if they share a common
topic, e.g., r1 and r5.

We propose to use the neighborhood random walk model on the
attribute augmented graph Ga to compute a unified distance be-
tween vertices in V . One important difference between the ran-
dom walk on the attribute augmented graph Ga and that on the
original graph G is that, if two vertices vi, v j ∈ V have the same
attribute value akp on attribute ak, they will have a new common



PA =



r1 r2 . . . r10 r11 v11 v12

r1 0 1/3 . . . 0 0 1/3 0
r2 1/3 0 . . . 0 0 1/3 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
r10 0 0 . . . 0 1/3 0 1/3
r11 0 0 . . . 1/3 0 0 1/3
v11 1/8 1/8 . . . 0 0 0 0
v12 0 0 . . . 1/4 1/4 0 0



Figure 3: Transition Probability Matrix of the Attribute Aug-
mented Graph Example

neighbor, i.e., the attribute vertex vkp ∈ Va, thus there is a ran-
dom walk path between vi and v j through vkp. Obviously, the more
attribute values two vertices share, the more random walk paths ex-
ist between the pair of vertices. Since |Dom(ai)| = ni,∀ai ∈ Λ,
|V ∪ Va| = |V | + |Va| = N +

∑m
i=1 ni. The transition matrix PA of

the attribute augmented graph is a |V ∪ Va| by |V ∪ Va| matrix. The
transition probability PA(vi, v j) is defined as follows.

A structure edge (vi, v j) ∈ E is of a different type from an at-
tribute edge (vi, v jk) ∈ Ea. The m attributes may also have different
importance. Therefore, they may have different degree of contri-
butions in random walk distance. Without loss of generality, we
assume that a structure edge has a weight of ω0, attribute edges
corresponding to a1, a2, . . ., am have an edge weight of ω1, ω2, . . .,
ωm, respectively. Therefore, the transition probability from vertex
vi to vertex v j through a structure edge is

pvi ,v j =



ω0

|N(vi)| ∗ ω0 + ω1 + ω2 + . . . + ωm
, i f (vi, v j) ∈ E

0, otherwise
(5)

where N(vi) represents the set of neighbors of vertex vi. Similarly,
the transition probability from vi to v jk through an attribute edge is

pvi ,v jk =



ω j

|N(vi)| ∗ ω0 + ω1 + ω2 + . . . + ωm
, i f (vi, v jk) ∈ Ea

0, otherwise
(6)

The transition probability from vik to v j through an attribute edge is

pvik ,v j =



1
|N(vik)| , i f (vik, v j) ∈ Ea

0, otherwise
(7)

Finally, the transition probability between two attribute vertices vip

and v jq is 0 since there is no edge between two attribute vertices.

pvip ,v jq = 0,∀vip, v jq ∈ Va (8)

Since every vertex has a value on attribute ai, the following con-
straint should be satisfied as well.

ni∑

k=1

|N(vik)| = |V |, 1 ≤ i ≤ m (9)

Combining Eqs.(5)–(8), the transition probability matrix PA of an
attribute augmented graph Ga can be computed. A transition prob-
ability matrix is shown in Figure 3 on the set of structure vertices
(author) r1–r11 and attribute vertices (topic) v11–v12 for our exam-
ple in Figure 2. We initialize ω0 = ω1 = 1.0 as the initial values. A
mechanism on how to automatically adjust these edge weights will
be introduced in Section 4.4.

Definition 3. [Unified Neighborhood Random Walk Distance]
Let PA be the transition probability matrix of an attribute augmented
graph Ga. Given l as the length that a random walk can go, c ∈ (0, 1)

as the restart probability, the unified neighborhood random walk
distance d(vi, v j) from vi to v j in Ga is defined as follows:

d(vi, v j) =
∑

τ:vi v j
length(τ)≤l

pA(τ)c(1 − c)length(τ) (10)

where τ is a path from vi to v j whose length is length(τ) with tran-
sition probability pA(τ).

The matrix form of the neighborhood random walk distance is

Rl
A =

l∑

γ=1

c(1 − c)γPγ
A (11)

Here, PA is the transition probability matrix for graph Ga, and RA is
the neighborhood random walk distance matrix. For the author-
topic example, given PA in Figure 3, c = 0.2 and l = 2, then
R2

A(r1, r5) = 0.005, which means authors r1 and r5 are reachable
within 2 steps with 0.005 probability through the topic vertex XML.
On the other hand, without attribute edges based on topic, the ran-
dom walk distance on the original graph G is Rl(r1, r5) = 0 for an
arbitrary l because r1 and r5 are not reachable from each other in G.

For ease of presentation, we simplify the representation of PA as

PA =

[
PV A
B O

]

where PV is an N × N matrix representing the transition prob-
abilities defined by Eq.(5); A = [A1, A2, ..., AN]T is a |V | × |Va|
matrix representing the transition probabilities defined by Eq.(6);
B = [B1, B2, ..., BN] is a |Va| × |V | matrix representing the transition
probabilities defined by Eq.(7); and O is a |Va| × |Va|matrix with all
0s. We can get an N × N matrix C as the product of A and B where

C(i, j) = AiB j =

m∑

k=1

A(vi, vkp) · B(vkp, v j) (12)

vkp is the value taken by vertex vi on attribute ak, k = 1, ...,m. If
vertex v j has a different value on ak other than vkp, then B(vkp, v j) =

0, thus A(vi, vkp)·B(vkp, v j) = 0. C reflects the probability of random
walk paths from one structure vertex to another in two steps by
going through attribute vertices. For two arbitrary structure vertices
vi and v j, the more attribute vertices they share as neighbors, the
larger C(i, j) is. When vi and v j have no common values on any
attribute, C(i, j) = 0 is minimum. On the other hand, C(i, j) is
maximum if vi and v j share the same value for each attribute.

L 1. Given PA and a positive integer l, Pl
A can be repre-

sented as

Pl
A =

[
Tl Tl−1A

BTl−1 BTl−2A

]

where Tl = PV Tl−1 + CTl−2.
Proof. We will prove it by induction. When l = 1,

P1
A =

[
PV A
B O

]

and T1 = PV . When l = 2,

P2
A =

[
P2

V + C PV A
BPV BA

]

and T2 = P2
V + C. When l = k, assume that we have

Tk = PV Tk−1 + CTk−2



When l = k + 1,

Pk+1
A = PA · Pk

A =

[
PV A
B O

]
×

[
Tk Tk−1A

BTk−1 BTk−2A

]

=

[
PV Tk + ABTk−1 PV Tk−1A + ABTk−2A

BTk BTk−1A

]

=

[
PV Tk + CTk−1 (PV Tk−1 + CTk−2)A

BTk BTk−1A

]
=

[
Tk+1 TkA
BTk BTk−1A

]

According to the recursive definition of Tl, Tl can be rewritten in
the form of

∑∏
mi≥0,ni≥0(Pmi

V Cni ).

T 1. Given two vertices vp, vq ∈ V, assume that vp and
vq have exactly the same connectivity in G, i.e., ∀v j ∈ V, (v j, vp) ∈
E, iff (v j, vq) ∈ E. Given another vertex vi ∈ V, assume that vi

shares more attribute values with vp than with vq. We further as-
sume that, ∀v j , vi, vp, vq, v j shares the same number of attribute
values with vp as with vq. Then for an arbitrary random walk length
l, Pl

A(vi, vp) > Pl
A(vi, vq).

Proof. See Appendix.

T 2. Given two vertices vp, vq ∈ V, assume that vp and
vq have exactly the same connectivity in G, i.e., ∀v j ∈ V, (v j, vp) ∈
E, iff (v j, vq) ∈ E. Given another vertex vi ∈ V, assume that vi

shares more attribute values with vp than with vq. We further as-
sume that, ∀v j , vi, vp, vq, v j shares the same number of attribute
values with vp as with vq. Then for an arbitrary random walk length
l, Rl

A(vi, vp) > Rl
A(vi, vq).

Proof. According to Theorem 1, we have Pl
A(vi, vp) > Pl

A(vi, vq).
According to Eq.(11), Rl

A is a linear sum of Pγ
A with positive coef-

ficients c(1 − c)γ, γ = 1, ..., l. Then we have Rl
A(vi, vp) > Rl

A(vi, vq)
for an arbitrary l.

Theorem 2 demonstrates that attribute similarity increases the
closeness between two vertices in an attribute augmented graph
through neighborhood random walks. Based on this neighborhood
random walk model in an attribute augmented graph, we unify the
structural and attribute similarities into one random walk distance
measure effectively.

4. CLUSTERING ALGORITHM
Our clustering framework is to partition an attributed graph G

based on both structural and attribute similarities through a uni-
fied neighborhood random walk model on the attribute-augmented
graph Ga of G. In this section, we will address the challenges in the
clustering process by answering the following questions. Based on
our answers to the questions, we propose an adaptive clustering
algorithm on an attributed graph.

1. Given the unified random walk distances to measure the sim-
ilarity between vertices, what kind of clustering approach
shall we use?

2. We assign a weight ω0 to structure edges and ωi to attribute
edges on attribute ai. Different types of edges may have dif-
ferent degree of contributions in calculating the unified ran-
dom walk distances, thus we can assume ω0 , ω1 , ... , ωm.
Then the question is, can we learn the weights adaptively in
the clustering process and how 1?

1We fix ω0 = 1.0 and adjust {ω1, ..., ωm} relative to ω0.

3. What should be the objective function for clustering? Since
the random walk distances are affected as the weights are up-
dated, will the objective function converge as we iteratively
adjust the weights {ω1, ..., ωm}?

Many existing graph clustering/partitioning methods focused only
on either topological structures [16,19,26] or vertex attributes [22].
In our problem of clustering an attributed graph, the unified neigh-
borhood random walks consider all possible paths through both
structure edges and attribute edges. Due to the attribute edges, the
attribute similarity between two vertices will bring them closer in
attribute augmented graph, causing an increased random walk dis-
tance. According to the unified random walk model, two vertices
are assigned to the same cluster if the random walk distance is very
large 2; while two vertices belong to different clusters if the ran-
dom walk distance is very small or 0, i.e., there does not exist a
neighborhood random walk between them.

With the random walk distance as a pairwise similarity measure,
we could ignore the original graph topological structure in the clus-
tering process. Our clustering framework follows the K-Medoids
clustering method [13]: we select the most centrally located point
in a cluster as a centroid, and assign the rest of points to their clos-
est centroids. In each iteration, the edge weights {ω1, ..., ωm} are
adjusted to reflect the clustering tendencies of attributes. This pro-
cess is repeated until convergence. We will discuss each step in the
clustering process separately.

4.1 Cluster Centroid Initialization
Good initial centroids are essential for the success of partitioning

clustering algorithms such as K-Means and K-Medoids. Instead of
selecting initial centroids randomly, we follow the motivation of
identifying good initial centroids from the density point of view
[10]. If the l-step neighborhood of a vertex vi is dense, it means
many vertices are reachable from vi within l steps. Then vi has a
high probability of being in a dense cluster. First, we define an
influence function as follows.

Definition 4. [Influence Function] Let σ be a user-specified pa-
rameter. The influence function of one vertex vi on another vertex
v j is defined as

f v j
B (vi) = 1 − e−

d(vi ,v j)2

2σ2 (13)

The influence function f v j
B (vi) ∈ [0, 1] measures the extent one

vertex influences another one. The influence of vi on v j is propor-
tional to the random walk distance from vi to v j. The larger the
random walk distance from vi to v j, the more influence vi has on v j.

Definition 5. [Density Function] The density function of one ver-
tex vi is the sum of the influence function of vi on all vertices in V

f D
B (vi) =

∑

v j∈V
f v j
B (vi) =

∑

v j∈V
(1 − e−

d(vi ,v j )2

2σ2 ) (14)

If one vertex vi has a large density value, it means that, either vi

connects to many vertices through multiple random walk paths, or
vi shares attribute values with many vertices.

According to the density function, we sort all vertices in the de-
scending order of their density values. Then select the densest k
vertices from the sorted list as the initial centroids {c0

1, ..., c
0
k}.

2Different from traditional distance measures, a random walk dis-
tance measures the closeness between two vertices.



4.2 Clustering Process
With k centroids in the tth iteration, we assign each vertex vi ∈ V

to its closest centroid c∗ ∈ {ct
1, ..., c

t
k} , i.e., a centroid c∗ with the

largest random walk distance from vi:

c∗ = argmaxct
j
d(vi, ct

j)

When all vertices are assigned to some cluster, the centroid will
be updated with the most centrally located vertex in each cluster.
To find such a vertex, we first compute the “average point” vi of a
cluster Vi in terms of random walk distance as

Rl
A(vi, v j) =

1
|Vi|

∑

vk∈Vi

Rl
A(vk, v j),∀v j ∈ V (15)

Thus Rl
A(vi) is the average random walk distance vector for cluster

Vi. Then we find the new centroid ct+1
i in cluster Vi as

ct+1
i = argminv j∈Vi‖Rl

A(v j) − Rl
A(vi)‖ (16)

Thus we find the new centroid ct+1
i in the (t + 1)th iteration whose

random walk distance vector is the closest to the cluster average.
The clustering process iterates until the clustering objective func-
tion converges.

4.3 Clustering Objective Function
The objective of clustering is to maximize intra-cluster similar-

ity and minimize inter-cluster similarity. We design our clustering
objective function according to this general goal. As our distance
measure is the unified random walk distance, we will maximize the
intra-cluster random walk distances.

Definition 6. [Vertex Set Distance] Let V1 and V2 be two sets of
vertices. The vertex set distance d(V1,V2) between V1 and V2 is
defined as

d(V1,V2) =
∑

vi∈V1 ,v j∈V2

d(vi, v j)
|V1| × |V2| (17)

where d(vi, v j) = Rl
A(vi, v j) is the unified neighborhood random

walk distance between vi and v j. This formula is designed to quan-
titatively measure the extent of similarity between two vertex sets
in a graph. When vertices from V1 and V2 are distant or isolated,
the vertex set distance measure would be very small.

Definition 7. [Graph Clustering Objective Function] Given an
attributed graph G = (V, E,Λ), the weights W = {ω1, ..., ωm} on
attribute edges, a random walk length limit l, and the cluster num-
ber k, the goal of a graph clustering is to find k partitions {Vi}ki=1 of
the graph, where Vi corresponds to the ith cluster, Vi

⋂
V j = φ and⋃k

i=1 Vi = V , so that the following objective function is maximized

O({Vi}ki=1,W) =

k∑

i=1

d(Vi,Vi) (18)

subject to
∑m

i=1 ωi = m and ωi > 0, i = 1, ...,m.

The clustering problem can be reduced to three subproblems of
(1) cluster assignment, (2) centroid update, and (3) weight adjust-
ment, with the goal of maximizing the objective function. The first
two problems have been discussed in Section 4.2 and the third one
will be investigated in Section 4.4. We will first study the rela-
tionship between the weights W = {ω1, ..., ωm} and the objective
function in Eq.(18).

T 3. Given a certain partition {V∗i }ki=1 of graph G, there
exists a unique solution W∗ = {ω∗1, ..., ω∗m} which maximizes the
objective function in Eq.(18).

Proof. According to Eq.(11), we know that, ∀vp, vq ∈ V, 1 ≤ γ ≤
l, Pγ

A(vp, vq) is a polynomial function of multi-variable ω1, ..., ωm

with non-negative real coefficients. The coefficients c(1 − c)γ in
Eq.(11) are positive. Then we can infer that Rl

A(vp, vq) is a poly-
nomial function of ω1, ..., ωm with non-negative real coefficients.
Since O({V∗j }kj=1,W) is the sum of multiple random walk distances,
it is also a polynomial function of ω1, ..., ωm with non-negative
real coefficients. Assume that the polynomial expression of weight
ωi in O({V∗j }kj=1,W) is expressed as fi(ωi). Then we can rewrite
O({V∗j }kj=1,W) =

∑m
i=1 fi(ωi). Let λ be the Lagrange multiplier and

O′({V∗j }kj=1,W, λ) be the Lagrange function

O′({V∗j }kj=1,W, λ) =

m∑

i=1

fi(ωi) + λ(
m∑

i=1

ωi − m) (19)

If (W∗, λ∗) maximizes O′({V∗j }kj=1,W, λ), W∗ and λ∗ are the solutions
of the following two equations.

∂O′({V∗j }kj=1,W, λ)

∂ωi
=
∂ fi(ωi)
∂ωi

+ λ = gi(ωi) + λ + c = 0, (1 6 i 6 m)

(20)

∂O′({V∗j }kj=1,W, λ)

∂λ
=

m∑

i=1

ωi − m = 0 (21)

As ∂ fi(ωi)
∂ωi

may generate a constant term, to illustrate this explicitly,

we use gi(ωi) + c to represent ∂ fi(ωi)
∂ωi

in Eq.(20). gi(ωi) is a polyno-
mial function of ωi with non-negative real coefficients.

Gauss’ Fundamental Theorem of Algebra [8] states that every
non-constant single-variable polynomial with complex coefficients
has at least one complex root. Thus, Eq.(20) must have at least
one complex root. For λ = λ∗, there are two possible cases, i.e.,
λ∗ ≥ −c and λ∗ < −c, to be discussed separately as follows.
[Case 1. λ∗ ≥ −c] According to Descartes’ Rule of Signs [5], the
number of positive roots of a polynomial function is either equal
to the number of sign differences between consecutive nonzero co-
efficients, or less than it by a multiple of 2. When λ∗ + c ≥ 0,
all coefficients are non-negative real numbers. Thus the number of
positive roots of Eq.(20) is 0 according to Descartes’ Rule of Signs.
Actually we have

gi(ωi) + λ∗ + c ≥ λ∗ + c ≥ 0

for any assignments ωi ≥ 0, i = 1, ...,m. In addition, to satisfy
the constraint

∑m
i=1 ωi = m, there must exist at least one ωi > 0,

1 ≤ i ≤ m. Then we will have

gi(ωi) + λ∗ + c > λ∗ + c ≥ 0

Thus, we prove that there are no real number solutions to Eq.(20)
if λ∗ ≥ −c.
[Case 2. λ∗ < −c] When λ∗ < −c, the constant term λ∗ + c < 0 in
Eq.(20). According to Descartes’ Rule of Signs, there exists one or
no positive root in Eq.(20) because there is one sign difference in
the equation.

Next, we will prove that there exists at least one solution to Eq.(20)
if λ∗ < −c. When ωi = 0, i = 1, ...,m, the polynomial function
gi(ωi) + λ∗ + c = λ∗ + c < 0. On the other hand, as all coefficients
in gi(ωi) are non-negative, the function value is monotonically in-
creasing with ωi. Hence, there must exist at least one positive num-
ber δwhereωi = δ so that the polynomial function is greater than 0.
The polynomial function is continuous in the closed interval [0, δ].



The function value also has opposite signs at the boundary points
of 0 and δ. According to the Root Location Theorem or Bolzano’s
Theorem [2], we can conclude that there exists at least one solution
to Eq.(20) in the open interval (0, δ).

To summarize, for some λ∗ < −c, there exists a unique positive
root W∗ = {ω∗1, ..., ω∗m} for Eq.(20). In addition, the function value
of this positive root must be greater than that of negative roots since
this function does not have any negative coefficients. Therefore, we
can conclude that there exists a unique positive root which maxi-
mizes the objective function.

4.4 Weight Self-Adjustment
The graph clustering problem through maximizing objective func-

tion with constraints in Definition 7 is a linear programming prob-
lem. An adaptive weight adjustment method is proposed to itera-
tively improve the objective function.

We fix ω0 = 1.0 which is the structure edge weight and itera-
tively adjust the attribute weights {ω1, ..., ωm} relative to ω0. Let
W t = {ωt

1, . . . , ω
t
m} be the attribute weights in the tth iteration. We

initialize ω0
1 = ω0

2 = . . . = ω0
m = 1.0. We iteratively adjust ωt

i with
an increment 4ωt

i, which denotes the weight update of attribute ai

between the tth iteration and the (t + 1)th. The weight of attribute ai

in the (t + 1)th iteration is computed as

ωt+1
i =

1
2

(ωt
i + 4ωt

i) (22)

To accurately determine the extent of weight increment 4ωi, we de-
sign a majority vote mechanism: if a large portion of vertices within
clusters share the same value of a certain attribute ai, it means that
ai has a good clustering tendency. Then the weight ωi of ai is in-
creased; on the other hand, if vertices within clusters have a very
random distribution on values of a certain attribute ai, then ai is not
a good clustering attribute. The weight ωi should be decreased. We
define a vote measure which determines whether two vertices share
an attribute value.

votei(vp, vq) =

{
1, i f vp, vq share the same value on ai

0, otherwise
(23)

Then 4ωt
i is estimated by counting the number of vertices within

clusters which share attribute values with the centroids on ai. The
larger number of vertices which share attribute values, the larger
4ωt

i is.

4ωt
i =

∑k
j=1

∑
v∈V j

votei(c j, v)
1
m

∑m
p=1

∑k
j=1

∑
v∈V j

votep(c j, v)
(24)

The denominator in Eq.(24) ensures that the constraint
∑m

i=1 ω
t+1
i =

m is still satisfied after weight adjustment. Then the adjusted weight
is calculated as

ωt+1
i =

1
2

(ωt
i + 4ωt

i) =
1
2

(ωt
i +

m
∑k

j=1
∑

v∈V j
votei(c j, v)

∑m
p=1

∑k
j=1

∑
v∈V j

votep(c j, v)
) (25)

The adjusted weights may be increasing, decreasing, or unchanged
depending on the value of 4ωt

i. If 4ωt
i > ωt

i, then ωt+1
i > ωt

i,
i.e., attribute i makes an increasing contribution to the random walk
distance. Similarly, if 4ωt

i < ω
t
i, ω

t+1
i < ωt

i. If 4ωt
i = ωt

i, ω
t+1
i = ωt

i.
An important property of the weight self-adjustment mechanism

is that the weights are adjusted towards the direction of increas-
ing the clustering objective function value. The detailed proof is
omitted due to space limit. We will briefly illustrate this property
qualitatively: if a large number of vertices within clusters share an
attribute value on ai, then the weight is increased, i.e., ωt+1

i > ωt
i;

Algorithm 1 Attributed Graph Clustering SA-Cluster
Input: an attributed graph G, a length limit l of random walk paths,
a restart probability c, a parameter σ of influence function, cluster
number k.
Output: k clusters V1, ...,Vk.

1: Initialize ω1 = ... = ωm = 1.0, fix ω0 = 1.0;
2: Calculate the unified random walk distance matrix Rl

A;
3: Select k initial centroids with highest density values;
4: Repeat until the objective function converges:
5: Assign each vertex vi to a cluster C∗ with a centroid c∗ where

c∗ = argmaxc j d(vi, c j);
6: Update the cluster centroids with the most centrally located

point in each cluster according to Eqs.(15)–(16);
7: Update weights ω1, ..., ωm according to Eq.(25);
8: Re-calculate Rl

A;
9: Return k clusters V1, ...,Vk.

on the other hand, if vertices within clusters have quite different
attribute values on ai, the weight is then decreased, i.e., ωt+1

i < ωt
i.

There must be some weights with decreasing updates and some
other weights with increasing updates, since

∑m
i=1 ω

t
i = m is a con-

stant. Due to some increased ωt+1
i , the random walk distances be-

tween vertices which share the same attribute value on ai will be
further increased. As a result, these vertices tend to be clustered
into the same cluster, thus increasing the objective function which
is the sum of intra-cluster random walk distances. We have proven
in Theorem 3 that there exists a unique solution W∗ = {ω∗1, ..., ω∗m}
which maximizes the objective function, thus we can conclude that
the weight self-adjustment strategy increases the objective function
towards convergence.

4.5 Clustering Algorithm
By assembling different parts, our clustering algorithm SA-Cluster

is presented in Algorithm 1.

T 4. The objective function in Algorithm 1 converges to
a local maximum in a finite number of iterations.

Proof. Existing work has studied the convergence properties of
the partitioning approach to clustering, such as K-Means [3]. Our
clustering follows a similar clustering approach. So the cluster
assignment and centroid update steps improve the objective func-
tion value. In addition, we have explained that weight adjustment
also improves the objective function value. Therefore, the objective
function keeps increasing and converges to a local maximum in a
finite number of iterations.

In Section 5, we will demonstrate through experiments that our
clustering algorithm converges very quickly on real datasets.

Another issue on the SA-Cluster algorithm is the computational
complexity. We need to compute N2 pairs of random walk dis-
tances between vertices in V through matrix multiplication. As
W = {ω1, ..., ωn} is updated, the random walk distances need to be
recalculated. This computational complexity can be reduced with
the recent research result on fast random walk computation [24].

5. EXPERIMENTAL STUDY
In this section, we performed extensive experiments to evalu-

ate the performance of our algorithm SA-Cluster on real graph
datasets. All experiments were done on a 2.8GHz Intel Pentium
IV PC with 1GB main memory, running Windows XP. All algo-



rithms were implemented in C++ and compiled using Visual C++

6.0 compiler, except that random walk was computed by Matlab.

5.1 Experimental Datasets
We use two real graph datasets for evaluation in our experiments.
Political Blogs Dataset The political blogs network dataset can

be downloaded from http://www-personal.umich.edu/ mejn/netdata/.
This dataset is a network of 1, 490 webblogs on US politics with
19, 090 hyperlinks between these webblogs. Each blog in the dataset
has an attribute describing its political leaning as either liberal or
conservative.

DBLP Dataset We use the DBLP Bibliography data from four
research areas of database (DB), data mining (DM), information
retrieval (IR) and artificial intelligence (AI) 3. We build a coauthor
graph with top 5, 000 authors and their coauthor relationships. In
addition, we use two relevant attributes: prolific and primary topic.
For attribute “prolific”, authors with ≥ 20 papers are labeled as
highly prolific; authors with ≥ 10 and < 20 papers are labeled as
prolific and authors with < 10 papers are labeled as low prolific.
For attribute “primary topic”, we use a topic modeling approach
[11, 27] to extract 100 research topics from a document collection
composed of paper titles from the selected authors. Each extracted
topic consists of a probability distribution of keywords which are
most representative of the topic. Then each author will have one
out of 100 topics as his/her primary topic.

5.2 Comparison Methods and Evaluation

• k-SNAP We implemented k-SNAP Top-Down [22] that groups
vertices with the same attribute values into one cluster.

• S-Cluster This baseline clustering algorithm only considers
topological structure. Random walk distance is used to mea-
sure vertex closeness according to Definition 1. Attribute
similarity is ignored by setting ω1 = ... = ωm = 0.

• W-Cluster This is a fictitious clustering algorithm which
combines structural and attribute similarities through a weighted
function in Eq.(1). The weighting factors α = β = 0.5. For
a pair of vertices vi, v j ∈ V , dS (vi, v j) is the random walk
distance, and dA(vi, v j) is their attribute similarity.

• SA-Cluster This is our proposed algorithm which considers
both structural and attribute similarities.

Evaluation Measures We use two measures of density and en-
tropy to evaluate the quality of clusters {Vi}ki=1 generated by differ-
ent methods. The definitions are as follows.

density({Vi}ki=1) =

k∑

i=1

|{(vp, vq)|vp, vq ∈ Vi, (vp, vq) ∈ E}|
|E| (26)

entropy({Vi}ki=1) =

m∑

i=1

ωi∑m
p=1 ωp

k∑

j=1

|V j|
|V | entropy(ai,V j) (27)

where

entropy(ai,V j) = −
ni∑

n=1

pi jnlog2 pi jn

and pi jn is the percentage of vertices in cluster j which have value
ain on attribute ai. entropy({Vi}ki=1) measures the weighted entropy
from all attributes over k clusters.
3The detailed conference list is, DB: SIGMOD, VLDB, PODS,
ICDE, EDBT; DM: KDD, ICDM, SDM, PAKDD, PKDD; IR: SI-
GIR, CIKM, ECIR, WWW; AI: IJCAI, AAAI, UAI, NIPS.

In the experiments, we set the random walk length l = 20 and
the restart probability c = 0.15.

5.3 Cluster Quality Evaluation
Figure 4 (a) shows the density comparison between the four meth-

ods on Political Blogs when we set the cluster number k = 3, 5, 7, 9.
The density values by SA-Cluster and S-Cluster are close. They re-
main around 0.6 or above even when k is increasing. This demon-
strates that both methods can find densely connected components.
On the other hand, k-SNAP has a low density, and the density value
decreases quickly when k increases. This is because k-SNAP par-
titions a graph without considering connectivity. The density by
W-Cluster stands in between. It also gradually decreases as k in-
creases.

Figure 4 (b) shows the entropy comparison between the four
methods on Political Blogs when we set k = 3, 5, 7, 9. The en-
tropy measure is always 0 for k-SNAP, since it partitions a graph
where each partition contains nodes with the same attribute value.
Besides, SA-Cluster achieves a much lower entropy than S-Cluster.
When k = 5, 7 or 9, entropy by SA-Cluster is as low as less than
0.1 while entropy by S-Cluster is still around 0.4 − 0.8. The en-
tropy by W-Cluster is similar to that of S-Cluster, but not as good
as that of SA-Cluster or k-SNAP. As shown in Figures 4 (a) and (b),
the performance of W-Cluster stands in between in terms of both
density and entropy. This is because its distance function combines
(or compromises) both structural and attribute similarities through
a weighted function, thus it achieves a reasonable result on both
criteria. On the other hand, as it is hard to set or tune the weight-
ing factors α and β to achieve an optimal result, the performance is
inferior to that of SA-Cluster.

Figures 5 (a) and (b) show density and entropy on DBLP with
different k values by SA-Cluster, S-Cluster and W-Cluster. As
shown in the figures, SA-Cluster achieves a much lower entropy
than S-Cluster, with slightly lower density. W-Cluster achieves an
even lower entropy around 0.27 − 0.40, which is better than SA-
Cluster and S-Cluster. But the density value of W-Cluster is also
much lower than that of SA-Cluster and S-Cluster. We can infer
that the weighted distance function in W-Cluster compromises at-
tribute similarity and structural similarity. Since k-SNAP strictly
enforces the attribute homogeneity in each cluster, with 3 values
on attribute prolific and 100 different topics, the minimum possible
number of clusters for k-SNAP is 300 in this experiment. So we
ran k-SNAP with k = 300 and achieved a density value of 0.1244
(much lower than that of the other three methods) and an entropy
of 0.

To further test the effect of attribute weights on random walk
distance and on clustering quality in SA-Cluster, we manually set
different weights of the attribute political leaning withω = 0, 1, 2, 3
on Political Blogs. Figures 6 (a) and (b) show the density and en-
tropy respectively. ω = 0 corresponds to S-Cluster. When the
weight increases, the contribution of attribute similarity in random
walk distance is also increasing. The clusters thus generated achieve
a much lower entropy on attribute value, while the density is not
sacrificed. This experiment demonstrates that introducing the at-
tribute similarity into the clustering objective will not downgrade
the intra-cluster cohesiveness.

5.4 Clustering Convergence
Figures 7 (a) and (b) show the trend of clustering convergence

in terms of objective function value on Political Blogs and DBLP
respectively. Both figures show that the objective function keeps
increasing when we iteratively perform the three tasks of cluster
assignment, centroid update and attribute weight adjustment. The
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Figure 4: Cluster Quality Comparison on Political Blogs
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Figure 5: Cluster Quality Comparison on DBLP

objective function converges very quickly, usually in three to seven
iterations. These results are consistent with Theorem 4.

Figure 8 shows the trend of weight updates on DBLP with dif-
ferent k values. Here we only show the weights of attribute prolific
since the sum of the two attribute weights is a constant. As shown
in the figure, the weights are converging as the clustering process
converges. Another interesting finding is that the prolific weight is
decreasing as k increases. A reasonable explanation is that, when
k is small, e.g., k = 10, a cluster with many authors mixed up has
a very diverse topic distribution. Thus, topic is not a good cluster-
ing attribute when k is small. Then the prolific weight increases for
higher contribution. On the other hand, when k is large, authors
with different topics can be separated more clearly. Therefore, the
dependence on the prolific weight is reduced significantly.

Tables 1 and 2 show the cluster quality of SA-Cluster in terms
of density (D) and entropy (E) iteration by iteration on Political
Blogs and DBLP respectively, to show the effectiveness of attribute
weight self-adjustment. As we can see on Political Blogs, in most
cases, both density and entropy improve as the weights and clus-
ters are computed iteratively. The biggest improvement is usually
achieved at iteration 2. Similar effects can be observed in Table 2,
although entropy gains more improvements while density sacrifices
a little bit iteratively.

5.5 Clustering Efficiency Evaluation
In this experiment, we compare the efficiency of different clus-

iter# k=3 k=5 k=7 k=9
D E D E D E D E

1 0.78 0.84 0.81 0.25 0.77 0.08 0.69 0.09
2 0.85 0.69 0.90 0.07 0.81 0.07 0.71 0.10
3 0.85 0.69 0.90 0.07 0.81 0.07 0.59 0.09
4 0.59 0.09

Table 1: Cluster Quality In Iteration on Political Blogs
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Figure 6: Quality vs. Attribute Weights on Political Blogs
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Figure 7: Cluster Convergence

tering algorithms. Figures 9 (a) and (b) show the runtime by dif-
ferent methods on Political Blogs and DBLP, respectively. As we
can observe, k-SNAP is the most efficient. SA-Cluster is usually
several times (≤ 4) slower than S-Cluster and W-Cluster, as it itera-
tively computes the random walk distance and performs clustering,
while S-Cluster and W-Cluster compute random walk only once.
Although SA-Cluster is more expensive, the iterative refinement
improves the clustering quality a lot, as demonstrated in Tables 1
and 2.

5.6 DBLP Case Study
In this experiment, we examine some details of our clustering

results on DBLP data when we set k = 70. Table 3 shows 5 clus-
ters of authors from database, data mining, machine learning and
information retrieval areas. In each cluster, we only select the most
prolific authors for ease of presentation. Actually we omit many
other authors who are closely connected with the selected authors
in each cluster due to their close collaborations. Table 4 shows
the keywords and their probabilities of the primary topic for each
cluster.

Clusters 0−4 contain five groups of authors who work on “stream
data management”, “database systems”, “frequent pattern mining”,
“graphical model learning”, and ”information retrieval and rele-
vance feedback”, respectively. Interestingly, each cluster not only

iter# k=10 k=30 k=50 k=70
D E D E D E D E

1 0.55 3.12 0.48 2.79 0.47 2.55 0.46 2.43
2 0.55 3.20 0.43 2.49 0.41 2.00 0.38 1.63
3 0.60 3.18 0.46 2.46 0.37 1.99 0.37 1.54
4 0.63 3.23 0.46 2.44 0.38 1.96 0.37 1.53
5 0.63 3.22 0.38 1.96 0.37 1.54
6 0.38 1.96 0.38 1.52
7 0.38 1.52

Table 2: Cluster Quality In Iteration on DBLP



Cluster 0 (DB) Cluster 1 (DB) Cluster 2 (DM) Cluster 3 (ML) Cluster 4 (IR)
Graham Cormode François Bancilhon Gagan Agrawal Lawrence Carin James Allan
Gautam Das Alexandros Biliris Francesco Bonchi Honghua Dai Javed A. Aslam
Minos N. Garofalakis José A. Blakeley Guozhu Dong Pedro Domingos Chris Buckley
Sudipto Guha Klemens Böhm Fosca Giannotti Lise Getoor Charles L. A. Clarke
Dimitrios Gunopulos Nicolas Bruno Jiawei Han Zoubin Ghahramani W. Bruce Croft
Eamonn J. Keogh Jan Van den Bussche Ruoming Jin Michael I. Jordan Norbert Fuhr
Nick Koudas Michael J. Carey Jinyan Li Daphne Koller Alexander G. Hauptmann
Flip Korn Sharma Chakravarthy Wagner Meira Jr. Pat Langley Rong Jin
Yannis Kotidis Surajit Chaudhuri Giuseppe Manco Yuchang Lu Joemon M. Jose
Xuemin Lin Peter Dadam Richard R. Muntz Avi Pfeffer David R. Karger
Hongjun Lu David J. DeWitt Siegfried Nijssen Dan Roth Mounia Lalmas
Nikos Mamoulis César A. Galindo-Legaria Srinivasan Parthasarathy Padhraic Smyth Victor Lavrenko
Rajeev Motwani Georges Gardarin Dino Pedreschi Henry Tirri Donald Metzler
S. Muthukrishnan Goetz Graefe Jian Pei Volker Tresp Alistair Moffat
M. Tamer Özsu Theo Härder Anthony K. H. Tung Eric P. Xing Jian-Yun Nie
Dimitris Papadias Won Kim Adriano Veloso Kai Yu Douglas W. Oard
Rajeev Rastogi David Maier Jason Tsong-Li Wang Shipeng Yu Jan O. Pedersen
Nick Roussopoulos Bernhard Mitschang Limsoon Wong Tetsuya Sakai
Elke A. Rundensteiner Vivek R. Narasayya Stefan Wrobel Mark Sanderson
Bernhard Seeger Erich J. Neuhold Ke Wang Rohini K. Srihari
Kyuseok Shim Z. Meral Özsoyoglu Xifeng Yan John Tait
Yufei Tao Arnon Rosenthal Jiong Yang Xiaojun Wan
Michail Vlachos Kyu-Young Whang Philip S. Yu S. K. Michael Wong
Jeffrey Xu Yu Osmar R. Zaı̈ane Chengxiang Zhai
Carlo Zaniolo Mohammed Javeed Zaki Justin Zobel

Table 3: Clusters of Authors from DBLP
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Figure 9: Clustering Efficiency

contains authors who have close coauthor relationships, it also con-
tains authors who work on the same topic but never collaborate. For
example, both Jiawei Han and Mohammed Javeed Zaki are experts
on frequent pattern mining, but they have never collaborated. As a
result, S-Cluster assigns these two authors into two different clus-
ters, since they are not reachable from each other based on random
walks on coauthor relationship only. On the other hand, SA-Cluster
can correctly assign these two researchers into the same cluster be-
cause they are connected with the same topic attribute. Similar
cases can be found in other clusters as well, for example, Rajeev

Motwani and Nick Koudas, David J. DeWitt and Won Kim, Michael
I. Jordan and Lise Getoor, James Allan and Justin Zobel. They
work on the same topics though they have never collaborated. S-
Cluster fails to put any of these author pairs into the same cluster
due to the lack of coauthor connectivity.

6. RELATED WORK
In literature, many graph clustering techniques have been pro-

posed which mainly focused on the topological structures based
on various criteria including normalized cut [19], modularity [16]
or structural density [26]. The clustering results usually contain
densely connected components within clusters. However, such meth-
ods largely ignore vertex attributes in the clustering process. On the
other hand, Tian et al. [22] proposed OLAP-style aggregation ap-
proaches to summarize large graphs by grouping nodes based on
user-selected attributes and relationships. Vertices in one group
share the same attribute values and relate to vertices in another
group through the same type of relationship. This method achieves
homogeneous attribute values within clusters, but ignores the intra-
cluster topological structures. As shown in our experiments, the
generated partitions tend to have very low connectivity.

Other recent studies on graph clustering include the following.
Sun et al. [20] proposed GraphScope which is able to discover
communities in large and dynamic graphs, as well as to detect
the changing time of communities. Sun et al. [21] proposed an
algorithm, RankClus, which integrates clustering with ranking in
large-scale information network analysis. The final results con-
tain a set of clusters with a ranking of objects within each clus-
ter. Navlakha et al. [15] proposed a graph summarization method
using the MDL principle. Tsai and Chiu [25] developed a feature
weight self-adjustment mechanism for K-Means clustering on re-
lational datasets. In that study, finding feature weights is modeled
as an optimization problem to simultaneously minimize the sepa-
rations within clusters and maximize the separations between clus-
ters. The adjustment margin of a feature weight is estimated by
the importance of the feature in clustering. [4] proposed an algo-



Cluster 0 (DB) Cluster 1 (DB) Cluster 2 (DM) Cluster 3 (ML) Cluster 4 (IR)
streams 0.1247 database 0.2183 mining 0.2439 models 0.1894 retrieval 0.3066
over 0.0961 object 0.1738 patterns 0.1266 bayesian 0.1411 information 0.1176
k 0.0554 oriented 0.1229 frequent 0.1181 probabilistic 0.0964 document 0.0928
queries 0.0539 server 0.0526 sequential 0.0389 markov 0.0756 relevance 0.0538
nearest 0.0482 sql 0.0459 closed 0.0348 inference 0.0615 feedback 0.0369
neighbor 0.0430 dbms 0.0402 itemsets 0.0277 process 0.0446 expansion 0.0258
top 0.0402 relational 0.0231 maximal 0.0145 hidden 0.0438 ir 0.0249
approximate 0.0328 microsoft 0.0215 datasets 0.0100 latent 0.0404 cross 0.0230
computation 0.0309 management 0.0193 correlated 0.0082 mixture 0.0397 collection 0.0190
continuous 0.0267 panel 0.0176 efficiently 0.0072 gaussian 0.0307 evaluation 0.0138
skyline 0.0238 client 0.0156 sequences 0.0066 variable 0.0202 test 0.01322
aggregate 0.0216 design 0.0145 usage 0.0054 dirichlet 0.0189 translation 0.0119
efficient 0.0194 tuning 0.0141 periodic 0.0052 topic 0.0078 effectiveness 0.0107
sliding 0.0130 persistent 0.0098 evolving 0.0048 networks 0.0060 precision 0.0096
monitoring 0.0108 db 0.0093 pushing 0.0046 variational 0.0052 japanese 0.0094
uncertain 0.0107 cad 0.0084 subgraphs 0.0045 priors 0.0048 terms 0.0078
carlo 0.0105 directions 0.0056 projected 0.0044 discrete 0.0044 pseudo 0.0077

Table 4: Primary Topic of Each Cluster

rithm for mining communities on heterogeneous social networks.
A method was designed for learning an optimal linear combination
of different relations to meet users’ expectation.

The concept of random walk has been widely used to measure
vertex distances and similarities. Jeh and Widom [12] designed
a measure called SimRank, which defines the similarity between
two vertices in a graph by their neighborhood similarity. Pons
and Latapy [18] proposed to use short random walks of length l to
measure the similarity between two vertices in a graph for commu-
nity detection. Other studies which use random walk with restarts
include connection subgraph discovery [7] and center-piece sub-
graph discovery [23]. Liu et al. [14] proposed to use random walk
with restart to discover subgraphs that exhibit significant changes
in evolving networks.

7. CONCLUSIONS
In this paper, we solve the problem of graph clustering based on

structural and attribute similarities. A unified neighborhood ran-
dom walk distance measure is designed to measure vertex closeness
on an attribute augmented graph. Based on this distance measure,
we take a K-Medoids clustering approach to partition the graph
into k clusters which have both cohesive intra-cluster structures
and homogeneous attribute values. We provide theoretical anal-
ysis to quantitatively estimate the contributions of attribute simi-
larity in the random walk distance measure. We further design a
learning algorithm to adjust the degree of contributions of differ-
ent attributes in the random walk model as we iteratively refine the
clusters, and prove that the weights are adjusted towards the direc-
tion of clustering convergence. Experimental results on two real
graphs demonstrate that our method achieves a very good balance
between structural and attribute similarities.
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9. APPENDIX: PROOF OF THEOREM 1
Proof. Firstly, we will prove that Pl

V (v j, vp) = Pl
V (v j, vq), ∀v j ∈ V

and an arbitrary length l by induction. Since vp and vq have the

same connectivity in G, we know that when l = 1,

P1
V (v j, vp) = P1

V (v j, vq), ∀v j ∈ V

Assume that when l = k,

Pk
V (v j, vp) = Pk

V (v j, vq), ∀v j ∈ V

Then when l = k + 1, Pk+1
V (v j, vp) =

∑|V |
c=1 Pk

V (v j, vc) · PV (vc, vp),
and Pk+1

V (v j, vq) =
∑|V |

c=1 Pk
V (v j, vc) · PV (vc, vq). Since PV (vc, vp) =

PV (vc, vq), ∀vc ∈ V , we have

Pk+1
V (v j, vp) = Pk+1

V (v j, vq), ∀v j ∈ V (28)

Secondly, we will prove that Cl(vi, vp) > Cl(vi, vq), for vi ∈ V which
shares more attribute values with vp than with vq, and an arbitrary
length l by induction. According to Eq.(12), we have

C(vi, vp) > C(vi, vq)

and

C(v j, vp) = C(v j, vq),∀v j , vi, vp, vq

Assume that when l = k,

Ck(vi, vp) > Ck(vi, vq)

Then when l = k + 1, Ck+1(vi, vp) =
∑|V |

c=1 Ck(vi, vc) · C(vc, vp), and
Ck+1(vi, vq) =

∑|V |
c=1 Ck(vi, vc) · C(vc, vq). ∀vc , vi, vp, vq, we have

C(vc, vp) = C(vc, vq). Then we only need to prove that
∑

vc=vi ,vp ,vq

Ck(vi, vc) ·C(vc, vp) >
∑

vc=vi ,vp ,vq

Ck(vi, vc) ·C(vc, vq)

or equivalently
∑

vc=vi ,vp ,vq

Ck(vi, vc)·C(vc, vp)−
∑

vc=vi ,vp ,vq

Ck(vi, vc)·C(vc, vq) > 0 (29)

Since we have C(vp, vp) = C(vq, vq) ≥ C(vq, vp), we then have

Ck(vi, vi) · (C(vi, vp) −C(vi, vq)) > 0 (30)

(Ck(vi, vp) −Ck(vi, vq)) · (C(vp, vp) −C(vq, vp)) ≥ 0 (31)

Combining Eqs.(30) and (31), we can prove Eq.(29). In addition,
∀v j , vi, vp, vq, Cl(v j, vp) = Cl(v j, vq) for an arbitrary l. Therefore,
we have

Cl(vc, vp) ≥ Cl(vc, vq),∀vc , vp, vq (32)



Next, according to Lemma 1, Tl can be represented in the form of∑∏
mi≥0,ni≥0(Pmi

V Cni ). We will prove that

(Pmi
V Cni )(vi, vp) > (Pmi

V Cni )(vi, vq) (33)

We have

(Pmi
V Cni )(vi, vp) =

|V |∑

c=1

Pmi
V (vi, vc) ·Cni (vc, vp)

and

(Pmi
V Cni )(vi, vq) =

|V |∑

c=1

Pmi
V (vi, vc) ·Cni (vc, vq)

Since we have proven Eqs.(28) and (32), we can prove Eq.(33),
which then means that Tl(vi, vp) > Tl(vi, vq). According to the rela-
tion between Pl

A and Tl, Pl
A(vi, v j) = Tl(vi, v j), vi, v j ∈ V , we have

the following conclusion:

Pl
A(vi, vp) > Pl

A(vi, vq)
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