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Abstract. In recent years there has been a growing interest in Bayesian 
Network learning from uncertain data. While many researchers focus on 
Bayesian Network learning from data with tuple uncertainty, Bayesian Network 
structure learning from data with attribute uncertainty gets little attention. In 
this paper we make a clear definition of attribute uncertain data and Bayesian 
Network Learning problem from such data. We propose a structure learning 
method named DTAU based on information theory. The algorithm assumes that 
the structure of a Bayesian network is a tree. It avoids enumerating all possible 
worlds. The dependency tree is computed with polynomial time complexity. 
We conduct experiments to demonstrate the effectiveness and efficiency of our 
method. The experiments show the clustering results on uncertain dataset by 
our dependency tree are acceptable. 
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1 Introduction 

In the past, researchers in data mining and machine learning area usually assume data 
is certain or precise, however that is not always the case. Data uncertainty arises in 
many applications such as sensor network and user privacy protection. Uncertain data 
can be divided into two categories by uncertainty source: artificial uncertain data and 
inherent uncertain data. People sometimes add noise to data for some purpose such as 
user privacy protection. As a result, the data become artificially uncertain. There are 
also inherently uncertain data. For example the scientific measurement techniques and 
tools are inherently imprecise and they are responsible for the generation of inherent 
uncertain data. Many researchers focus on uncertain data management and mining in 
database area and data mining area in recent years. In database area, there are three 
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models of uncertain data. The first one is tuple uncertainty model [1] [2]. Each tuple 
in a probabilistic database is associated with a probability which represents the 
likelihood the tuple exists in the relation. The second one is attribute uncertainty 
model [3]. In attribute uncertainty model, each attribute in a tuple is subject to an 
independent probability distribution. Correlated uncertainty model [5] is the third one. 
Attributes are described by a joint probability distribution.  

Many data mining algorithms have been proposed to analyze uncertain data, for 
example, mining frequent patterns from uncertain transaction database [2], naïve 
Bayesian classifiers for correlated uncertain data [7] [8], and clustering uncertain 
objects [6]. However there are few works on data mining from attribute uncertain 
data, and to the best of our knowledge no work has focused on how to learn Bayesian 
Network (BN) structure from such data. Attribute independency is a common 
assumption in database and data mining area, but it is not always reasonable, because 
there are dependency relationships among attributes. Attribute uncertainty due to 
measurement error or inherent uncertainty shouldn’t be the reason for independence 
assumption. The structure learning from attribute uncertain data can reveal the 
essential relationship between attributes.  

In this paper, we propose the problem of BN structure learning from attribute 
uncertain data and an algorithm named DTAU to solve the problem. Experiments 
demonstrate the effectiveness of our proposed algorithm.  

The rest of the paper is organized as follows. Section 2 discusses related work on 
Bayesian Network structure learning for uncertain data. Section 3 gives relevant 
definitions. Section 4 introduces our structure learning algorithm DTAU. Section 5 is 
experimental study and Section 6 concludes the paper. 

2 Related Work 

Bayesian Network (BN) is a powerful tool to represent joint probability distribution over 
a set of variables or attributes. A BN is made up of two components: a directed acyclic 
graph (DAG), whose nodes represent variables and a set of conditional probability tables 
(CPTs) which specifies the conditional distribution of each variable given its parent in 
the DAG. Given a BN structure (DAG), there have been many algorithms for parameter 
learning. However, sometimes the BN structures are unknown for lack of domain 
knowledge. Thus the BN learning problem is of great importance. It has been proved 
that BN structure learning problem is NP completed [9]. 

Many researchers have proposed approximation algorithms to solve the structure 
learning from certain data problem. These methods are divided into two categories. 
The methods in the first category are based on information theory which is used to 
measure dependency relationships between nodes [10]. The methods [11] [12] in the 
second category aim to maximize score function of the possible structure considering 
that each node has no more than K parents. As this problem is NP-hard when K is 
bigger than 1, heuristic rules based methods are usually used. For the attribute 
uncertain data, we make use of the information theory to solve the problem and 
assume the structure is a tree. 
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3 Problem Definition  

In this section we describe some concepts about the problem of learning BN structure 
from attribute uncertain data. The term observation is a concept in BN learning from 
certain data problem. 

Definition 1 (Attribute). An attribute Xi is a component or aspect of an object O. Xi 
can take any value in D(Xi) which is the possible value domain of Xi. Di represents the 
size of D(Xi). The attribute Xi is represented by a node (a random variable) in the BN 
structure. 

Definition 2 (uncertain example). An vector ue = {P1(X1), P2(X2), …, Pm(Xm)} is an 
uncertain example if each P(Xi) is an probability distribution or probability density 
function over D(Xi). 

Definition 3 (Uncertain observation). Given an attribute Xi , an observation Pi(Xi) of 
Xi (1≤i≤m) in an uncertain example ue is an uncertain observation. 

Definition 4 (Attribute Uncertain training dataset). An uncertain training dataset D 
is composed of uncertain examples, D = {ue1, ue2, …, uen}. 

In this paper we focus on the problem of learning a BN structure from attribute 
uncertain training dataset. We assume the structure of Bayesian Network is a tree.  

In the following parts of the paper we study the problem of learning structure from 
discrete attribute uncertain data. If they is continuous, we can discrete them. 

4 Bayesian Network Structure Learning Algorithm DTAU 

In this section, we start with a brief introduction of a naïve BN structure learning 
algorithm based on the exponential possible worlds. Then we will explain why the 
naïve method is unacceptable. At last we will show our approximation method which 
takes polynomial time. 

Definition 5 (Possible world). Given an uncertain dataset about m attributes, it 
generates possible worlds, where each world is a certain dataset about the m attributes 
which has the same size of examples with the uncertain one. Each possible world Wi 
is associated with a probability Pr(Wi) that the world exists. 

The naïve method is based on possible world over all attributes (PWAA). The idea 
is converting the attribute uncertain dataset to some certain datasets. Given an 
uncertain discrete dataset AUD with N examples and m attributes, first we compute 
every possible world Wi of AUD. Each observations of example eij in possible world 
Wi is a possible value in the domain of the corresponding attribute. Those possible 
worlds form a set W and its size is Пm

i=1(Di)
N. Second, we treat each possible world 

Wi as a certain training dataset, and then we learn a dependency tree under the 
corresponding training data set. The tree with the highest score can be recognized as 
the right one. The total number of trees (obviously containing the duplicates) is the 
number of the possible worlds. The score of a tree Ti is ΣWj.tree=Ti Pr(Wj). 
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The number of possible worlds is exponential, so the solution presented above 
costs exponential time complexity to construct the dependency tree. We propose an 
algorithm named DTAU (Dependency Tree learning from Attribute Uncertain data) to 
construct a dependency tree without enumeration of possible worlds and reduce the 
enormous computation. Our idea is to make use of the attribute uncertain dataset 
directly. 

For a traditional certain training dataset, a popular way to construct the dependency 
tree with the closest probability approximation is called Chow-Liu tree [10]. The 
kernel idea in [10] is how to compute the dependency between each two attributes. 
The dependency between nodes Xi and Xj is measured by mutual entropy I(Xi, Xj ). The 
computation is defined by Equation 1. The value of mutual entropy I(Xi, Xj) is always 
positive or zero. The value is more close to zero, then the dependency between the 
two attribute is weaker. The zero value means they are independent. We propose the 
DTAU algorithm to learn a dependency tree from attribute uncertain data. The DTAU 
algorithm is consistent with Chow-Liu tree under certain training data. The key point 
in the DTAU algorithm is how to compute the dependency between each two 
attributes under attribute uncertain training data. Equation 2 shows an initial 
approximation of I(Xi, Xj). The two equations are from [10].  
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Equation 3, 4 and 5 shows how to approximate the frequency in equation 2 and we get 
the final approximation of I(Xi, Xj) by equation 3, 4 and 5. 
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(3)  

(4) 

(5) 

From the equations above we can learn that if the probability Pki(Xi=s) is the highest 
for attribute Xi and the probability Pkj(Xj = t) is the highest for attribute Xj, then the 
occurrence probability for pair (s, t) may be the highest. The idea behind the equation 
is that the independence assumption doesn’t have effect on the overall dependency 
computation. In other words, if the two attributes are independent, the computation 
result is zero. If they are not, the computation result is positive. The equation shows 
the consistence with certain data. We prove the result and we don’t describe the 
details of the proof for the limitation of space in this paper. 

The DTAU algorithm is divided into three steps. The first step is to compute the 
dependency between each two uncertain attributes and construct a weighted 
undirected graph. Then we follow the tree construction method in the Chow-Liu tree 
algorithm. The second step is to get a maximum spanning tree by a greedy algorithm 
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which is 2-ratio approximation of the optimal tree. The last step is to add the direction 
by width first traverse. The pseudo-code is given below:   

Algorithm DTAU 

Input: an attribute uncertain dataset AUD with n examples and m variables 

Output: a dependency tree T 

Major steps: 

Construct a weighted undirected completed graph G = (V,E ),V 

={X1,X2,...,Xm}; 

for i =1 to m 

   for j =1 to i 

Compute dependency I(Xi,Xj) by equation 1,2,3,4 and 5; 

e(Xi,Xj) = I(Xi,Xj) 

end for 

end for 

T = greedy_max_spanning_tree(G ); 

Select a random node Xk in T as beginning node; 

Add direction for each edge by breadth-first traverse beginning with Xk; 

 
The time complexity of DTAU algorithm is O(nm2), which is smaller than the naïve 

solution. We can confirm that if the difference between I(Xi, Xj) and I(Xi, Xk) satisfies 
a t-condition that the absolute value of the difference between I(Xi, Xk) and I(Xi, Xk) is 
bigger than t, the dependency tree created by the DTAU method is the same with the 
one in the possible world with the highest probability. Because if the t-condition is 
satisfied, the partial orders for all mutual entropy are the same. The partial orders can 
determine the structure. We prove this result and we don’t describe the details of the 
proof or the computation of t for the limitation of space. Experiments show that our 
method performs well even when the t-condition can’t be satisfied.  

5 Experiments 

As there hasn’t been any public attribute uncertain dataset, the attribute uncertain 
datasets we use are generated from certain datasets artificially. We generate the 
attribute uncertain datasets by adding noise to the UCI machine learning datasets 
which are standard for traditional BN learning problems. We convert the Letter 
recognition and Balance datasets to attribute uncertain datasets. The noise addition 
strategy is described as follows. For each training example in the original certain 
dataset, we assign a probability p which is not smaller than a bound α to the 
corresponding attribute’s observation in the original certain training example, and 
assign a low probability to other possible values for this attribute. Table 1 shows an 
example of the original certain dataset, where D(Attribute 1) = {a, b, c} and 
D(Attribute 2) = {d, e, f}. Table 2 shows an uncertain dataset obtained after noise 
addition with α being 0.5. By this way we get attribute uncertain training datasets 
denoted by AU-Letter-α, and AU-Balance-α respectively. 
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 Table 1. An example of certain data       Table 2.  An example of noise addition 

Attribute 1 Attribute 2  Attribute 1 Attribute 2 

a d  a: 0.8  b: 0.1  c: 0.1 d: 0.5   e: 0.25   f: 0.25 

b e  a: 0.2  b: 0.6  c: 0.2 d: 0.15   e: 0.7    f: 0.15 

For each uncertain dataset we generate, the uncertain observations in an attribute 
uncertain dataset are closer to the ones of the original certain dataset when α is closer 
to 1. The experiment on AU-Letter-0.5 shows that the partial orders of the 
dependency measure (information entropy) in attribute uncertain data is almost the 
same with the one in the certain dataset. Figure 1 shows the tree we learn from AU-
Letter-0.5 and the Chow-Liu tree learned from the certain dataset.  

 

Fig. 1. Dependency tree from the dataset Letter and the correspondingly certain dataset 

The two trees share the black solid edges. Edge<X13, X12> belongs to the tree from 
uncertain dataset and edge <X4, X14> belongs to the tree from certain dataset. We find 
that only edge <X4, X14> and edge <X13, X12> are different. The difference between 
I(X4, X14) and I(X12, X13) accounts for the bigger one of the two information entropy 
less than 1.3%.  

We design experiments on AU-Balance to demonstrate the effectiveness of the 
dependency tree by clustering results. We use DTAU algorithm to learn a dependency 
tree from AU-balance data. Then we generate a certain sample dataset i for the uncertain 
training example uei in the dataset. Then we treat the sample dataset i as the training 
dataset and the dependency tree as BN structure to learn the joint probability distribution 
on all attributes in the uncertain dataset and then the uncertain example uei turns to be an 
uncertain object. We cluster those uncertain objects by algorithm UK-means [4] and the 
original certain objects by K-means and compare the two clustering results. We do 
experiments on the AU-Balance dataset with different values of α.  

Table 3. Clustering precision under different parameters 

Dataset Cluster 0 Cluster 1 Cluster 2 precision 
AU-Balance-0.6 6 161 103 43.2% 
AU-Balance-0.8 21 115 98 37.44% 

AU-Balance-0.9 5 119 156 44.8% 
Balance certain 16 175 145 53.74% 
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We test three different values of parameter α, 0.6, 0.8 and 0.9. For each dataset, the 
cluster result is compared with the true class labels. Table 3 shows the results under 
different uncertain dataset. The numbers in column 2, column 3 and column 4 
represent the size of correct examples in the corresponding cluster. The measure 
precision shows the percentage of correct clustered examples. From this table we can 
see that the precision for each of the three uncertain dataset is quite close to the 
certain one, for the certain one is always the possible world with the highest 
probability. The experiments show that the dependency tree generated by our method 
is acceptable and α is an important factor to the cluster results. 

6 Conclusion 

In this paper we propose the Bayesian Network structure learning problem on 
attribute uncertain dataset, and we propose algorithm DTAU by which we can learn a 
dependency tree in polynomial time. We conducted experiments to demonstrate the 
effectiveness of our proposed algorithm. The experiment results show the dependency 
trees are acceptable and the proposed algorithm is effective. In the future, we will 
further analyze the effect of parameters α. 
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