
Frequent Subgraph Summarization

with Error Control

Zheng Liu1, Ruoming Jin2, Hong Cheng1, and Jeffrey Xu Yu1

1 The Chinese University of Hong Kong
2 Kent State University

{zliu,hcheng,yu}@se.cuhk.edu.hk,
jin@cs.kent.edu

Abstract. Frequent subgraph mining has been an important research
problem in the literature. However, the huge number of discovered fre-
quent subgraphs becomes the bottleneck for exploring and understanding
the generated patterns. In this paper, we propose to summarize frequent
subgraphs with an independence probabilistic model, with the goal to
restore the frequent subgraphs and their frequencies accurately from a
compact summarization model. To achieve a good summarization qual-
ity, our summarization framework allows users to specify an error toler-
ance σ, and our algorithms will discover k summarization templates in
a top-down fashion and keep the frequency restoration error within σ.
Experiments on real graph datasets show that our summarization frame-
work can effectively control the frequency restoration error within 10%
with a concise summarization model.

Keywords: frequent subgraph, pattern summarization.

1 Introduction

Frequent subgraph mining has been an important research problem in the liter-
ature, with many efficient algorithms proposed [10,12,21,24,1,8,17]. Given a col-
lection D of graphs, frequent subgraph mining is to discover all subgraphs whose
frequencies are no less than a user-specified threshold fmin. Frequent subgraphs
are useful in many applications, for example, as active chemical structures in
HIV-screening datasets, spatial motifs in protein structural families, discrimina-
tive features in chemical compound classification [4], and indexing features [26]
in graph databases to support graph queries.

One major issue in frequent subgraph mining is the difficulty of exploring and
analyzing numerous patterns generated due to the exponential number of com-
binations. Given a graph with n edges, the total number of possible subgraphs
could be 2n. Hundreds of thousands of frequent subgraphs may be generated un-
der a moderate minimum frequency threshold. A partial solution to this problem
is mining closed or maximal frequent subgraphs [25,9,19], which generates fewer
subgraph patterns. But in many cases the maximal and closed graph patterns
can still be quite numerous, so the difficulty of exploring a large number of
patterns still exists.

J. Wang et al. (Eds.): WAIM 2013, LNCS 7923, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 Z. Liu et al.

In the literature, there have been several methods which use probabilistic
models to summarize frequent itemsets [23,22,11]. These probabilistic models,
as a concise summarization, are effective to restore all the frequent itemsets and
their frequencies. In this paper, we also use a probabilistic model to summarize
frequent subgraphs by preserving their structure and frequency information as
much as possible. Given a set of frequent subgraphs, we partition them into
a few subsets. From each subset we choose a representative, which is called a
template subgraph. All the frequent subgraphs in a subset are subgraphs of the
corresponding template subgraph. The template subgraph is a summarization
model which can restore the subgraphs in the subset and their frequencies. This
problem is more challenging than itemset summarization, due to two difficulties
in subgraph mining: (1) “multiple embeddings”, i.e., a subgraph can have multi-
ple embeddings in a summarization model which is a template subgraph; and (2)
“topological constraint”, i.e., the topological structure specifies the connectivity
constraint among nodes and edges, while in itemset summarization, there is no
such constraint between individual items. To solve the problem, we make an
independence assumption between edges in a frequent subgraph. We take a re-
gression approach to estimate the parameters in the independence probabilistic
model by least square estimation. The probabilistic model allows users to restore
frequent subgraphs and their frequencies from template subgraphs. To ensure a
good summarization quality, we allow users to specify an error tolerance σ and
our algorithms take a top-down approach to discover k template subgraphs.
Multiple regression models will be built based on the k template subgraphs to
control the frequency restoration error within σ. We have evaluated our subgraph
summarization approach on real graph datasets. Experimental results show that
our method can achieve a concise summarization with high accuracy in terms of
subgraph frequency restoration error.

The rest of this paper is organized as follows. We formally define the problem
of frequent subgraph summarization in Section 2 and propose the summarization
algorithms in Section 3. We report the experimental results in Section 4 and
discuss the related work in Section 5. Finally, Section 6 concludes the paper.

2 Problem Statement

A graph G is a triple (V,E,Γ), where V and E are the node set and the edge set,
respectively. Γ is a finite set of labels, and each node v ∈ V or edge (u, v) ∈ E is
mapped to a label in Γ , denoted as Γ (v) or Γ (u, v). A graph g is a subgraph of
another graph G if there exists a subgraph isomorphism from g to G, denoted
as g ⊂ G. G is called a supergraph of g.

Definition 1. Subgraph Isomorphism. For two graphs g and G, G contains
a subgraph that is isomorphic to g, if there is an injective function h : Vg →
VG, such that ∀v ∈ Vg,Γg(v) = ΓG(h(v)), and ∀(u, v) ∈ Eg, (h(u), h(v)) ∈ EG

and Γg(u, v) = ΓG(h(u), h(v)), where Γg and ΓG are the label sets of g and G,
respectively.

Frequent Subgraph Summarization with Error Control 3

Definition 2. Frequent Subgraph. Given a collection D of graphs, a graph g
is frequent if f(g) ≥ fmin, where f(g) is the number of graphs in D containing
g, and fmin is a user-specified minimum frequency threshold.

A frequent subgraph g is a maximal one if and only if there does not exist
another frequent subgraph g′ and g ⊂ g′. A frequent subgraph g is a closed
one if and only if there does not exist another frequent subgraph g′, g ⊂ g′

and f(g′) = f(g). Anti-monotonicity holds for frequent subgraphs in a graph
database, which means the subgraphs of a frequent subgraph are also frequent.

Given a set of frequent subgraphs F , we study how to summarize them into a
small number of representatives, called template subgraphs, so that all frequent
subgraphs and their frequencies can be restored accurately.

3 Summarization Algorithms

3.1 Subgraph Summarization by Regression

We propose to use a regression approach to frequent subgraph summarization.
Based on the subgraph containment relationship, we can build a partial order
graph (POG) consisting of all frequent subgraphs. Fig. 1 shows an example. Each
node in the POG is a frequent subgraph. Subgraphs in the same level are of the
same size, measured by the number of edges. In the POG, two subgraphs are
connected by a directed edge from the larger one to the smaller one, if the smaller
one is a subgraph of the larger and differs by one edge. Suppose g is a subgraph
in the POG, we use connected children to represent its connected neighbors
smaller than g, and g is called a connected parent. We use reachable children to
represent all the nodes that can be reached by traveling along the edges in the
POG, starting from g. A maximal subgraph does not have a connected parent
in POG. If there is more than one maximal frequent subgraph, we add a union
of all maximal frequent subgraphs as the root of the POG.

∪

d

cb
a

d

b
a

d

d

a

d

cb
a

d

b
a

d

ab
a cb

Fig. 1. Partial order graph of frequent subgraphs based on containment relationship

4 Z. Liu et al.

Suppose g and g′ are two connected subgraphs in the POG, where g and g′

differ by only one edge e, that is, g∪{e} = g′. Let p(g′|g) denote the conditional
probability that a graph G from D containing g also contains g′. Since g∪{e} =
g′, we denote p(g′|g) as p(e|g), the conditional probability that a graph G from
a graph database D containing g also contains edge e. Let f(g) denote the
frequency of a frequent subgraph g, then

p(g′|g) = p(e|g) = f(g′)
f(g)

. (1)

Given any two frequent subgraphs g1 and gl that differ by l − 1 edges
{e1, e2, · · · , el−1}, then

f(gl) = f(g1)× p(e1, e2, · · · , el−1|g1). (2)

Let gi denote the graph g1∪{e1, · · · , ei−1}. Following the chain rule of conditional
probabilities, we have

f(gl) = f(g1)×
l−1∏

i=1

p(ei|gi). (3)

To simplify the joint probability estimation, we apply the following independence
assumption: whether a frequent subgraph g contains an edge e is independent of
the structure of g \ {e}. Without loss of generality, we use p(e) to denote p(e|∗),
where ∗ denotes an arbitrary subgraph g that g ∪ {e} is frequent. Under this
assumption, we can rewrite Eq. (3) for subgraph gl and g1 as follows:

f(gl) = f(g1)×
l−1∏

i=1

p(ei). (4)

Given a frequent subgraph g, let G = {g1, g2, · · · , gn} be the frequent subgraphs
reachable from g in the POG. Suppose we know the frequency f(g) of g, as well
as all the probabilities p(ej) of edges in g, with the independent assumption,
we can estimate the frequency of each graph gi ∈ G according to Eq. (4). By
applying the logarithmic transformation on both sides of the equation, we have

log f(g) = log f(gi) +

i−1∑

j=1

log p(ej). (5)

Similar to the regression approach in [11], we can build a regression model Y =
Xβ + E for G, where E is the matrix of error terms,

Y =

⎡

⎣
log f(g)− log f(g1)

· · ·
log f(g)− log f(gn)

⎤

⎦ , X =

⎡

⎣
1e1∈g1 · · · 1el∈g1

· · · · · · · · ·
1e1∈gn · · · 1el∈gn

⎤

⎦ , and β =

⎡

⎣
log p(e1)

· · ·
log p(el)

⎤

⎦ .

(6)

Frequent Subgraph Summarization with Error Control 5

Here, 1ei∈gj is an indicator that edge ei belongs to graph gj. 1ei∈gj = 1 if
ei ∈ gj, and 1ei∈gj = 0, otherwise. The least square estimation [18] of the above
regression model is to minimize the sum of squares of the errors (residues), which
is

δ = min
β

{
(Y −Xβ)′(Y −Xβ)

}
. (7)

Then the solution is

β̂ = argmin
β

{
(Y −Xβ)′(Y −Xβ)

}

= (X ′X)−1X ′Y.
(8)

By applying the above regression approach, we are able to summarize any fre-
quent subgraph g in the POG, together with all its reachable children, as a regres-
sion model. We call g a template subgraph. The template subgraphs can restore
all frequent subgraphs and their frequencies. We define the relative restoration
error as follows.

Definition 3. Average Relative Restoration Error. Let F denote the set of
frequent subgraphs. For each subgraph g ∈ F , f(g) and r(g) are the true frequency
and the restored frequency of g, respectively. The relative frequency restoration
error of g is |r(g)− f(g)|/f(g), denoted as δ(g). The average relative restoration
error of the frequent subgraph set F is

δavg(F) =
1

|F|
∑

g∈F

|r(g)− f(g)|
f(g)

. (9)

Subgraph Summarization with Error Tolerance σ. Given a set of frequent
subgraphs F , and a maximum error tolerance σ, the problem of frequent sub-
graph summarization is to partition F into as few groups as possible, and each
group G satisfies the following: (1) G can be summarized as a single regression
model, and (2) δavg(G) ≤ σ, where δavg is defined in Definition 3.

3.2 Summarization Framework

Our summarization framework is presented in Algorithm 1, which is in a top-
down fashion. The algorithm starts from a single template subgraph, the root
of the POG, which is a union template subgraph for all maximal frequent sub-
graphs. Let g be a template subgraph, we use δavg(g) to denote the average
restoration error of the regression model built on g with its reachable children.
In each repeated loop from line 3 to line 8, the algorithm first divides the tem-
plate subgraph with the maximum average restoration error into two template
subgraphs, if the error is larger than the threshold σ, and then tries to merge
the newly generated template subgraphs with other template subgraphs, until
all the template subgraphs have an average restoration error ≤ σ.

We use a binary tree T to maintain the generated template subgraphs. At line
1 in Algorithm 1, T is the root of POG G. At line 6, we use the symbol of set

6 Z. Liu et al.

ALGORITHM 1: Summarization Framework
Input: POG G, Error tolerance σ
Output: Template Subgraphs with Regression Models

1 T ← the root of POG G;
2 while true do
3 g′ ← argmaxg{δavg(g)|g ∈ T};
4 if δavg(g

′) > σ then
5 {g1, g2} = divide(g′);
6 T ← T ∪ {g1, g2};
7 merge(T, g′, g1, g2);
8 end
9 else break;

10 end
11 return Template Subgraphs with Regression Models in T .

ALGORITHM 2: divide(Template g)

1 C← the directed children of g in POG G;
2 Cand← ∅;
3 foreach ci ∈ C do
4 let Gi be the POG subgraph of g rooted at ci;
5 let Gg be g \Gi /*g corresponds to Gg*/;
6 Build regression models Ri and Rg for Gi and Gg (or equivalently ci and g);
7 εi ← total residue of Ri;
8 εg ← total residue of Rg;
9 Cand← Cand ∪ {(ci, g, εi + εg)};

10 end
11 (cmin, gmin)← argminci{ε | (ci, g, ε) ∈ Cand};
12 Update the regression models for ci and g in G based on cmin and gmin;
13 return {cmin, gmin}

union to denote the update of binary tree T . g1 is a child of g′ in POG, and g2
is g′ with a different regression model. The update is done by adding the new
template subgraph g1 to T as a child of g′ and update the regression model of
g′ by the one of g2.

3.3 Template Subgraph Division

Algorithm 2 presents the procedure to divide a template subgraph. Consider
a template graph g to be divided, the potential new template subgraphs are
the connected children of g. Take Fig. 2 as an example. c1, c2 and c3 are g’s
connected children in the POG. Suppose ci is selected (1 ≤ i ≤ 3). Then we
have two template subgraphs: ci and g. There exist frequent subgraphs that
are the descendants of both ci and g. We restrict them to belong to only one

Frequent Subgraph Summarization with Error Control 7

c1 c2 c3

g

c6c5c4

⊆ c1 ⊆ g

Fig. 2. Template Subgraph Division

template subgraph, either ci or g, in order to obtain better regression models.
The rule is to let the sharing part belong to the smaller template subgraph ci.

We discuss how to build regression models for this case. Let e be the edge
that appears in g but does not appear in ci. All the descendants of ci in the
POG do not contain e. In other words, the descendants of g are divided into two
parts: frequent subgraphs containing e and frequent subgraphs not containing
e. By selecting ci, the POG rooted at g is divided into two subgraphs. One
POG subgraph Gi is rooted at ci and contains all descendants of ci. The other
POG subgraph Gg contains g and all its descendants excluding those in Gi. As
indicated in Fig. 2, the dotted lines indicate some descendant of Gg may be a
supergraph of some graph in Gi because of the existence of the edge e, and must
be deleted. We build regression models forGi andGg, respectively. Among all the
possible children of g, we select the child node ci of g in the POG which results
in the minimum sum of residues of the regression models for both Gi and Gg. As
the division continues, the residues and the average relative restoration errors
will decrease. Eventually, the algorithm will stop when the average restoration
error ≤ σ.

3.4 Template Subgraph Merging

After the update of the binary tree for template subgraphs, a merging step is
conducted at line 7 in Algorithm 1. The merging step serves as a refinement
step of the binary tree with the hope to reduce the total number of template
subgraphs by merging the updated template subgraphs with its parent subgraph
or sibling subgraphs. Algorithm 3 presents the procedures of the merging step.

For a divided template subgraph g, g1 is a child of g in the POG. Due to the
division, all subgraphs reachable from g are divided into two sets, where g1 and
g2 are the template subgraphs, respectively. Due to the change of the regression
models, it is possible that g2 could be merged with its parent gp in the binary tree
T and the average restoration error is below σ. Apparently, either the average
restoration error of g2 or that of gp should be smaller than σ. For example, in
Fig. 2, suppose c1 is the divided template subgraph and c4 is the child with the

8 Z. Liu et al.

ALGORITHM 3: merge(BinaryTree T , Template g, g1, g2)

1 if T contains only two template subgraphs then
2 return;
3 end
4 Let gp be the parent of template subgraph g in T ;
5 if lowerbound(gp, g2) ≤ σ then
6 δ ← average restoration error of gp after merging g2;
7 if δ ≤ σ then
8 Update gp by merging gp and g2;
9 Remove g2 from T ;

10 end

11 end

minimum total residue. Then it is possible that merging c1 and g will generate
a regression model whose average restoration error is below σ.

3.5 Queriable Summarization

Given our frequent subgraph summarization with restoration error control, we
can provide an answer when a user wants to know the frequency of a frequent
subgraph. Since every frequent subgraph in the POG belongs to one and only one
template subgraph, we only need to know which template subgraph it belongs
to. Based on Eqs. (6) and (8), we can estimate the restored frequency r(g) of a
frequent subgraph g according to the following equation,

r(g) = xβ̂, (10)

where x = [1e1∈g · · ·1el∈g]. Recall that 1ei∈g is an indicator that edge ei in the
template graph belongs to graph g. 1ei∈g = 1 if ei ∈ g, and 1ei∈g = 0 if ei /∈ g.
In our summarization framework, there is a partial order among edges to avoid
the problems caused by multiple embeddings in a template graph. Upon all the
template subgraphs obtained, we can identify which template subgraph a query
graph g belongs to by utilizing the global edge ID’s.

4 Experimental Results

In this section, we evaluate the performance of our proposed summarization
method. All the experiments were run on a server with 4 CPU and 24GB memory
running GNU/Linux.

We use the AIDS antiviral screen compound dataset1. There are totally 43850
chemical compounds, which are classified into three categories: Confirmed Active
(CA); Confirmed Moderately active (CM); and Confirmed Inactive (CI). As
chemical compounds belonging to CI are not useful for the drug discovery, we

1 http://dtp.nci.nih.gov/docs/aids/aids_data.html

http://dtp.nci.nih.gov/docs/aids/aids_data.html

Frequent Subgraph Summarization with Error Control 9

6% 7% 8% 9%
0

50

100

150

200

250

Support

#
 o

f
T

e
m

p
la

te
 S

u
b

g
ra

p
h

s

asc
ran

(a) CM (σ = 10%)

6% 7% 8% 9%
0

50

100

150

200

Support

R
u

n
n

in
g

 T
im

e
 (

S
e

co
n

d
s)

asc
ran

(b) CM (σ = 10%)

11% 12% 13% 14%
0

20

40

60

80

100

Support

#
 o

f
T

e
m

p
la

te
 S

u
b

g
ra

p
h

s

asc
ran

(c) CA (σ = 15%)

11% 12% 13% 14%
0

500

1000

1500

2000

2500

3000

Support

R
u

n
n

in
g

 T
im

e
 (

S
e

co
n

d
s)

asc
ran

(d) CA (σ = 15%).

Fig. 3. Summarization Results on CM and CA

use datasets CA and CM in our experiments. CA contains 463 compounds and
CM contains 1093 compounds. We list the number of frequent subgraphs mined
from CA and CM under different minimum support in Table 1.

Experiment Setting: We implemented two variants of our summarization
framework in Algorithm 1, namely, asc and ran. As discussed, in a union tem-
plate subgraph, we could arrange the order of maximal frequent subgraphs in
different ways to avoid the issues caused by multiple embeddings and common
reachable children. ran denotes that we arrange the order randomly in division,
while asc denotes that maximal frequent subgraphs are always sorted in the

Table 1. Number of Frequent Subgraphs

CM CA

Minimum support 6% 7% 8% 9% 11% 12% 13% 14%
of frequent subgraphs 5997 4265 3415 2627 15231 14318 8094 7612

10 Z. Liu et al.

ascending order of their sizes, measured by number of edges, during the union
template creation.

Fig. 3 reports the summarization results on datasets CM and CA. Fig. 3(a)
and 3(b) report the quality and running time on CM under different values
of minimum support when the restoration error tolerance is 10%. Generally, a
smaller value of support means a large number of frequent subgraphs. Under the
same error tolerance, asc can generate a more compact summarization, i.e., a
smaller number of template subgraphs, than ran. It is also more efficient than ran.
Similar performance can be observed in Fig. 3(c) and 3(d) on CA. acs always
generates fewer template subgraphs than ran. Compared with the number of
frequent subgraphs in CM and CA shown in Table 1, we can find that the number
of generated template subgraphs is up to several hundred times smaller than that
of the frequent subgraphs in both datasets under a smaller error tolerance.

5 Related Works

Frequent Subgraph Summarization: One potential issue in frequent sub-
graph mining is the huge number of the discovered frequent subgraphs. Closed
frequent subgraph [25] and maximal frequent subgraph [9,19] can partially solve
this issue, but in many cases the number of closed or maximal subgraphs is
still very huge. Recently researchers [3,15,28,6] have focused on selecting a small
number of representative graph patterns to represent many similar subgraphs.
The similarity could be maximum common subgraph [6], graph edit distance
[3,28], or Jaccard distance [15]. Sampling is another approach to solve the over-
loading issue. Hasan et al. [7] proposed a sampling strategy based random walks
on the frequent subgraph lattice.

Frequent Subgraph Mining:Many algorithms have been proposed for finding
frequent subgraphs in graph databases, where the frequency of a subgraph is the
total number of graphs containing the subgraph in the database. Similar to the
Apriori-based approaches in frequent itemset mining, Apriori-based algorithms
for frequent subgraph mining are proposed in [10,12,21], where the search strat-
egy follows a breadth-first manner. Subgraphs of small sizes are searched first.
Once identified, new candidate subgraphs are generated by joining two highly
overlapping frequent subgraphs. In each iteration, the size of these candidate
subgraphs is increased by one. Other algorithms [24,1,8,17] employ a pattern-
growth style. New candidate subgraphs are generated by adding a new edge
to the current. It is possible that a candidate subgraph can be extended from
multiple frequent subgraphs. In gSpan [24], each candidate subgraph is associ-
ated with a depth-first code for duplicate identification. There are also research
efforts on finding frequent subgraphs in a single large graph [2,14,5,13], where
an important problem is how to calculate the frequency. One solution [13] is to
consider the maximum number of non-overlapping embeddings as the frequency.

Other Large Graph Summarization: There are also works for large graph
summarization. Navlakha et al. [16] proposed an approach to generate a compact

Frequent Subgraph Summarization with Error Control 11

graph representation which can be restored to the original graph with bounded
error. They used a single super-node to represent a clique or near-clique, with
an additional table recording the missing edges. The quality of the summary
is measured by the minimum description length. Tian et al. [20] proposed two
aggregating algorithms for graph summarization. The top-down approach first
groups together all the nodes with the same category attributes. Then the groups
of nodes are repeatedly split until there are k groups. The bottom-up approach
first groups together all the nodes with both the same node attributes and the
same edge attributes. Then small groups of nodes are merged into larger ones till
there are k groups left. Zhang et al. [27] extended Tian’s approach to deal with
numerical attributes by automatically categorizing numerical attribute values.
They also proposed an interestingness measure to identify the most interesting
resolutions.

6 Conclusions

In this paper, we have proposed a frequent subgraph summarization framework
with an independence probabilistic model. A regression approach is applied to
estimate the parameters in the summarization model. Our summarization frame-
work takes a top-down approach to recursively partition a summarization graph
template into two, until the user-specified error tolerance is satisfied. Experimen-
tal results on real datasets show that our summarization model can effectively
control the frequency restoration error within 10% with a concise representation.

In the future, we plan to study how to integrate our summarization frame-
work into the pattern mining process to save the computation cost of finding
all frequent subgraphs. We will also study the frequent subgraph summariza-
tion problem in a single large graph. Depending on the definition of frequency,
the anti-monotonicity property does not always hold, which will introduce new
challenges in the summarization framework to avoid false-positive subgraphs.

Acknowledgments. This work is supported by the Hong Kong Research Grants
Council (RGC) General Research Fund (GRF) Project No. CUHK 418512 and
411211.

References

1. Borgelt, C., Berthold, M.R.: Mining molecular fragments: Finding relevant sub-
structures of molecules. In: ICDM, p. 51 (2002)

2. Bringmann, B., Nijssen, S.: What is frequent in a single graph? In: Washio, T.,
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012,
pp. 858–863. Springer, Heidelberg (2008)

3. Chen, C., Lin, C.X., Yan, X., Han, J.: On effective presentation of graph patterns:
a structural representative approach. In: CIKM, pp. 299–308 (2008)

4. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-
based approaches for classifying chemical compounds. IEEE Trans. on Knowl. and
Data Eng. 17(8), 1036–1050 (2005)

12 Z. Liu et al.

5. Fiedler, M., Borgelt, C.: Subgraph support in a single large graph. In: ICDM Work-
shops, pp. 399–404 (2007)

6. Hasan, M.A., Chaoji, V., Salem, S., Besson, J., Zaki, M.J.: Origami: Mining rep-
resentative orthogonal graph patterns. In: ICDM, pp. 153–162 (2007)

7. Hasan, M.A., Zaki, M.J.: Output space sampling for graph patterns. Proc. VLDB
Endow. 2(1), 730–741 (2009)

8. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the pres-
ence of isomorphism. In: ICDM, p. 549 (2003)

9. Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent subgraphs
from graph databases. In: KDD, pp. 581–586 (2004)

10. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining fre-
quent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow,
J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000)

11. Jin, R., Abu-Ata, M., Xiang, Y., Ruan, N.: Effective and efficient itemset pattern
summarization: Regression-based approaches. In: KDD, pp. 399–407 (2008)

12. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM, pp. 313–320
(2001)

13. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph.
Data Min. Knowl. Discov. 11(3), 243–271 (2005)

14. Li, S., Zhang, S., Yang, J.: DESSIN: Mining dense subgraph patterns in a single
graph. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp.
178–195. Springer, Heidelberg (2010)

15. Liu, Y., Li, J., Gao, H.: Summarizing graph patterns. In: ICDE, pp. 903–912 (2008)
16. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded

error. In: SIGMOD, pp. 419–432 (2008)
17. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a dif-

ference. In: KDD, pp. 647–652 (2004)
18. Freund, R.J., Wilson, W.J., Sa, P.: Regression Analysis: Statistical Modeling of a

Response Variable, 2nd edn. Academic Press (2006)
19. Thomas, L.T., Valluri, S.R., Karlapalem, K.: Margin: Maximal frequent subgraph

mining. In: ICDM, pp. 1097–1101 (2006)
20. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-

tion. In: SIGMOD, pp. 567–580 (2008)
21. Vanetik, N., Gudes, E., Shimony, S.E.: Computing frequent graph patterns from

semistructured data. In: ICDM, p. 458 (2002)
22. Wang, C., Parthasarathy, S.: Summarizing itemset patterns using probabilistic

models. In: KDD, pp. 730–735 (2006)
23. Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based

approach. In: KDD, pp. 314–323 (2005)
24. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: ICDM, p.

721 (2002)
25. Yan, X., Han, J.: Closegraph: mining closed frequent graph patterns. In: KDD, pp.

286–295 (2003)
26. Yan, X., Yu, P.S., Han, J.: Graph indexing based on discriminative frequent struc-

ture analysis. ACM Trans. Database Syst. 30(4), 960–993 (2005)
27. Zhang, N., Tian, Y., Patel, J.: Discovery-driven graph summarization. In: ICDE,

pp. 880–891 (2010)
28. Zhang, S., Yang, J., Li, S.: Ring: An integrated method for frequent representative

subgraph mining. In: ICDM, pp. 1082–1087 (2009)

	Frequent Subgraph Summarization with Error Control
	1 Introduction
	2 Problem Statement
	3 Summarization Algorithms
	3.1 Subgraph Summarization by Regression
	3.2 Summarization Framework
	3.3 Template Subgraph Division
	3.4 Template Subgraph Merging
	3.5 Queriable Summarization

	4 Experimental Results
	5 Related Works
	6 Conclusions
	References

