
RAPID: Identifying Bug Signatures to Support Debugging Activities

Hwa-You Hsu, James A. Jones, and Alessandro Orso
College of Computing

Georgia Institute of Technology
{hsu|jjones|orso}@cc.gatech.edu

Abstract

Most existing fault-localization techniques focus on iden-
tifying and reporting single statements that may contain a
fault. Even in cases where a fault involves a single statement,
it is generally hard to understand the fault by looking at that
statement in isolation. Faults typically manifest themselves
in a specific context, and knowing that context is necessary
to diagnose and correct the fault. In this paper, we present
a novel fault-localization technique that identifies sequences
of statements that lead to a failure. The technique works by
analyzing partial execution traces corresponding to failing
executions and identifying common segments in these traces,
incrementally. Our approach provides developers a context
that is likely to result in a more directed approach to fault
understanding and a lower overall cost for debugging.

1 Introduction

Debugging is an expensive and time-consuming activ-
ity that can be responsible for a significant part of the cost
of software maintenance. The use of automated or semi-
automated techniques for supporting debugging has there-
fore the potential to be extremely beneficial in reducing the
overall cost of software development and, at the same time,
improving software quality.

There has been a great deal of research in the area of auto-
mated debugging in recent years (e.g., [2,4,6,13,14]). These
novel techniques have been shown to be effective and have
greatly contributed to advancing the state of the art. How-
ever, most of these debugging approaches suffer from an im-
portant limitation: they typically assume perfect bug under-
standing—simply examining a faulty statement in isolation
is always enough for a developer to detect, understand, and
correct the corresponding fault.1

In some cases, however, single lines of code do not pro-
vide enough information. Obviously, this is the case for
faults that involve multiple, possibly far apart, statements.
In our experience, even in situations where a fault involves

1Some of these techniques actually consider program entities other than
statements, such as branches or predicates. Because considering different
entities does not change the nature of the problem, in this paper, for sim-
plicity, we simply refer to statements as the entities of choice.

a single statement, it is generally difficult to understand the
fault by looking at that statement in isolation. Faults typi-
cally manifest themselves in a specific context, and knowing
that context is necessary to diagnose and correct the fault.

Some existing approaches, such as techniques based on
program slicing or on a collection of (rich) faulty execution
traces (e.g., [1, 3, 7, 12, 14]), provide context for the investi-
gation of a failure. However, in most cases, these approaches
provide too much information, and the relevant information
gets lost in the noise. Program slices, for instance, tend to in-
clude large parts of a program, most of which are irrelevant
for the investigation of a failure.

To mitigate these limitations of existing techniques, in this
paper, we present a novel fault-localization technique whose
goal is to find a sweet spot between providing too little and
too much information to developers.

Like most existing techniques, our technique assumes the
availability of a set of test cases for the program being de-
bugged. This set includes both test cases for which the pro-
gram fails and test cases for which the program behaves cor-
rectly (i.e., it passes). To compute relevant information that
can support debugging, our technique performs three main
steps. First, it analyzes passing and failing executions to
identify the likelihood of each statement to be responsible
for the failure under investigation. Second, it analyzes partial
failing execution traces, that is, traces that contain only state-
ments above a given suspiciousness threshold. This analy-
sis uses a sophisticated string matching algorithm to identify
one or more common subsequences in these traces. Third, it
reports the identified subsequences to the developers. If the
subsequences do not contain enough information to locate
and understand the fault, the technique repeats the second
step using a lower suspiciousness threshold.

Compared to most existing debugging approaches, our
technique has several advantages: at the same time, it (1)
considers the information contained in all passing and fail-
ing executions, (2) automatically identifies relevant context
for faults, when such context exists, and (3) allows for iden-
tifying such context incrementally, adding more information
when the currently computed context is insufficient.

We also discuss an example taken from a preliminary ex-
periment we performed using RAPID, a prototype tool that

978-1-4244-2188-6/08/$25.00 ©2008 IEEE 439



implements our technique. The example shows the effec-
tiveness of our approach for faults that manifest due to a se-
quence of events.

The main contributions of this work are:
• A novel fault localization technique that identifies se-

quences of statements involved in a failure by analyzing
partial failing execution traces and identifying common
segments in these traces, incrementally.

• A tool, RAPID, that implements the different parts of our
technique for C programs.

• An example of application of our approach that shows its
potential usefulness.

2 Our Approach

As it is typically the case for fault-localization ap-
proaches, the starting point of our technique is a program
to be debugged and a set of test cases for the program that
includes both passing test cases (i.e., test cases for which the
program produces a correct result) and failing test cases (i.e.,
test cases for which the program manifests a failure). Given
this information, our technique performs three main steps:
dynamic data collection, bug signature identification, and in-
teractive localization. In the next sections, we discuss these
three steps in detail and illustrate them using the intuitive
view of our technique provided in Figure 1.

2.1 Step 1: Dynamic data collection

In this step, our technique collects the dynamic infor-
mation that it uses to identify bug signatures: coverage in-
formation and execution traces. The technique instruments
the program being debugged and generates an instrumented
version of the program that produces, at runtime, a trace
of the branches (i.e., method entries and outcomes of deci-
sion statements) traversed during the execution. Collecting
branch data alone is sufficient because information for all
statements in the program can be easily derived from such
data.

Our technique then runs the instrumented program against
all passing and failing test cases and records the trace infor-
mation produced by the program for each test case. It then
extracts coverage information from the traces—for each test
case, it checks which branches (and thus statements) were
covered by that test case. Coverage information is used to
compute, using a statistical ranking technique, the likelihood
of each element covered to be responsible for a failure. In
the rest of the paper, we call this value suspiciousness.

Many techniques could be used to compute suspicious-
ness values (e.g., [6,8,9]). For our technique, we use a rank-
ing technique defined by one of the authors of this paper,
called Tarantula [5, 6]. Suspiciousness values for a program
element e (a branch, in this case) can range from 0, which
indicates that e is not suspicious, to 1, which indicates that e
is highly suspicious.

The leftmost part of Figure 1 illustrates, in a graphical
fashion, the two pieces of dynamic information collected in
this step. In the upper part, it shows the set of suspiciousness
values attached to the branches of the program, represented
as control-flow graphs. In the lower part, it shows the set
of traces collected for the failing test cases, represented as
a sequence of elements. (Each of these is magnified to give
an example of individual suspiciousness values for branches
and sequences of events for the traces.)

2.2 Step 2: Bug signature identification

In this step, our technique computes bug signatures—
sequences of program elements that, when executed in order,
are likely to lead to a failure. The technique first associates
the previously computed suspiciousness information with the
branches in the failing traces, so that each branch in a trace
is labeled with its corresponding suspiciousness value. This
information is then used to eliminate from the traces all el-
ements below a given suspiciousness threshold. The result-
ing (possibly non-contiguous) traces are partial failing traces
containing only elements that are more likely to be faulty
according to the Tarantula ranking technique. To include as
many elements as possible, while eliminating the ones that
are fairly unlikely to be related with a failure, we choose 0.6
as a threshold. (Intuitively, elements with 0.6 suspiciousness
have a 60% chance of being related to the failure.)

Our technique computes bug signatures by identifying
common patterns in the filtered traces; it encodes the prob-
lem of finding such patterns in a set of traces as a longest-
common-subsequence identification problem, where a com-
mon subsequence is a (usually non-contiguous) sequence
that occurs in all traces, and a longest common subsequence
is a common subsequence that is not contained in any other
common subsequence. Among the many approaches pro-
posed to address this problem in the data-mining commu-
nity, we selected a technique called BI-Directional Exten-
sion (BIDE) [11]. To the best of our knowledge, BIDE is
currently the most efficient algorithm to solve this problem.

When successful, this step produces the longest se-
quences of statements that (1) have a suspiciousness level
greater than 0.6, and (2) occur, in the same order, in all fail-
ing executions. These sequences are used in the third step of
the technique to support developers in their debugging effort.

Figure 1 illustrates Step 2 of our technique. Its upper, cen-
tral part shows the set of traces annotated with suspicious-
ness information. (For simplicity, we represent only partial
information.) The grayed-out boxes are elements with sus-
piciousness values below 0.6, which are filtered out, and the
dashed lines between trace elements indicate the matching of
these elements identified by the BIDE technique. The lower
part of the figure shows the longest subsequence (i.e., bug
signature) identified by the technique: “1F, 2T, 3T.”

440



...

...

...

...

...

...

1

2

3

0.9 0.2

0.60.4 0.7 0.3

2T

2T 3T

2T1F 3T

0.9

0.6

0.7

0.6 0.9 0.7...
...
...

...

...

...

1F1F

1F

1F

2T

2T

2T

3T

3T

3T

0.6

0.6

0.9 0.7

0.70.9

Program control flow with ranking information

Program traces for a set of failing executions

2T1F 3T

Program traces filtered based on ranking information

Longest subsequence for
ranking threshold 0.6

Patterns (sequences) for
different ranking thresholds 

Step 1 Step 2 Step 3

Figure 1. High-level view of the three steps of our technique.

Instrumented
programProgram Test cases

Program
traces

Ranking
information

Developer

Patterns
(sequences)

Found/Not found

RAPID
instrumenter

RAPID
pattern

Identifier

RAPID
dynamic
analyzer

Figure 2. Workflow in the RAPID tool.

2.3 Step 3: Interactive localization

In its third step, our technique presents sequences of sus-
picious program elements to the developers in an iterative,
incremental fashion. In the first iteration, the technique ex-
tracts from the sequences identified in the previous step the
subsequences of elements with the highest suspiciousness.
Such subsequences can include one or more statements, de-
pending on the distribution of the suspiciousness values. De-
velopers would then study the provided subsequences and,
by also leveraging their knowledge of the program, try to (1)
assess whether they contain the fault (or faults) causing the
failures being investigated and (2) understand such fault and
how to eliminate it.

If the developer is able to locate and understand the
fault(s) using this first set of sequences, the technique ter-
minates. Otherwise, it adds to the subsequences the ele-
ments with the second highest suspiciousness and presents
this longer subsequences to the developer. This process con-
tinues until either the developers are successful in their inves-
tigation or the subsequences become too large to be useful.

Step 3 is illustrated in the rightmost part of Figure 1. The
figure shows the three increasingly long subsequences that
would be presented to developers in an incremental fashion
during their investigation of the failure. As the developers
require more contextual information, the threshold would be
lowered to include more events in the bug signature.

3 Experience
To assess practicality and usefulness of our fault-

localization approach, we implemented it in a prototype tool,

RAPID (Ranking, Analysis, and Pattern Identification for De-
bugging), and used the tool on the Siemens programs and
faults [10]. We show how our approach can provide better
support for fault localization than other techniques using one
of the bugs that we studied, for program replace.

Program replace takes three inputs—a string s, a pat-
tern p to be identified in s, and a string r—and replaces
all occurrences of p in s. Figure 3 shows part of function
esc, which is in charge of recognizing and handling es-
cape characters in p and s. Statement 6 of esc contains a
fault: variable result is assigned value ENDSTR instead
of value ESCAPE. The figure also shows a fragment of func-
tion subline, whose purpose is to check whether there are
any occurrences of pattern p, contained in parameter pat,
in string s, contained in parameter lin. If an occurrence
is found, subline replaces such occurrence with string r,
contained in parameter sub.

For this example, the fault results in a failure if and only
if (1) pattern p contains an escape character, (2) the escape
character in p is followed by an ENDSTR character, and (3)
there is at least an occurrence of pat in lin. Conditions
(1) and (2) make the predicates at lines 2 and 5 in esc false
and true, respectively, and result in the statement at line 6
being executed. Condition (3) makes the predicate at line 7
in subline true and results in the statement at line 8 being
executed. Executing any of these two statements alone is not
enough to reveal the fault. Only executions where the two
statements are executed in sequence result in a failure.

Existing fault-localization techniques that focus on indi-
vidual statements in the code are likely to be ineffective in
this case. Even in the ideal case where they rank both line
6 in esc and line 8 in subline as statements with high
likelihood to be related to the failure, they would have no
way to correlate these statements. They would therefore
present the two statements to the developer as independent
entities. Moreover, there would typically be other entities
with similar, or even higher, ranking. Conversely, most tech-
niques that focus on slicing or on collecting and reporting
faulty execution traces would be able to identify subsets of

441



char esc(s, i)
 char    *s;
 int     *i;
{
    char        result;
    ....
    if (s[*i] != ESCAPE)
        result = s[*i];
    else
        if (s[*i + 1] == ENDSTR)
          result = ENDSTR; // fault
    ...
}

void subline(lin, pat, sub)
 char   *lin;
 char   *pat;
 char   *sub;
{
    int i, lastm, m;
    lastm = -1;
    i = 0;
    while ((lin[i] != ENDSTR)) 
    {
        m = amatch(lin, i, pat, 0);
        if ((m >= 0) && (lastm != m)) {
            putsub(lin, i, m, sub);
    ...
}

1:

2:
3:
4:
5:
6:

1:
2:
3:
4:
5:
6:
7:
8:

Figure 3. Excerpt of code from replace that
shows a path-dependent fault. Although the
fault is located at line 6 of function esc, both
of the highlighted statements must be exe-
cuted for the fault to be revealed.

Table 1. Suspiciousness data for replace
Suspiciousness Elements

0.99 Branch true, line 5 in esc
0.77 Branch true, line 23 in in pat set

· · · 27 other elements · · ·
0.63 Branch true, line 7 in subline

· · ·

the program that contain the two statements. The two state-
ments, however, would likely be presented to the developers
together with a potentially large number of additional state-
ments, which would make it difficult to isolate the actually
relevant elements.

For this version of replace, RAPID reports a bug signa-
ture of six elements: (1) line 2 of esc to be false, (2) line 5
of esc to be true, (3–5) three other irrelevant elements, and
(6) line 7 in subline to be true. Compare this result with
Table 1, which shows the suspiciousness values computed
by Tarantula for this program and failure. Analyzing entities
by decreasing suspiciousness would not result in any mean-
ingful sequence and would require developers to examine 28
additional irrelevant entities before considering the two nec-
essary conditions for the failure.

4 Conclusion
This paper presents a novel approach for helping devel-

opers find and understand faults. Our approach works by
(1) collecting run-time data, (2) utilizing light-weight ap-
proaches to identify likely program regions that are respon-
sible for causing failures, (3) identifying non-continuous se-
quences of events (bug signatures) that are common in all
failures, and (4) providing developers with a way to explore
these bug signatures.

Compared to traditional fault-localization techniques, our
approach has the main advantages of automatically identify-
ing relevant context for faults, when such context exists, and
providing developers with such context incrementally, when
(and if) needed. Although a more extensive evaluation of the
approach is needed before drawing any conclusion, our ini-
tial results are promising. We believe that our technique can
result in a more directed approach to fault understanding and
decrease the overall cost of debugging.

Acknowledgments
This work was supported in part by NSF awards CCF-0725202

and CCF-0541080 to Georgia Tech.

References

[1] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault localization
using execution slices and dataflow tests. In Proceedings of IEEE
Software Reliability Engineering, pages 143–151, 1995.

[2] H. Cleve and A. Zeller. Locating causes of program failures. In Pro-
ceedings of the International Conference on Software Engineering,
pages 342–351, St. Louis, Missouri, May 2005.

[3] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for software
fault localization. In International symposium on Software testing and
analysis, pages 121–134, 1996.

[4] L. Jiang and Z. Su. Context-aware statistical debugging: from bug
predictors to faulty control flow paths. In ASE ’07: Proceedings of
the twenty-second IEEE/ACM international conference on Automated
software engineering, pages 184–193, New York, NY, USA, 2007.
ACM.

[5] J. Jones and M. J. Harrold. Empirical evaluation of the Tarantula au-
tomatic fault-localization technique. In Proceedings of the Interna-
tional Conference on Automated Software Engineering, pages 273–
282, November 2005.

[6] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test information
to assist fault localization. In Proceedings of the International Confer-
ence on Software Engineering, pages 467–477, Orlando, Florida, May
2002.

[7] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett.,
29(3):155–163, 1988.

[8] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scal-
able statistical bug isolation. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and im-
plementation, pages 15–26, New York, NY, USA, 2005.

[9] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. In Proceedings of European Software
Engineering Conference and Foundations on Software Engineering,
pages 286–295, September 2005.

[10] Laboratory for Empirically-based Software Quality Research and De-
velopment. Software-artifact Infrastructure Repository. http://
sir.unl.edu/php/index.php, 2008.

[11] J. Wang and J. Han. BIDE: Efficient mining of frequent closed se-
quences. In ICDE ’04: Proceedings of the 20th International Confer-
ence on Data Engineering, page 79, Washington, DC, USA, 2004.

[12] M. Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446–452, 1982.

[13] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183–200, 2002.

[14] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with con-
fidence. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN con-
ference on Programming language design and implementation, pages
169–180, New York, NY, USA, 2006.

442


