
Distributed Algorithms for Optimization in Networks

Angelia.Nedich@asu.edu

School of Electrical, Computer, and Energy Engineering

December 17, 2020



OWSP Seminar December 17, 2020

In Fond Memory of Wei (Wilbur) Shi

1



OWSP Seminar December 17, 2020

Problem Formulation
We consider a (machine learning) problem

min
x∈Rn

m∑
i=1

fi(x)

in a system consisting of m agents that are

embedded in a communication network.

• Each function fi(·) is differentiable convex,

and privately known only to agent i.

• Agents communicate some limited informa-

tion with their immediate neighbors only

• Agents do not share their functions fi(·)’s.

The problem is to be solved distributedly i.e., without a central entity

The lack of central authority is compensated by agent collaboration and communication

• DeGroot consensus model [DeGroot 1974] - also referred to as agreement model
• A variant of this problem, using consensus model, has been studied in the 80’s:

Borkar & Varaya 1982, Tsitsiklis 1984, Tsitsiklis, Bertsekas & Athens 1986,

Bertsekas & Tsitsiklis book

“Parallel and Distributed Computations: Numerical Methods” 1989
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Examples
Machine Learning (Kunal Srivastava, Soomin Lee):

The function fi(x) represents the loss associated with a collection of data points available

to agent i. Specifically, let the collection {(zip, yip), p = 1, . . . ,mi} represent the data

points of agent i, where zip ∈ Rn is a feature vector and yip ∈ {−1,+1} is its corresponding

label. The agent i objective function is

fi(x) = cρ(x) +

mi∑
p=1

`(x; zip, y
i
p),

where c > 0 is a regularization parameter, x ∈ Rn is a decision vector, ρ(x) is a

regularizing (strongly convex) function, and `(x; z, y) is a loss function associated with

the point (z, y) ∈ Rn+1. For linear classifiers, a common choice is the logistic regression

loss function, given by

`(x; z, y) = log
(

1 + e−y〈x,z〉
)

Sensor Systems:

• Distributed Source Localization (Sundhar R. Srinivasan)

• Distributed Uplink Power Scheduling for Mobile Devices (Sundhar R. Srinivasan)

• Distributed Hypothesis Testing (Cesar A. Uribe)
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Distributed Method

To solve the problem

min
x∈Rn

m∑
i=1

fi(x)

in a network of agents that communicate lo-

cally with immediate neighbors, we need to

model the communication network.

We start by considering the static network

case, where the network is represented by an

undirected connected grapha G = ([m], E),

where

• [m] = {1,2, . . . ,m} is the node set

• E ⊂ [m]× [m] is the edge set

We assume that the graph G is connected
aThis is assumed for simplicity. The graph can be directed or

even time-varying.
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Problem Reformulation

To take into account the graph, we can reformulate the problem as follows:

minimize
m∑
i=1

fi(xi) xi = xj for all i and j ∈ Ni︸ ︷︷ ︸
agreement constraints

,

where Ni = {j ∈ [m] | {i, j}| ∈ E}. When the graph is connected the constraint set is

equivalent to xi = xj for all agents i, j.

When fi = 0, the resulting feasibility problem is known as agreement problem.

Agreement problem/ Consensus problem: design a distributed algorithm such that the

iterate sequences {xi(t)}, i ∈ [m], generated locally by the agents satisfy

lim
t→∞

xi(t) = x̃ for some x̃ ∈ Rn and all i,

where xi(0) is arbitrary. An algorithm using weighted-averaging solves the agreement

problem: at time t, every agent i sends xi(t) to its neighbors j ∈ Ni, and receives xj(t)

from them; then, every agent updates

xi(t+ 1) =
∑

j∈Ni∪{i}

aijxj(t),
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where the weights aij satisfy

aij > 0
∑

j∈Ni∪{i}

aij = 1.

Note that each agent i chooses the weights aij, j ∈ Ni, at its own discretion.

Introducing aij = 0 for j 6∈ Ni ∪ {i}, we define the matrix A = [aij], so the iterate

process can be compactly written as:

X(t+ 1) = AX(t) = · · · = At+1X(0),

where X(t) = [x′1(t);x′2(t); . . . ;x′m(t)]. When A is a row stochastic (
∑m

j=1 aij = 1 for

all i), A can be viewed as a transition matrix of an ergodic Markov Chain, and we have

lim
t→∞

At = 1π′,

for a stochastic vector π with all entries positive, i.e., π > 0. Hence,

lim
t→∞

xi(t) =
m∑
j=1

πjxj(0) for all i.
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Distributed Consensus-Based Gradient Method

At time t, every agent i sends xi(t) to its neighbors j ∈ Ni, and receives xj(t) from them;

then, every agent updates (AN and A. Ozdaglar 2009)

xi(t+ 1) =
m∑
j=1

aijxj(t)︸ ︷︷ ︸
consensus

−αt∇fi(xi(t)),

where αt > 0 is a stepsize.

Every agent moves along the negative gradient of its own objective function, evaluated at

its current iterate xi(t).

Another variant has also been considered (S.S. Ram et al. 2010):

xi(t+ 1) =
m∑
j=1

aijxj(t)︸ ︷︷ ︸
consensus

−αt∇fi

 m∑
j=1

aijxj(t)


︸ ︷︷ ︸

consensus
where αt > 0 is a stepsize. The difference from the preceding method is in the point where

the gradient of fi is evaluated.
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Basic Convergence Result

Assuming that the problem has a solution, the graph G is connected, the matrix A is

doubly stochastic, the gradients are bounded and stepsize satisfies
∑∞

t=0 αt = +∞ and∑∞
t=0 α

2
t <∞, we have that for some optimal solution x∗,

lim
t→∞

xi(t) = x∗ for all i.

• The convergence rate is O( log t√
t

). If
∑m

i=1 fi(x) is strongly convex, the rate is O( log t
t

)

NOTES:

• The result holds for time varying graphs, assuming that eachA(t) is doubly stochastic.

• No knowledge about how the graphs are changing is used. That is considered in a

recent work (stronger convergence rate results obtained with a constant stepsize):

A. Rogozin, C. A. Uribe, A. Gasnikov, N. Malkovsky and AN Optimal distributed con-

vex optimization on slowly time-varying graphs, IEEE Trans. on Control of Network

Systems, 7 (2), 829 – 841, June 2020 (arxiv version at https://arxiv.org/abs/1805.06045).

• The method is slow due to the use of diminishing stepsize.
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Why Doubly Stochastic A?
With a doubly stochastic matrix A = [aij], the method

xi(t+ 1) =
m∑
j=1

aijxj(t)− αt∇fi(xi(t))

solves the problem minx 1
m

∑m
i=1 fi(x).

If A is just row-stochastic, the algorithm would produce the iterates converging to a

common point that solves the following problem:

minimize
m∑
i=1

πifi(x),

where π is the left-eigenvector of A for the eigenvalue λ = 1, i.e., π′A = π′.

The algorithm cannot be efficiently implemented in directed time-varying graphs ∗

An alternative to the weighted averaging is available through a push-sum algorithm for

consensus (Kempe, Dobra & Gehrke 2003)†

∗Gharesifard and Cortés Distributed strategies for generating weight-balanced and doubly stochastic digraphs, European
Journal of Control, 18 (6), 539-557, 2012
†D. Kempe, A. Dobra, and J. Gehrke Gossip-based computation of aggregate information, In Proceedings of the 44th Annual

IEEE Symposium on Foundations of Computer Science, pages 482–491, 2003
F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli Weighted gossip: distributed averaging using non-doubly

stochastic matrices, In Proceedings of the 2010 IEEE International Symposium on Information Theory, 2010
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Directed Graphs: Push-sum Consensus and

Push-sum Based Gradient Methods

• Dominguez-Garcia and Hadjicostis Distributed strategies for average consensus in

directed graphs Proc. of the IEEE Conference on Decision and Control, 2011.

• Hadjicostis, Dominguez-Garcia, and Vaidya Resilient Average Consensus in the Pres-

ence of Heterogeneous Packet Dropping Links, CDC, 2012

• Tsianos and Rabbat Distributed consensus and optimization under communication

delays Proc. of the 49th Allerton Conference on Communication, Control, and Com-

puting, 2011.

• Tsianos, Lawlor, and Rabbat Consensus-based distributed optimization: Practical

issues and applications in large-scale machine learning Proceedings of the 50th

Allerton Conference on Communication, Control, and Computing, 2012.

• Tsianos, Lawlor, and Rabbat Push-sum distributed dual averaging for convex opti-

mization Proceedings of the IEEE Conference on Decision and Control, 2012.
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• Tsianos The role of the Network in Distributed Optimization Algorithms: Conver-

gence Rates, Scalability, Communication / Computation Tradeoffs and Commu-

nication Delays PhD thesis, McGill University, Dept. of Electrical and Computer

Engineering, 2013.

• AN and A. Olshevsky Distributed Optimization over Time-varying Directed Graphs

IEEE Transactions on Automatic Control 60 (3) 601–615, 2015

• AN and A. Olshevsky Stochastic Gradient-Push for Strongly Convex Functions on

Time-varying Directed Graphs IEEE Transactions on Automatic Control 61 (12)

3936–3947, 2016

• AN Distributed gradient methods for convex machine learning problems in networks

IEEE Signal Processing Magazine 37 (3) 92–101, 2020
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Rate Issue - Quest to Match Centralized Methods’

Performance

• Assume that the functions fi have Lipschitz gradients and
∑m

i=1 fi(x) is strongly

convex

• The consensus-based gradient algorithm will not necessarily produce convergent iterates

with a constant stepsize αi = α

• Brought to attention in the work of Shi, Ling, Wu, and Yin (EXTRA algorithm) 2014,

2015

• The consensus-based gradient method with a constant stepsize

xi(t+ 1) =
m∑
j=1

aijxj(t)− α∇fi(xi(t))

Assuming the iterates converge to some point x̃: x̃ = x̃−α∇fi(x̃) =⇒ ∇fi(x̃) = 0

For the method to work, the agent functions should have a common minimizer!

• The method has to use diminishing step for convergence.

• It work wells in the presence of random noise (noisy gradient computations, noisy

communication links - Kunal Srivastava)
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Quest to Match Centralized Methods’ Performance

minimize
m∑
i=1

fi(xi) xi = xj for all i and j ∈ Ni︸ ︷︷ ︸
agreement constraints

,

Linear equality-constrained convex optimization problem.

• It can be solved distributedly through its dual, as done in our recent work:

C. A. Uribe, S. Lee, A. Gasnikov and AN A Dual Approach for Optimal Algorithms in

Distributed Optimization over Networks Optimization Methods and Software, 2020,

arxiv link https://arxiv.org/abs/1809.00710

• The performance of the fastest centralized methods is matched up to a log-factor -

log t per iteration count t.

• Difficult to extend to general time-varying graphs - Rogozin 2020 manages this for

slowly-time varying graphs.

• Other alternatives?
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Achieving Linear Rate: Methods Tracking
∑m
i=1∇fi

• The agents are selfish in the method

xi(t+ 1) =
m∑
j=1

aijxj(t)︸ ︷︷ ︸
collaborative decision

−αt ∇fi(xi(t))︸ ︷︷ ︸
selfish direction

• The agents should be more collaborative in “directions” not just decision. In the

models with gradient tracking, the agents are “more aware” of the system objective

• Basic Idea: Every agent i uses an estimate gi(t) for the gradient
∑m

i=1∇fi(xi(t)):

at time t, agents exchange both decision estimates xj(t) and the gradient estimates

gj(t), and update

xi(t+ 1) =
m∑
j=1

aijxj(t)− αgi(t)

gi(t+ 1) =
m∑
j=1

aijgj(t) +∇fi(xi(t+ 1))−∇fi(xi(t))

where α > 0 is a stepsize. The updates are reminiscent of ”tracking/filtering” (the

innovation term is the gradient difference)
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Closely Related Literature and Simultaneous Work –

uses tracking

• M. Zhu and S. Mart́ınez, Discrete-Time Dynamic Average Consensus, Automatica,

46 (2010),

• J. Xu, S. Zhu, Y. Soh, and L. Xie, Augmented Distributed Gradient Methods for

Multi-Agent Optimization Under Uncoordinated Constant Stepsizes, in Proceedings

of the 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 2055–2060.

• Algorithms NEXT and SONATA

• P. Di Lorenzo and G. Scutari Distributed nonconvex optimization over networks, in

IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), 2015, pp. 229–232.

P. Di Lorenzo and G. Scutari, NEXT: In-Network Nonconvex Optimization, IEEE

Transactions on Signal and Information Processing over Networks, 2016.

P. Di Lorenzo and G. Scutari Distributed nonconvex optimization over time-

varying networks, in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2016, pp. 4124–4128.
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• Y.Sun, G. Scutari, D.Palomar Distributed Nonconvex Multiagent Optimization

Over Time-Varying Networks https://arxiv.org/abs/1607.00249, 2016

Y. Tian, Y. Sun, B. Du, G. Scutari ASY-SONATA: Achieving Geometric Conver-

gence for Distributed Asynchronous Optimization Allerton Conference on Com-

munication, Control, and Computing (Allerton) 2018

Y. Sun, A. Daneshmand, G. Scutari Convergence Rate of Distributed Optimiza-

tion Algorithms Based on Gradient Tracking https://arxiv.org/abs/1905.02637,

2019
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DIGing Method for Undirected Time-Varying Graphs

• Exchange:

Every agent i sends xi(k), gi(k) to all its neighbors j ∈ Ni(k) in the graph G(k) and

receives xj(k), gj(k) from its neighbors

• Update: Every agent i updates the decision and the direction as follows

xi(k + 1) =
∑m

j=1 aij(k)xj(k)− αgi(k);

gi(k + 1) =
∑m

j=1 aij(k)gj(k) +∇fi(xi(k + 1))−∇fi(xi(k)).

• The matrix A(k) = [aij(k)] is doubly stochastic and compatible with the graph G(k):

aii(k) > 0 and aij(k) > 0 for j ∈ Ni(k), otherwise aij(k) = 0.

• The stepsize α is common to all1‡

• The method is initialized with arbitrary xi(0) ∈ Rn and gi(0) = ∇fi(xi(0)) for all i.

‡It can be agent dependent AN, Alex Olshevsky, Wei Shi, Cesar Uribe Geometrically Convergent Distributed Optimization
with Uncoordinated Step-Sizes, CDC 2016.

17



OWSP Seminar December 17, 2020

Assumptions for Linear Convergence Rate for DIGing

• The functions fi are convex with Lipschitz gradients (with Lipschitz constant Li)

• The sum 1
m

∑m
i=1 fi is strongly convex with a constant µ̄ > 0

• The graphs G(k) areB-connected: for some integerB ≥ 1, the graph ([m],∪k+B−1
t=k E(t)

is connected for all k.

• A(k) is doubly stochastic, compatible with the graph G(k), and there is a lower bound

τ > 0 on its positive entries: for all k,

aij(k) ≥ τ whenever aij(k) > 0.

Under these assumptions we have the following result.

Theorem 1 (DIGing: Geometric rate) The sequences {xi(k)}, i ∈ [m], generated by

DIGing converge to the (unique) optimal solution x∗ at a linear rate O(λk), where

λ ∈ (0,1) depends on the stepsize α, the condition number κ̄ = L
µ̄

with L = maxiLi,

and on the mixing matrices.
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Specialized Result

Corollary 2 (DIGing: Polynomial networks scalability) If the graphs are undirected and

A(k) is a lazy Metropolis matrix

aij(k) =


1/ (1 + max{di(k), dj(k)}) , if j ∈ Ni(k),

1−
∑

`∈N (k) ai`(k), if j = i,

0, else,

where di(k) = |Ni(k)| is the degree of a node i, and the step-size isr

α =
3(2/71)2

128B2m4.5L
√
κ̄
−

1.5

µ̄

(
(2/71)2

128B2m4.5κ̄1.5

)2

,

then to reach an ε-accuracy, the number of iterations needed by DIGing algorithm is

O

(
B3m4.5κ̄1.5 ln

1

ε

)
.

DIGing method for directed graphs with a linear rate, relying on push-sum consensus is in:

AN, A. Olshevsky, W. Shi Achieving Geometric Convergence for Distributed Optimiza-

tion over Time-Varying Graphs SIAM Journal on Optimization 27 (4) 2597–2633, 2017.

However, a polynomial scaling for a directed graph is still an open question.
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AB/Push-Pull Method

• It is a variant of DIGing that uses different matrices for mixing the decisions and the

directions

• Works on both undirected and directed graphs, but static i.e., G = ([m], E). So we

assume that the graph is directed.

• Exchange: (from an agent’s perspective

• (Push) Every agent i sends xi(t) to its out-neighbors Nout
i = {p | (i, p) ∈ E},

and receives xj(k) from its in-neighbors j ∈ N in
i = {p | (p, i) ∈ E}

• (Pull) Every agent i sends b`igi(k) to all its out-neighbors ` ∈ Nout
i , and receives

bijgj(k) from its in-neighbors j ∈ N in
i

• The coefficients b`i > 0 and bii > 0 are selected by the agent i and satisfy∑
`∈Nout

i
∪{i}

b`i = 1 for all i.
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• Update: Every agent i updates its decision xi(k) and direction gi(k) as follows

xi(k + 1) =
∑

j∈N in
i
∪{i}

aijxj(k)− αgi(k)

gi(k + 1) =
∑

j∈N in
i
∪{i}

bijgj(k) +∇fi(xi(k + 1))−∇fi(xi(k)). (1)

The weights aij are positive and sum to 1:

aij > 0 for all j ∈ N in
i ∪ {i} > 0.

Agent i selects these weights.

Define

aij = 0 if j /∈ N in
i ∪ {i},

bij = 0 if j /∈ Nout
i ∪ {i}.

The matrix A = [aij] is row stochastic, while B = [bij] is a column stochastic.

The method is initialized with arbitrary xi(0) ∈ Rn and gi(0) = ∇fi(xi(0)) for all i.
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Simultaneous Work

• S. Pu, W. Shi, J. Xu, and AN, A push-pull gradient method for distributed optimiza-

tion in networks, Proceedings of the 54th IEEE Conference on Decision and Control

(CDC), 2018. Journal version to appear soon in IEEE Transactions on Automatic

Control; journal version is on arxiv: https://arxiv.org/abs/1810.06653

• C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, Linear convergence in

optimization over directed graphs with row-stochastic matrices, IEEE Transactions

on Automatic Control, 2018.

• R. Xin, C. Xi, and U. A. Khan, Frost–fast row-stochastic optimization with uncoor-

dinated step-sizes, EURASIP Journal on Advances in Signal Processing, 2019.

• R. Xin and U. A. Khan, A linear algorithm for optimization over directed graphs with

geometric convergence, arXiv preprint arXiv:1803.02503, 2018; IEEE Control Systems

Letters 2 (3) 315–320, 2018.

To recognize simultaneous development of the method by Xin and Khan, we refer

to the method AB/Push-Pull in the future work.
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Interpretation of AB/Push-Pull Method

• Suppose the graph ([m], E) is strongly connected, and suppose x ∈ R (for simplicity)
• Reformulate the problem of minx∈Rn

∑m
i=1 fi(x):

min
xi,i∈[m]

m∑
i=1

fi(xi), xi = xj, j ∈ N in
i , i ∈ [m]

• Define x = col(x1, . . . , xm) and

F (x) =
m∑
i=1

fi(xi).

Then the optimality condition can be stated as: x∗ is optimal if and only if

x∗ = a∗1, 1′∇F (x∗) = 0,

where a∗ ∈ R and ∇F (x) = col(f ′1(x1), . . . , f ′m(xm)).
• In this compact form AB/Push-Pull iterations are

x(k + 1) = Ax(k)− αg(k)

g(k + 1) = Bg(k) +∇F (x(k + 1))−∇F (x(k))

with g(k) = (g1(k), . . . , gm(k))′.
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If the sequences were convergent, i.e., x(k)→ x̄ and g(k)→ ḡ, then we would have

x̄ = Ax̄− αḡ, ḡ = Bḡ.

Since B is column-stochastic, compatible with the graph and the graph is strongly

connected, there is a unique probability vector π > 0 such that

π = Bπ =⇒ ḡ = cπ.

(A− I)x̄ = αḡ =⇒ (A− I)x̄ = αcπ (I is the identity matrix)

So, π is in the intersection of the range space of A− I and the null space of B − I.

• When these two spaces have only the zero vector in common, we have c = 0, so that

ḡ = 0 =⇒ Ax̄ = x̄.

Since A is row-stochastic, compatible with the graph and the graph is strongly

connected, the vector 1 = (1, . . . ,1)′ is the unique vector (up to a scaling) satisfying

A1 = 1 =⇒ x̄ = a1.

• Since B is column stochastic, from the update equation it can be seen that

1′g(k) = 1′∇F (x(k)) =⇒ 1′ḡ = 1′∇F (x̄) =⇒ 0 = 1′∇F (x̄),

where in the last step we use ḡ = 0.

• x̄ = a1 and 0 = 1′∇F (x̄) are the conditions for x̄ to be a solution of the problem.
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Convergence Result
Assume that:

• The graph G is directed and strongly connected

• The matrices A and B are compatible with the graph and, respectively, row-stochastic

and column-stochastic

• Each fi has Lipschitz continuous gradients with a constant L > 0

• The sum
∑m

i=1 fi is strongly convex with a constant µ > 0

Proposition 3 Under these assumptions the AB/Push-Pull Method produces the iterate

sequences {xi(t)} that converge geometrically fast to the optimal solution of the problem

for a sufficiently small stepsize α.
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The analysis makes use of the Perron vectors (probability vectors) for A and B:

π′aA = π′a, Bπb = πb,

and the weighted average of x1(k), . . . , xm(k).

x̄(k) = π′ax(k).

The progress of the algorithm is measured in terms of three quantities:

|x̄(k)− x∗|, ‖x(k)− x̄(k)1‖πa =

(
m∑
i=1

[πa]i(xi(k)− x̄(k))2

)1/2

,

‖g(k)− s(k)πb‖π−1
b

=

(
m∑
i=1

(gi(k)− s(k)[πb]i)2

[πb]i

)1/2

, with s(k) =
m∑
i=1

gi(k)
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Main relation:
|x̄(k + 1)− x∗|2

‖x(k + 1)− x̄(k + 1)1‖2
πa

‖g(k + 1)− s(k + 1)πb‖2
π−1
b

 ≤ D(α)


|x̄(k)− x∗|2

‖x(k)− x̄(k)1‖2
πa

‖g(k)− s(k)πb‖2
π−1
b


D(α) =

 1−O(α) O(α) O(α2)

O(1) 1− σ2(A) O(α2)

O(1) O(1) 1− σ2(B) +O(α)


• σ2(A) is the second largest singular value of a matrix A

Then, all three quantities converge to 0 at a linear rate with coefficient ρD(α) < 1, where

ρD is a spectral radius of a matrix D, provided that the stepsize is small enough.

• Details and some simulations can be found in:

S. Pu, W. Shi, J. Xu, and AN Push-pull gradient methods for distributed optimization

in networks, arXiv preprint at https://arxiv.org/abs/1810.06653. IEEE TAC 2020.

• Closely related recent paper:

R. Xin, A.K. Sahu, U.A. Khan, and S. Kar Distributed stochastic optimization with

gradient tracking over strongly connected networks CDC 2019

• Recent survey paper: R. Xin, S. Pu, AN, U.A. Khan, A General Framework for

Decentralized Optimization With First-Order Methods Proceedings of the IEEE 2020
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Conclusion

• Distributed algorithms have attracted a lot of attention

• Fast distributed gradient methods are developed that can match the best performance

of centralized gradient methods

• New directions

• Solving nonconvex problems: T. Tatarenko & B. Touri 2017, A. Scutari’s group at

Purdue, S. Shahrampour TAMU 2020

• Asynchronous implementations: S. Pu (CUHK-China), A. Scutari’s group

• Impact of network topology: N. Neglia at INRIA, A. Olshevsky at BU

• Impact of delays: M. Johansson at KTH, M.G. Rabbat at Facebook/McGill

• Performance in presence of malicious agents: H.-T. Wai (CUHK-Hong Kong), M.

Alizadeh (UCSB), S. Sundaram (Purdue), N. Vaidya (GM), A. Scaglione (ASU),

W.U. Bajwa (Rutgers), AN

• Privacy in optimization: Y. Wang at Clemson University
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