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Motivation
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Graph representations

Objective: Learn values or labels of nodes from a subset; as e.g., in citation networks

Real networks Networks built on similarities

Challenges: Graphs can be huge, and nodes are scarcely labeled
 Due to privacy, cost of battery, (un) reliable human annotators …

E. D. Kolaczyk, Statistical Analysis of Network Data, Springer, 2009.



Problem statement
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 Graph 
 Weighted adjacency matrix W
 Label              per node   

 Topology given or identifiable
 Given in e.g. WSNs and social nets
 Identifiable via e.g., nodal similarities 

Goal: Given labels in and , infer unlabeled nodes in

G. B. Giannakis, Y. Shen, and G. V. Karanikolas “Topology Identification and Learning over Graphs: 
Accounting  for Nonlinearities and Dynamics,” Proceedings of the IEEE, vol. 106,  pp. 787-807, May 2018.



Work in context
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 Transductive semi-supervised learning (SSL) on graphs
 Graph partitioning [Joachims et al‘03]
 Manifold regularization [Belkin et al‘06]
 Label propagation [Zhu et al’03, Bengio et al‘06]
 Bootstrapped label propagation [Cohen‘17]
 Competitive infection models [Rosenfeld‘17]

 Node embedding followed by vector classification
 Node2vec [Grover et al’16]
 Planetoid [Yang et al‘16]
 Deepwalk [Perozzi et al‘14]

 Graph convolutional networks (GCNs)
 [Atwood et al‘16], [Kipf et al‘16] …

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey 
on graph neural networks,” IEEE Trans. Neural Nets. and Learning Systems, 2020.



 Step-k landing probabilities

 measures influence of given         on node i after k steps              

SSL through random walks on graphs
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 Position Xk-1 of walker at hop k-1 on node j wp
 Graph-guided transition probability

Intuition: An unlabeled node `strongly interconnected’  (thus influenced)  
by labeled nodes of a class, likely belongs to that class 

Model: Influences effected by k-hop paths follow k-step random walks (RW) 



From landing probabilities to classification
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 Random walk per class with

 Weighted average of per-class  
landing probabilities over K steps

 Valid pmf with K-dim probability simplex

 Max-likelihood classifier at node i

 Sparse A speeds up computations  

 Initial (“root”) pmf

Key idea: Model class pmfs using landing pmfs



Special case 1: Personalized page rank (PPR) diffusion [Lin‘10]

Known members of the diffusion family 
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Special case 2: Heat kernel (HK) diffusion [Chung’07]                     

 HK and PPR have fixed parameters         that limit DoFs! 

Our key contribution: Graph- and label-adaptive selection of

 “Heat’’ flowing from roots after time t

 Pmf of (class-informative) RW with restart probability 1-µ
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Adapting the diffusions

 Scalable parametrization via  

 Linear-quadratic

``Differential’’ landing prob. 

 Pmf matching with graph prior 

 Loss on labeled nodes

 Regularizer tunes diffusion 
to unlabeled nodes 

 AdaDIF



AdaDIF in a nutshell
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D. K. Berberidis, A. Nikolakopoulos, and G. B. Giannakis, "Adaptive Diffusions for Scalable Learning over 
Graphs," IEEE Transactions on Signal Processing, vol. 67, no. 5, pp. 1307-1321, March 2019.



 If                  , per-class complexity                   is low thanks to sparsity of A  
 Same as non-adaptive HK and PPR; also parallelizable across classes
 Reflect on PPR and Google … just avoid K >> 

Interpretation and complexity 
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 For               (smoothness-only),             
 Weight concentrates on last landing prob.

 For              (fit-only)
 Weight concentrates on first few landing probs
 Intuition: very short walks visit similarly labeled nodes

 AdaDIF targets a “sweet-spot” between the two
 Simplex constraint promotes sparsity on 



Constrained and unconstrained AdaDIF
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 Dictionary of D << K diffusions

 Unconstrained diffusions (relax simplex constraints            )
 Retain hyperplane constraint to avoid all-zero solution
 Closed-form solution  

 Dictionary may include PPR, HK, and more
 Complexity                            even when  
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On the choice of K

Take home: Too large K can compromise performance due to over-parametrization

Theorem. For AdaDIF classifying two -distinguishable classes, K is bounded as

and

eigenvalues of the normalized graph Laplacian in ascending order.  

 In a practical setup 

D. K. Berberidis, A. Nikolakopoulos, and G. B. Giannakis, "Adaptive Diffusions for Scalable Learning over 
Graphs," IEEE Transactions on Signal Processing, vol. 67, no. 5, pp. 1307-1321, March 2019.



Contributions and comparisons 
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 Different losses and regularizers, including those for outlier resilience
 Multiple class case readily addressed with AdaDIF
 AdaDIF’s simplex constraint reduces the search space
 Principled means of selecting K based on graph parameters

AdaDIF vis-à-vis graph filters [Sandryhaila-Moura‘13, Chen et al‘14]

AdaDIF vis-a-vis GCNs [Atwood et al‘16], [Kipf et al‘16] … [Gama-Marques-Leus-Ribeiro’19] …

 No feature inputs needed: operates naturally on graph-only settings

 Small number of constrained parameters: less prone to overfitting

 Simpler and easily parallelizable training: no back propagation



Real data tests
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 Real graphs
 Citation networks
 Blog networks
 Protein interaction network

 PPR and HK rely on K =30 for convergence
 AdaDIF needs just K=15

 Micro-F1: performance influenced 
more by large-size classes

 Macro-F1: high when good performance 
attained across classes of variable sizes



Multiclass graphs: Single label per node
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 State-of-the-art performance with a few labeled nodes
 Large margin improvement over the Citeseer dataset   



Multiclass and multilabel graphs
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❑ AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog
➢ Significant improvement over non-adaptive PPR and HK for all graphs    

❑ Surprisingly, AdaDIF outperforms state-of-the-art Macro-F1 performance

❑ Number of labels per node assumed known (typical)
➢ Evaluate accuracy of top-ranking classes



Runtime comparison 
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 AdaDIF can afford much lower runtimes
 Even without parallelization!  



Robust AdaDIF via leave-one-out fitting loss
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 Quantifies how well each labeled node is predicted by the rest 

 Predicted pmfs obtained via     random walks at complexity  

 Model outliers as large residuals, identify them by nnz entries of sparse oc

 ID and remove outliers from     before predicting       



Classification performance with anomalies
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 Anomalies injected in Cora graph
 Per entry                  , replace c with                                wp

 With            , and                 accuracy improves after outliers are removed
 Lower accuracy for (no anomalies), since useful samples are removed        



Anomaly detection performance
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 ROC curve: Probability of detection vs probability of false alarms
 As expected, performance improves as         decreases 



From classification to top-R recommendations
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Goal: Given sets of U users, I items, and a U x I user-item interaction matrix B
(e.g., ratings), find per user u, an I x 1 recommendation (pmf) vector  

Idea: Ratings are intimately related with item-item graph connectivity

 Identify item-item adjacency A (its columns in parallel!) 

 Normalize predicted ratings, and recommend i-th item wp

X. Ning and G. Karypis, “SLIM: Sparse linear methods for top-n recommender systems,” 
Proc. of Intl. Conf. on Data Mining, Vancouver, Canada, Dec. 2011, pp. 497–506.



Random walks on item-item graphs
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One idea: Use                               as prior to start an A-based random walk (RW)                       

Motivation: Go beyond neighboring interactions to broaden item-space coverage

Challenge: Besides distinct initial items, users explore item-space differently

Better idea: Personalized (user-specific) item exploration process (PerDIF)

 Random walker u (with K biased coins) either follows A wp
or restarts as         wp ; then tosses 2nd coin, and so on…                

K-step: PPR: 



Learning personalized restart probabilities
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 Among items rated by user u (red and blue), choose one (blue) to assign entry=1  
in target                         , and select also unrated items (yellow) with entries=0              

 Learn personalized probabilities (selection matrix                              )

A.N. Nikolakopoulos, D. Berberidis, G. Karypis, G. B. Giannakis, “Personalized Diffusions for Top-N 
Recommendation,”  Proc. of ACM Intl. Conf. on Recommender Systems, Copenhagen, Denmark, Sept. 2019. 

 Solve instead the convex surrogate  



PerDIF algorithm in a nutshell
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S1. Given interactions B, learn latent item-item adjacency matrix A 

S2. Rely on a modified item-item transition matrix (captures `lazy’ steps)

form sparse  

and solve for

S3. Use backward substitution to obtain      with complexity

S4. Arrive at the per-step and per-user pmf



Comparisons
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 Baselines: PureSVD [Cremonesi et al’09], SLIM [Ning-Karypis’11], 

Mult-DAE- Mult-VAE [Liang et al’18], NAIS [He et al’19]

 Leave-one-out protocol: 1 held-out liked item versus 999 unseen items per user                 



PerDIF runtimes
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 Per-user fit in milliseconds!
 Orders of magnitude faster than most competing baselines
 Online tracking and adaptation to current user’s needs                 

Dataset (UxI) Learning A Time for all users Time per user

Movielens
(6,040x3,706)

1.4s 0.6s 0.1ms

Yahoo 
(7,307x3,312)

1.3s 0.4s 0.1ms

Movies&TV
(10,039x5,400)

2.0s 1.3s 0.1ms

Books 
(43,550x24,811)

40s 55s 1.3ms

Netflix
(480,189x17,770)

87m 5m 0.9ms



27

Current research directions

 Investigate different losses and diverse regularizers

 Further boost accuracy with nonlinear diffusion models

 Effect reduced complexity and memory requirements via approximations 

 Online AdaDIF for dynamic graphs

Thank You!
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