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Motivation
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Graph representations

Objective: Learn values or labels of nodes from a subset; as e.g., in citation networks

Real networks Networks built on similarities

Challenges: Graphs can be huge, and nodes are scarcely labeled
 Due to privacy, cost of battery, (un) reliable human annotators …

E. D. Kolaczyk, Statistical Analysis of Network Data, Springer, 2009.



Problem statement
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 Graph 
 Weighted adjacency matrix W
 Label              per node   

 Topology given or identifiable
 Given in e.g. WSNs and social nets
 Identifiable via e.g., nodal similarities 

Goal: Given labels in and , infer unlabeled nodes in

G. B. Giannakis, Y. Shen, and G. V. Karanikolas “Topology Identification and Learning over Graphs: 
Accounting  for Nonlinearities and Dynamics,” Proceedings of the IEEE, vol. 106,  pp. 787-807, May 2018.



Work in context
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 Transductive semi-supervised learning (SSL) on graphs
 Graph partitioning [Joachims et al‘03]
 Manifold regularization [Belkin et al‘06]
 Label propagation [Zhu et al’03, Bengio et al‘06]
 Bootstrapped label propagation [Cohen‘17]
 Competitive infection models [Rosenfeld‘17]

 Node embedding followed by vector classification
 Node2vec [Grover et al’16]
 Planetoid [Yang et al‘16]
 Deepwalk [Perozzi et al‘14]

 Graph convolutional networks (GCNs)
 [Atwood et al‘16], [Kipf et al‘16] …

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey 
on graph neural networks,” IEEE Trans. Neural Nets. and Learning Systems, 2020.



 Step-k landing probabilities

 measures influence of given         on node i after k steps              

SSL through random walks on graphs
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 Position Xk-1 of walker at hop k-1 on node j wp
 Graph-guided transition probability

Intuition: An unlabeled node `strongly interconnected’  (thus influenced)  
by labeled nodes of a class, likely belongs to that class 

Model: Influences effected by k-hop paths follow k-step random walks (RW) 



From landing probabilities to classification
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 Random walk per class with

 Weighted average of per-class  
landing probabilities over K steps

 Valid pmf with K-dim probability simplex

 Max-likelihood classifier at node i

 Sparse A speeds up computations  

 Initial (“root”) pmf

Key idea: Model class pmfs using landing pmfs



Special case 1: Personalized page rank (PPR) diffusion [Lin‘10]

Known members of the diffusion family 
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Special case 2: Heat kernel (HK) diffusion [Chung’07]                     

 HK and PPR have fixed parameters         that limit DoFs! 

Our key contribution: Graph- and label-adaptive selection of

 “Heat’’ flowing from roots after time t

 Pmf of (class-informative) RW with restart probability 1-µ
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Adapting the diffusions

 Scalable parametrization via  

 Linear-quadratic

``Differential’’ landing prob. 

 Pmf matching with graph prior 

 Loss on labeled nodes

 Regularizer tunes diffusion 
to unlabeled nodes 

 AdaDIF



AdaDIF in a nutshell
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D. K. Berberidis, A. Nikolakopoulos, and G. B. Giannakis, "Adaptive Diffusions for Scalable Learning over 
Graphs," IEEE Transactions on Signal Processing, vol. 67, no. 5, pp. 1307-1321, March 2019.



 If                  , per-class complexity                   is low thanks to sparsity of A  
 Same as non-adaptive HK and PPR; also parallelizable across classes
 Reflect on PPR and Google … just avoid K >> 

Interpretation and complexity 
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 For               (smoothness-only),             
 Weight concentrates on last landing prob.

 For              (fit-only)
 Weight concentrates on first few landing probs
 Intuition: very short walks visit similarly labeled nodes

 AdaDIF targets a “sweet-spot” between the two
 Simplex constraint promotes sparsity on 



Constrained and unconstrained AdaDIF
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 Dictionary of D << K diffusions

 Unconstrained diffusions (relax simplex constraints            )
 Retain hyperplane constraint to avoid all-zero solution
 Closed-form solution  

 Dictionary may include PPR, HK, and more
 Complexity                            even when  
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On the choice of K

Take home: Too large K can compromise performance due to over-parametrization

Theorem. For AdaDIF classifying two -distinguishable classes, K is bounded as

and

eigenvalues of the normalized graph Laplacian in ascending order.  

 In a practical setup 

D. K. Berberidis, A. Nikolakopoulos, and G. B. Giannakis, "Adaptive Diffusions for Scalable Learning over 
Graphs," IEEE Transactions on Signal Processing, vol. 67, no. 5, pp. 1307-1321, March 2019.



Contributions and comparisons 
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 Different losses and regularizers, including those for outlier resilience
 Multiple class case readily addressed with AdaDIF
 AdaDIF’s simplex constraint reduces the search space
 Principled means of selecting K based on graph parameters

AdaDIF vis-à-vis graph filters [Sandryhaila-Moura‘13, Chen et al‘14]

AdaDIF vis-a-vis GCNs [Atwood et al‘16], [Kipf et al‘16] … [Gama-Marques-Leus-Ribeiro’19] …

 No feature inputs needed: operates naturally on graph-only settings

 Small number of constrained parameters: less prone to overfitting

 Simpler and easily parallelizable training: no back propagation



Real data tests
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 Real graphs
 Citation networks
 Blog networks
 Protein interaction network

 PPR and HK rely on K =30 for convergence
 AdaDIF needs just K=15

 Micro-F1: performance influenced 
more by large-size classes

 Macro-F1: high when good performance 
attained across classes of variable sizes



Multiclass graphs: Single label per node
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 State-of-the-art performance with a few labeled nodes
 Large margin improvement over the Citeseer dataset   



Multiclass and multilabel graphs
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❑ AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog
➢ Significant improvement over non-adaptive PPR and HK for all graphs    

❑ Surprisingly, AdaDIF outperforms state-of-the-art Macro-F1 performance

❑ Number of labels per node assumed known (typical)
➢ Evaluate accuracy of top-ranking classes



Runtime comparison 
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 AdaDIF can afford much lower runtimes
 Even without parallelization!  



Robust AdaDIF via leave-one-out fitting loss
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 Quantifies how well each labeled node is predicted by the rest 

 Predicted pmfs obtained via     random walks at complexity  

 Model outliers as large residuals, identify them by nnz entries of sparse oc

 ID and remove outliers from     before predicting       



Classification performance with anomalies
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 Anomalies injected in Cora graph
 Per entry                  , replace c with                                wp

 With            , and                 accuracy improves after outliers are removed
 Lower accuracy for (no anomalies), since useful samples are removed        



Anomaly detection performance
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 ROC curve: Probability of detection vs probability of false alarms
 As expected, performance improves as         decreases 



From classification to top-R recommendations
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Goal: Given sets of U users, I items, and a U x I user-item interaction matrix B
(e.g., ratings), find per user u, an I x 1 recommendation (pmf) vector  

Idea: Ratings are intimately related with item-item graph connectivity

 Identify item-item adjacency A (its columns in parallel!) 

 Normalize predicted ratings, and recommend i-th item wp

X. Ning and G. Karypis, “SLIM: Sparse linear methods for top-n recommender systems,” 
Proc. of Intl. Conf. on Data Mining, Vancouver, Canada, Dec. 2011, pp. 497–506.



Random walks on item-item graphs
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One idea: Use                               as prior to start an A-based random walk (RW)                       

Motivation: Go beyond neighboring interactions to broaden item-space coverage

Challenge: Besides distinct initial items, users explore item-space differently

Better idea: Personalized (user-specific) item exploration process (PerDIF)

 Random walker u (with K biased coins) either follows A wp
or restarts as         wp ; then tosses 2nd coin, and so on…                

K-step: PPR: 



Learning personalized restart probabilities
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 Among items rated by user u (red and blue), choose one (blue) to assign entry=1  
in target                         , and select also unrated items (yellow) with entries=0              

 Learn personalized probabilities (selection matrix                              )

A.N. Nikolakopoulos, D. Berberidis, G. Karypis, G. B. Giannakis, “Personalized Diffusions for Top-N 
Recommendation,”  Proc. of ACM Intl. Conf. on Recommender Systems, Copenhagen, Denmark, Sept. 2019. 

 Solve instead the convex surrogate  



PerDIF algorithm in a nutshell
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S1. Given interactions B, learn latent item-item adjacency matrix A 

S2. Rely on a modified item-item transition matrix (captures `lazy’ steps)

form sparse  

and solve for

S3. Use backward substitution to obtain      with complexity

S4. Arrive at the per-step and per-user pmf



Comparisons
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 Baselines: PureSVD [Cremonesi et al’09], SLIM [Ning-Karypis’11], 

Mult-DAE- Mult-VAE [Liang et al’18], NAIS [He et al’19]

 Leave-one-out protocol: 1 held-out liked item versus 999 unseen items per user                 



PerDIF runtimes
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 Per-user fit in milliseconds!
 Orders of magnitude faster than most competing baselines
 Online tracking and adaptation to current user’s needs                 

Dataset (UxI) Learning A Time for all users Time per user

Movielens
(6,040x3,706)

1.4s 0.6s 0.1ms

Yahoo 
(7,307x3,312)

1.3s 0.4s 0.1ms

Movies&TV
(10,039x5,400)

2.0s 1.3s 0.1ms

Books 
(43,550x24,811)

40s 55s 1.3ms

Netflix
(480,189x17,770)

87m 5m 0.9ms
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Current research directions

 Investigate different losses and diverse regularizers

 Further boost accuracy with nonlinear diffusion models

 Effect reduced complexity and memory requirements via approximations 

 Online AdaDIF for dynamic graphs

Thank You!
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