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Immunoassays 101
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http://bit.ly/Fluoro_Plate




Cyanine 3 (Cy3) FITC+Cy3

Fluorescein Isothiocyanate (FITC)

iplex Assay

FluoroSpot Mult



IFNgamma Spot
Coordinates: (1679,1278)
Spot Intensity: 165

RSV&D0: 11679

IFNgamma Spot
Coordinates: (1851, 1363)
Spot Intensity: 507
Spot Diamater: 460

RSV490: 551008

Data Analysis and Labelling
(IFN~, or type Il interferon, is a cytokine that is critical for innate and adaptive immunity against viral,

some bacterial and protozoal infections - Wikipedia)



Why is the Problem Challenging?
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Challenges for spot detection in immunoassays

» Spots vary in size, shape, and intensity
» Image noise adversely affects performance

» Strong spots may partially occlude or mask weak spots

The proposed solution

> A model based source point localization algorithm
> Relying on a physically motivated observation model
» An inverse problem formulation for source localization
» Large scale numerical optimization



Spot Formation
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Multiple particles
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Spot characteristics

The shape of any particular spot depends on

» when and how many particles are released during incubation

v

the diffusivity of the liquid medium

v

the capture affinity of the antibodies

v

the disassociation probability of the antibodies

v

... and fluorescence strength, optics, camera exposure, etc.



Observation Modeling



A Physical Model for Biomedical Assays

Relevant quantities for the assay are

» the density of bound particles d(x,y, t) > 0, where the image will be
(proportional to) dops(x,y) = d(x,y, T), which evolves coupled to

» the 3D density of free particles ¢(x,y,z,t) > 0on z >0, and to

» the source density rate of new particles s(x, y, t) > 0, that is spatially sparse and
reveals the cell locations and characterization.
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This physical model was presented before, also for ELISPOT and Fluorospot.



An Observation Model for Biomedical Assays

We consider the image observation dyps € D4, with D a weighted L2 (Rz) space and
prove that

dobs(xa.y) = / (go()_(,y) * a()_(a.)_/a U)) (XaY) do = / Gya, do,
0 0

with a € A4 and A of bounded support 1 on L? (R? x R.) space, where g,(x, y) is a
two dimensional Gaussian kernel of width o > 0, where omax = V2DT, and where

g v 0'2
a(x,y,a) = 5[72 S(X7y7 T‘U)‘P(ﬁ:’?) dT/,

2D

where (7, t) expresses the probability density for time in free motion.



Theorem

The distribution of time in free motion (7, t), is given by

o(7,t) = ijo,) T)qu )Pl —Lika(t—1)] ,

j=1

where ¢/*(7) is the j-th convolutional power of

o) = 2~ Bertex (1) 7).
where

2 [e.9]
erfcx(x) = ex2erfc(x), erfe(x) = ﬁ/x et

and where p[j; A] is the Possion distribution with intensity A.



An Observation Model for Biomedical Assays

The modeling result: The image dops € Dy is

T max o T 0.2
dOS: Go' o’d ’ ith » Yy = = ) 7T_ Ya R dn.
= [ Grandawith sy ) = 5 [ sl T~ e 35m)

2D

How?

>

>

>

Independence of Brownian motion in x, y and z.
Adsorption (k,) and desorption (kq) only regulated by z-movement.

x- and y-movements only depend on 7, total time in Brownian motion. In
particular, according to Green function for 2D diffusion, g 55-(x,y).

(7, t) summarizes the effect of adsorption and desorption onto the time in free
motion 7 for each time of final adsorption t.

Change variables to those significative to x- and y-movement, o = v2Dr.



Crucial Observations

» The mapping s — a given by

o [T o?
a(x,y,a) = B /02 S(Xaya T— U)‘P(ﬁm) d"?
2D
does not act on spatial coordinates r = (x, y).
» The non-negativity of s > 0 is retained by a > 0.

» While the mapping from s — a depends on D, k,, and kg, the mapping from a to
dyps does not.

Proposed Methodology

Recover the post adsorption-desorption source density rate (PSDR) a in place of the
source density rate (SDR) s, obviating the need to explicitly obtain D, k,, and kq.



An Observation Model for Biomedical Assays

The modeling result: The image dy,s € Dy is
dobs = / Gya,do = Aa.
0

Consequences

Real observation (section) Simulated observation (section)

» Ability to generate synthetic data
» A workable observation model for inverse problem



sensor’s grid

Spatial grid given by camera sensor
o-grid with different levels of detail

Inner approximation paradigm
(step-constant functions)

Choice of normalization in restriction
and extension operators to ensure
norm equivalence

The typical size of the variable a to
recover will be 9 x 20482 ~ 40 x 10°

Different kernel approximations are
considered



Continuous observation mode

dobs = / Gya,do = Aa
0

> dops € D C L? (R?)

»ac AL el?2(RY), a,€L?(R?
Discrete observation mode
K
dobS%ngéBak = Aa
k=1

> obs € D C RMXN
> a¢ .A.|_ C RMXNXK’ a, € RMxN



Algorithmic Solutions



Naive Inverse Problem Formulation (Discrete Case)

* = argmin || Aa — dobs|3
a arggggll a — dobsl|>

A Problem with Observability

a*(d) : RMXN N RMXNXK

The solution is regularization (group sparsity)!



Non-negative Group Sparsity Regularized Inverse Problem

We have dops € D+ and want to recover a € A;. We propose the (non-smooth,
constrained) convex problem

. 2
TZIQ {IIAa — @l | 5 F )\;Ham,nﬂz}

dm,n £ {a(ma n, k)}k € R¥



Functional Non-negative Group Sparsity Regularized Inverse Problem

We have do,s € D+ and want to recover a € A;. We propose the (non-smooth,

constrained) convex problem
( )

1
Omax 2
min ]|Aa—dobsH%+6A+(a)+/\/ (/ az(x,y,a)do*) dxdy
R2 \Jo
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Non-negative Group Sparsity Regularized Inverse Problem

. 2
ng |Aa — dopsll5 + )\ZHam,nHQ

m,n

» Still an optimization problem over 40 x 10° variables. . .
» Active research on first order (matrix free) methods

> operator view instead of matrix vector multiplication
» decoupled and closed form proximal operators

» We have considered

> accelerated proximal gradient methods, and
» multiplicative update rules



Proximal Gradient Methods



Nesterov Accelerated Proximal Gradient Algorithm (Fluorospot)

Require: Initial a® e A, image observation dyps € D4

1: b©) a0 i 0
2: for i=1$<oldo

3: d(l) — ng ® b;((i_l), r(i) = d(l) — dobs
k=1
& ) [V nmer] L k=1..K

-1
5: p<—(1—§)\[ ZkKﬂ(aE('))] ) : ai”(—p@af('), k=1,...

J’_
6: bl « all) 4 q; (al) — ai=1)
7: end for
8: Aopt < a(i)



Proximal Gradient Algorithm (Simplified)

Require: Initial a® ¢ A, image observation dyps € D4

1:

2:

&

55

2 @

for i=1to/ do
K

dD S ge@al™, 1) =d0) — dy,
k=1
i i—1 i
o) ol —ng ol )L ,
1
A 2

p (1%[ Y (af()) ] )
end for
dopt < a(i)

+

k=1,...



Model prediction d = Aa

1: b a0 0

2: for i=1to/ do
K

d(’) — ng ® ag(iil): ) = d() — dobs
k=1

i) | ngr| L k=1..K
-1

p<—(lg)\[ Zszl(aE(')>] , af(')<—p®a§('), k=1,...

. end for
7 Aopt a)



Residual calculation r = Aa — di,

1 b 50 ;0

2: for i=1to/ do
K

dD =S ge@al ™, 10 =d0) —dy,

k=1
a(k")<—[aﬁ("‘”—77gk®r(")]+ . k=1,...,K
-1
p<—(lg)\[ Zszl(aE(')>] , af(')<—p®a§('), k=1,...
+

. end for
7 Aopt alh)



Gradient calculation Vf = A*r = A*(Aa — d,ps)

1: b a0 0

2: for izltKoIdo
d(l) — ng ® ay—l)' ) = d() — dobs
k=1
af(i) — [ag_l) — N8k ® r(i)] . k=1...,K
* -1

p<—(lg)\[ Zszl(aE(')>] , af(')<—p®a§('), k=1,...

. end for
7 Aopt a)



Projected gradient step a < [a — n V],

1 b 50 ;0

2: for i=1to/ do
K

d(l) — ng ® ay—l)' ) = d() — dobs
k=1

aif)e[asj_l)—ngk@r(i)}+ ., k=1,...K

P%(IZA[ ZL(#)] ) . ) —poa

. end for
7 Aopt a)



Shrinkage factor due to Al|am »||2

1: b a0 0

2: for i=1to/ do
K

dD N gewal M, ) =d0) - gy,
k=1
) [V nge@r] L k=1...K
+

-1
. 2 . .
p%(lé“l Zf_l(ai’)>] C ) epod) k=1,

+
- end for

7 Aopt a(i)



Variable update of a

1: b a0 0

2: for izltKoIdo
d) ng ® ag_l), r() = d() — d
k=1
(i) (i-1) (N _
— ® , k=1,....K
ak [ak 1 8k r ]+ 1

p<—(lg)\[ Zszl(aE(')>] , ai)epGai), k=1,...

. end for
7 Aopt a)



Complexity bottlenecks (2K convolutions)

1: b a0 0

2: for izltKoIdo
d) ng ® agjfl), r() = d() — d
k=1
(i) (i-1) (i _
— ® , k=1,....K
a [ak N8k ®r ]+ 1

. 2 . .
v [ ERE] ) e e

. end for
7 Aopt a)



Convexity guarantees convergence of the algorithm. ..



Results and Performance



Evaluation framework and metrics

» Pseudo-likelhood for source localization given by p = \/Zle &

» candidate cell locations obtained by local maxima of p
» candidates pruned based on an optimized pseudo-likelihood threshold

> Detection considered correct within 3 pixels
» Evaluation metrics

_ _ TP _ TP __ 2prerec
pre = gpipp. reC = gpipx: and Fl= prefrec



Example Results for Real Data (F1-Score of 0.9)

Detection results (yellow circles) and human expert labeling (orange squares).




Example Results for Synthetic Data (N, = 1250)

Detection results (yellow circles) and true positions (orange squares).




Results on Synthetic Data (F1 vs. Regularization \)
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Results on Synthetic Data (F1 vs. Noise Level)
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Results on Synthetic Data (F1 vs. Spot Density)

F1-Scores (X : 0.50, Noise Level: 3, A4 : 0.00)
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Epilogue



OUR APPROACH TO COVID-19
RESEARCH

* Synthesize all the
individual bits and
pieces that make up the
virus

* Test which pieces the
immune system
recognizes

Lajolla
Institute

FOR IMsaumowoay | LIS

La Jolla Institute for Immunology - Coronavirus Update, May 14, 2020 (YouTube)




COVID-19 individual Pre COVID-19
] c2 control

unstimulated

SARS -CoV-2
82 N defined
peptide pool

Positive control
(PHA)

¢

Peptide pool based on — Ahmed, Syed Faraz, Ahmed A. Quadeer, and Matthew R. McKay.

" Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2)
based on SARS-CoV immunological studies.” Viruses (2020)



Summary



> We have solved an image processing problem in immunology
» ELISPOT and FluoroSpot
> How:

» formulation of an over parameterized linear observation model
> spatial group sparsity regularization
» GPU accelerated first order (matrix free) optimization methods

» What:

» state of the art analysis of said assays

v

v

v

capable of breaking clusters of spots
unparalleled positioning of spot centers
individual relative spot volume estimates (RSV) — even in clusters
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