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Modeling high-dimensional distributions UNIVERSITY

IRGINIA

* Unsupervised learning
= We need unsupervised models to deal with uncertainty
= Discover hidden structure in the data
= Probability Density Function Estimation (PDF) is a fundamental
problem in unsupervised ML

v' Goal: Given training samples, learn the data generating |
distribution Training Data

\

7S
g

PDF Estimation

Training Data " -

4
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Modeling high-dimensional distributions VERSITY

 PDF Estimation is a fundamental problem in unsupervised ML

= Given adataset D = {x,,...,z)}, Where z; € RY
We assume the data has been drawn iid from an unknown data generating

distribution: x; ~ fx (x;)

A

fx()|? -'
|

L1,ro,...,THr

= Goal: Estimate fx (")
Why? If we can learn high-dimensional joint PDFs, we can address ML problems

using principled methods
» Estimating any marginal or conditional distribution, expectation

» Computing the most likely value of a subset of features conditioned on

others
» Deriving optimal estimators, classifiers

5
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Modeling high-dimensional distributions UNIVERSITY

« PDF Estimation is a fundamental problem in unsupervised ML
= Given adataset D = {x,,...,z)}, Where z; € RY
= We assume the data has been drawn iid from an unknown data generating
distribution: €r; ~~ fX (CIZ,L)

» Goal: Estimate fx(-)

= Challenges
1. Curse of Dimensionality:

» Modern datasets are high-dimensional and complex, we often operate in

the sample-starved regime

Incomplete realizations

Model identifiability?

Expressivity - tractability trade-off

Sample complexity

ok wN

6
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Probabilistic modeling: Applications UNIVERSITY

IRGINIA

* Multidimensional probabilistic models have many
applications in ML
* Problem: Detect new or rare events!
» e.g. Fraud detection: Legitimate financial transactions

) I vs fraudulent transactions

o S = Strategy: Leverage statistical models, detect outliers in
(®) (®) . " .

s s the distribution

A ._g » e.g. self driving cars: Use outliers to train more robu
e E models

Language Models

Pedestrians Harsh Weather Edge Cases

7
Real-world applications (1/4)
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Probabilistic modeling: Applications UERSITY

IRGINIA

* Multidimensional probabilistic models have many
applications in ML
» Generate high-fidelity images
» Create realistic and pleasmg artwork -- zach Monge CycleGAN, Zhu et al.

‘ j""’u

. %

Language Models
Outlier Detection

Audio Models

» Which face is art|f|C|aIIy generated’? -- Philip Wang, Flickr-Faces-HQ
dataset

Real-world applications (2/4)
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Probabilistic modeling: Applications UNIVERSITY

IRGINIA

« Multidimensional probabilistic models have many
applications in ML
» Text synthesis
» Generate new Wikipedia-like articles, Smart Reply,
Autocomplete

Smart Reply paper  SNORE BRVARE!

when 1s a good time to buy a

when is a good time to buy a house m Magda Amiridi to me 2 Apri17
when 15 a good tlme to buy a hom? Do you think the abstract looks okay?

when is a good time to buy a lyrics

when is a good time to buy a car

why am 1 afraid of

why am 1 afraid of the dark

why am i afraid of the dead O Reply -
why am 1 afraid of the dog

“
®
T
o
=
=
S
=
<

Image Models

‘ | think it's fine. ‘ ‘ Looks good to me. It needs some work.

Outlier Detection = Translation

> Model p(y|7)to generate an English sentence ¥
conditioned on the corresponding Chinese sentenc

Real-world applications (3/4)
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Probabilistic modeling: Applications UNIVERSITY

IRGINIA

 Multidimensional probabilistic models have many
applications in ML

= Upsampling, Speech synthesis

= Speech recognition
» Given a joint model of speech signals and Iang‘

ey,

(text), we can infer spoken words from audio si

Outlier Detecti
Language Models

Image Models

Real-world applications (4/4)




Starting point

« Categorical case: joint PMF f (¢, 5, k,¢,...)

Every joint PMF of a finite-alphabet random vector can be represented by a naiv
model with a finite number of latent states (rank)

If the rank is low, the high dimensional joint PMF is almost surely identifia
dimensional marginals under low-rank conditions

- Extension to continuous random vectors — joint PDF f(z, v, z,v

,...)no longer a tensor!

Starting Point

ib

IVERSITY
IRGINIA
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Startlng point UNIVERSITY

IRGINIA

« Categorical case: joint PMF f (¢, 5, k,¢,...)

Every joint PMF of a finite-alphabet random vector can be represented by a naive Bayes
model with a finite number of latent states (rank).

= |f the rank is low, the high dimensional joint PMF is almost surely identifiable from t‘
dimensional marginals under low-rank conditions

- Extension to continuous random vectors — joint PDF f(z,y, 2, v, ...) no longer a tensor!

» One possibility: discretization
» Coarse vs fine —» discretization error vs statistical accuracy
» How do we choose a discretization scheme?
> Loss of identifiability

= |s it possible to avoid discretization?
= How can one represent a Probability Density Function through a tensor?

Starting Point
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Sneak preview UNIVERSITY

IRGINIA

 Tensors as universal PDF approximators
We will see that:

« Afinite mixture model (approximately) follows from
1. compactness of support
2. continuous differentiability

« Assuming low-rank in the Fourier domain, a controllable approximation of
the multivariate density is identifiable

« High dimensional joint PDF recovery by observing subsets (triples) of
variables is possible!

Sneak Preview
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What are tensors? - Canonical Polyadic Decomposition UnvERSS

. An N-way tensor ® € Cl1*/2>xIN ig 5 multidimensional array whose eleme
are indexed by N indices

P c RIXJXK

« Any tensor can be decomposed as a sum of F rank-1 tensors .

A3(Z,1) A3(:72) A3(7F)
— - i

2(:,2
— A e | X2) —+ - A

- IAl(:,l) IAl(:,Q) IAl(:7F)

Background (1/3)




What are tensors? - Canonical Polyadic Decomposition R}}%}%ﬂg

« An N-way tensor ® € Cl{1x{2XXIN js 3 multidimensional array whose eleme
are indexed by N indices

Ag(i,l) A3(:,2) A3(:,F)

As(s,1) As(:,2) _|_ o —|— ACF) Agi:,F

— ) e A2)
IAl(S,F)

IAl(I,l) IA1(2,2)

F
Z floAs(:,f)o---0 An(:, f)

e

= Any tensor can be decomposed as a sum of F rank-1 tensors

> Weuse & = [\, Aq,..., Ay]to denote the decomposition
> Element-wise view: ®(iq,io,...,in) = Z?:l A(f) Hfj:l A, (in, f‘

= Fis the smallest number for which such decomposition exists

Background (1/3)
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Essential Uniqueness

For a tensor @ of rank F, we say that a decomposition ® = [A1,...,An] is
essentially unique if the factors are unique up to a common permutation anc
scaling/counter-scaling of columns.

* This means that if there exists another decomposition [[;&17 . ,KN]], then, there exists a permutation
matrix and diagonal scaling matrices such that

N
A, = A, IIA, and H A, =1

n=1

*  There is no scaling ambiguity for the column-normalized representation ® = [A, A1, ..., AN]

Background (2/3)
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Essential Uniqueness

For a tensor @ of rank F, we say that a decomposition 2 = [A1, ..., Ay]

essentially unique if the factors are unique up to a common permutation
scaling/counter-scaling of columns

Theorem (Chiantini and Ottaviani, 2012)

If min(/1, I2) > 3 and F' < I3 then, the rank of @ is F and the decomposi
unique, almost surely, if and only if F' < (I; —1)(I3 — 1)

* In other words: the parameters of the CPD model are identifiable under certain rank conditions

Background (2/3)
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Density Estimation: Classical methods UNIVERSITY

IRGINIA

Two main genres:

« Parametric models: make strong assumptions about the structure of the data, fragile to model
mismatch

= GMMS (Pearson 1894, McLachian, Basford 1988)
» Computational and estimation challenges in the high dimensional case ‘

Background (3/3)




Density Estimation: Classical methods

Two main genres:

Parametric models: make strong assumptions about the structure of the data, fragile to model
mismatch

GMMS (Pearson 1894, McLachlan, Basford 1988)

» Computational and estimation challenges in the high dimensional case

Non-parametric models: make only mild, “universal” prior assumptions about the data, such as
smoothness

» KDE (rosenbiatt 1956, Parzen 1962): €Stimates the PDF by means of a sum of kernel functions centered
at the given observations
» Computationally intractable for large M,N

OSDE (Girolami 2002; Efromovich 2010): approximates a PDF using a truncated sum of orthonormal basis
functions
» Curse of Dimensionality

Background (3/3)
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Density Estimation: Modern methods UNIVERSITY

IRGINIA

Several flavors (for Neural DE models):

- Explicit density estimation: explicitly define and solve for fx (x)
1. Auto-regressive neural models for DE
e.g. RNADE (uria, Murray, Larochelle 2013) -- Generally suffer from slow sampling time
2. Flow-based neural models for DE
e.g. NICE (Dinh, Krueger, Bengio 2014), Real-NVP (Dinh, Sohl-Dickstein, Bengio 2016) — Constrained
architectures possibly not sufficiently expressive to capture all distributions y

* Point-wise density evaluation
« Cannot impute more than very few missing elements in the input
* No identifiability guarantees

Background (3/3)
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Density Estimation: Modern methods

Several flavors (for Neural DE models):

Explicit density estimation: explicitly define and solve for fx ()

1. Auto-regressive neural models for DE
e.g. RNADE (uria, Murray, Larochelle 2013) -- Generally suffer from slow sampling time

2. Flow-based neural models for DE
e.g. NICE (Dinh, Krueger, Bengio 2014), Real-NVP (Dinh, Sohl-Dickstein, Bengio 2016) — Constrained
architectures possibly not sufficiently expressive to capture all distributions

Point-wise density evaluation
Cannot impute more than very few missing elements in the input

* No identifiability guarantees
* Implicit density estimation
= Approximate density

€.g9. VAES (Kingma and Welling 2014)
Frameworks that learn a model that can sample from fx () w/o explicitly defining it

€.9. GANS (Goodfellow et al. 2014)
Mainly used for only one very specific task: generating samples similar to training data

 Hard to train

Background (3/3)
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A Characteristic Function approach for DE UNIVERSITY

Goal: Obtain a PDF estimate that is

« Expressive: flexible enough to represent a wide class of distributions
» Tractable and scalable (computationally and memory-wise)

* Principled
* Accurate ‘

Key idea (1/3)
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A Characteristic Function approach for DE UNIVERSITY

Goal: Obtain a PDF estimate that is

« Expressive: flexible enough to represent a wide class of distributions
» Tractable and scalable (computationally and memory-wise)

* Principled
« Accurate P

« Given a real-valued random variable X

Oy (v) = ] fx(z)e?V®dx = E[e?"X]

Fourier transform pair: i

::%

/ dx(v)e IV dy

« Expectation interpretation —» estimation via sample averages

Key idea (1/3)



A Characteristic Function approach - 1D case U e

IRGINIA

Every PDF supported in [0, 1]can be uniquely represented over its support by an infinite

Fourier series, -
fx(@) = 3 OxlHe ™, ax(k] = x()],py hEZ ‘

k=—o0

Key idea (1/3)
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A Characteristic Function approach - 1D case UNIVERSITY

IRGINIA

Every PDF supported in [0, 1]can be uniquely represented over its support by an infinite
Fourier series,

fx(@)= > @x[kle ™ Ox[k] =®xv)|,_,,» kEZ

k=—00 ‘

e If fx € CP, then|®x[k]| = O(W) —> truncated series approximation

~ AN . AN M o
fx(@) =5 _ Bx[kle 2™z Bx[k] = L S ei?mhem S pEZ

m=1 ‘

Key idea (1/3)
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IRGINIA

- Every PDF supported in [0, 1] can be uniquely represented over its support by an infinite
Fourier series,

= ) Ox[kle ™, Ox[k] =0x(V)| _,,» kEZ

k=—oc0

e If fx € CP, then|®x[k]| = O(1+|k|p) — truncated series approximation

~ . AN M o
fx(@) = Tro_ g ®x[kle 92, Dx[k] = TS NCIEaE .

m=1

+ By Parseval's Theorem — ||f — I3 = 3 1= x| ®x [K]|”
= Erroris controllable by the smoothing parameter K

Magnitude of Fourier transform Reconstruction of PDF

-

—— PDF
= == == Recovered PDF

1 & p

-50 -25.1327 0 251327 50 0 02 04 06 08 1

Key idea (1/3)




A Characteristic Function approach — The multivariate case

Given a random vector X := [X1,..., Xx~]", the joint or multivariate characteristic

function of X is a function ®x : RY — C defined as
bx(v)=F [ej”TX} , V= [Vl,...,I/N]T

: : . M : :
« For any given v, given a set of realizations {Xm}m:1, we can estimate ® x, using a

sample average | M
~ . T
(I)X(I/) = Mﬂ;eﬂ/ Xm,

The corresponding PDF can be uniquely recovered via the multidimensional inverse

Fourier transform i . i
fx(x) = L /RN x(v)e V.

Key idea (2/3)
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A Characteristic Function approach — The multivariate case  Uuyversty

IRGINIA

Every PDF supported in Sx = [0,1]" can be represented by a multivariate Fourier series,

fX(w): Z Z (I)X[k]e—j%rka,

ki=—o0 kn=—00

where ®x[k] = Ox (V)| _, . k= [k1,..., kn]t ‘

Key idea (2/3)



A Characteristic Function approach — The multivariate case

Every PDF supported in Sx = [0,1]" can be represented by a multivariate Fourier series

Z Z [k —j2nk?T x

ki=—o0 kn=—00
where Ox k] = ®x (V)| _, k= [ki,... . kn]"
« If fx € CP, then |®x[Kk]| = O(W) — truncated Fourier series approximation

—327rka

Z Y axM

Ky kn=—Kn

Known approximation error results by Mason 1980, Handscomb 2014 of the
truncated series with absolute cutoffs {K,}._,

Key idea (2/3)



A Characteristic Function approach — The multivariate case

Every PDF supported in Sx = [0,1]" can be represented by a multivariate Fourier series

[ ]
—j2nkTx

Z Z ® x [k]e :

ki=—o0 kn=—00
where @x[k] = x (V)| _, k= [k1,...,ky]"

« If fx € CP, then |®x[Kk]| = (’)<1+|k||p) — truncated Fourier series approximation
Z Z (I)X —]27rka
Ky kn=—Kn

Known approximation error results by Mason 1980, Handscomb 2014 of the
truncated series with absolute cutoffs {K,}._,

The smoother the underlying PDF, the faster its Fourier coefficients and the
approximation error tends to zero

Key idea (2/3)
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A low-rank Characteristic Function approach UNIVERSITY

IRGINIA

« The truncated Fourier coefficients can be naturally represented by an N-way
e ®(k1,... ky) = dx[K]

« The number of parameters (2K; +1) x --- x (2K + 1), grows exponentially with N ‘

Key idea (3/3)




A low-rank Characteristic Function approach

The truncated Fourier coefficients can be naturally represented by an N-way
L kn) = Px K]

tensor ® (k..
The number of parameters (2K; + 1) x --- x (2Ky + 1), grows exponentially with N

Focus on the principal components of the resulting tensor -- i.e., introducing a rank-F

parametrization of ®
N K K/ N -
fx(x) = Z Z ZpH(h) H O x,, |r=h[kn]e 72 FnEn
n=1

ki=—K kn=—K h=1

Reduction of parameters from order of K; x --- x Ky to order of (K; +--- + Kn)F
Further denoise the naive sample average estimates

Key idea (3/3)




A low-rank Characteristic Function approach

il
UNIVERSITY
IRGINIA
« The truncated Fourier coefficients can be naturally represented by an N-way
tensor

®(k1,....kn) = Px[K]
The number of parameters (2K; + 1) x

(2Kn + 1), grows exponentially with N

Focus on the principal components of the resulting tensor -- i.e., introducing a rank-F
parametrization of ®

K K F N
— Z Z ZPH H(I)anH h[k e —j27knTn

ki=—K kn=—K h=1

Reduction of parameters from order of K; x --- x Ky to order of (K; +--- + Kn)F
Further denoise the naive sample average estimates

Considering for brevity K = K; = --- = K, by linearity and separability of the
multidimensional Fourier transformation

N

K
Zm I Z x| r=pkn] €92 R0

Key idea (3/3)
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A low-rank Characteristic Function approach — Interpretation Uuyersny

IRGINIA

Mixture of product distributions - Latent variable naive Bayes interpretation

Truncating the multidimensional Fourier series of any compactly supported randc
equivalent to approximating the corresponding multivariate density by a finite
separable densities

F N K
fx(x)=> pa) [ D ®x.im=nlkn] e 7 nen
h=1 n=1k,=—K
N

F
= pu(h) | Fx.jm(@nlh).

* Yields generative model of the sought density, from which it is very easy to sa
« Easy marginalization.

« Easy to compute conditional densities.
« Easy to impute.

Key idea (3/3)




A low-rank Characteristic Function approach

 The number of coefficients K controls the desired smoothness of the probabi
* The rank F controls the expressivity of the probability model

« Generating synthetic samples from our model
« Forfixed K, K=11, given M=2000 samples from toy Circles and Moons 2D data

Key idea (3/3)




A low-rank Characteristic Function approach

The number of coefficients K controls the desired smoothness of the probabilit
The rank F controls the expressivity of the probability model

Weight
Weight
Weight
Weight

Weight

Weight

Height

Height

k=4 k=6 -

Weight

Weight

Weight

Weight

Height

Height

Generating synthetic samples from our model, given samples from Weight-Heigh

Key idea (3/3)




A Characteristic Function approach — Uniqueness UNIVERSITY
« Conversely, assuming that the sought joint PDF is a finite mixture of separ-
Dx(v)=FE [ X

Uniqueness of the Characteristic Tensor CPD

A compactly supported multivariate mixture of separable densities is identifiab
(samples of) its characteristic function, under mild conditions

Key idea (3/3)
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M
1. Estimate @[k % 3 B2k
m=1

F N
2. Fitalow-rank model @k|~ Y pu(h) ][ ®x, u=n

3. Invert using fx(x ZpH W) [T fxaia@alh),  fxnm(@alh) = Z x| m=nlk

6 —j27kn Ty
n=1

n:_K
[}

Issues:

1.  Fix scaling/counter-scaling freedom in Pz (-) = constraints

min [|® — A, Aq,..., AxN]|%
subject to A >0,1TX =1,

A (K+1,:)=1T, n=1...N

2. Allocating memory for the truncated characteristic tensor is a challenge!

Approach (1/2)




Proposed approach

» Allocating memory for the truncated characteristic tensor is a challenge!

Model the characteristic tensors of subsets of variables (triples) ®;;,

= Key observation: lower-order marginals =—» also a constrained complex CPD model
F N

Jointly decompose in a coupled fashion, synthesize the full characteristic tensor

»  Significant computational and memory reduction
»  Allows us to work with incomplete realizations

Approach (2/2)




Proposed approach

» Allocating memory for the truncated characteristic tensor is a challenge!

Model the characteristic tensors of subsets of variables (triples) ;.
Key observation: lower-order marginals =—» also a constrained complex CPD model

Jointly decompose in a coupled fashion, synthesize the full characteristic tensor

»  Significant computational and memory reduction
»  Allows us to work with incomplete realizations

We propose solving the following optimization problem:

) 2
amin SIS [~ 6 A Ay Ad
AL AN e e Instance of coupled
tensor factorization

subject to A > 0,17 =1,
A (K+1,:)=1", n=1,...,N.

Approach (2/2)




Algorithmic approach }{}VERSITY

IRGINIA

»  We propose solving the following optimization problem:

mm ZZZ”@W [, Ai;AijZ]]”ir

..... =
subject to A >0, 17X = 1,
A (K+1,)=1T, n=1,...,N.

» Alternating optimization =—» Cyclically update variables A,,, A Py
* The optimization problem with respect to A; becomes
mlnz ST IRl - (Ar® Aj)diag(A\)AT |3 Unconstrained complex
&S i least squares problem
subject to A (K +1,:) =17 9

Algorithm




Algorithmic approach

We propose solving the following optimization problem:
A0 SUSTN @i - I AL AL A
1geeey N ; ]>’L €>J
subject to A >0,1TA =1,
A (K+1,)=1T, n=1,...,

Alternating optimization —» Cyclically update variables A,,, A

N.

The optimization problem with respect to A; becomes
2 Unconstrained complex

mmz Z ||‘I>£le (A, © Aj)diag(A)A] |7
A it least squares problem
subject to A (K 4+ 1,:) = 17

The optimization problem with respect to A becomes
Least squares problem with

minz ; ; Ivec(®ije) = (A © A; © Ad)AllE probability simplex constraints
) 1 4>]
ADMM
subject to A > 0, 17X =1.

Algorithm




Algorithmic approach UNIVERSITY

=  We propose solving the following optimization problem:

mm ZZZ”@W [A, Ai;Aj7A€]]||§7

,,,,, =
subject to A >0, 17X = 1,
A (K+1,)=1T, n=1,...,N.

=  Alternating optimization = Cyclically update variables A,,, A

* The optimization problem with respect to A; becomes

mind )| 125) — (A¢ © Aj)diag(A\) AT || Unconstrained complex
B s least squares problem

subject to A (K 4+ 1,:) = 17

« The optimization problem with respect to A\ becomes
Least squares problem with
. 2
mind >, D lvec(®ise) — (Ae © A; © Al probability simplex constraints

i j>i 4>
ADMM
subject to A > 0, 17X =1.

« The corresponding joint PDF model can be recovered at any point as

F N K
=Y AW [ Y. Anl(kn, h)e72mknon
h=1

n=1k,=—K

Algorithm
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Experiments UNIVERSITY

IRGINIA

« Performance evaluation using 7 UCI high-dimensional datasets
« Average log-likelihood of unseen data samples
* Regression tasks

* Image sampling ‘

* 10 Monte Carlo simulations
« 80% training, 20% test (5 - fold cross - validation for parameter selection)
« Parameters: Tensor rank, smoothing parameter ‘

« Standard baselines
« 2 Classic literature (GMMs, KDE)
« 2 State of the art Neural Density Estimators (RNADE, MAF) @

Results (1/4)
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Results

« Average log-likelihood of unseen data samples
« Our method achieves a higher average test sample log likelihood in almost all

Data set MoG KDE RNADE MAF LRCF-DE
Red wine 11.9+0.29 9.9+0.16 14.41 £0.16 15.24+0.09 16.4 +0.67
White wine 16.1 +1.48 14.8 +£0.12 17.1 £ 0.26 17.3+0.20 184 +0.17
F-O.TP 1254+ 7.79 103.05+0.84 15248 +5.62 1496 832 |154.34 +8.43
PCB 1529+ 3.88 147.6 = 1.63 171.7+£275 1796 +1.62 | 1944+ 243
Superconductivty  134.7 +£3.47  127.2 +2.82 140.2+1.03 143.5+1.32 |146.1+2.31
Corel Images 211.7+£1.04 2014+1.18 2236088 2182+135 |2226+1.25
Gas Sensor 3103 +£3.47 29648 £1.62 316.3+£3.57 3154+ 1458 |316.6+2.35

Average test-set log-likelihood per datapoint for 5 different models on UCI datasets: higher is better.

Data set N M
Red wine 11 1599
White wine 11 4898

First-order theorem proving (F-O.TP) 51 6118

Polish companies bankruptcy (PCB) 64 10503
Superconductivty 81 21263
Corel Images 89 68040
Gas Sensor Array Drift (Gas Sensor) 128 13910

Results (2/4)
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Results UNIVERSITY

* Regression: our joint PDF model enables easy computation of any marginal or conditional
density of subsets of variables

« Estimate the output using the conditional expectation

« Report the Mean Absolute Error ‘
Data set MoG KDE RNADE MAF |LRCE-DE
Red wine 1.28 1.13 0.66 0.63 0.56
White wine 1.79 1.31 0.80 0.75 0.59
F-O.TP 1.86 1.46 0.63 0.52 0.48
PCB 5.6 7.73 4.43 4.52 3.85
Superconductivty  18.56  19.96  16.46  16.38 16.53 Data SET LRCF-DE | MAF
Corel Images 0.53 093 0.27 0.27 0.28 RED WINE 0.82 0.91
Gas Sensor 29.7 35.3 26.8 26.2 26.7 WHITE WINE 0.93 0.97
FIRST-ORDER THEOREM PROVING (F-O.TP) 0.69 0.72
PoLIsH COMPANIES BANKRUPTCY (PCB) 4.97 5.46
Data set N M SUPERCONDUCTIVTY 20.84 20.72
Red wine 11 1599 CoRrEL IMAGES 1.36 1.59
White wine 11 4898 GAS SENSOR ARRAY DRIFT (GAS SENSOR) 25.7 26.1

First-order theorem proving (F-O.TP) 51 6118

Polish companies bankruptcy (PCB) 64 10503 i inA- At
Superconductivty 81 21263 Multi-output regression: Predicting the

Corel Images 89 68040 last two random variables
Gas Sensor Array Drift (Gas Sensor) 128 13910

» Our method outperforms the baselines in almost all datasets and performs comparable
to the winning method in the remaining ones ‘
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Results T

« Image synthesis: Our generative model affords easy sampling
« USPS dataset N=256 : Fix the tensor rank to F=8, K=15 and draw 8 random
samples of each digit (class)
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Figure: Class-conditional synthetic vs real samples from the USPS dataset.

0 1 2 3 4 5 6 7 8 9 Total
Samples 1553 1269 929 824 852 716 834 792 708 821 9298
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Nonparametric Multivariate Density Estimation: TRGINIA
A Low-Rank Characteristic Function Approach

Recap

» We revisited the classic problem of nonparametric density estimation from a fresh perspective
» Through the lens of complex Fourier series approximation
« Tensor modeling

« We showed that

« Any compactly supported density can be approximated by a finite characteristic tensor of
leading complex Fourier coefficients, whose size depends on the smoothness of the density

« We posed density estimation as a constrained (coupled) tensor factorization problem and
proposed a Block Coordinate Descent algorithm

« Under certain conditions enables learning the true data-generating distribution
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Nonparametric Multivariate Density Estimation: CRARCINGA
A Low-Rank Characteristic Function Approach

THANK YOU!

Questions?



