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``Kαὶ γνώσεσθε τὴν ἀλήθειαν, καὶ ἡ ἀλήθεια ἐλευθερώσει ὑμᾶς’’
“And ye shall know the truth, and the truth shall make you free.”
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Modeling high-dimensional distributions
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• Unsupervised learning
§ We need unsupervised models to deal with uncertainty
§ Discover hidden structure in the data
§ Probability Density Function Estimation (PDF) is a fundamental 

problem in unsupervised ML

ü Goal: Given training samples, learn the data generating 
distribution

PDF Estimation
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• PDF Estimation is a fundamental problem in unsupervised ML
§ Given a dataset                             , where                
§ We assume the data has been drawn iid from an unknown data generating 

distribution:                       

§ Goal: Estimate
§ Why? If we can learn high-dimensional joint PDFs, we can address ML problems 

using principled methods
Ø Estimating any marginal or conditional distribution, expectation
Ø Computing the most likely value of a subset of features conditioned on 

others
Ø Deriving optimal estimators, classifiers

?
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• PDF Estimation is a fundamental problem in unsupervised ML
§ Given a dataset                             , where                
§ We assume the data has been drawn iid from an unknown data generating 

distribution:                       

§ Goal: Estimate
§ Challenges

1. Curse of Dimensionality:
Ø Modern datasets are high-dimensional and complex, we often operate in 

the sample-starved regime
2. Incomplete realizations
3. Model identifiability?
4. Expressivity - tractability trade-off
5. Sample complexity



Introduction/ Preliminaries (1/3)

Probabilistic modeling: Applications

Real-world applications (1/4)
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• Multidimensional probabilistic models have many 
applications in ML
§ Problem: Detect new or rare events!

Ø e.g. Fraud detection: Legitimate financial transactions 
vs fraudulent transactions

§ Strategy: Leverage statistical models, detect outliers in 
the distribution
Ø e.g. self driving cars: Use outliers to train more robust 

models

95% of Driving Data

Pedestrians Harsh Weather Edge Cases
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• Multidimensional probabilistic models have many
applications in ML
§ Generate high-fidelity images

Ø Create realistic and pleasing artwork -- Zach Monge, CycleGAN, Zhu et al.

Ø Which face is artificially generated? -- Philip Wang, Flickr-Faces-HQ 
dataset

Introduction/ Preliminaries (1/3)

Probabilistic modeling: Applications

Real-world applications (2/4)
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Image Models
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Probabilistic modeling: Applications

Real-world applications (3/4)
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• Multidimensional probabilistic models have many 
applications in ML
§ Text synthesis

Ø Generate new Wikipedia-like articles, Smart Reply, 
Autocomplete

§ Translation
Ø Model           to generate an English sentence    

conditioned on the corresponding Chinese sentence     
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Probabilistic modeling: Applications

Real-world applications (4/4) 
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• Multidimensional probabilistic models have many 
applications in ML
§ Upsampling, Speech synthesis
§ Speech recognition 

Ø Given a joint model of speech signals and language 
(text), we can infer spoken words from audio signals
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Starting point

• Categorical case: joint PMF 

Every joint PMF of a finite-alphabet random vector can be represented by a naïve Bayes 
model with a finite number of latent states (rank). 

§ If the rank is low, the high dimensional joint PMF is almost surely identifiable from three-
dimensional marginals under low-rank conditions

“Tensors, Learning, and Kolmogorov Extension for Finite-alphabet Random Vectors”,  
Kargas, N. D. Sidiropoulos, X. Fu 2018

Starting Point 11

• Extension to continuous random vectors       joint PDF                        no longer a tensor!



Starting point

• Categorical case: joint PMF 

Every joint PMF of a finite-alphabet random vector can be represented by a naïve Bayes 
model with a finite number of latent states (rank). 

§ If the rank is low, the high dimensional joint PMF is almost surely identifiable from three-
dimensional marginals under low-rank conditions

“Tensors, Learning, and Kolmogorov Extension for Finite-alphabet Random Vectors”,  
Kargas, N. D. Sidiropoulos, X. Fu 2018

Starting Point 12

• Extension to continuous random vectors       joint PDF                        no longer a tensor!

§ One possibility: discretization
Ø Coarse vs fine       discretization error vs statistical accuracy
Ø How do we choose a discretization scheme?
Ø Loss of identifiability

§ Is it possible to avoid discretization?
§ How can one represent a Probability Density Function through a tensor?
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Sneak preview

Sneak Preview
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• Tensors as universal PDF approximators
We will see that:

• A finite mixture model (approximately) follows from
1. compactness of support
2. continuous differentiability

• Assuming low-rank in the Fourier domain, a controllable approximation of 
the multivariate density is identifiable

• High dimensional joint PDF recovery by observing subsets (triples) of 
variables is possible!
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What are tensors? - Canonical Polyadic Decomposition

Background (1/3) 
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• An N-way tensor is a multidimensional array whose elements 
are indexed by N indices

• Any tensor can be decomposed as a sum of F rank-1 tensors
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What are tensors? - Canonical Polyadic Decomposition
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Ø We use                                     to denote the decomposition
Ø Element-wise view:                                                                         

§ Any tensor can be decomposed as a sum of F rank-1 tensors

§ F is the smallest number for which such decomposition exists

• An N-way tensor is a multidimensional array whose elements 
are indexed by N indices
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Uniqueness of CPD

Background (2/3) 
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Essential Uniqueness

For a tensor     of rank F, we say that a decomposition                               is 
essentially unique if the factors are unique up to a common permutation and 
scaling/counter-scaling of columns.

• This means that if there exists another decomposition                      , then, there exists a permutation 
matrix and diagonal scaling matrices such that

• There is no scaling ambiguity for the column-normalized representation 
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Uniqueness of CPD

Background (2/3) 
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• In other words: the parameters of the CPD model are identifiable under certain rank conditions

Theorem (Chiantini and Ottaviani, 2012)

If                         and            then, the rank of      is F and the decomposition is 
unique, almost surely, if and only if 

Essential Uniqueness

For a tensor     of rank F, we say that a decomposition                               is 
essentially unique if the factors are unique up to a common permutation and 
scaling/counter-scaling of columns



Introduction/ Preliminaries (1/3)

Density Estimation: Classical methods

Background (3/3) 
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Two main genres:
• Parametric models: make strong assumptions about the structure of the data, fragile to model 

mismatch
§ GMMs (Pearson 1894, McLachlan, Basford 1988)

Ø Computational and estimation challenges in the high dimensional case
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Density Estimation: Classical methods 

Background (3/3) 
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Two main genres:
• Parametric models: make strong assumptions about the structure of the data, fragile to model 

mismatch
§ GMMs (Pearson 1894, McLachlan, Basford 1988)

Ø Computational and estimation challenges in the high dimensional case

• Non-parametric models: make only mild, “universal” prior assumptions about the data, such as 
smoothness
§ KDE (Rosenblatt 1956, Parzen 1962): estimates the PDF by means of a sum of kernel functions centered 

at the given observations
Ø Computationally intractable for large M,N

§ OSDE (Girolami 2002; Efromovich 2010): approximates a PDF using a truncated sum of orthonormal basis 
functions
Ø Curse of Dimensionality
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Density Estimation: Modern methods

Background (3/3) 
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Several flavors (for Neural DE models):
• Explicit density estimation: explicitly define and solve for           

1. Auto-regressive neural models for DE 
e.g. RNADE (Uria, Murray, Larochelle 2013) -- Generally suffer from slow sampling time

2. Flow-based neural models for DE
e.g. NICE (Dinh, Krueger, Bengio 2014), Real-NVP (Dinh, Sohl-Dickstein, Bengio 2016) – Constrained
architectures possibly not sufficiently expressive to capture all distributions

• Point-wise density evaluation
• Cannot impute more than very few missing elements in the input
• No identifiability guarantees
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Several flavors (for Neural DE models):
• Explicit density estimation: explicitly define and solve for           

1. Auto-regressive neural models for DE 
e.g. RNADE (Uria, Murray, Larochelle 2013) -- Generally suffer from slow sampling time

2. Flow-based neural models for DE
e.g. NICE (Dinh, Krueger, Bengio 2014), Real-NVP (Dinh, Sohl-Dickstein, Bengio 2016) – Constrained
architectures possibly not sufficiently expressive to capture all distributions

• Implicit density estimation
§ Approximate density 

e.g. VAEs (Kingma and Welling 2014)

§ Frameworks that learn a model that can sample from            w/o explicitly defining it 
e.g. GANs (Goodfellow et al. 2014)

• Point-wise density evaluation
• Cannot impute more than very few missing elements in the input
• No identifiability guarantees

• Mainly used for only one very specific task: generating samples similar to training data  
• Hard to train



A Characteristic Function approach for DE

Key idea (1/3) 
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Goal:  Obtain a PDF estimate that is

• Expressive: flexible enough to represent a wide class of distributions
• Tractable and scalable (computationally and memory-wise)
• Principled
• Accurate
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Key idea (1/3) 
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Goal:  Obtain a PDF estimate that is

• Expressive: flexible enough to represent a wide class of distributions
• Tractable and scalable (computationally and memory-wise)
• Principled 
• Accurate

• Given a real-valued random variable    

• Expectation interpretation        estimation via sample averages

Fourier transform pair:
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A Characteristic Function approach - 1D case

Key idea (1/3) 
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• Every PDF supported in        can be uniquely represented over its support by an infinite 
Fourier series,
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• Every PDF supported in        can be uniquely represented over its support by an infinite 
Fourier series,

• If               ,  then truncated series approximation
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A Characteristic Function approach - 1D case

Key idea (1/3) 
26

• Every PDF supported in        can be uniquely represented over its support by an infinite 
Fourier series,

• If               ,  then truncated series approximation

• By Parseval's Theorem       
§ Error is controllable by the smoothing parameter K
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A Characteristic Function approach – The multivariate case

Key idea (2/3) 
27

• Given a random vector     , the joint or multivariate characteristic 
function of     is a function defined as 

• For any given ν, given a set of realizations               , we can estimate , using a 
sample average

• The corresponding PDF can be uniquely recovered via the multidimensional inverse 
Fourier transform
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A Characteristic Function approach – The multivariate case

Key idea (2/3) 
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• Every PDF supported in                    can be represented by a multivariate Fourier series,



Introduction/ Preliminaries (1/3)

A Characteristic Function approach – The multivariate case

Key idea (2/3) 
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• Every PDF supported in                    can be represented by a multivariate Fourier series,

• If              ,  then truncated Fourier series approximation                            

§ Known approximation error results by Mason 1980, Handscomb 2014 of the 
truncated series with absolute cutoffs
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A Characteristic Function approach – The multivariate case

Key idea (2/3) 
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• Every PDF supported in                    can be represented by a multivariate Fourier series,

• If              ,  then truncated Fourier series approximation                            

§ The smoother the underlying PDF, the faster its Fourier coefficients and the 
approximation error tends to zero

§ Known approximation error results by Mason 1980, Handscomb 2014 of the 
truncated series with absolute cutoffs
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A low-rank Characteristic Function approach

Key idea (3/3)
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• The truncated Fourier coefficients can be naturally represented by an N-way
tensor    

• The number of parameters                                          , grows exponentially with N
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A low-rank Characteristic Function approach

Key idea (3/3)
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• The truncated Fourier coefficients can be naturally represented by an N-way
tensor    

• The number of parameters                                          , grows exponentially with N

• Focus on the principal components of the resulting tensor -- i.e., introducing a rank-F
parametrization of 

• Reduction of parameters from order of  to order of                          
• Further denoise the naive sample average estimates
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A low-rank Characteristic Function approach

Key idea (3/3)
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• Considering for brevity                               , by linearity and separability of the 
multidimensional Fourier transformation,

• The truncated Fourier coefficients can be naturally represented by an N-way
tensor    

• The number of parameters                                          , grows exponentially with N

• Focus on the principal components of the resulting tensor -- i.e., introducing a rank-F
parametrization of 

• Reduction of parameters from order of  to order of                          
• Further denoise the naive sample average estimates
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A low-rank Characteristic Function approach – Interpretation

Key idea (3/3)
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Mixture of product distributions  - Latent variable naive Bayes interpretation

Truncating the multidimensional Fourier series of any compactly supported random vector is 
equivalent to approximating the corresponding multivariate density by a finite mixture of 
separable densities

• Yields generative model of the sought density, from which it is very easy to sample from.
• Easy marginalization.
• Easy to compute conditional densities.
• Easy to impute.
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F= 2 F= 4 F= 6 F= 8 F= 10

• Generating synthetic samples from our model 
• For fixed K, K=11, given M=2000 samples from toy Circles and Moons 2D datasets

A low-rank Characteristic Function approach

• The number of coefficients K controls the desired smoothness of the probability model 
• The rank F controls the expressivity of the probability model 



Introduction/ Preliminaries (1/3)

A low-rank Characteristic Function approach

Key idea (3/3) 
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• Generating synthetic samples from our model, given samples from Weight-Height dataset

• The number of coefficients K controls the desired smoothness of the probability model 
• The rank F controls the expressivity of the probability model 

• K=10

F= 2 F= 4 F= 6 F= 8 F= 10

k= 4

• F=8

k= 6 k= 8 k= 10 k= 12
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A Characteristic Function approach – Uniqueness 

Key idea (3/3) 
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Uniqueness of the Characteristic Tensor  CPD

A compactly supported multivariate mixture of separable densities is identifiable from 
(samples of) its characteristic function, under mild conditions

• Conversely, assuming that the sought joint PDF is a finite mixture of separable densities 
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Proposed approach

Approach (1/2) 
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1. Estimate

2. Fit a low-rank model  

3. Invert using

• Issues:
1. Fix scaling/counter-scaling freedom in                 constraints 

2. Allocating memory for the truncated characteristic tensor is a challenge!
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Proposed approach

Approach (2/2) 
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• Allocating memory for the truncated characteristic tensor is a challenge!

§ Model the characteristic tensors of subsets of variables (triples) 

§ Key observation: lower-order marginals        also a constrained complex CPD model

§ Jointly decompose in a coupled fashion, synthesize the full characteristic tensor
Ø Significant computational and memory reduction
Ø Allows us to work with incomplete realizations



Instance of coupled 
tensor factorization
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Proposed approach

Approach (2/2) 
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• Allocating memory for the truncated characteristic tensor is a challenge!

§ Model the characteristic tensors of subsets of variables (triples) 

§ Key observation: lower-order marginals        also a constrained complex CPD model

§ Jointly decompose in a coupled fashion, synthesize the full characteristic tensor
Ø Significant computational and memory reduction
Ø Allows us to work with incomplete realizations

§ We propose solving the following optimization problem:



Introduction/ Preliminaries (1/3)

Algorithmic approach

Algorithm  
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• The optimization problem with respect to      becomes

§ We propose solving the following optimization problem:

§ Alternating optimization        Cyclically update variables 

Unconstrained complex 
least squares problem
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Algorithmic approach

Algorithm  
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• The optimization problem with respect to      becomes

• The optimization problem with respect to    becomes

§ We propose solving the following optimization problem:

§ Alternating optimization        Cyclically update variables 

Unconstrained complex 
least squares problem

Least squares problem with 
probability simplex constraints

ADMM
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Algorithmic approach

Algorithm  
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• The optimization problem with respect to      becomes

• The optimization problem with respect to    becomes

§ We propose solving the following optimization problem:

§ Alternating optimization        Cyclically update variables 

Unconstrained complex 
least squares problem

Least squares problem with 
probability simplex constraints

ADMM

• The corresponding joint PDF model can be recovered at any point as 
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Experiments

Results (1/4)
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• Performance evaluation using 7 UCI high-dimensional datasets
• Average log-likelihood of unseen data samples
• Regression tasks
• Image sampling

• 10 Monte Carlo simulations
• 80% training, 20% test (5 - fold cross - validation for parameter selection)

• Parameters: Tensor rank, smoothing parameter

• Standard baselines
• 2 Classic literature (GMMs, KDE)
• 2 State of the art Neural Density Estimators (RNADE, MAF)
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Results

Results (2/4)
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• Average log-likelihood of unseen data samples
• Our method achieves a higher average test sample log likelihood in almost all datasets!
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• Regression: our joint PDF model enables easy computation of any marginal or conditional 
density of subsets of variables

• Estimate the output using the conditional expectation
• Report the Mean Absolute Error

• Our method outperforms the baselines in almost all datasets and performs comparable 
to the winning method in the remaining ones

Results

Multi-output regression: Predicting the
last two random variables
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• Image synthesis: Our generative model affords easy sampling
• USPS dataset N=256 : Fix the tensor rank to F=8, K=15 and draw 8 random 

samples of each digit (class)

Results
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Nonparametric Multivariate Density Estimation:
A Low-Rank Characteristic Function Approach

48

Recap

• We revisited the classic problem of nonparametric density estimation from a fresh perspective 
• Through the lens of complex Fourier series approximation
• Tensor modeling 

• We showed that
• Any compactly supported density can be approximated by a finite characteristic tensor of 

leading complex Fourier coefficients, whose size depends on the smoothness of the density

• We posed density estimation as a constrained (coupled) tensor factorization problem and 
proposed a Block Coordinate Descent algorithm

• Under certain conditions enables learning the true data-generating distribution
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THANK YOU!

Questions?

Nonparametric Multivariate Density Estimation:
A Low-Rank Characteristic Function Approach


