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What about the rest of the views??

If we aggregate, we ignore important structure!!
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Tensors
• Multi-dimensional matrices
• Can naturally model multi-aspect datasets
• Long list of applications: Psychometrics, 

Chemometrics, Signal Processing, Machine 
Learning, Data Mining

X
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Survey Papers

Geared towards theoretical &
algorithmic understanding

Geared towards applications &
practitioners
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What are we looking for?

Blocks within the data
Subsets / co-clusters of:
1) Users (“senders”)
2) Users (“receivers”)
3) Means of communication

X
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Blocks are rank-one tensors
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Direct extension of matrix case!

X
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CP/PARAFAC Decomposition

X + … +

a1 aR

b1 bR

c1 cR

≈

prove various advantageous theoretical properties
of our technique, while pointing out the respective
shortcomings in the theoretical formulation of an
existing widely used method.

• Thorough experimental evaluation: Multiple
experiments for various settings are carried out
on real and artificial data, in order to study and
evaluate the behavior of our method in comparison
to other baselines.

Reproducibility: In order to promote reproducibility
of our results, we make our code for NSVD and the
synthetic tensor generator used in the paper publicly
available1.

2 Problem Formulation

2.1 Notation & Definitions Even though tensors
are often defined as elements of specific tensor product
spaces that correspond to multilinear maps, it is com-
mon in the field of data mining to define an N -mode
tensor as an element of the tensor product of N arbi-
trary vector spaces. Similarly to matrices, if we choose a
basis for each vector space, then the tensor can be repre-
sented as a multidimensional array of numbers. With-
out loss of generality, in this work we will study only
3-mode tensors X 2 RI⇥J⇥K , where I, J and K are
the dimensions of the respective vector spaces.

Additionally, we have the following definitions:
Mode-n Fiber: A column vector produced by fixing
the indices in all of the dimensions of the tensor except
from the n-th dimension. For example, the Mode-1
fibers of a 2⇥2⇥2 tensorX can be identified asX (:, j, k)
for all j, k = 1, 2.
n-Mode Product: It is denoted as X ⇥n M where
M is an L⇥ In matrix and In is the n-th dimension of
X . It modifies X by transforming its mode-n fibers as
MX (· · · , in�1, :, · · · ).

Frobenius Norm: ||X || =

vuut
IX

i=1

JX

j=1

KX

k=1

X (i, j, k)2.

Vectorization: It is denoted as vecX and is a column
vector constructed by concatenating all mode-1 fibers
X (:, j, k), with the smaller j and k having higher
priority in the concatenation, and similarly the second
dimension has higher priority than the third dimension.

2.2 PARAFAC Decomposition As already dis-
cussed, tensor decompositions play an important role in
discovering structure in multi-aspect data. Even though
a plethora of decompositions have been proposed, in this
work we will only concern ourselves with the PARAFAC

1https://github.com/gtsitsik/NSVD

Symbol Definition

x Scalar
X Matrix
X Tensor
⌦ Kronecker Product
� Column-wise Khatri-Rao Product
� Outer Product

Table 1: Table of Symbols

decomposition since it has a very close connection to the
rank of a tensor X . To see this, we first express X in
terms of its PARAFAC decomposition as follows

X = I ⇥1 A⇥2 B⇥3 C

where A 2 RI⇥R, B 2 RJ⇥R and C 2 RK⇥R

are the PARAFAC factor matrices, R is the number
of PARAFAC components, also called CP-rank, and
I 2 RR⇥R⇥R for which it holds that I(i, j, k) = 1 if
i = j = k and I(i, j, k) = 0 otherwise. Note that this
expression can be reformulated as

(2.1) X =
RX

r=1

ar � br � cr

where ar,br and cr are the r-th columns of the factor
matrices A, B and C, respectively. Since this is
the sum of R rank one tensors, it becomes evident
that if we manage to find the minimum R for which
(2.1) holds, then we have essentially found the rank
of the tensor. Additionally, for fixed values of R, the
PARAFAC decomposition is usually approximated by
using alternating least squares algorithms [9, 17] which
minimize the Frobenius norm of the error.

An important obstacle in finding the optimal R
though, is the fact that even for a CP-rank less than
the actual tensor rank, there is the possibility that
a decomposition exists that produces an arbitrarily
small error. This can occur due to the fact that a
rank-R best approximation of a tensor might not even
exist [11]. Thus, a common and intuitive idea is to
calculate approximate PARAFAC decompositions for
a range of CP-ranks, and then evaluate them with an
e↵ective diagnostic tool that will hopefully uncover the
decomposition with the proper number of components.

2.3 AutoTen & the Core Consistency Diagnos-

tic As already discussed, rank estimation and low-rank
trilinear structure discovery are very di�cult problems,
and there are currently no general purpose tools that
can e�ciently accomplish these tasks. It is worth elab-
orating, however, on some of the most e↵ective tools,
two of which are AutoTen [24] and the Core Consis-
tency Diagnostic (CORCONDIA) [7, 8] .
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Project Description

3 Research Task 1: Algorithms for Autonomous Tensor Analysis

Tensors are multidimensional extensions of matrices that naturally represent multi-aspect data. In the
remainder of the proposal, we will be using “aspect” and “mode” interchangeably, referring to the different
dimensions of the tensor (e.g., a matrix is a two-mode tensor). Tensor decompositions have been an extremely
useful extracting latent structure from multi-aspect data. Most exploratory unsupervised tensor analysis
applications are using the CP decomposition [82, 131], the decomposition of a tensor into R rank-one
components, which is expressed as: L =

PR
r=1 ar � br � cr = [A,B,C], where ar,br, cr are vectors, the

(i, j, k) entry of a � b � c is a(i)b(j)c(k), and matrices A,B,C have as columns the vectors ar,br, cr. A
popular choice is to minimize the Frobenius norm of the difference between the data X and the model L,
however, selecting the best loss function for the data at hand is an active area of research [86]. For simplicity,
we will be using the Frobenius norm as an example loss throughout the proposal, however, we will investigate

optimization under different loss functions as part of this project. The advantage of the CP decomposition [131] is
its intuitive interpretation: Each rank-one component ar �br � cr is a hidden pattern in the data; furthermore,
the values on the respective vectors serve as soft co-clustering indicators [133].

A central concept in exploratory tensor analysis is the low-rank of the data. Even though data may present
with a seemingly very high rank, in fact, the “useful” and “interesting” part of the data lives in a much
lower-rank space. In modeling terms, X = L+ E where L is a low-rank tensor (of rank R) which contains
the useful patterns in the data and E is modeling error and noise. Estimating the number of components
R (i.e., the “low-rank”) is an extremely challenging problem. Current state-of-the-art includes the“Core
Consistency Diagnostic” [35] and work by the PI [134, 172]1, however, most practical work resorts in tedious
trial-and-error, leaving the selection of the low rank as a challenging open problem.

Being a very powerful tool comes with the price of increased computational complexity. Work by the
PI and collaborators during the last eight years [130, 95, 91, 141], in part inspired by pioneering work of
Bader and Kolda [24], has rekindled the interest in scalable tensor methods, with current work being able to
decompose very large scale sparse tensors with complexity in the order of the number of non-zeros in the
data. [163, 109]. However, when dealing with dense tensors, usual heuristics tailored to sparse tensors no
longer apply, rendering the computation very expensive (e.g., O(IJK) for an I ⇥ J ⇥K dense tensor). Thus,
there is an imperative need for the design of scalable and efficient methods, for sparse and dense data alike.

Albeit very popular and easy to interpret, CP is limited in a number of ways. There exist a number
of models that extend CP in different ways, e.g., PARAFAC2 [141] extends CP-like analysis to “irregular”
tensors where one of the modes is not of the same size across “slices”, and Block Term Decomposition (BTD)
[54] generalizes the type of structure each component can extract. Choice of the most appropriate model,
again, boils down to trial-and-error that requires deep understanding of the properties of each model.

Thus, the bar for conducting tensor analysis in real data is currently very high, since a practitioner
needs to conduct a large number of laborious, and sometimes very expensive, trial-and-error experiments,
typically without any ground truth available, and relying on a combination of application intuition and thorough
understanding of tensor methods and concepts.

In Task 1, we envision to put an end to the above, highly counter-productive and largely manual process
by rethinking the entire tensor analysis pipeline. To that end, we innovate in the following ways: (i)
we formulate and develop principled solutions for problems that so far are being solved manually, thus
are extremely error-prone and time-consuming, (ii) we propose novel smart and flexible decomposition
techniques that adapt to the structure in the data, thereby eliminating the need for tedious trial-and-error
model selection, (iii) we propose principled and unified models in which we incorporate domain knowledge
and side-information, which has been a crucial component of the manual tensor analysis pipeline, and (iv)
following our track record in tensor methods, we collectively advance the algorithmic and modeling state of
the art in terms of scalability, robustness, and real-time adaptivity. A conceptual diagram for our proposed
approach is shown in Fig. 2. In the following lines, we outline our research agenda.

3.1 Task 1.1: Data Tensorization

The first task has to do with transforming raw data, possibly coming in a standardized format (e.g., CSV
representing the non-zero entries in the data), to one or more tensors that have “exploitable” structure, while
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of our technique, while pointing out the respective
shortcomings in the theoretical formulation of an
existing widely used method.
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decomposition since it has a very close connection to the
rank of a tensor X . To see this, we first express X in
terms of its PARAFAC decomposition as follows

X = I ⇥1 A⇥2 B⇥3 C

where A 2 RI⇥R, B 2 RJ⇥R and C 2 RK⇥R

are the PARAFAC factor matrices, R is the number
of PARAFAC components, also called CP-rank, and
I 2 RR⇥R⇥R for which it holds that I(i, j, k) = 1 if
i = j = k and I(i, j, k) = 0 otherwise. Note that this
expression can be reformulated as

(2.1) X =
RX

r=1

ar � br � cr

where ar,br and cr are the r-th columns of the factor
matrices A, B and C, respectively. Since this is
the sum of R rank one tensors, it becomes evident
that if we manage to find the minimum R for which
(2.1) holds, then we have essentially found the rank
of the tensor. Additionally, for fixed values of R, the
PARAFAC decomposition is usually approximated by
using alternating least squares algorithms [9, 17] which
minimize the Frobenius norm of the error.

An important obstacle in finding the optimal R
though, is the fact that even for a CP-rank less than
the actual tensor rank, there is the possibility that
a decomposition exists that produces an arbitrarily
small error. This can occur due to the fact that a
rank-R best approximation of a tensor might not even
exist [11]. Thus, a common and intuitive idea is to
calculate approximate PARAFAC decompositions for
a range of CP-ranks, and then evaluate them with an
e↵ective diagnostic tool that will hopefully uncover the
decomposition with the proper number of components.
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tic As already discussed, rank estimation and low-rank
trilinear structure discovery are very di�cult problems,
and there are currently no general purpose tools that
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A(     ,:)=
1) Each triplet of vectors co-clusters:
(users, users, means of communication)

Intuitive interpretation



DBLP Multi-View Graph

• Take the arg max of the r-dim embedding 
per node for community assignment

• Baselines
² Spectral clustering on sum of matrices / views
² Linked Matrix Factorization 
² [Tang et al. ICDM 2009]

• Outperforms “2D”/matrix baselines wrt
NMI (Normalized Mutual Information)

[Papalexakis, Akoglu, Ienco Fusion 2013]

Algorithm 1: GRAPHFUSE

Input: Multi-graph G in tensor form X of size I ⇥ J ⇥K, number of clusters R, sparsity penalty factor �.
Output: Assigments to clusters ↵I and ↵J . Matrix C of size K ⇥R that shows the contribution of each one of the K views to each one of the R clusters.

1: {A,B,C} = PARAFAC SLF (X, R� 1, �).
2: for i = 1 · · · I do
3: if A(i, :) = 0 then
4: ↵I(i) = R
5: else
6: ↵I(i) = argmaxA(i, :)
7: end if
8: end for
9: Repeat iteration 2-8 for all J rows of B. Labels are output in ↵J .

Fig. 2. (top) SYNTHETIC-2 SIM and (bottom) SYNTHETIC-3 DIF share the same clustering scheme, with different amount of cross edges and cluster densities.
DIF multi-graph, by construction, is harder to cluster than SIM.

(a) citation (b) co-auth. (c) co-term

Fig. 3. Spy-plots of 3 views in DBLP-1

(a) citation (b) co-auth. (c) co-term

Fig. 4. Spy-plots of 3 views in DBLP-2

B. Clustering accuracy

In order to evaluate the performance of our proposed
methods, we use the Normalized Mutual Information, a widely
used metric for computing clustering accuracy of a method
against the desired ground truth clustering [12]. Moreover, we
compare our methods, in terms of NMI, with two baseline
approaches, which we briefly describe in the sequel:

BASELINE-1 algorithm sums all the adjacency matrices of a
multi-graph obtaining a new aggregate sum-matrix and applies
a k-way spectral clustering over this aggregate [20]. The k-way
spectral clustering is based on the k-means algorithm that is
applied on the Laplacian of the sum-matrix.

BASELINE-2 algorithm first constructs the spectral kernel for
each graph view and then sums the spectral kernels summa-
rizing all the dimensions of the multi-graph. Successively, the
k-means algorithm is applied to the matrix containing the sum
of the kernels in order to obtain the final clustering. Details
for this algorithm may be found in [19].

In Table I we show the NMI results on all datasets for all
methods. We observe that MULTICLUS always outperforms
baseline methods on all synthetic datasets. As for GRAPH-
FUSE, it has good performance over SYNTHETIC-1 and SYNT-
2-SIM while, for SYNT-3-DIF, the results are on par with the
baselines. Recall that by construction SYNT-3-DIF is difficult
to cluster (see Fig.2 bottom), hence the drop in performance
for all methods.

With respect to the real datasets, GRAPHFUSE obtains
the best scores over both DBLP-1 and DBLP-2, while MUL-
TICLUS has comparable behaviour with the baselines. We
notice that NMI scores are overall lower on real datasets, as
they have much less structure than the synthetic ones (see
Fig.3) in addition to a lot more noise (see Fig.4). Nevertheless,
GRAPHFUSE achieves significantly better accuracy compared
to other methods. These encouraging results underline the
merits of modeling the multi-graph clustering problem using
tensors, as they seem to well exploit the interrelations of the
views.
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Word2Vec: Word Embeddings [1]

img: https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html

Task: Given a target word
predict which words 
are more likely context

Fortuitous by-product: The 
learned NN weights provide a 
vector representation for each 
word aka word embedding

• Embedding space respects 
contextual relationships

• Can add and subtract the 
vector embeddings for 
different words

• Some interesting results:
² King – Man + Woman = 

Queen
² Human – Animal = Ethics
² Library – Books = Hall
² President – Power = Prime 

Minister

Cool fact: Instead of a 
skipgram, we can factorize a 
matrix that holds Pointwise 
Mutual Information [2]

[1] Mikolov et al. “Distributed Representations of 
Words and Phrases and their Compositionality”, 
NeurIPS’13
[2] Levy et al. “Neural Word Embeddings as Implicit 
Matrix Factorization”, NeurIPS 2014
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Node Embeddings

• Inspired by Word Embeddings
• Identifies the context by random walks
• Uses skipgram to learn node representation

² Variants: DeepWalk [KDD15], node2vec [KDD16]

• What if we also have node features?

Yang et al. Network Representation Learning  with Rich Text Information, IJCAI’15

(a) DeepWalk

(b) TADW

Figure 1: (a) DeepWalk as matrix factorization. (b) Text-
associated matrix factorization (TADW).

the ratio of training set ranges from 10% to 50%. We also
test these methods with a semi-supervised classifier, Trans-
ductive SVM (TSVM), when training ratio is less than 10%.
Our method has a 5% to 20% advantage than other baselines
with 1% training ratio, especially when network information
is noisy.

There are two main contributions of this paper: (1) We
prove that DeepWalk algorithm actually factorizes a matrix
M and figure out the closed form of M . (2) We introduce
text features into NRL and get a 5% to 20% advantage as
compared to other baselines especially when the training ra-
tio is small.

Related Work Representation learning is widely used in
computer vision [Krizhevsky et al., 2012], natural language
processing [Mikolov et al., 2013] and knowledge represen-
tation learning [Lin et al., 2015]. Some researches focus
on NRL [Chen et al., 2007; Tang and Liu, 2009; 2011;
Perozzi et al., 2014], but none of them can be generalized
to deal with other features of vertices trivially. To the best of
our knowledge, little work has been devoted to consider text
information in NRL. There are some topic models, such as
NetPLSA [Mei et al., 2008], considering both networks and
text information for topic modeling, in which we can repre-
sent each vertex with a topic distribution. In this paper, we
take NetPLSA as a baseline method.

The rest of this paper is organized as follows. Section 2
gives the formal definition for NRL and proves that Deep-
Walk is actually equivalent to matrix factorization. Section 3
presents our algorithm for NRL with text features. We intro-
duce the datasets and experimental results in Section 4. Sec-
tion 5 concludes the paper.

2 DeepWalk as Matrix Factorization

2.1 Formalization of NRL

Network representation learning is formalized as follows.
Given a network G = (V,E), we want to build a low-
dimensional representation rv 2 Rk for each vertex v, where
k is expected to be much smaller than |V |.

As a dense real-valued representation, rv can alleviate the
sparsity of network representations such as adjacency matrix.
We can regard rv as features of vertex v and apply the features
to many machine learning tasks like vertex classification. The
features can be conveniently fed to many classifiers, e.g. lo-
gistic regression and SVM. Also note that the representation
is not task-specific and can be shared among different tasks.

We first introduce DeepWalk and then give the proof of
equivalence between DeepWalk and matrix factorization.

2.2 DeepWalk

DeepWalk introduced Skip-Gram [Mikolov et al., 2013], a
widely-used distributed word representation method, into the
study of social network for the first time to learn vertex rep-
resentation according to network structure.

DeepWalk first generates short random walks which have
been used as a similarity measure [Fouss et al., 2007]. Given
a sequence of vertices S = {v1, v2, . . . , v|S|} generated by
random walks, we regard the vertices v 2 {vi�t, . . . , vi+t} \
{vi} as the context of the center vertex vi, where t is the win-
dow size. Following the idea of Skip-Gram, DeepWalk aims
to maximize the average log probability of all vertex-context
pairs in the random walk vertex sequence S:

1
|S|

|S|X

i=1

X

�tjt,j 6=0

log p(vi+j |vi), (1)

where p(vj |vi) is defined by softmax function,

p(vj |vi) =
exp(cTvj rvi)P
v2V

exp(cTv rvi)
. (2)

Here rvi and cvj are the representation vectors of the center
vertex vi and its context vertex vj . Namely, each vertex v has
two representation vectors: rv when v plays as a center vertex
and cv when v plays as a context vertex.

Afterwards, DeepWalk uses Skip-Gram and Hierarchical
Softmax to learn representations of vertices from sequences
generated by random walks. Note that Hierarchical Softmax
[Morin and Bengio, 2005] is a variant of softmax for speedup.

2.3 Equivalence Proof

Suppose a vertex-context set D is generated from random
walk sequences, where each member of D is a vertex-context
pair (v, c). V is the set of vertices and VC is the set of context
vertices. In most cases, V = VC .

DeepWalk embeds a vertex v into a k-dimensional vector
rv 2 Rk. Also, a context vertex v 2 VC is represented by a
k-dimensional vector cv 2 Rk. Let W be a k ⇥ |V | matrix
where column i is vector rvi and H be a k ⇥ |VC | matrix
where column j is vector cvj . Our goal is to figure out the
closed form of matrix M where M = WTH .
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[Morin and Bengio, 2005] is a variant of softmax for speedup.

2.3 Equivalence Proof

Suppose a vertex-context set D is generated from random
walk sequences, where each member of D is a vertex-context
pair (v, c). V is the set of vertices and VC is the set of context
vertices. In most cases, V = VC .

DeepWalk embeds a vertex v into a k-dimensional vector
rv 2 Rk. Also, a context vertex v 2 VC is represented by a
k-dimensional vector cv 2 Rk. Let W be a k ⇥ |V | matrix
where column i is vector rvi and H be a k ⇥ |VC | matrix
where column j is vector cvj . Our goal is to figure out the
closed form of matrix M where M = WTH .

2112

Node 
features

E. Papalexakis @ OneWorldSP'20 15



Tensor-based Context-Aware Node 
Embeddings

ASONAM 2018 w/ Saba Al Sayouri, Ekta Gujral, Danai Koutra, Sarah Lam

≈
CP

+…+

t-PNE - Step 2

(a): t-PNE (b): Evaluation

Node
representationsA

B!

"

"

#

$
" %

"

"&-NN

%
! %

Tensor X

"

" ≈

b1

a1

bd

ad
View

representations

Classification

t-PNE - Step 1

�������

● ● ● ● ●
●

●

■
■

■
■

■

■ ■

◆
◆ ◆ ◆ ◆ ◆ ◆▲
▲

▲ ▲ ▲
▲ ▲

★ ★ ★ ★ ★ ★ ★

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

log2(d)

M
ic
ro

-F
1
sc
or
e

● t-PNE ■ DeepWalk ◆ Node2vec ▲ Walklets ★ TADW

Start from a node x feature matrix: F
Create a K-Nearest Neighbor Graph
for nodes in the feature space: Z

E. Papalexakis @ OneWorldSP'20 16



Tensor-based Context-Aware Node 
Embeddings

ASONAM 2018 w/ Saba Al Sayouri, Ekta Gujral, Danai Koutra, Sarah Lam

≈
CP

+…+

t-PNE - Step 2

(a): t-PNE (b): Evaluation

Node
representationsA

B!

"
"

#

$

" %

"

"&-NN

%
! %

Tensor X

"

" ≈

b1

a1

bd

ad
View

representations

Classification

t-PNE - Step 1

�������

● ● ● ● ●
●

●

■
■

■
■

■

■ ■

◆
◆ ◆ ◆ ◆ ◆ ◆▲
▲

▲ ▲ ▲
▲ ▲

★ ★ ★ ★ ★ ★ ★

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

log2(d)

M
ic
ro

-F
1
sc
or
e

● t-PNE ■ DeepWalk ◆ Node2vec ▲ Walklets ★ TADW

E. Papalexakis @ OneWorldSP'20 17



Tensor-based Context-Aware Node 
Embeddings

ASONAM 2018 w/ Saba Al Sayouri, Ekta Gujral, Danai Koutra, Sarah Lam

TABLE II: A brief description of evaluation datasets. Number of edges in K-NN matrix varies by K. The acronym TFIDF stands for: term
frequency-inverse document frequency.

Dataset # Vertices # Edges in GY T # Edges in GZ # Labels Network Type Feature Type
Wikipedia [19] 2,405 35,962 4973 149,053 20 Language TFIDF info
WebKB [11] 877 5,168 1703 36,466 5 Citation Unique words
CiteSeer [19] 3,312 9,464 3703 49,680 6 Citation Unique words
Terrorist [20] 848 16,392 1224 82,048 4 Terrorism Relations

TABLE III: Micro-F1 scores for multi-label classification problems on various datasets. The representation feature space has 128 dimensions.
Numbers where t-PNE outperforms other baselines are bolded. For each dataset, we report the used K between two parentheses that yields
the best performance. Remarkably, tensor-based embeddings better preserve network structure, which ultimately, improves task performance.

Algorithm Wikipedia (K = 8) WebKB (K = 40) CiteSeer (K = 15) Terrorist (K = 25)
10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%

DeepWalk 59.04 68.25 69.75 42.82 45.49 45.57 54.22 61.91 0.62.11 81.60 86.13 86.82
node2vec 58.73 66.98 70.12 43.20 44.87 44.43 52.66 60.22 60.87 81.07 84.81 84.47
Walklets 58.17 65.61 66.68 42.16 46.83 49.09 52.57 59.25 60.96 79.45 84.20 84.59
TADW 19.25 32.69 46.27 48.10 49.25 48.98 25.52 56.51 67.92 54.28 54.43 54.35
t-PNE ⇤ 61.64 66.16 74.00 73.53 82.95 85.73 66.00 70.00 75.00 82.59 90.92 91.88
Gain over DeepWalk 4.4 – 6.1 71.7 82.4 88.1 21.7 13.1 20.8 1.2 5.6 5.8
Gain over node2vec 4.9 – 5.5 70.2 84.9 92.9 25.3 16.2 23.2 1.9 7.2 8.8
Gain over Walklets 6.0 0.8 11.0 74.4 77.1 74.6 25.5 18.1 23.0 4.0 8.0 8.6
Gain over TADW 220.2 102.4 59.9 52.9 68.4 75.0 158.6 23.9 10.4 52.2 67.0 69.0

observe that t-PNE outperforms the baseline methods across
different training percentages of labeled data, except for Deep-
Walk when the training percentage of labeled data = 50%. For
Wikipedia dataset, t-PNE achieves at most a gain of 220.2%
when the labeled data is sparse (10%). Further, despite the
fact that TADW is the most competitive baseline method, it
achieves significantly lower accuracy than t-PNE. We argue
that TADW’s high predictive accuracy is attributed to the
high predictive power of the support vector machine (SVM)
classifier TADW employed for training and prediction. The
same reasoning applies to the rest datasets. With respect to
WebKB dataset, it is interesting that using t-PNE allows
us to uncover the unique connectivity patterns baselines are
incapable of. Regarding the CiteSeer dataset, t-PNE surpasses
the baselines most when the labeled data is sparse (10%) by at
most 158.6%. For the Terrorist dataset, the baselines perform
almost on par with t-PNE, which can be rooted in the fact
that Terrorist network structure is easy to capture and it highly
corresponds to the label information.

VI. CONCLUSION

We propose a novel and effective embedding method, t-
PNE. It employs multi-view graph information by jointly
exploiting the conventional adjacency view along with its
corresponding side information view: K-NN matrix. Empirical
demonstrations show that t-PNE outperforms baseline tech-
niques by up to 158.6% with respect to Micro-F1 score, when
the labeled data is sparse. In our future work, we will address
the issues of interpretability and embedding update, especially
for a recently-joined node that has no evident connections.
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What if we have richer structure?
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Social Graph:
Social media “influencer”
Telemarketer/spammer
Near cliques/bipartite cores
…

Knowledge Graph:
Relations of the sort:
<Trump, is-president, USA>
<Merkel, is-chancellor, Germany>
<Mitsotakis, is-primeminister, Greece>

Beyond Rank-1: Discovering Rich Community Structure in Multi-Aspect Graphs KDD 2019, August 2019, Anchorage, Alaska USA

Algorithm 1: R���C��: Discovering Rich Community
Structure
Input: X 2 RI⇥�⇥K , L 2 RR , Max iterations Imax .
Output: Factor matrices A, B, C, Structures S.
1: (A, B, C) �LL1(X, L, Imax ) B using algorithm 2
2: Dr  (Ar · BTr ) 8r 2 R
3: {Ynodes , Ycomm } communit�Detection(D)
4: for i = 1 : total communities do
5: m  Ynodes (f ind(Ycomm == i))
6: Ti  X(m,m,m)
7: Si  encode(Ti ) B using section 4.2
8: end for
9: Visualize S B using section 4.4
Return (A, B, C, S)

10: Function �LL1 (X, L, Imax )
11: Initialize A, B, C randomly
12: s  sum(L) ; R  len�th(L)
13: X(1) = tenmat (X, 1); X(2) = tenmat (X, 2); X(3) = tenmat (X, 3)
14: while k < Imax or not-convergence do
15: G AAT ; Y(k )

A  (B(k�1) � C(k�1))†

16: F 
�
Y(k )
A · X(1)

�T ; � =min(10�3, ( | |Y(k )
A | |2F /s)

17: A(k ), Â(k )  ADMM (A(k�1), Â(k�1), F, G, �) B Algorithm 2
18: G BBT ; Y(k )

B  (c(k�1) � A(k ))†

19: F 
�
Y(k )
B · X(2)

�T ; � =min(10�3, ( | |Y(k )
B | |2F /s)

20: B(k ), B̂(k )  ADMM (B(k�1), B̂(k�1), F, G, �) B Algorithm 2
21: G CCT ; Y(k )

C  (A(k ) � B(k ))† =
[(A(k )

1 ⌦ B(k )
1 )1L1 (A(k )

2 ⌦ B(k )
2 )1L2 . . . (A(k )

R ⌦ B(k )
R )1LR ]†

22: F Y(k )
C · X(3)

�T ; � =min(10�3, ( | |Y(k )
C | |2F /s)

23: C(k ), Ĉ(k )  ADMM (C(k�1), Ĉ(k�1), F, G, �) B Algorithm 2
24: end while
25: Return A, B, C
26: end Function
NOTE: Due to space limitations, the pseudo code of ADMM solver
is provided in supplement section in Alg. 2 for reproducibility.

at least two non-zero element in T. Now, if {|nz | = |b | ⇤ |b | ⇤ |b |}
then sub-tensor is considered as full clique, otherwise between
range {0.75 ⇤ |b | ⇤ |b | ⇤ |b |  |nz |  |b | ⇤ |b | ⇤ |b |}, sub-tensor is
refereed as near clique and we formalize the average bits to encode
the structure as.

B(FC,NC)
T = BN(T) + log2(

|b |
C |n | ) � |nz | log(|nz |)

� |z | log(|z |) + 3b3 log(b)
(17)

where |z | are number of elements not present in T. The intuition is
that the more sparse a near-clique is, encoding will be cheaper.

4.2.2 Star. A star is very special case of the structure because of
its highly sparse nature and it consists of a single node we call it
hub connected to at least other two nodes. Consider sub-tensor
T 2 R |b |⇥ |b |⇥ |b | and we formulate the average bits to encode the
structure as :

B(ST )
T = BN(T) + log2( |b |�1C |n�1 | ) + n log(n) (18)

where |n | represents number of nodes having at least one non-zero
element in T and |b | is number of nodes fall in the community.

4.2.3 Chain. In the chain structure, each node is linked to only
one of its adjacent next node and forming a super-diagonal sub-
tensor that means it has non-zero elements below, above and at the
diagonal position only. Consider sub-tensor T 2 R |b |⇥ |b |⇥ |b | and

Method
Precision

FC ST CH CB FC ST CH CB
With Noise Without Noise

R���C�� 0.93 0.71 0.35 0.71 0.98 0.85 0.75 0.79
VoG[21] � � � � 0.86 1 0.65 0.0

TimeCrunch [37] 0.58 0.73 0.0 0.0 0.74 0.73 0.0 0.23

Table 2: Result based on structures found correctly in synthetic
datasets (higher is better).

we formulate the average bits to encode the structure as :

B(CH )
T = BN(T) + |n | log2(|b |) (19)

where |n | represents number of nodes having at least one non-
zero diagonal element in T and |b | is number of nodes fall in the
community.

4.2.4 Bipartite and Near Bipartite. A complete bipartite and
near-bipartite structure is a sub-tensor whose nodes can be divided
into two subsets C1 and C2 such that no edge has both endpoints
in the same subset. We formulate the average bits to encode the
structure as :

B(CB,NB)
T = BN(C1) + BN(C2) + log2(

|b |
C |n1 | ) + log2(

|b |
C |n2 | )

� |nz | log(|nz |) � |z | log(|z |) + 3b3 log(b)
(20)

where |nz | as number of non-zero elements in T, |z | are number of
elements not present in T, |n1 | and |n2 | represents number of nodes
having at least two non-zero element in C1 and C2, respectively.

4.3 Encoding the Error
We encode the errors made by structure S with regard to X and
store the information in two separate encoding matrix E+ and E�.
The former refers to the area of X that structure S include and later
refer as the area of X that S does not include. We formulate the
average bits to encode the error as :

B(E+) = log2(|E+ |)� | |E+ | | log(|nz |)� | |E+ | |
0
log(|z |)+ |E| log(|b |)

B(E�) = log2(|E� |)� | |E� | | log(|nz |)� | |E� | |
0
log(|z |)+ | |E| | log(|b |)

where E = E+ +E�. We �rst encode the number of 1s in E+ and E�,
then followed by sending the actual 1s and 0s to its optimal pre�x
codes.

4.4 Visualization of Community Structure
Community structure visualization is a powerful tool to convey
the content of a community and can highlight patterns, and show
connections among nodes. We developed tool (link1) in MATLAB to
visualize each community structure. Figure 5 is visualization of a few
structures discovered by R���C�� that provide summarization with
the minimum encoding cost in American college football dataset.
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Figure 5: Visualization: a few community structures of Football[36]
dataset.
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Related work

• Koutra et al. “VoG: Summarizing and 
Understanding Large Graphs”, SDM’14

• Uses a vocabulary of graph structures and tries to 
compress the graph by using it

• Follow-up work by Shah et al. ”TimeCrunch”, 
KDD’15 stitches graph snapshots over time

• Can we automatically extract that rich structure?

(a) Original Wikipedia
Controversy graph (with
‘spring embedded’ layout [15]).
No structure stands out.

(b) VOG: 8 out of the 10 most
informative structures are stars
(their centers in red - Wikipedia
editors, heavy contributors etc.).

(c) VOG: The most informative
bipartite graph - ‘edit war’ - war-
ring factions (one of them, in
the top-left red circle), changing
each-other’s edits.

(d) VOG: the second most infor-
mative bipartite graph - another
‘edit war’, between vandals (bot-
tom left circle of red points) vs
responsible editors (in white).

Figure 1: VOG: summarization and understanding of the most informative, from an information theoretic point of view, structures of the
Wikipedia Controversy graph. Nodes stand for Wikipedia contributors and edges link users who edited the same part of the article.
Without VOG, in 1a, no clear structures stand out. VOG spots stars in 1b (Wikipedia editors and other heavy contributors), and bipartite
graphs in 1c and 1d (reflecting ‘edit wars’, i.e., editors reverting others’ edits). Specifically, 1c shows the dispute between the two parties
about a controversial topic and 1d shows vandals (red circles) vs responsible Wikipedia editors.

and our contributions can be summarized as:

1. Problem Formulation: We show how to formalize the intuitive concept of graph understanding using principled,
information theoretic arguments.

2. Effective and Scalable Algorithm: We design VOG which is near-linear on the number of edges.
3. Experiments on Real Graphs: We empirically evaluate VOG on several real, public graphs spanning up to millions

of edges. VOG spots interesting patterns like ‘edit wars’ in the Wikipedia graphs (Fig. 1).

The paper outline is standard: overview, problem formulation, method description, experiments, and conclusions. Due to
lack of space, we give more details and experiments in the Appendix.

2 Proposed Method: Overview and Motivation

Before we give our two main contributions in the next sections – the problem formulation, and the search algorithm –, we
first provide the high-level outline of VOG, which stands for Vocabulary-based summarization of Graphs:

(a) We use MDL to formulate a quality function: a collection M of structures (e.g., a star here, cliques there, etc) is as
good as its description length L(G,M). Hence, any subgraph or set of subgraphs has a quality score.

(b) We give an efficient algorithm for characterizing candidate subgraphs. In fact, we allow any subgraph discovery
heuristic to be used for this, as we define our framework in general terms and use MDL to identify the structure type of
the candidates.

(c) Given a candidate set C of promising subgraphs, we show how to mine informative summaries, removing redundancy
by minimizing the cost.

VOG results in a list M of, possibly overlapping subgraphs, sorted in importance order (compression gain). Together these
succinctly describe the main connectivity of the graph.

The motivation behind VOG is that people cannot easily understand cluttered graphs, whereas a handful of simple
structures are easily understood, and often meaningful. Next we give an illustrating example of VOG, where the most
‘important’ vocabulary subgraphs that constitute a Wikipedia article’s (graph) summary are semantically interesting.

Illustrating Example: In Fig. 1 we give the results of VOG on the Wikipedia Controversy graph; the nodes are editors,
and editors share an edge if they edited the same part of the article. Figure 1a shows the graph using the spring-embedded
model [15]. No clear pattern emerges, and thus a human would have hard time understanding this graph. Contrast that with
the results of VOG. Figs. 1b–1d depict the same graph, where we highlight the most important structures (i.e., structures that
save the most bits) discovered by VOG.

• Stars ! admins (+ vandals): in Fig. 1b, with red color, we show the centers of the most important “stars”: further
inspection shows that these centers typically correspond to administrators who revert vandalisms and make corrections.

• Bipartite cores ! edit wars: Figs. 1c and 1d give the two most important near-bipartite-cores. Manual inspection
shows that these correspond to edit wars: two groups of editors reverting each others’ changes. For clarity, we denote
the members of one group by red nodes (left), and hi-light the edges to the other group in pale yellow.
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to Festival of Lights, Christmas celebration week and New Year’s
Eve holiday time.
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Figure 6: R���C�� �nds 107 research members in EU-core forming
a continuous near clique (⇡ 43% density) over the observed last 4
months (a-d). The member’s interaction drop (see (c)) indicates the
festival month (e.g December).

Wikipedia[23]: It is a bipartite graph between users (e.g voter,
admins and nominators) participating in the elections. As such, it
is characterized by multiple stars and (near) bipartite structures.
Many of the voters cast vote to the single user (nominee), as in-
dicated by the presence of 1389 stars and provide the vote as sup-
port/neutral/oppose for particular nominee on election week. In-
terestingly, it is observed that more than half (65%) of these star
discovered on the very �rst day of election (on Sept 14, 2004), in-
dicating the strong support for their favorable nominee. Also, it
is observed that about more than half of the votes casted by ex-
isting admins and they form near bipartite relation with ordinary
Wikipedia users.

Autonomous Systems (AS)[30] : TheAS-level dataset is largely
comprised of stars and few near clique and bipartite structures. We
discover large proportion of stars which occur only at Oregon
route-view instance. Further analyzing these results in Fig 7, we
�nd that 985 of the 1246 stars (73%) are found on �rst instance on
Oregon route-view and rest were observed in Looking glass and
Routing registry instance. Interestingly, for 2 consecutive weeks,
we observed set of routers form (near) clique structure, but later
turned into (near) bipartite form indicate operational routers ta-
bles changes over time. When a connection between two observed
routers on an earlier snapshot disappears from later snapshots, it
could be caused either by actual termination or simply by a change
in the route server’s set of peer routers.
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Figure 7: AS-level: Adjacency matrix of the (a) top star (4234 nodes)
and (b) near bipartite (624⇥ 522 nodes) structure found by R���C��,
corresponding to route-view of "tra�c �ows".

The R���C�� summary for both Enron[34] and European
ATN[19] datasets is very interesting and provided in Sec 5.3. The
R���C�� summary for Football is equally interesting, but not
provided here due to lack of space (see the Supplement section).

5.2.2 Scalability. We also evaluate the scalability of the method.
We present the runtime (Fig. 8) of R���C�� with respect to the
number of non-zero elements in the input tensor. For this purpose,
we use sub-tensors form of Enron dataset consists of a millions
of emails. Also, we evaluate proposed method on synthetic data

with increasing two modes (I and J) of tensor with third mode
(K) equivalent to 2% and 20% of I. For our experiment we used
Intel(R) Xeon(R), CPU E5-2680 v3 @ 2.50GHz machine with 48
CPU cores and 378GB RAM. It is worth noting that since it is a
AO-ADMM optimization framework, it is possible to parallelize
the implementations, which can enable its feasible adoption for
analysis of even larger multi-aspect or time evolving tensors.

Nodes (I, J) = 31,523
Timestamps (K) = 899 days Sparsity≈98%

(a) (b)

Figure 8: R���C�� scales well on (a) induced aspects on third mode
of Enron[27] dataset, up to 2M non-zero elements in size, and (b)
on synthetic data varying two modes of tensor, up to 20M non-zero
elements in size.

5.2.3 Parameter Selection L and R. We use synthetic dataset
with 20 cliques and 20 stars consisting of 50 nodes in each structure.
To evaluate the impact of R, we �xed rank of each block i.e. L. We
can see that with higher values of the R, number of cliques and
star structure discovered is improved as shown in Figure 9 (a). Also
It is observed that after R � 5, it become saturated. Similarly, we
�xed rank R = 5 and vary L. We found that for L � 10 all structures
discovery become stable.
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Figure 9:R���C�� performance on synthetic dataset for (a) varying
R and constant L, and (b) vary L and constant R = 5.

5.3 R���C�� at Work
Beyond our qualitative analysis of the structure discovery in the
six real dataset in Tbl. 3, we also consider a sample community
structure analysis from the two datasets in Fig. (2 , 10), and present
our �ndings in this section.

Case Study 1: The European air tra�c network can be repre-
sented as a graph composed ofK = 37 di�erent layers or aspects each
representing a airline (e.g Lufthansa, KLM etc). Each layer k has the
same number of nodes, |I | = 450, as all European airports (e.g Lon-
don Heathrow, Zurichi Kloten Airport etc) are represented in each
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Time-Evolving Graphs as Tensors

…!

t1! t2! t3!

…!

tK!

…!

Detect anomalies / real-life events
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Fig. 5: Timeline of concepts discovered in Enron.

gins, after which point it dies out. This behavior is indicative of concept drift,
and SeekAndDestroy was able to successfully discover and extract it.

5 Related Work

Tensor decomposition:Tensor decomposition techniques are widely used for
static data. With the explosion of big data, data grows at a rapid speed and an ex-
tensive study required on the online tensor decomposition problem. Sidiropoulos
[11] introduced two well-known PARAFAC based methods namely RLST (recur-
sive least square) and SDT (simultaneous diagonalization tracking) to address
the online 3-mode tensor decomposition. Zhou et al. [16] proposed OnlineCP
for accelerating online factorization that can track the decompositions when
new updates arrived for N-mode tensors. Gujral et al. [6] proposed Sampling-
based Batch Incremental Tensor Decomposition algorithm which updates online
computation of CP/PARAFAC and performs all computations in the reduced
summary space. However, no prior work addresses concept drift.

Concept Drift: The survey paper [14] provides the qualitative definitions of
characterizing the drifts on data stream models. To the best of our knowledge,
however, this is the first work to discuss concept drift in tensor decomposition.

6 Conclusions

In this paper we introduce the notion of “concept drift” in streaming tensors. and
provide SeekAndDestroy , an algorithm which detects and alleviates concept drift
it without making any assumption on the rank of the tensor. SeekAndDestroy
outperforms other state-of-the-art methods when the rank is unknown and is
e↵ective in detecting concept drift. Finally, we apply SeekAndDestroy on a real
time-evolving dataset, discovering novel drifting concepts.
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Incremental Decomposition of 
Streaming Tensors

How can we incrementally update the decomposition?

• Tensor updated in  streaming fashion
• New slices arrive

² New snapshots on a temporal graph
² In general, new slices (or batches) over time….

….

…… ..…
…

• Nion & Sidiropoulos, Adaptive Algorithms to Track the PARAFAC Decomposition 
of a Third-Order Tensor, IEEE TSP 2009

• Mardani, Morteza, Gonzalo Mateos, and Georgios B. Giannakis. "Subspace 
learning and imputation for streaming big data matrices and tensors." IEEE 
Transactions on Signal Processing, 2015

• Baskaran et al, Accelerated Low-Rank Updates to Tensor Decompositions, IEEE 
HPEC 2016

• Zhou et al, Accelerating Online CP Decompositions for Higher Order Tensors, 
ACM KDD 2016

• Sun et al., Beyond Streams and Graphs: Dynamic Tensor Analysis, ACM KDD 2006
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Abstract

Tensor decompositions are invaluable tools in analyz-
ing multimodal datasets. In many real-world scenarios,
such datasets are far from being static, to the contrary
they tend to grow over time. For instance, in an online
social network setting, as we observe new interactions
over time, our dataset gets updated in its “time” mode.
How can we maintain a valid and accurate tensor de-
composition of such a dynamically evolving multimodal
dataset, without having to re-compute the entire de-
composition after every single update? In this paper
we introduce SamBaTen, a Sampling-based Batch In-
cremental Tensor Decomposition algorithm, which in-
crementally maintains the decomposition given new up-
dates to the tensor dataset. SamBaTen is able to scale
to datasets that the state-of-the-art in incremental ten-
sor decomposition is unable to operate on, due to its
ability to e↵ectively summarize the existing tensor and
the incoming updates, and perform all computations
in the reduced summary space. We extensively eval-
uate SamBaTen using synthetic and real datasets. In-
dicatively, SamBaTen achieves comparable accuracy to
state-of-the-art incremental and non-incremental tech-
niques, while being up to 25-30 times faster. Fur-
thermore, SamBaTen scales to very large sparse and
dense dynamically evolving tensors of dimensions up to
100K⇥100K⇥100K where state-of-the-art incremental
approaches were not able to operate.

1 Introduction

Tensor decomposition is a very powerful tool for many
problems in data mining [11, 16]. The success of tensor
decomposition lies in its capability of finding complex
patterns in multi-way settings, by leveraging higher-
order structure and correlations within the data. The
dominant tensor decompositions are CP/PARAFAC
(henceforth referred to as CP), which extracts inter-
pretable latent factors from the data, and Tucker, which
estimates the joint subspaces of the tensor. In this
work we focus on the CP decomposition, which has been
shown to be extremely e↵ective in exploratory data min-
ing time and time again [16].

CPU utilization time for 
multiple datasets

Relative Error±0.02
I=J=K 100 500 1000 3000
CPALS 0.109 0.101 0.103 0.130
SDT 0.151 0.217 0.296 0.206
RSLT 0.173 0.217 0.287 0.190

OnlineCP 0.107 0.102 0.103 0.108
SAMBATEN 0.115 0.102 0.102 0.119

10x

5-8x

2-3x

25-30x

Figure 1: SamBaTen outperforms state-of-the-art base-
lines while maintaining competitive accuracy.

In a wide array of modern real-world applications,
data are far from being static. To the contrary, data get
updated dynamically. For instance, in an online social
network, new interactions occur every second and new
friendships are formed at a similar pace. In the tensor
realm, we may view a large proportion of these dynamic
updates as an introduction of new “slices” in the ten-
sor: in the social network example, new interactions
that happen as time evolves imply the introduction of
new snapshots of the network, which grow the tensor in
the “time” mode. A tensor decomposition in that ten-
sor can discover communities and their evolution over
time. How can we handle such updates in the data with-
out having to re-compute the decomposition whenever
an update arrives, but incrementally update the existing
results given the new data? In the community detection
example, how can we track the evolution of the exist-
ing communities, and discover new ones, for the new
updates that continuously arrive?

Computing the decomposition for a dynamically
updated tensor is challenging, with the challenges lying,
primarily, on two of the three V’s in the traditional
definition of Big Data: Volume and Velocity. As a tensor
dataset is updated dynamically, its volume increases to
the point that techniques which are not equipped to
handle those updates incrementally, inevitably fail to
execute due to the sheer size of the data. Furthermore,

OCTEN: ONLINE COMPRESSION-BASED TENSOR DECOMPOSITION

Ekta Gujral, Ravdeep Pasricha, Tianxiong Yang, Evangelos E. Papalexakis
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ABSTRACT

Tensor decompositions are powerful tools for large data ana-
lytics, as they jointly model multiple aspects of data into one
framework and enable the discovery of the latent structures
and higher-order correlations within the data. One of the
most widely studied and used decompositions, especially in
data mining and machine learning, is the Canonical Polyadic
or PARAFAC decomposition. However, today’s datasets are
not static and often grow and change over time. To operate
on such large dynamic data, we present OCTEN, the first
ever compression-based online parallel implementation for
the CP/PARAFAC decomposition. We conduct an exten-
sive empirical analysis of the algorithms in terms of fitness,
memory used and CPU time and in order to demonstrate
the compression and scalability of the method, we apply
OCTEN to big tensor data. Indicatively, OCTEN performs
on-par or better than state-of-the-art online and offline meth-
ods in terms of decomposition accuracy and efficiency, while
achieving memory savings ranging in 40-200%.

1. INTRODUCTION

A Tensor is a multi-way array of elements that represents
higher-order or multi-aspect data. In recent years, tensor de-
compositions have gained increasing popularity in big data
analytics [11]. Tensor decompositions are capable of finding
complex patterns and higher-order correlations within the
data. In the era of information explosion, data is generated
or modified in large volume. In such environments, data
may be added or removed from any of the dimensions with
high velocity. When using tensors to represent this dynami-
cally changing data, an instance of the problem is that of a
“streaming”, “incremental”, or “online” tensors.

As the volume and velocity of data grow, the need for
time- and space-efficient online tensor decomposition is
imperative. There already exists a modest amount of prior
work in online tensor decomposition both for Tucker [1, 14]
and CP [9, 18, 16]. However, most of the existing online
methods [1, 18, 9] , model the data in the full space, which
can become very memory taxing as the size of the data
grows. There exist memory efficient tensor decompositions,
indicatively MET for Tucker[8] and PARACOMP [13] for
CP/PARAFAC, neither of which are able to handle online

Research was supported by the Department of the Navy, Naval En-
gineering Education Consortium under award no. N00174-17-1-0005,
National Science Foundation CDS&E Grant no. OAC-1808591 and by an
Adobe Data Science Research Faculty Award.
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Fig. 1: Framework. Compressed tensor summaries Yp and
Zp are obtained by applying randomly generated compression
matrices (Up,Vp,Wp) and (U

0
p,V

0
p,W

0
p) to Xold and Xnew

respectively. The updated summaries are computed by Xp =
Yp + Zp. Each Xp is independently decomposed in parallel.
The update step anchors all compression and factor matrices
to a single reference i.e. (Pa,Pb,Pc) and (As,Bs,Cs), and
solves a linear equation for the overall A, B, and C.

tensors. In this paper, we fill that gap. Our contributions are
summarized as follows:

• Novel Parallel Algorithm We introduce OCTEN, a
novel compression-based algorithm for online tensor
decomposotion that admits an efficient parallel im-
plementation. We do not limit to 3-mode tensors,
our algorithm can easily handle higher-order tensor
decompositions.

• Correctness guarantees By virtue of using random
compression, OCTEN provides the identifiability of
the underlying CP/PARAFAC decomposition in the
presence of streaming updates.

• Extensive Evaluation Through experimental evalua-
tion on various datasets, we show that OCTEN provides
stable decompositions (with quality on par with state-
of-the-art), while offering up to 40-250 % memory
space savings.

2. PROBLEM FORMULATION

Given (a) an existing set of summaries {Y1,Y2 . . .Yp},
which approximate tensor Xold of size { I

(1) ⇥
I
(2) ⇥ . . . I

(N�1) ⇥ told} at time t , (b) new in-
coming batch of slice(s) in form of tensor Xnew

of size {I(1) ⇥ I
(2) ⇥ . . . I

(N�1) ⇥ tnew}, find up-
dates of (A(1)

,A(2) , . . . , A(N�1), A(N)) incre-
mentally to approximate tensor X of dimension
{I(1) ⇥ I

(2) ⇥ . . . I
(N�1) ⇥ I

(N)} and rank R, where
I
(N) = (told + tnew) = I

(N)
1...n + I

(N)
(n+1)...m after

appending new slice or tensor to N
th mode.

Gujral et al, SIAM SDM 2018
Randomized index sampling

Gujral et al, IEEE CAMSAP 2019
Randomized compression
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Central limiting assumption

• Most streaming work (incl. our work J ) assumes:

Rank(existing data) = Rank(new data)
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concepts and one concept(namely concept 3) does not match with any concept
of X. In this scenario we say that concept 1 and 2 are overlapping concepts and
concept 3 is a new concept.
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Fig. 2: (a)Concept Appears (b) Concept disappears

Missing Concept: If there exists a set of concepts which was present at time
t0, but was missing at future time t1, we call the concepts in the set missing
concepts. For example, consider Figure 2(b), at time t0, the CP decomposition of
X has three concepts, and at time t1 CP decomposition of Y has two concepts.
Two concepts of X and Y match with each other and one concept, present at
t0, is missing at t1; we label that concept, as missing concept.
Running Rank: Running Rank (runningRank) at time t is defined as the total
number of unique concepts (or latent components) seen until time t. Running
Rank is di↵erent from tensor rank of a tensor batch. It may or may not be equal
to rank of the current tensor batch. Consider Figure 1, runningRank at time t1 is
three, since the total unique number of concepts seen until t1 is three. Similarly
runningRank of Figure 2(b) at time t1 is three, even though rank of Y is two,
since the number unique concepts seen until t1 is three.

Let us assume rank of the initial tensor batch X at time t0 is R and rank of
the subsequent tensor batch Y at time t1 is F . Then runningRank at time t1 is
sum of running rank at t0 and number of new concepts discovered from t0 to t1.
At time t0 running rank is equal to initial rank of the tensor batch in this case
R.

runningRankt1 = runningRankt0 + num(newConcept)t1�t0 (4)

Existing 
data

New 
data
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What if this doesn’t hold?
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concepts and one concept(namely concept 3) does not match with any concept
of X. In this scenario we say that concept 1 and 2 are overlapping concepts and
concept 3 is a new concept.
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Missing Concept: If there exists a set of concepts which was present at time
t0, but was missing at future time t1, we call the concepts in the set missing
concepts. For example, consider Figure 2(b), at time t0, the CP decomposition of
X has three concepts, and at time t1 CP decomposition of Y has two concepts.
Two concepts of X and Y match with each other and one concept, present at
t0, is missing at t1; we label that concept, as missing concept.
Running Rank: Running Rank (runningRank) at time t is defined as the total
number of unique concepts (or latent components) seen until time t. Running
Rank is di↵erent from tensor rank of a tensor batch. It may or may not be equal
to rank of the current tensor batch. Consider Figure 1, runningRank at time t1 is
three, since the total unique number of concepts seen until t1 is three. Similarly
runningRank of Figure 2(b) at time t1 is three, even though rank of Y is two,
since the number unique concepts seen until t1 is three.

Let us assume rank of the initial tensor batch X at time t0 is R and rank of
the subsequent tensor batch Y at time t1 is F . Then runningRank at time t1 is
sum of running rank at t0 and number of new concepts discovered from t0 to t1.
At time t0 running rank is equal to initial rank of the tensor batch in this case
R.

runningRankt1 = runningRankt0 + num(newConcept)t1�t0 (4)

New concept appears Concept is missing
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Identifying and Alleviating Concept Drift in 
Streaming Tensor Decomposition

6

Concept Drift: Concept drift is usually defined in terms of supervised learning
[3,14,15]. In [14], authors define concept drift in unsupervised learning as the
change in probability distribution of a random variable over time. We define
concept drift in the context of latent concepts, which is based on rank of the
tensor batch. We first give an intuitive description of concept in terms of running
rank, and then define concept drift.

Intuition: Consider running rank at time t1 be runningRankt1 and running at
time t2 be runningRankt2 . If runningRankt1 is not equal to runningRankt2 , then
there is a concept drift i.e. either a new concept has appeared, or a concept
has disappeared. However, this definition does not capture every single case.
Assume if runningRankt1 is equal to runningRankt2 . In this case, there is no
drift only when there is a complete overlap. However there may be concept drift
present even if runningRankt1 is equal to runningRankt2 , since a concept might
disappear while runningRank remains the same.

Definition: Whenever a new concept appears, a concept disappears, or both
from time t1 to t2, this phenomenon is defined as concept drift.

In a streaming tensor application, a tensor batch arrives at regular intervals
of time. Before we decompose a tensor batch to get latent concepts, we need to
know the rank of the tensor. Finding tensor rank is a hard problem [8] and it
is beyond the scope of this paper. There has been considerable amount of work
which approximates rank of a tensor[12,10]. In this paper we employ AutoTen
[12] to compute a low rank of a tensor. As new advances in tensor rank estimation
happen, our proposed method will also benefit.

Problem 1. Given (a) tensor X of dimensions I⇥J⇥K1 and rank R, (b) Y
of dimensions I ⇥ J ⇥K2 of rank F at time t0 and t1 respectively as shown
in figure 3. Compute Xnew of dimension I ⇥ J ⇥ (K1 +K2) of rank equal
to runningRank at time t1 as shown in equation (5) using factor matrices
of X and Y.

Xnewt1
t

runningRankX

r=1

A(:, r) �B(:, r) �C(:, r) (5)

Fig. 3: Problem formulation• Algorithm for detecting and alleviating 
concept drift: SeekAndDestroy
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SeekAndDestroy in a nutshell

• At every step we have

• To determine drift:
² We compute rank(Y) and compare with rank(X)
² Even if rank(Y) = rank(X), we may have new 

components
² We compute matching of components
² If similarity>threshold, same component
² Else this is a new component

ECML-PKDD 2018 w/ Ravdeep Pasricha &Ekta Gujral
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concepts and one concept(namely concept 3) does not match with any concept
of X. In this scenario we say that concept 1 and 2 are overlapping concepts and
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Missing Concept: If there exists a set of concepts which was present at time
t0, but was missing at future time t1, we call the concepts in the set missing
concepts. For example, consider Figure 2(b), at time t0, the CP decomposition of
X has three concepts, and at time t1 CP decomposition of Y has two concepts.
Two concepts of X and Y match with each other and one concept, present at
t0, is missing at t1; we label that concept, as missing concept.
Running Rank: Running Rank (runningRank) at time t is defined as the total
number of unique concepts (or latent components) seen until time t. Running
Rank is di↵erent from tensor rank of a tensor batch. It may or may not be equal
to rank of the current tensor batch. Consider Figure 1, runningRank at time t1 is
three, since the total unique number of concepts seen until t1 is three. Similarly
runningRank of Figure 2(b) at time t1 is three, even though rank of Y is two,
since the number unique concepts seen until t1 is three.

Let us assume rank of the initial tensor batch X at time t0 is R and rank of
the subsequent tensor batch Y at time t1 is F . Then runningRank at time t1 is
sum of running rank at t0 and number of new concepts discovered from t0 to t1.
At time t0 running rank is equal to initial rank of the tensor batch in this case
R.

runningRankt1 = runningRankt0 + num(newConcept)t1�t0 (4)
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Missing Concept: If there exists a set of concepts which was present at time
t0, but was missing at future time t1, we call the concepts in the set missing
concepts. For example, consider Figure 2(b), at time t0, the CP decomposition of
X has three concepts, and at time t1 CP decomposition of Y has two concepts.
Two concepts of X and Y match with each other and one concept, present at
t0, is missing at t1; we label that concept, as missing concept.
Running Rank: Running Rank (runningRank) at time t is defined as the total
number of unique concepts (or latent components) seen until time t. Running
Rank is di↵erent from tensor rank of a tensor batch. It may or may not be equal
to rank of the current tensor batch. Consider Figure 1, runningRank at time t1 is
three, since the total unique number of concepts seen until t1 is three. Similarly
runningRank of Figure 2(b) at time t1 is three, even though rank of Y is two,
since the number unique concepts seen until t1 is three.

Let us assume rank of the initial tensor batch X at time t0 is R and rank of
the subsequent tensor batch Y at time t1 is F . Then runningRank at time t1 is
sum of running rank at t0 and number of new concepts discovered from t0 to t1.
At time t0 running rank is equal to initial rank of the tensor batch in this case
R.

runningRankt1 = runningRankt0 + num(newConcept)t1�t0 (4)
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DataSet OnlineCP

(Initial Rank)

OnlineCP

(Full Rank)

SamBaTen

(Initial

Rank)

SamBaTen

(Full Rank)

SeekAndDestroy

SDS1 0.2782±0.0221 0.197±0.086 0.261±0.048 0.317±0.058 0.283±0.075

SDS2 0.2537±0.0125 0.168±0.507 0.244±0.028 0.480±0.051 0.253±0.0412

SDS3 0.2731±0.0207 0.205±0.164 0.385±0.021 0.445±0.164 0.266±0.081
SDS4 0.245±0.013 0.171±0.537 0.299±0.045 0.402±0.049 0.221±0.0423
SDS5 0.2719±0.0198 0.206±0.022 0.559±0.046 0.519±0.0219 0.256±0.105
SDS6 0.238±0.013 0.171±0.374 0.510±0.036 0.547±0.0276‘0.208±0.0433

Table 3: Approximation error for SeekAndDestroy and the baselines. SeekAndDestroy
outperforms the baselines in the realistic case where all methods start with the same
rank.

4.5 Q2: Concept drift detection accuracy

The second dimension along which we evaluate SeekAndDestroy is its ability to
successfully detect concept drift. Figure 4 shows the rank discovered by SeekAnd-
Destroy at every point of the stream, plotted against the actual rank. We observe
that SeekAndDestroy is able to successfully identify changes in rank, which, as
we have already argued, signify concept drift. Furthermore, Table 4(b) shows
three example runs that demonstrate the concept drift detection accuracy.

(a) Increasing rank (b) Decreasing rank

Fig. 4: SeekAndDestroy is able to successfully detect concept drift, which is manifested
as changes in the rank throughout the stream.

4.6 Q3: Sensitivity analysis

The results we have presented so far for SeekAndDestroy have used a matching
threshold of 0.6. The threshold was chosen because it is intuitively larger than
a 50% match, which is a reasonable matching threshold. In this experiment, we
investigate the sensitivity of SeekAndDestroy to the matching threshold param-
eter. Table 4(a) shows exemplary approximation errors for thresholds of 0.4, 0.6,
and 0.8. We observe that 1) the choice of threshold is fairly robust for values
around 50%, and 2) the higher the threshold, the better the approximation, with
threshold of 0.8 achieving the best performance.

11

4 Experimental Evaluation

We evaluate our algorithm on the following criteria:
Q1: Approximation quality: We compare SeekAndDestroy ’s reconstruction
accuracy against state-of-the-art streaming baselines, in data that we generate
synthetically so that we observe di↵erent instances of concept drift. In cases
where SeekAndDestroy outperforms the baselines, we argue that this is due to
the detection and alleviation of concept drift.
Q2: Concept Drift detection accuracy: We evaluate how e↵ectively SeekAnd-
Destroy is able to detect concept drift in synthetic cases, where we control the
drift patterns.
Q3: Sensitivity analysis: As shown in Section 3, SeekAndDestroy expects the
matching threshold as a user input. Furthermore, its performance may depend
on the selection of the batch size. Here, we experimentally evaluate SeekAndDe-
stroy ’s sensitivity along those axes.
Q4: E↵ectiveness on real data: In addition to measuring SeekAndDestroy ’s
performance in real data, we also evaluate its ability to identify useful and in-
terpretable latent concepts in real data, which elude other streaming baselines.

4.1 Experimental Setup

We implemented our algorithm in Matlab using tensor toolbox library [2] and
we evaluate our algorithm on both synthetic and real data.We use [12] method
available in literature to find rank of incoming batch.

In order to have full control of the drift phenomena, we generate synthetic
tensors with di↵erent ranks for every tensor batch, we control the batch rank of
the tensor with factor matrix C. Table 2 shows the specification of the datasets
created. For instance dataset SDS2 has an initial tensor batch whose tensor
rank is 2 and last tensor batch whose tensor rank is 10(full rank). The batches
in between the initial and final tensor batch can have any rank between initial
and final rank(in this case 2-10). The reason we assign the final batch rank as
the full rank is to make sure the tensor created is not rank deficient. We make
the synthetic tensor generator available as part of our code release.

DataSet Dimension Initial Rank Full Rank Batch Size Matching Threshold

SDS1
100 x 100 x 100 2

5
10 0.6

SDS2 10

SDS3
300 x 300 x 300 2

5
50 0.6

SDS4 10

SDS5
500 x 500 x 500 2

5
100 0.6

SDS6 10

Table 2: Table of Datasets analyzed
Synthetic data with simulated drift
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outperforms the baselines in the realistic case where all methods start with the same
rank.

4.5 Q2: Concept drift detection accuracy

The second dimension along which we evaluate SeekAndDestroy is its ability to
successfully detect concept drift. Figure 4 shows the rank discovered by SeekAnd-
Destroy at every point of the stream, plotted against the actual rank. We observe
that SeekAndDestroy is able to successfully identify changes in rank, which, as
we have already argued, signify concept drift. Furthermore, Table 4(b) shows
three example runs that demonstrate the concept drift detection accuracy.
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Fig. 4: SeekAndDestroy is able to successfully detect concept drift, which is manifested
as changes in the rank throughout the stream.

4.6 Q3: Sensitivity analysis

The results we have presented so far for SeekAndDestroy have used a matching
threshold of 0.6. The threshold was chosen because it is intuitively larger than
a 50% match, which is a reasonable matching threshold. In this experiment, we
investigate the sensitivity of SeekAndDestroy to the matching threshold param-
eter. Table 4(a) shows exemplary approximation errors for thresholds of 0.4, 0.6,
and 0.8. We observe that 1) the choice of threshold is fairly robust for values
around 50%, and 2) the higher the threshold, the better the approximation, with
threshold of 0.8 achieving the best performance.
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4 Experimental Evaluation

We evaluate our algorithm on the following criteria:
Q1: Approximation quality: We compare SeekAndDestroy ’s reconstruction
accuracy against state-of-the-art streaming baselines, in data that we generate
synthetically so that we observe di↵erent instances of concept drift. In cases
where SeekAndDestroy outperforms the baselines, we argue that this is due to
the detection and alleviation of concept drift.
Q2: Concept Drift detection accuracy: We evaluate how e↵ectively SeekAnd-
Destroy is able to detect concept drift in synthetic cases, where we control the
drift patterns.
Q3: Sensitivity analysis: As shown in Section 3, SeekAndDestroy expects the
matching threshold as a user input. Furthermore, its performance may depend
on the selection of the batch size. Here, we experimentally evaluate SeekAndDe-
stroy ’s sensitivity along those axes.
Q4: E↵ectiveness on real data: In addition to measuring SeekAndDestroy ’s
performance in real data, we also evaluate its ability to identify useful and in-
terpretable latent concepts in real data, which elude other streaming baselines.

4.1 Experimental Setup

We implemented our algorithm in Matlab using tensor toolbox library [2] and
we evaluate our algorithm on both synthetic and real data.We use [12] method
available in literature to find rank of incoming batch.

In order to have full control of the drift phenomena, we generate synthetic
tensors with di↵erent ranks for every tensor batch, we control the batch rank of
the tensor with factor matrix C. Table 2 shows the specification of the datasets
created. For instance dataset SDS2 has an initial tensor batch whose tensor
rank is 2 and last tensor batch whose tensor rank is 10(full rank). The batches
in between the initial and final tensor batch can have any rank between initial
and final rank(in this case 2-10). The reason we assign the final batch rank as
the full rank is to make sure the tensor created is not rank deficient. We make
the synthetic tensor generator available as part of our code release.

DataSet Dimension Initial Rank Full Rank Batch Size Matching Threshold

SDS1
100 x 100 x 100 2

5
10 0.6

SDS2 10

SDS3
300 x 300 x 300 2

5
50 0.6

SDS4 10

SDS5
500 x 500 x 500 2

5
100 0.6

SDS6 10

Table 2: Table of Datasets analyzed

If final/full rank is unknown:
SeekAndDestroy can detect drift
and have lower error than SOTA

If final rank is known (unrealistic):
SOTA performs on par or betterSynthetic data with simulated drift

Reconstruction error 
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Threshold SDS2 SDS4

0.4 0.253±0.041 0.221 ± 0.042

0.6 0.253±0.041 0.221 ± 0.042

0.8 0.101 ±0.040 0.033 ± 0.011

Running Actual Predicted Approx. Error
Rank Rank Rank Actual Predicted

Rank Rank

6 [2,4,3,4,3,3,5,3,3,5] [2,4,3,4,3,3,5,3,3,6] 0.185 0.194

6 [2,4,3,4,3,3,5,3,3,5] [2,4,3,4,3,3,5,3,3,6] 0.185 0.197

7 [2,4,3,4,3,3,5,3,3,5] [2,4,3,5,3,3,6,3,3,6] 0.185 0.278

Table 4: (a)Experimental results for error of approximation of incoming batch
with di↵erent matching threshold values. Dataset SDS2 and SDS4 are of dimension
R100⇥100⇥100 and R300⇥300⇥300 , respectively. We see that the threshold is fairly robust
around 0.5, and a threshold of 0.8 achieves the highest accuracy (b) Experimental re-
sults on SDS1 for error of approximation of incoming slices with known and predicted
rank.

Running Predicted Batch Approximation Error

Rank Full Rank Size SeekAndDestroy SambaTen OnlineCP

7±0.88 4±0.57 22 0.68 ± 0.002 0.759± 0.059 0.941± 0.001

Table 5: Evaluation on Real dataset

4.7 Q4: E↵ectiveness on real data

To evaluate e↵ectiveness of our method on real data, we use the Enron time-
evolving communication graph dataset [1]. Our hypothesis is that in such com-
plex real data, there should exists concept drift in streaming tensor decomposi-
tion. In order to validate that hypothesis, we compare the approximation error
incurred by SeekAndDestroy against the one incurred by the baselines, shown in
Table 5. We observe that the approximation error of SeekAndDestroy is lower
than the two baselines. Since the main di↵erence between SeekAndDestroy and
the baselines is that SeekAndDestroy takes concept drift into consideration, and
strives to alleviate its e↵ects, this result 1) provides further evidence that there
exists concept drift in the Enron data, and 2) demonstrates SeekAndDestroy ’s
e↵ectiveness on real data.

The final rank for Enron as computed by SeekAndDestroy was 7, indicat-
ing the existence of 7 time-evolving communities in the dataset. This number
of communities is higher than what previous tensor-based analysis has uncov-
ered [1,5]. However, analyzing the (static) graph using a highly-cited non-tensor
based method [4], we were able to detect 7 communities, therefore SeekAndDe-
stroy may be discovering subtle communities that have eluded previous tensor
analysis. In order to verify that, we delved deeper into the communities and we
plot their temporal evolution (taken from matrix C) along with their annota-
tions (when inspecting the top-5 senders and receivers within each community).
Indeed, a subset of the communities discovered matches with the ones already
known in the literature [1,5]. Additionally, SeekAndDestroy was able to discover
community #3, which refers to a group of executives, including the CEO. This
community appears to be active up until the point that the CEO transition be-

When streaming Enron, we encounter 
a number of drifting communities

that other methods miss
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Fig. 5: Timeline of concepts discovered in Enron.

gins, after which point it dies out. This behavior is indicative of concept drift,
and SeekAndDestroy was able to successfully discover and extract it.

5 Related Work

Tensor decomposition:Tensor decomposition techniques are widely used for
static data. With the explosion of big data, data grows at a rapid speed and an ex-
tensive study required on the online tensor decomposition problem. Sidiropoulos
[11] introduced two well-known PARAFAC based methods namely RLST (recur-
sive least square) and SDT (simultaneous diagonalization tracking) to address
the online 3-mode tensor decomposition. Zhou et al. [16] proposed OnlineCP
for accelerating online factorization that can track the decompositions when
new updates arrived for N-mode tensors. Gujral et al. [6] proposed Sampling-
based Batch Incremental Tensor Decomposition algorithm which updates online
computation of CP/PARAFAC and performs all computations in the reduced
summary space. However, no prior work addresses concept drift.

Concept Drift: The survey paper [14] provides the qualitative definitions of
characterizing the drifts on data stream models. To the best of our knowledge,
however, this is the first work to discuss concept drift in tensor decomposition.

6 Conclusions

In this paper we introduce the notion of “concept drift” in streaming tensors. and
provide SeekAndDestroy , an algorithm which detects and alleviates concept drift
it without making any assumption on the rank of the tensor. SeekAndDestroy
outperforms other state-of-the-art methods when the rank is unknown and is
e↵ective in detecting concept drift. Finally, we apply SeekAndDestroy on a real
time-evolving dataset, discovering novel drifting concepts.

E. Papalexakis @ OneWorldSP'20 37



Roadmap

Adversarial
Machine
Learning

Introduction to 
Tensors

& Graph Mining

Time-evolving Tensors
& Concept Drift Conclusion

E. Papalexakis @ OneWorldSP'20 38



What’s happening here??

https://arxiv.org/pdf/1412.6572.pdf : fast gradient sign method

E. Papalexakis @ OneWorldSP'20 39

https://arxiv.org/pdf/1412.6572.pdf


What’s happening here??

https://arxiv.org/pdf/1707.08945.pdf

E. Papalexakis @ OneWorldSP'20 40

https://arxiv.org/pdf/1707.08945.pdf


Not just an ”academic curiosity”

E. Papalexakis @ OneWorldSP'20 41

https://www.technologyreview.com/2020/02/19/868188/hackers-can-trick-a-tesla-into-accelerating-by-50-miles-per-hour/

https://www.technologyreview.com/2020/02/19/868188/hackers-can-trick-a-tesla-into-accelerating-by-50-miles-per-hour/


“Defense” Problem Definition

For a given model !:
• #: clean instance,  #$: perturbed instance
• Goal of adversarial attack: 

x$ = x + ( ⇒ ! # ≠ ! #$ while # − #′ < .

• Goal of defense mechanism: 
apply a preprocessing operation /(. ) that brings 
back #′ closer to the clean instance # such that:

! / #$ = !(#)
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All you need is low (rank)

teristics of the perturbations generated by the N������ model, we
examined the adjacency and feature matrices before and after the
attack. We plotted the singular values of matrices for the clean and
perturbed graphs to visualize the di�erences. Figure 3 illustrates
the singular values of the adjacency matrix on semi-logarithmic
scale. The singular values shown in Figure 3 correspond to singular
values of the adjacency matrix before and after one single attack on
the target node. Singular values of the clean and attacked matrices
are mainly di�erent at higher ranks. We visualized singular values
of adjacency and feature matrices for multiple attacks and observed
that singular values are very close at lower ranks but vary at higher
ranks.

In Section 4.2, we take advantage of this intuition and present
two low-rank solutions that can e�ectively resist against N������.

4.2 Low-Rank Solutions to Resist Attacks
4.2.1 Vaccinating GCN with Low-Rank Approximation.

To discard the high-rank perturbations generated by N������,
we compute the low-rank approximation of the adjacency and fea-
ture matrices derived from their SVD decomposition according to
Equation 2. We then retrain GCN with the low-rank approximation
matrices. With a proper choice of r , the rank-r approximation of
the attacked graph can boost the performance of GCN and achieve
a performance close to the performance of GCN on the clean graph.

LetA andA0 be the adjacency matrices of the clean and attacked
graphs respectively. �A = A

0 �A is the di�erence between the clean
and attacked graphs after a series of perturbations. These are the
edges added to the clean graph or removed from it as a result of
the attack. We compute the SVD of A and �A as follows:

A = U �VT (6)

�A = U� ��V
T
� (7)

Let n be the number of perturbations performed during one
attack on the target node �0. According to [38], n = d�0 + 2, where
d�0 is the degree of the target node. Leveraging the proof from [34],
the leading singular value of �A is computed as follows:

��1 =
p
n =

p
d�0 + 2 (8)

In a rank-r approximation of the attacked graph, singular values
smaller than �r are discarded. Therefore, if ��1 is smaller than �r ,

Figure 2: A quick sketch of our proposed vaccination: Taking the
SVD of the graph reveals the spectrum of the attack and the healthy
parts of the graph. Based on our extensive empirical observations
on the high-rankness of N������, we retain a truncated SVD that
contains only the top-k singular values for the graph, and recon-
struct the graph from them. The output is the vaccinated graph.

Figure 3: Singular values of adjacency matrix before and after the
attack in a semi-logarithmic scale

the perturbations will get eliminated. The goal is to pick rank r so
that with a high probability the following holds:

�r > ��1

�r >
p
d�0 + 2

(9)

d�0 < �
2
r � 2 (10)

In other words, a rank-r approximation may not detect attacks
on target nodes with degree greater than �

2
r � 2. Formally, we pose

the following problem:
Problem: Given an input graph adjacency matrix A with r th

largest singular value�r , �nd the value of r so that the probability of
the nodes with degree greater than � 2

r is less than a given threshold
� :

Pr (X � �
2
r ) < � (11)

Degree distribution of graphs in real networks has a power-law
form. We can write the degree distribution of a graph in form of a
discrete power-law with parameter � :

p(d) = Pr (X = d) = d
��

dmaxÕ
k=dmin

k��

=
d
��

dmax�dminÕ
k=0

(k + dmin )��

=
d
��

� (�,dmin ) � � (�,dmax + 1)

(12)

where � (�, x) = Õ1
k=0(k + x)

�� is the Hurwitz zeta function. dmin
is the minimum degree of a node required to be considered in the
power-law distribution and dmax is the maximum degree in the
graph. Therefore, for a given graph G, we can write its degree
distribution as follows:

p(d)d 2DG
⇡ d

��

� (�,dmin ) � � (�,dmax + 1)
(13)

where DG = {dG� |� 2 V,dG� � dmin } is the list of node degrees
in the graph G. Clauset et al. [10] drived an approximate expres-
sion to estimate the scaling parameter � for a discrete power-law
distribution. For graph G:

� ⇡ 1 + |DG |.
266664

’
di 2DG

lo�
di

dmin � 1
2

377775

�1

(14)

WSDM 2020 w/ Negin Entezari

(a) Unvaccinated (b) rank-5 approx. (c) rank-10 approx. (d) rank-15 approx. (e) rank-50 approx.
Figure 6: Vaccinating GCN against N������

might have even changed a node’s prediction from a wrong class to
the correct one. The plot shows that lower dimensions of t-PINE are
more robust against N������. As the embedding dimension gets
larger, more nodes are a�ected by the attacks. t-PINE performs very
robust against the attacks. Even at dimension 512, less than 40% of
target nodes are a�ected by the attacks. At lower dimensions, CP-
decomposition can greatly discard a�ected components of graph
by the attack.

On the other hand, choice of K does not have a signi�cant e�ect
on the robustness of t-PINE. We evaluated di�erent values of K and
observed that at a �xed dimension, performance slightly improves
for bigger values of K . However, the larger K is, t-PINE’s runtime
increases. The improvement over larger values of K is negligible.
Therefore, for the rest of the experiments, we only report the t-PINE
results for d = 32 and K = 30 that leads to robust results in a better
runtime.

Figure 8 shows the result of transferring N������ perturbations
to t-PINE for d = 32 and K = 30. The plot shows that t-PINE is very
robust to the attacks and the classi�cation margins before and after
the attack has remained nearly unchanged.

In Table 3, we summarize the results of transferring N������
perturbation to t-PINE for di�erent datasets. The values reported in
the table are the fraction of target nodes that get correctly classi�ed.
For t-PINE the values on clean and perturbed graphs are very close
for CiteSeer and Cora-ML datasets. However, on PoliticalBlogs, the
performance of t-PINE has dropped with N������ perturbations.
The degree of target nodes in PoliticalBlogs dataset are relatively
larger compared to the other datasets. In our experiments, we set
the number of perturbations to a target node relevant to its degree.
Therefore, in the PoliticalBlogs dataset, we perform a larger number

Figure 7: Robustness of t-PINE against N������ for di�erent em-
bedding dimensions and K on CiteSeer

of perturbation and this could be the reason to why the performance
of t-PINE drops when facing N������ perturbations.

Method CiteSeer Cora-ML PoliticalBlogs

GCN Clean 0.83 0.82 0.90
N������ 0.02 0.01 0.06

t-PINE Clean 0.74 0.68 0.87
N������ 0.72 0.64 0.30

Table 3: Transferring N������ to t-PINE embeddings. For t-PINE,
fraction of target nodes correctly classi�ed after the attack is very
close to values on the clean graph.

5.4 LowBlow: A Low-Rank Attack
Here, we investigate the in�uence of the proposed low-rank attack,
LowBlow on GCN and t-PINE. To evaluate the e�ects of LowBlow,
we compute the perturbed adjacency and feature matrices as in
Equations 19 and 20. Then we retrain GCN model with the per-
turbed matrices. We also compute the t-PINE embeddings for the
perturbed matrices. LowBlow signi�cantly decreases the perfor-
mance of GCN. It is also able to attack t-PINE, however, it is less
successful compared to perturbing GCN.

In addition, we examined our defense mechanism against Low-
Blow. We used a rank-10 approximation of graph to vaccinate it. In
Table 4, we summarize the results for all datasets. Vaccinating GCN
has improved its performance but it decreased the performance of
t-PINE on CiteSeer and Cora. We observed that for a smaller em-
bedding dimension e.g d = 8, vaccinating t-PINE against LowBlow
has no signi�cant impact on the performance of t-PINE.

Due to the low-rank nature of LowBlow, it is more di�cult to de-
fend compared to N������, and our vaccination method performs
better on N������ rather than LowBlow.

5.5 Degree Distributions After LowBlow
In the previous subsection we demonstrated the e�ectiveness of
LowBlow in fooling our proposed low-rank vaccination scheme,
and deteriorating the performance of both GCN and t-PINE. In
addition to the e�ectiveness of the attack, another important aspect
that we would like to study experimentally is the e�ect of LowBlow
in “what the graph looks like”. In computer vision attacks, “look”
can be easily de�ned by how a human perceives the poisoned data
point/image. In graphs, however, such an intuitive metric does not
exist.

Instead, [38] studies a proxy, which is the node degree distribu-
tion and how it is a�ected by the attack. In [38], the attack only
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All you need is low (rank)

(a) GCN (b) t-PINE (K = 30) (c) t-PINE (K = 35) (d) t-PINE (K = 40) (e) t-PINE (K = 45)
Figure 8: Poisoning of t-PINE with N������ on CiteSeer. The embedding dimension is 32.

(a) CiteSeer (b) Cora-ML (c) PoliticalBlogs
Figure 9: Degree distributions of the clean and attacked graphs on log-log scale. LowBlow a�ects the degree distribution only for the high-
degree nodes, while leaving the majority of the nodes intact.

a�ects one or a few nodes at a time, and thus, the attack results
in a statistically insigni�cant alteration of the degree distribution.
LowBlow, on the other hand, by virtue of mixing the attack in high-
valued singular components of the graph, this mixing may a�ect a
number of nodes, resulting in statistically signi�cant di�erences in
the distributions, for some nodes.

In Figure 9 we plot the degree distributions of the three real-
world graphs we use, before and after the attack, in log-log scale.
What we uniformly observe is that only the very high-degree nodes
are a�ected by the attack, while the low and mid-degree nodes,
which constitute the vast majority of this heavy-tailed distribution,
remain intact, as far as their degree distribution is concerned.

To evaluate whether LowBlow perturbations are unnoticeable,
we perform a statistical two-sample test for power-law distribution
[3, 38] to see if the adjacency matrix after LowBlow perturbations
follows similar degree distribution as the input graph. The null hy-
pothesis H0 proposes that the two samples have similar power-law

Method CiteSeer Cora-ML PoliticalBlogs

G
CN

Clean 0.83 0.82 0.90
N������ 0.02 0.01 0.06
LowBlow 0.05 0.06 0.06
Vaccinated N������ 0.64 0.59 0.62
Vaccinated LowBlow 0.31 0.35 0.38

t-
PI
N
E

Clean 0.74 0.68 0.87
N������ 0.72 0.64 0.30
LowBlow 0.55 0.48 0.33
Vaccinated N������ 0.73 0.65 0.52
Vaccinated LowBlow 0.29 0.27 0.48

Table 4: Results overview.Comparison of poisoning and vaccination
of GCN and t-PINE against N������ and LowBlow

distributions. Here, we compute the probability of not rejecting the
null hypothesis where the two samples are from di�erent distribu-
tions (Type II error). Similar to [38], we set the p-value to 0.95 which
is a very conservative threshold and two samples from the same
distribution are rejected 95% of the time. Following this conserva-
tive test, degree sequence of the graph after LowBlow perturbations
does not follow the same power-law distribution as the input graph,
i.e. the proposed low-rank attack is noticeable. To make the attack
unnoticeable, we only consider edges that if added or removed
from the graph, degree distribution will not change. After this step,
we plotted the singular values of the graph before and after the
attack and observed that the singular values are mainly di�erent in
higher ranks and the behavior is similar to N������. This implies
that an unnoticeable perturbation a�ects high frequency spectrum
of the graph. Consequently, our proposed vaccination mechanism
successfully defends against unnoticeable adversarial attacks.

6 CONCLUSIONS
In this paper, we examined the characteristics of N������ perturba-
tions for graphs. Due to the vulnerability of the node classi�cation
approaches to the adversarial attacks, we highlighted the need
for a defense system or robust node classi�cation methods. We
illustrated that N������ generates high-rank perturbations that
can be discarded using a low-rank approximation of the adjacency
and feature matrices. We showed that a rank-10 approximation
of the matrices is able to defend adversarial attacks with a high
probability and achieve a performance close to the performance
on the clean graph. Furthermore, we examined the robustness of
t-PINE, a tensor-based node embedding against N������ and we
observed that it is very robust for lower embedding dimensions and
the robustness of the embedding decreases as the dimension gets
bigger. In addition, we proposed an algorithm to generate low-rank
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(a) Unvaccinated (b) rank-5 approx. (c) rank-10 approx. (d) rank-15 approx. (e) rank-50 approx.
Figure 6: Vaccinating GCN against N������

might have even changed a node’s prediction from a wrong class to
the correct one. The plot shows that lower dimensions of t-PINE are
more robust against N������. As the embedding dimension gets
larger, more nodes are a�ected by the attacks. t-PINE performs very
robust against the attacks. Even at dimension 512, less than 40% of
target nodes are a�ected by the attacks. At lower dimensions, CP-
decomposition can greatly discard a�ected components of graph
by the attack.

On the other hand, choice of K does not have a signi�cant e�ect
on the robustness of t-PINE. We evaluated di�erent values of K and
observed that at a �xed dimension, performance slightly improves
for bigger values of K . However, the larger K is, t-PINE’s runtime
increases. The improvement over larger values of K is negligible.
Therefore, for the rest of the experiments, we only report the t-PINE
results for d = 32 and K = 30 that leads to robust results in a better
runtime.

Figure 8 shows the result of transferring N������ perturbations
to t-PINE for d = 32 and K = 30. The plot shows that t-PINE is very
robust to the attacks and the classi�cation margins before and after
the attack has remained nearly unchanged.

In Table 3, we summarize the results of transferring N������
perturbation to t-PINE for di�erent datasets. The values reported in
the table are the fraction of target nodes that get correctly classi�ed.
For t-PINE the values on clean and perturbed graphs are very close
for CiteSeer and Cora-ML datasets. However, on PoliticalBlogs, the
performance of t-PINE has dropped with N������ perturbations.
The degree of target nodes in PoliticalBlogs dataset are relatively
larger compared to the other datasets. In our experiments, we set
the number of perturbations to a target node relevant to its degree.
Therefore, in the PoliticalBlogs dataset, we perform a larger number
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of perturbation and this could be the reason to why the performance
of t-PINE drops when facing N������ perturbations.

Method CiteSeer Cora-ML PoliticalBlogs

GCN Clean 0.83 0.82 0.90
N������ 0.02 0.01 0.06

t-PINE Clean 0.74 0.68 0.87
N������ 0.72 0.64 0.30

Table 3: Transferring N������ to t-PINE embeddings. For t-PINE,
fraction of target nodes correctly classi�ed after the attack is very
close to values on the clean graph.

5.4 LowBlow: A Low-Rank Attack
Here, we investigate the in�uence of the proposed low-rank attack,
LowBlow on GCN and t-PINE. To evaluate the e�ects of LowBlow,
we compute the perturbed adjacency and feature matrices as in
Equations 19 and 20. Then we retrain GCN model with the per-
turbed matrices. We also compute the t-PINE embeddings for the
perturbed matrices. LowBlow signi�cantly decreases the perfor-
mance of GCN. It is also able to attack t-PINE, however, it is less
successful compared to perturbing GCN.

In addition, we examined our defense mechanism against Low-
Blow. We used a rank-10 approximation of graph to vaccinate it. In
Table 4, we summarize the results for all datasets. Vaccinating GCN
has improved its performance but it decreased the performance of
t-PINE on CiteSeer and Cora. We observed that for a smaller em-
bedding dimension e.g d = 8, vaccinating t-PINE against LowBlow
has no signi�cant impact on the performance of t-PINE.

Due to the low-rank nature of LowBlow, it is more di�cult to de-
fend compared to N������, and our vaccination method performs
better on N������ rather than LowBlow.

5.5 Degree Distributions After LowBlow
In the previous subsection we demonstrated the e�ectiveness of
LowBlow in fooling our proposed low-rank vaccination scheme,
and deteriorating the performance of both GCN and t-PINE. In
addition to the e�ectiveness of the attack, another important aspect
that we would like to study experimentally is the e�ect of LowBlow
in “what the graph looks like”. In computer vision attacks, “look”
can be easily de�ned by how a human perceives the poisoned data
point/image. In graphs, however, such an intuitive metric does not
exist.

Instead, [38] studies a proxy, which is the node degree distribu-
tion and how it is a�ected by the attack. In [38], the attack only
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where � is the set of parameters of the model and � is the true
label of the instance. The parameter � controls the magnitude of
per-pixel perturbation. I-FGSM iteratively applies FGSM in each
iteration i after clipping the values appropriately at each step:

x (i) = x (i�1) + � · si�n(r�x (i�1) (� ,x (i�1),�)) (3)

3 PROPOSED METHOD: COMPRESSION AS
DEFENSE

In this section, we present our compression-based approach for
combating adversarial attacks. In Section 3.1, we begin by describ-
ing the technical reasons why compression can remove perturba-
tion. As compression would modify the distribution of the input
space by introducing some artifacts, in Section 3.2, we propose
to “vaccinate” the model by training it with compressed images,
which increases its robustness towards compression transformation
for both adversarial and benign images. Finally, in Section 3.3, we
present our multifaceted S����� defense framework that combines
random quantization, vaccination and ensembling into a forti�ed
multi-pronged defense, which, to the best of our knowledge, has
yet been challenged.

3.1 Preprocessing Images using Compression
Ourmain idea on rectifying the prediction of a trainedmodelC , with
respect to a perturbed input x 0, is to apply a preprocessing operation
�(·) that brings back x 0 closer to the original benign instance x ,
which implicitly aims to make C(�(x 0)) = C(x). Constructing such
a �(·) is application dependent. For the image classi�cation problem,
we show that JPEG compression is a powerful preprocessing defense
technique. JPEG compression mainly consists of the following steps:

(1) Convert the given image from RGB to YCbCr (chrominance
+ luminance) color space.

(2) Perform spatial subsampling of the chrominance channels,
since the human eye is less susceptible to these changes and
relies more on the luminance information.

(3) Transform 8⇥8 blocks of theYCbCr channels to a frequency
domain representation using Discrete Cosine Transform
(DCT).

(4) Perform quantization of the blocks in the frequency domain
representation according to a quantization table which cor-
responds to a user-de�ned quality factor for the image.

The last step is where the JPEG algorithm achieves the majority
of compression at the expense of image quality. This step suppresses
higher frequencies more since these coe�cients contribute less to
the human perception of the image. As adversarial attacks do not
optimize for maintaining the spectral signature of the image, they
tend to introduce more high frequency components which can be
removed at this step. This step also renders the preprocessing stage
non-di�erentiable, which makes it non-trivial for an adversary
to optimize against, allowing only estimations to be made of the
transformation [31]. We show in our evaluation (Section 4.2) that
JPEG compression e�ectively removes adversarial perturbation
across a wide range of compression levels.

Figure 2: S����� uses Stochastic Local Quantization (SLQ)
to remove adversarial perturbations from input images.
S����� divides images into 8 ⇥ 8 blocks and applies a ran-
domly selected JPEG compression quality (20, 40, 60 or 80)
to each block to remove adversarial attacks. Note this �gure
is an illustration; our images are of actual size 299 ⇥ 299.

3.2 Vaccinating Models with Compressed
Images

As DNNs are typically trained on high quality images (with little or
compression), they are often invariant to the artifacts introduced
by the preprocessing of JPEG at high-quality settings. This is espe-
cially useful in an adversarial setting as our pilot study has shown
that applying even mild compression removes the perturbations
introduced by some attacks [7]. However, applying too much com-
pression could reduce the model accuracy on benign images.

We propose to “vaccinate” the model by training it with com-
pressed images, especially those at lower JPEG qualities, which
increases the model’s robustness towards compression transforma-
tion for both adversarial and benign images. With vaccination, we
can apply more aggressive compression to remove more adversarial
perturbation. In our evaluation (Section 4.3), we show the signi�-
cant advantage that our vaccination strategy provides, which o�ers
a lift of more than 7 absolute percentage points in model accuracy
for high-perturbation attacks.

3.3 S�����: Multifaceted Defense Framework
To leverage the e�ectiveness of JPEG compression as a prepro-
cessing technique along with the bene�t of vaccinating with JPEG
images, we propose a stochastic variant of the JPEG algorithm that
introduces randomization to the quantization step, making it harder
for the adversaries to estimate the preprocessing transformation.

Figure 2 illustrates our proposed strategy, where we vary the
quantization table for each 8 ⇥ 8 block in the frequency domain
to correspond to a random quality factor from a provided set of
qualities, such that the compression level does not remain uniform
across the image. This is equivalent to breaking up the image into
disjoint 8⇥ 8 blocks, compressing each block with a random quality
factor, and putting the blocks together to re-create the �nal image.
We call this method Stochastic Local Quantization (SLQ). As the
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JPEG compression removes adversarial perturbations 

https://arxiv.org/pdf/1802.06816.pdf

SHIELD: Fast, Practical Defense and Vaccination for 
Deep Learning using JPEG Compression

Attack in images is of high-
frequency!
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Tensor-Based Defense Mechanism

On-going work & arXiv:2002.10252 w/ Negin Entezari
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Choice of Tensor Model
• CP/PARAFAC:
• Pros: Interpretable latent factors
• Cons: Slow, 

Restricted to have same ranks for all modes 
and super-diagonal core makes it not a 
suitable choice for image decomposition

• Tucker:
• Pros: No constraint on the core tensor

Each mode can have a different rank
• Cons:  Slow

latent factors are not easily interpretable
• Tensor-Train:
• Pros: No constraint on ranks of different modes

Linearly scalable with respect to tensor dimension
• Cons: latent factors are not easily interpretable

On-going work & arXiv:2002.10252 w/ Negin Entezari
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How to Represent Batch of Images?

• Batching images in either
² 4-mode tensor
² Stack all slices into 3-mode tensor

• Through batching we 
² Amortize computational cost
² Leverage patterns across images

On-going work & arXiv:2002.10252 w/ Negin Entezari
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Experimental Results

410
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Roadmap

Adversarial
Machine
Learning

Introduction to 
Tensors

& Graph Mining

Time-evolving Tensors
& Concept Drift Conclusion
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Tensors Everywhere!

• Unsupervised exploratory analysis
² Challenges:

§ Is there structure in the data? What kind?
§ How many useful patterns in the data?
§ Which model should I use?

• Tensors in a Brave New World
² Interplay of traditional tensor methods & 

deep learning
§ E.g., defending against adv. attacks
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Thank you! Questions?

• How to reach me: http://www.cs.ucr.edu/~epapalex/
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