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Motivation: Network (Graph) Data
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» Graph signal processing (GSP): tool to
analyze network data (graph signals).

» Processes affected by irregular+-relational
parameters: social, economic, biological,
electric power, transportation, gas, etc.
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Dealing with Network Data
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» Statistics: Gauss Markov random fields,
graphical models
— statistical association of data

» Machine learning: dimensionality reduction
— graph representation of data

» SP: Graph Signal Processing
— input/output association of data
—> generative, interpretable model
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Dealing with Network Data
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» SP: Graph Signal Processing
— input/output association of data
—> generative, interpretable model
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Low Pass GSP

> SP cares about the frequency content in a (time domain) signal —
low frequency vs high frequency:

/\/\/\/Low Frequency

» Similar notion carries over to graph signal processing (GSP) —
low pass graph signals vs non low pass graph signals:
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Takehome Point: Low pass graph signals are prevalent + entail structure
that enables (blind) graph topology learning. }
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Network Data = Filter 4+ Excitation

» Consider a undirected graph G = (V, E, A) with N nodes

HEE
— H_B
obs. on nodes | M
Excitation ——> / — [ [3
H R
» Graph signals = vectors defined on V, i.e., x € RV,
.. Cfilter’ .
excitation ———— signal

fas in SP, filter encodes the responses of a system to excitation.

» As SP-ers, what is our favorite form of filter?

» Linear time invariant filter = ‘shifting’ 4+ ‘linear combination’.
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Graph Shift Operator (GSO)

» Starting point: Periodic signals x = (xi,...,xy) is ‘shifted’ on a cycle
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
- A= . .
- 5 5> 5> > -
0 0 1 0 0
0 0 0 1 0
X1 XN
X2 X1
A . = . <= Applying A is analogous to shifting the signal
XN XN—1

» Generalization to graphs: GSO mixes adjacent elements on G!.
» Common choice of GSO: Laplacian matrix, L = Diag(Al) — A.

— for the rest of the talk, we focus on undirected graph.

» Denote the EVD L = UAU " with 0 = \; < --- < \y.

1[Sandryhaila and Moura, 2013] A. Sandryhaila, J. M. Moura. Discrete signal

processing on graphs. TSP, 2013; also see [Piischel and Moura, 2003].
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Graph Filters

» Consider the graph filter as a matrix polynomial:
+oo
H(L) == hl".
£=0

Shift-invariant prop: y = H(L)x — Ly =LH(L)x =H(L)Lx

> SP/GSP Perspective: network data are filtered graph signals,
+oo
y=H(L)x=>Y hlLx
=0

» The signal/observation is y while x is viewed as the excitation.
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What are low and high frequencies basis on graph?

» High frequency graph signal — large variation in adjacent entries:
S(x) := Z;,inj(Xi — ><j)2 = xLx.

» Intuition: if S(x) is small, the graph signal x is smooth. It holds
S(u;) = u Lu; = )\;, as seen:

A =0 A, =0.4706 Ajg=52813 A5 = 80818

0.5

u]. e 4) e uN
~~ ~~
lowest frequency highest frequency

= U = (u; uy --- uy) form the right basis for graph signals on G.
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Frequency Analysis via Graph Fourier Transform

>

Graph Fourier Transform (GFT) calculates the frequency components

of a signal:
y=UTy 3= (uy).

The transfer/frequency response function of the graph filter is:
h=h(X) where b = h(\) =3\l
We have the convolution theorem:
y=H(L)x < §j=h®% « ©is element-wise product.

Graph filter can be classified as either low-pass?, band-pass, or
3

high-pass, depending on its graph frequency response, also see”.

2E g, an ideal low-pass hy, ..., hx = 1, EK+1,...,71N =0.

3[Isufi et al., 2022] E. Isufi, F. Gama, D. | Shuman, S. Segarra. Graph Filters for

Signal Processing and Machine Learning on Graphs. ArXiv, 2022.
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Low Pass Graph Filter (LPGF)

Def. For 1 < K < N — 1, define

max{|h(Ak+1)|,- -, [A(An)|}
min{[A(A1)],..., [A(AK)[}

If the low-pass ratio satisfies nx < 1,
then H(L) is K-low-pass.

K =

Freq. response |h(A

MM Ak A
» Integer K characterizes the bandwidth, or the cut-off frequency.
» We say that y is K low pass signal provided that
y = H(L)x, where H(L) is K-low pass & x satisfies some mild cond..

» Graph frequencies are non-uniformly distributed: A\ < Ak tends
to induce K-low-pass filters, e.g., stochastic block model (SBM).
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Physical Models lead to Low Pass Signals

Prices in Stock Market®
» V = financial inst., E = ties.

Social Network Opinions*

» V = individuals, E = friends. '
» Business performances evolve as:

Yesr = (L= B)H(L)y: + BBx,

e.g., stock return.

» DeGroot model for opinions:

Yer1 = (1=B)(I—alL)y:+ Bx;.

» Observed steady state: > Observed steady state:
~ —1 3
Yoo = (I aL) " x = H(L)x, Yoo = (51— FH(L) ' Bx
where @ = 5(1 — «)/a > 0. :7-[~(L)Bx,

Fact®: Both #H(L), #(L) are low pass graph filters. ]

4[DeGroot, 1974] M. H. DeGroot, Reaching a consensus. JASA, 1974.

5[Billio et al., 2012] M. Billio et al., Econometric measures of connectedness and
systemic risk in the finance and insurance sectors, Journal of Economics Finance, 2012.

6[Ramakrishna et al., 2020] R. Ramakrishna, H.-T., A. Scalgione. A user guide to

low-pass graph signal processing and its applications. SPM, 2020.
13/38



Agenda

Graph Learning from Network Data
Smoothness and Graph Learning
Low-rank Model and Graph Feature Learning

Learning with Partial Observation

14/38



Graph Learning from Network Data

» Goal: estimate L or some information about it.

—~

> Working hypothesis: a number of graph signals y(*) are available as

- H
GSP model oI =
Ay g
— A\ L1
H EN
Unknown Graph Observed Low Pass Graph Signals

Observed graph signals: yO = nL)Bz", t=0,..,T-1
— H(L) is low pass, z(!) is 0-mean, B is pattern of (low rank) excitation J

» Graph learning relies on two properties of low pass signals:

> Smoothness — graph topology learning.
> Low-rankness — graph feature learning (e.g., community, centrality)
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Smoothness and Graph Learning

» Insight: For K-low-pass graph signals (nx < 1) with full-rank
excitation satisfying B = I, we observe that

low pass filter

Ely/ Ly ~ ZMh NP+ o?Te(L) =

i.e., the low pass filtered graph signals are smooth w.r.t. L.
» Idea: Fit a graph optimizing for smoothness (GL-SigRep):

min N #E?Zl{%HZg—ng%—&-ZITIZg}<—notezzy
2,6=1,...,m,L

st. Te(D)=N, L[=0;<0,Vi#j, [1=0,

7[Dong et al., 2016] X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, “Learning
Laplacian matrix in smooth graph signal representations.” TSP, 2016.
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Numerical Experiment: GL-SigRep

15
1
5
los
5 10 15 20

() ER: Groundtruth (g) ER: GL-SigRep (h) ER: GL-LogDet

» Topology learnt® using GL-SigRep from the synthetic data generated
through a low pass graph filter:

ye= \/Z_lxe, x; ~ N(0,1),

> Alternative approaches:
» [Friedman et al., 2008] Graphical LASSO: ML estimation for GMRF.
> [Segarra et al., 2017] Spectral template: stationary graph signals.
> [Mei and Moura, 2016] Causal modeling: time series data

8Image credits: [Dong et al., 2016].
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Low-rank-ness and Graph Feature Learning

Issue: with low-rank excitation (B € RV*R with R < N) — graph
learning = difficult .- data is nearly rank deficient...

» Insight: Suppose H(L) is (1, K) low pass, then
C, =Elyy '|= H(L)UC, U H(L)" ~ UxCs U} . °£Zi£2"ic”.f;’§f =/

Thus C, is also low rank!

/
> Approximation holds if < 1 = low rank #(), Q%// i

rank(#H(L)) ~ K < N and range space ~ Ug.

» Idea: spectral method to extract principal
components in Uk from C,.

= Can (still) learn communities and centrality of the graph.
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Blind community detection (Blind CD)

Idea: spectral clustering applied on empirical covariance C, ~ C,:

(i) find the top-k Ux € RN*K of C} =L vy
(i) apply k-means on the rows of Ug.

» Theorem: Denote the detected clusters as /\A/'l7 e ,A7K, then®
K(N7. o Nig Uk) = K* = Ok +m™/2).

K-means obj. based on Uk Optimal K-means obj.
t — performance of spectral clustering (with known topology) if ni — 0.
» Learning of high-level structure is robust to low-rank excitation.

» Extensions: exact community recovery on multi-graphs
[Roddenberry et al., 2020], dynamic observations [Schaub et al., 2020], ...

9[Wai et al.,, 2019] H.-T., S. Segarra, A. Ozdaglar, A. Scaglione, A. Jadbabaie,

“Blind community detection from low-rank excitations of a graph filter,” TSP, 2019.
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Blind community detection (Blind CD)

Problem: What if nx =~ 17 Let's try H,(L) := H(L) — pl (p > 0).

Freq. response

boosted

07\\\\ T T T
AL Ak Ak A,

Robust PCA formulation:

‘boosted’ filter
0.7

» Original ratio: nx = g3 ~ 0.82.

8
0.05

» Boosted ratio: fjx = o2 = 0.2.

Suppose that Z is known,

Yzt = H(L)B = H,(L)B + pB
——
low-rank
» Typically, B is sparse
=— low-rank + sparse
decomposition!

min | YZ' — L BJ[E +4l|L]l« + ullB]x
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Numerical Experiment: Blind CD (+Boosting)

107 -ESCon S

-©-BlindCD
. -4-Boosted 1
A -@- 2-step w/ SpecTemp | |
(] —1]
= 10t
o
S
1
1072 g
E----B----EF---{F----8----EF---1F---- 3 ----E]
CL L L L L L L |

L
5 10 15 20 25 30 35 40 45
Excitation Rank R

(a) As R = rank(C,) increases, Blind CD approaches the performance
of spectral clustering on the true GSO.
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Blind Centrality Learning

> Eigen-centrality is revealed by TopEV(C,) for 1-low
pass signals = a simple PCA procedure suffices:

1 m

e 6 =23 oy
t=1

Sample Covariance

PCA

Dy = TopEV(C,) = ' ’ =

Y=[y1 yml Centrality Estimation T gk )
Observation Detected K possible

central nodes

» Theorem®C: let v; be the true eig. centrality,

101 — w|l2 = O + m*/?).

10[He and Wai, 2022] Y. He, H.-T., “Detecting central nodes from low-rank excited

graph signals via structured factor analysis,” TSP, 2022 < note GSO = A in this case.
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Blind Centrality Learning (cont’d)

» To obtain a robust formulation against n; = 1, assume that B is
sparse and use similar idea as Blind CD:

Y = H(A)BZ = ((}H(A) — pl)B+ pB)Z
= (Low-rank + Sparse) x Z

» Structured factor analysis: if Z is unknown,
Step 1. decompose Y via NMF, Step 2. Robust PCA.

» Theoretical analysis (for NMF): good performance if (i) N/rank(Z)
is large, (ii) rank(Z) is large.

Fu et al., 2019

» Related Works: centrality ranking [Roddenberry and Segarra, 2021].
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Numerical Experiment: Blind Centrality Learning

-© RPCA (31) |+ Algorithm 1

SpectTemp [19] 4B~ Smooth [38]

LapLearn [18] =< KNN

—— PCA(12)
P — : — ——8——x
1 g9—4<—é%——<-437” & 1 =
0.8 0.8
Q Q
® 0 0.6 ©
5 5
0 04+ F o044 ]
02 \0\‘ 02
QO
©
0 - - 0 @\\‘Sﬁ o=
10 20 30 40 50 10 20 30 40 50
Dim. of latent factor & Dim. of latent factor &
Core—periphery graph
>
low pass, i.e., n < 1.
>

0
Dim. of latent factor %

10

20 30 40 50
Dim. of latent factor %

30 40 50

Barabasi-Albert graph

Graph filter H(-) is (left) ‘weak’ low pass, i.e., n = 1; (right) ‘strong’

Proposed Algorithm 1 with NMF outperforms SOTA in the considered

setting for ‘weak’ low pass; and similarly as PCA for ‘strong’ low pass.
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Numerical Experiment: Blind Centrality Learning

< ground truth 2 <> ground truth

® PCA / @ PCA o

® Algorithm 1 # Algorithm 1
AN 2

(left) ‘Strong’ low pass, (right) ‘Weak’ low pass
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Numerical Experiment: Blind Centrality Learning

(a) Stock Dataset’ (b) Senate Dataset’
Method Top-10 Estimated Central Stocks (sorted left-to-right) Method  Top-10 Estimated Central States (sorted left-to-right)
Algorithm 1 1 ACN HON X IBM DIS ORCL MMM B COST Algorithm 1 MI MT KS RI TN MN NV ME MD IN
043 056 051 072 050 036 070 033 052 064 0.79 066 0.74 0.67 068 074 0.43 067 06 0.62

Average Correlation Score: 0.66 + 0.099
BA GOOGL PCA (11) CA DE CO IL ND WV IA VA WY MA

Average Correlation Score: 0.
PCA (1) NVDA NFLX AMZN ADBE PYPL CAT

0.56 060 068 063 065 027 067 028 0.63 055 046 0.54 0.63 072 0.52 051 056 059 0.58
Average Correlation Score: 0.56 + 0.154 Average Correlation Score: 0.57 + 0.072
GL-SigRep GOOGL GOOG LLY  UsB  EMR DUK ORCL GD  VZ GLSigRep CA DE WV CO IL VA ND IA WY AZ
1131 0.63 063 017 043 059 011 070 053 027 071 131 0.55 046 0.52 0.54 0.63 0.56 0.72 051 059 031
Average Correlation Score: 0.48 £ 0.22 Average Correlation Score: 0.54 + 0.108
KNN ACN  HON BRK.B IBM P EMR MMM CSCO XOM KNN ND CA IL WV DE VA AZ CO WY IA
0.56 0.51 0.43 0.52 0.50 072 0.63 0.55 0.72 0.55 0.63 0.52 046 0.56 031 0.54 059 0.51

Average Correlation Score: 0.54 &+ 0.108

‘Average Correlation Score: 0.53 = 0.107

§pecTemp ACN ORCL PG LLY SUBX | MDLZ FB PFE MRK gpeCTemp AL ND WV CA DE IL MO MA VA SD
[14] 0.56 0.70 0.36 0.17 0.58 065 041 0.61 0.14 0.20 141 0.61 0.72 0.52 0.55 046 0.63 0.57 0.58 0.56 0.56
Average Correlation Score: 0.44 + 0.211 Average Correlation Score: 0.58 + 0.069
Kalofolias ACN HON BRK.E L P IBM XOM KO i COST Kalofolias AL AK AZ AR WV VA CA CO CT DE
[44] 0.56 0.51 0.52 0.43 072 050 0. .32 0.43 0.64 [44] 0.61 0.63 0.31 047 0.52 0.56 0.55 0.54 045 0.46
Average Correlation Score: 0.52 + 0.112 Average Correlation Score: 0.51 + 0.093
Information Technology/ Communication Services/ Industrials/ Finan Jother sectors. Republican/ Democrat/ Mixed.
#IThe number below each showsits score with the S&P100 index and number of *Yay’s in the voting result [cf. (36)]. The average correlation

scores are taken over the set of central nodes found and the number after ‘+" is the standard deviation.

(a) Detected central nodes with performance measured on correlation
of nodes with (left) S&P500 index, (right) voting outcomes.

Extension: Multiple graph learning from streaming data®!.

11[He and Wai, 2023b] Y. He, H.-T., “Online Inference for Mixture Model of

Streaming Graph Signals with Non-White Excitation”, TSP, 2023.
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Leveraging Low-passness with Partial Observation

» In many settings, we do not observe complete graph signals on every
nodes, e.g., large social network, power network, etc.

» Hidden nodes remain influential and affect the observations:

Lo,o Lo,h :|

y=H(L)x with y= [ Yobs ], L= [
Lo Lpp

Sub-graph Ly, Observed Vs & sub-graph L, ,

Hidden Viiq & sub-graph Ly
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Learning with Partial Observation

» Goal: infer about the subgraph of observable nodes, L, .:

y_mL)x_[yObsycy_[ c; }’L_l ]
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Learning with Partial Observation

» Goal: infer about the subgraph of observable nodes, L, .:

y_mL)x_[yObsycy_[ c; }’L_l ]

I. Leveraging Smoothness: observing that'?

1 & R

—~ > vl Ly = Tr(CoLoo) + Te( 2C0 LY, ) + Tr(CJLyy) >0

i=1 ~— N———
low rank if |Vhig| < N >0

min  Tr(CyLo,o) + Tr(K) + Tr(R) + ag(Lo,o) + 7| K|«
— Loo.K.R

s.t. Tr(CyLoo) + Tr(K) + Tr(R) >0, Tr(R) > 0, Lo, € L,
where g(-), £ are respectively regularization, constraint for L, , to be a
proper sub-matrix of Laplacian.

12[Buciulea et al., 2022] A. Buciulea, S. Rey, A. G. Marques. Learning graphs from
smooth and graph-stationary signals with hidden variables. TSIPN, 2022.
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Learning with Partial Observation

» Goal: infer about the subgraph of observable nodes, L, :
° LO o
y_H(L)X_[yObS:|7Cy_[ Cy }7L_

Il. Leveraging Lowrank-ness: provided H(L) is (1, K) low pass,

C. = E,C,E; ~ (E,Ux)Cx(E,Uk)"
where E, is row-selection matrix for Vi,s. 1 can estimate E,Ux ~ Uk ,

> Key observation: low-rankness of #(L) supersedes partial obs.

» Straightforward extension for graph feature learning: partial

community detection?, partial centrality inference!3

2[Wai et al., 2022] H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, " Community Inference
From Partially Observed Graph Signals: Algorithms and Analysis”, TSP, 2022.
13[He and Wai, 2023a] Y. He, H.-T., Central nodes detection from partially observed

graph signals, in ICASSP 2023.
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Complete Learning with Partial Observation

» Goal: inferring the graph features of the whole A,

Yobs ce coh Aso Aon
=H(A)x = , C, = 4 4 , A= ’ ’
d (A [ } g [ ce C Aro Ann
» Requires side information or sub-graph topology:
Known side information Known sub-graph topology

» We rely on low-rankness and aim to learn community or centrality.
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Complete Learning with Partial Observation

» Goal: inferring the graph features of the whole A,

Yobs ce Co.h
Gl el A A

Ao,o Ao,h
Ano Anp

» Requires side information or sub-graph topology:

(1) If A, is known': Nystrdm method [Fowlkes et al., 2004] to
‘interpolate’ eigenvectors,
. Uk

) top-K Uy of €, (i) Vi 1= K ) (i) ke Vi.
(i) top Kk of C>°, (i) Vk <Ah,oUK/)\> (iii) k-means on Vi

» Assume that Vs is chosen at random, then w.h.p.,

_ N . 1 1 | Viid |
FN, ..., N V) —F* =0 +—=+ + .
e M ) (”" vm v V|>

K-means obj. on whole graph.

14[Wai et al., 2022] H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, " Community Inference
From Partially Observed Graph Signals: Algorithms and Analysis”, TSP, 2022.
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Complete Learning with Partial Observation

» Goal: inferring the graph features of the whole A,

_ _ Yobs _ C; C)(/).h _
y-mia= [ ] c=[ & G ] a

Ao,o Ao.h
Ano Ann

» Requires side information or sub-graph topology:

(I1) Excitation signal is known'*: recall x) = Bz(*) and we know B, z(*).

YobsZ' = hp(A\1)consc ' B+ pE,B +O(7i), holds V p>0
N———— N—— N——

rank-1 w/ eig.-centrality sparse ‘boosting’
> Full eigen-centrality ¢ can be estimated if

Excitation rank = rank(B) = K > | Viud| + 1

14[He and Wai, 2023a] Y. He, H.-T., Central nodes detection from partially observed
graph signals, in ICASSP 2023.
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Numerical Experiment: Complete Graph Learning

- np =5Alg. 1 -5~ np =5RPCA -EF np =5PCA
- np = 30 Alg. 1 5~ np = 30RPCA -EF+ np = 30 PCA

0.8 0.8

0.6 E
2
g \
= 04
8
=1
B o2

G4
20 40 60 80 100 20 40 60 80 100
# External sources k # External sources k
0.8 0.8
H.

2
<
-
8
=)
i3}

20 40 60 80 100 20 40 60 80 100
# External sources k # External sources k

» Increasing the excitation rank K improves the detection performances.
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Agenda

Beyond Inference Problems & Wrapping Up
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Detecting Low-pass Signals

Question: How do we know if a set of graph signals are low pass?

» Topology inferred from non low pass signals can be deceptive.

(b)

(a) Ground truth. (b) Topology learnt by GL-SigRep on non-low-pass signals.

» Challenges: graph topology A and filter #(A) are unknown.

» Warning: an ill posed problem — graph signals is smooth on one
graph, but non-smooth on another.
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Detecting Low-pass Signals

» Assume: no. of dense clusters, K, in the graph is known a-priori.
= A1,..., Ak &~ 0 = if the filter is low pass, it will be K low pass.

» Observation: graph signals from K low pass filter exhibit particular
spectral signature. E.g., SBM graph with K = 3 clusters,

0.4
= 024
3

i — U
ER — v
g — U3
—0.2 —_—y
— Vg

T T
0 20 40 60 80 100 120
sorted index j

Idea: Measure clusterability of principal eigenvectors. J

31/38



Application: Robustifying Graph Learning
What if graph signals are corrupted with non-low-pass observations? —>
screen them out by a blind detector and apply [Dong et al., 2016].

J

(a) Ground truth graph learnt from clean data.
(b) Graph learnt from corrupted data (mixed w/ high-pass signals).
(c) Graph learnt after the pre-screening procedure.

» Other applications: blind detection of network dynamics, blind

anomaly detection, etc.!®
15[Zhang et al., 2023a] C. Zhang, Y. He, H.-T.. Detecting Low Pass Graph Signals

via Spectral Pattern: Sampling Complexity and Applications. ArXiv, 2023.
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Stability of Graph Filter with Edge Rewiring

» Graph filter is an important building block of Graph Convolutional
Neural Network (GCN) — trained on (L), but applied on H(L).

» Stability'® is related to transferability of GCNs. Existing results
require small no. of edge rewires.

Frequency-domain bound: If H(L) is low pass, then
1H(L) = H(L)| = O(n + Uk — O]l + || Ak — Axl)),

where Uy — Ui, Ay — Ay are perturbations of top eigenvectors/values.

» Residuals — 0 for edge rewiring on SBMs perturbations!”.

— Proof: depends on convergence of graph filter on SBM.

6[Gama et al., 2020] F. Gama, J. Bruna, A. Ribeiro. Stability properties of graph
neural networks. TSP, 2020.

17[Nguyen et al., 2022] H. Nguyen, Y. He, H.-T., “On the stability of low pass graph
filter with a large number of edge rewires,” in ICASSP, 2022.
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Stability of Graph Filter with Edge Rewiring

Frequency-domain bound: If H(L) is low pass, then

IH(L) — H(L)|| = O + || Uk — Okl + | Ak — Axl]),

where Uj — Uk, Ay — Ak are perturbations of top eigenvectors/values.

0 102
1020 —

e

(5 10l =
5 10 ® exp(Lyy /logn) E (®exp(0.1Lyy / logn)
d 10 ® exp(—Lg /logn) 109 § ® exp(—0.1Lg; / log n)
Ry E
g -
-t =
109 — g—o—o—o—0 E
| | | | | - | | | |
0.01 005 0.1 015 02 0.01 0.05 0.1 0.15 0.2
Rewiring ratio pre Rewiring ratio pye

> Low pass filters are insensitive to no. of rewiring vs. high pass filters.
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Generalization Bound

> Sample complexity of MPNN (GCN) learning®® analyzed via

£ = Eug [sup (+ > £(06 ()5~ Erg [£(0c(x).0)]) | < Snoa

m

expected risk

empirical risk
where m = no. of training sets, n = no. of nodes, and G', x', y' is the
ith training set of graph, attributes (signals), labels.

» Proof: MPNN — graphon limit as n — 0o [Keriven et al., 2020].

» C depends on Lipschitz-ness of message (activation) functions, etc. +
no explicit dependence on graph filter.

» Recent work!® provide transferability bound utilizing the spectrum of
graph filter similar to [Keriven et al., 2020] <— open problem?

8[Maskey et al., 2022] S. Maskey, R. Levie, Y. Lee, and G. Kutyniok. Generalization
analysis of message passing neural networks on large random graphs. in NeurlPS, 2022.

19[Ruiz et al., 2021] L. Ruiz, L. F. Chamon, A. Ribeiro. Transferability properties of
graph neural networks. ArXiv, 2021
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Wrapping Up

k,///// HE . HH "
\ obs. on nodes [ M F2
Excitation —> / —> [
L wif B
—
H ER

» Takehome Point: Low pass graph signals are prevalent + entail
structure that enables (blind) graph topology learning.

» Smoothness — graph topology learning.
» Low-rankness — topology feature learning (centrality, community).

> also for learning from partial observation, ...

» Related problems: how to detect low pass signals, application to graph
ML, ...
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Perspectives
» Graph learning from partial observations with many hidden nodes.
— it is the case for observations on social/economics networks.

» Learning from multi-attribute signal: graphs do not live in isolation,
e.g., multiplex networks in ecology, social systems, etc.

— needs new notion for graph filter:
Prod-Graph Filter :  H(LE, L¢) = >0 hi(L®)' & (LOY,

and interpretation for low pass multi-layer graph filter
[Zhang et al., 2023b, Kadambari and Chepuri, 2021, Einizade and Sardouie, 2022].

' Thank you!
Questions & comments are welcomed.
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