Low Pass Graph Signal Processing: Modeling Data, Inference, and Beyond

Hoi-To Wai

Department of SEEM, The Chinese University of Hong Kong

June 12, 2023, GSP Workshop 2023

Acknowledgement: CUHK Direct Grant #4055135, HKRGC Project #24203520

Motivation: Network (Graph) Data

- Graph signal processing (GSP): tool to analyze network data (graph signals).
- Processes affected by irregular+relational parameters: social, economic, biological, electric power, transportation, gas, etc.

Dealing with Network Data

- Statistics: Gauss Markov random fields, graphical models
 - statistical association of data

Machine learning: dimensionality reduction
 — graph representation of data

 $\frac{P(A|B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$

SP: Graph Signal Processing

 input/output association of data
 generative, interpretable model

Dealing with Network Data

 Statistics: Gauss Markov random fields, graphical models
 — statistical association of data

Machine learning: dimensionality reduction
 — graph representation of data

SP: Graph Signal Processing

 input/output association of data
 generative, interpretable model

Low Pass GSP

SP cares about the frequency content in a (time domain) signal low frequency vs high frequency:

Similar notion carries over to graph signal processing (GSP) low pass graph signals vs non low pass graph signals:

Takehome Point: *Low pass* graph signals are prevalent + entail structure that enables (blind) *graph topology learning*.

Agenda

Background

- Basics of GSP Models
 - A Quick Introduction
 - Low Pass Graph Signals
- Graph Learning from Network Data
 - Smoothness and Graph Learning
 - Low-rank Model and Graph Feature Learning
 - Learning with Partial Observation
- Beyond Inference Problems & Wrapping Up

References

Agenda

Background

Basics of GSP Models

- A Quick Introduction
- Low Pass Graph Signals
- Graph Learning from Network Data
 - Smoothness and Graph Learning
 - Low-rank Model and Graph Feature Learning
 - Learning with Partial Observation
- Beyond Inference Problems & Wrapping Up

References

Network Data = Filter + Excitation

• Consider a *undirected graph* G = (V, E, A) with N nodes

 † as in SP, filter encodes the **responses** of a system to excitation.

- ► As SP-ers, what is our favorite form of *filter*?
- Linear time invariant filter = 'shifting' + 'linear combination'.

Graph Shift Operator (GSO)

Starting point: Periodic signals $\mathbf{x} = (x_1, \dots, x_N)$ is 'shifted' on a cycle

- **Generalization to graphs**: GSO mixes adjacent elements on G^1 .
- Common choice of GSO: Laplacian matrix, $\boldsymbol{L} = \text{Diag}(\boldsymbol{A1}) \boldsymbol{A}$.

- for the rest of the talk, we focus on **undirected** graph.

• Denote the EVD $\boldsymbol{L} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top}$ with $\boldsymbol{0} = \lambda_1 < \cdots < \lambda_N$.

¹[Sandryhaila and Moura, 2013] A. Sandryhaila, J. M. Moura. Discrete signal processing on graphs. TSP, 2013; also see [Püschel and Moura, 2003].

Graph Filters

• Consider the **graph filter** as a matrix polynomial:

$$\mathcal{H}(\boldsymbol{L}) \mathrel{\mathop:}= \sum_{\ell=0}^{+\infty} h_\ell \boldsymbol{L}^\ell.$$

 $\underline{ \text{Shift-invariant prop:}} \quad \textbf{y} = \mathcal{H}(\textbf{L})\textbf{x} \quad \rightarrow \quad \textbf{L}\textbf{y} = \textbf{L}\mathcal{H}(\textbf{L})\textbf{x} \equiv \mathcal{H}(\textbf{L})\textbf{L}\textbf{x}$

SP/GSP Perspective: network data are filtered graph signals,

$$oldsymbol{y} = \mathcal{H}(oldsymbol{L})oldsymbol{x} = \sum_{\ell=0}^{+\infty} h_\ell \, oldsymbol{L}^\ell oldsymbol{x}.$$

The signal/observation is **y** while **x** is viewed as the **excitation**.

What are low and high frequencies basis on graph?

▶ High frequency graph signal → *large variation* in adjacent entries:

$$S(\mathbf{x}) := \sum_{i,j} A_{ij} (x_i - x_j)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x}.$$

► Intuition: if $S(\mathbf{x})$ is small, the graph signal \mathbf{x} is *smooth*. It holds $S(\mathbf{u}_i) = \mathbf{u}_i^\top \mathbf{L} \mathbf{u}_i = \lambda_i$, as seen:

 $\implies \boldsymbol{U} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_N)$ form the right basis for graph signals on G.

Frequency Analysis via Graph Fourier Transform

Graph Fourier Transform (GFT) calculates the frequency components of a signal:

$$\tilde{\mathbf{y}} = \mathbf{U}^{\top} \mathbf{y} \longleftarrow \tilde{y}_i = \langle \mathbf{u}_i, \mathbf{y} \rangle.$$

The transfer/frequency response function of the graph filter is:

$$ilde{m{h}}=h(m{\lambda})$$
 where $ilde{h}_i=h(\lambda_i):=\sum_\ell h_\ell\lambda_i^\ell.$

We have the convolution theorem:

 $\mathbf{y} = \mathcal{H}(\mathbf{L})\mathbf{x} \Longleftrightarrow \tilde{\mathbf{y}} = \tilde{\mathbf{h}} \odot \tilde{\mathbf{x}} \quad \leftarrow \odot \text{ is element-wise product.}$

Graph filter can be classified as either low-pass², band-pass, or high-pass, depending on its graph frequency response, also see³.

²E.g., an ideal low-pass $\tilde{h}_1, ..., \tilde{h}_K = 1$, $\tilde{h}_{K+1}, ..., \tilde{h}_N = 0$.

³[Isufi et al., 2022] E. Isufi, F. Gama, D. I Shuman, S. Segarra. Graph Filters for Signal Processing and Machine Learning on Graphs. ArXiv, 2022.

Low Pass Graph Filter (LPGF)

Def. For
$$1 \le K \le N - 1$$
, define

$$\eta_{K} := \frac{\max\{|h(\lambda_{K+1})|, \dots, |h(\lambda_{N})|\}}{\min\{|h(\lambda_{1})|, \dots, |h(\lambda_{K})|\}}.$$
If the low-pass ratio satisfies $\eta_{K} < 1$, then $\mathcal{H}(\mathbf{L})$ is **K**-low-pass.

- ▶ Integer *K* characterizes the *bandwidth*, or the cut-off frequency.
- We say that y is K low pass signal provided that

 $y = \mathcal{H}(L)x$, where $\mathcal{H}(L)$ is *K*-low pass & *x* satisfies some mild cond..

► Graph frequencies are non-uniformly distributed: λ_K ≪ λ_{K+1} tends to induce K-low-pass filters, e.g., stochastic block model (SBM).

Physical Models lead to Low Pass Signals

Social Network Opinions⁴

- V = individuals, E = friends.
- DeGroot model for opinions:

$$\mathbf{y}_{t+1} = (1-\beta) \big(\mathbf{I} - \alpha \mathbf{L} \big) \mathbf{y}_t + \beta \mathbf{x}_t.$$

Observed steady state:

 $\mathbf{y}_{\infty} = \left(\mathbf{I} + \widetilde{\alpha}\mathbf{L}\right)^{-1}\mathbf{x} = \mathcal{H}(\mathbf{L})\mathbf{x},$

where $\widetilde{\alpha} = \beta (1 - \alpha) / \alpha > 0$.

Prices in Stock Market⁵

- \triangleright V = financial inst., E = ties.
- Business performances evolve as:

 $\mathbf{y}_{t+1} = (1-\beta)\mathcal{H}(\mathbf{L})\mathbf{y}_t + \beta \mathbf{B}\mathbf{x},$

e.g., stock return.

Observed steady state:

$$\mathbf{y}_{\infty} = \left(\frac{1}{\beta}\mathbf{I} - \frac{\overline{\beta}}{\beta}\mathcal{H}(\mathbf{L})\right)^{-1}\mathbf{B}\mathbf{x} \\ = \widetilde{\mathcal{H}}(\mathbf{L})\mathbf{B}\mathbf{x}.$$

Fact⁶: Both $\mathcal{H}(\boldsymbol{L})$, $\tilde{\mathcal{H}}(\boldsymbol{L})$ are **low pass** graph filters.

⁴[DeGroot, 1974] M. H. DeGroot, Reaching a consensus. JASA, 1974.

⁵[Billio et al., 2012] M. Billio et al., Econometric measures of connectedness and

systemic risk in the finance and insurance sectors, Journal of Economics Finance, 2012.

⁶[Ramakrishna et al., 2020] R. Ramakrishna, H.-T., A. Scalgione. A user guide to low-pass graph signal processing and its applications. SPM, 2020.

Agenda

Background

- Basics of GSP Models
 - A Quick Introduction
 - Low Pass Graph Signals

Graph Learning from Network Data Smoothness and Graph Learning Low-rank Model and Graph Feature Learning Learning with Partial Observation

Beyond Inference Problems & Wrapping Up

References

Graph Learning from Network Data

Goal: estimate *L* or some information about it.

• Working hypothesis: a number of graph signals $y^{(t)}$ are available as

- Graph learning relies on two properties of low pass signals:
 - ► Smoothness → graph topology learning.
 - Low-rankness \rightarrow graph feature learning (e.g., community, centrality)

Smoothness and Graph Learning

Insight: For K-low-pass graph signals (η_K ≪ 1) with full-rank excitation satisfying B = I, we observe that

$$\mathbb{E}\big[\boldsymbol{y}_{\ell}^{\top}\boldsymbol{L}\boldsymbol{y}_{\ell}\big] \approx \sum_{i=1}^{K} \lambda_{i} |\boldsymbol{h}(\lambda_{i})|^{2} + \sigma^{2} \mathrm{Tr}(\boldsymbol{L}) \overset{\text{low pass filter}}{\approx} \boldsymbol{0},$$

i.e., the low pass filtered graph signals are smooth w.r.t. \boldsymbol{L} .

Idea: Fit a graph optimizing for smoothness (GL-SigRep)⁷:

$$\begin{split} \min_{\substack{\boldsymbol{z}_{\ell}, \ell=1, \dots, m, \widehat{\boldsymbol{L}} \\ \text{ s.t. }}} & \frac{1}{m} \sum_{\ell=1}^{m} \left\{ \frac{1}{\sigma^{2}} \| \boldsymbol{z}_{\ell} - \boldsymbol{y}_{\ell} \|_{2}^{2} + \boldsymbol{z}_{\ell}^{\top} \widehat{\boldsymbol{L}} \boldsymbol{z}_{\ell} \right\} \leftarrow \text{ note } \boldsymbol{z} \approx \boldsymbol{y} \\ \text{ s.t. } & \operatorname{Tr}(\widehat{\boldsymbol{L}}) = \boldsymbol{N}, \ \widehat{\boldsymbol{L}}_{ji} = \widehat{\boldsymbol{L}}_{ij} \leq \boldsymbol{0}, \ \forall \ i \neq j, \ \widehat{\boldsymbol{L}} \boldsymbol{1} = \boldsymbol{0}, \end{split}$$

⁷[Dong et al., 2016] X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, "Learning Laplacian matrix in smooth graph signal representations." TSP, 2016.

Numerical Experiment: GL-SigRep

Topology learnt⁸ using GL-SigRep from the synthetic data generated through a low pass graph filter:

$$\mathbf{y}_{\ell} = \sqrt{\mathbf{L}}^{-1} \mathbf{x}_{\ell}, \quad \mathbf{x}_{\ell} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

Alternative approaches:

- Friedman et al., 2008] Graphical LASSO: ML estimation for GMRF.
- Segarra et al., 2017] Spectral template: stationary graph signals.
- [Mei and Moura, 2016] Causal modeling: time series data

⁸Image credits: [Dong et al., 2016].

Low-rank-ness and Graph Feature Learning

Issue: with low-rank excitation ($\boldsymbol{B} \in \mathbb{R}^{N \times R}$ with R < N) \longrightarrow graph learning = difficult \therefore data is nearly rank deficient...

▶ Insight: Suppose $\mathcal{H}(L)$ is (η, K) low pass, then

 $\boldsymbol{C}_{\boldsymbol{y}} = \mathbb{E}[\boldsymbol{y}\boldsymbol{y}^{\top}] = \mathcal{H}(\boldsymbol{L})\boldsymbol{U}\boldsymbol{C}_{\boldsymbol{x}}\boldsymbol{U}^{\top}\mathcal{H}(\boldsymbol{L})^{\top} \approx \boldsymbol{U}_{\boldsymbol{K}}\boldsymbol{C}_{\tilde{\boldsymbol{x}}}\boldsymbol{U}_{\boldsymbol{K}}^{\top} .$

Thus C_y is also low rank!

- Approximation holds if $\eta \ll 1 \Rightarrow$ low rank $\mathcal{H}(\cdot)$, rank $(\mathcal{H}(\mathbf{L})) \approx K \ll N$ and range space $\approx \mathbf{U}_{K}$.
- Idea: spectral method to extract principal components in U_K from C_y.

Only a few nodes can be excited!

 \implies Can (still) learn **communities** and **centrality** of the graph.

Blind community detection (Blind CD)

Idea: spectral clustering applied on empirical covariance $\widehat{C}_{y} \approx C_{y}$: (i) find the top- $k \ \widehat{U}_{K} \in \mathbb{R}^{N \times K}$ of $\widehat{C}_{y} = \frac{1}{m} \sum_{\ell=1}^{m} \mathbf{y}_{\ell} \mathbf{y}_{\ell}^{\top}$; (ii) apply *k*-means on the rows of \widehat{U}_{K} .

• Theorem: Denote the detected clusters as $\widehat{\mathcal{N}}_1, \ldots, \widehat{\mathcal{N}}_K$, then⁹

$$\underbrace{\mathbb{K}(\widehat{\mathcal{N}}_1,\ldots,\widehat{\mathcal{N}}_k;\boldsymbol{U}_K)}_{\text{K-means obj. based on }\boldsymbol{U}_K} - \underbrace{\mathbb{K}^\star}_{\text{Optimal K-means obj.}} = \mathcal{O}(\eta_k + m^{-1/2}).$$

 † \rightarrow performance of *spectral clustering (with known topology)* if $\eta_k \rightarrow 0$.

- Learning of high-level structure is robust to low-rank excitation.
- Extensions: exact community recovery on multi-graphs [Roddenberry et al., 2020], dynamic observations [Schaub et al., 2020], ...

⁹[Wai et al., 2019] H.-T., S. Segarra, A. Ozdaglar, A. Scaglione, A. Jadbabaie, "Blind community detection from low-rank excitations of a graph filter," TSP, 2019.

Blind community detection (Blind CD)

Problem: What if
$$\eta_{\mathcal{K}} \approx 1$$
? Let's try $\underbrace{\widetilde{\mathcal{H}}_{\rho}(\boldsymbol{L}) := \mathcal{H}(\boldsymbol{L}) - \rho \boldsymbol{I}}_{\text{'boosted' filter}} (\rho > 0).$

Freq. response

Robust PCA formulation:

 $\min_{\boldsymbol{L},\boldsymbol{B}} \|\boldsymbol{Y}\boldsymbol{Z}^{\dagger} - \boldsymbol{L} - \boldsymbol{B}\|_{F}^{2} + \gamma \|\boldsymbol{L}\|_{\star} + \mu \|\boldsymbol{B}\|_{1}$

• Original ratio: $\eta_K = \frac{0.7}{0.85} \approx 0.82$.

• **Boosted** ratio:
$$\tilde{\eta}_{\kappa} = \frac{0.05}{0.25} = 0.2$$
.

Suppose that \boldsymbol{Z} is known,

$$\mathbf{Y}\mathbf{Z}^{\dagger} = \mathcal{H}(\mathbf{L})\mathbf{B} = \underbrace{\widetilde{\mathcal{H}}_{\rho}(\mathbf{L})\mathbf{B}}_{\text{low-rank}} + \rho\mathbf{B}$$

Numerical Experiment: Blind CD (+Boosting)

(a) As $R = \operatorname{rank}(\mathbf{C}_x)$ increases, Blind CD approaches the performance of spectral clustering on the true GSO.

Blind Centrality Learning

Eigen-centrality = TopEV(A) is revealed by TopEV(C_y) for 1-low pass signals => a simple PCA procedure suffices:

Theorem¹⁰: let v_1 be the true eig. centrality,

$$\|\hat{\mathbf{v}}_1 - \mathbf{u}_1\|_2 = \mathcal{O}(\eta_1 + m^{-1/2}).$$

¹⁰[He and Wai, 2022] Y. He, H.-T., "Detecting central nodes from low-rank excited graph signals via structured factor analysis," TSP, 2022 \leftarrow note GSO = **A** in this case.

Blind Centrality Learning (cont'd)

► To obtain a robust formulation against $\eta_1 \approx 1$, assume that **B** is *sparse* and use similar idea as Blind CD:

$$\begin{aligned} \mathbf{Y} &= \mathcal{H}(\mathbf{A})\mathbf{B}\mathbf{Z} = \left((\mathcal{H}(\mathbf{A}) - \rho \mathbf{I})\mathbf{B} + \rho \mathbf{B} \right) \mathbf{Z} \\ &= \left(\mathsf{Low-rank} + \mathsf{Sparse} \right) \times \mathbf{Z} \end{aligned}$$

Structured factor analysis: if **Z** is unknown,

Step 1. decompose **Y** via NMF, Step 2. Robust PCA.

Theoretical analysis (for NMF): good performance if (i) N/rank(Z) is large, (ii) rank(Z) is large.

- trade-off between low-pass-ness and NMF performance.

- derived from [Fu et al., 2019].

Related Works: centrality ranking [Roddenberry and Segarra, 2021].

Numerical Experiment: Blind Centrality Learning

- Graph filter H(·) is (left) 'weak' low pass, i.e., η ≈ 1; (right) 'strong' low pass, i.e., η ≪ 1.
- Proposed Algorithm 1 with NMF outperforms SOTA in the considered setting for 'weak' low pass; and similarly as PCA for 'strong' low pass.

Numerical Experiment: Blind Centrality Learning

(left) 'Strong' low pass, (right) 'Weak' low pass

Numerical Experiment: Blind Centrality Learning

	(b) Senate Dataset [†]																						
Method		То	p-10 Est	imated G	Method	Top-10 Estimated Central States (sorted left-to-right)																	
Algorithm 1	ALL	ACN	HON	AXP	IBM	DIS	ORCL	MMM	BRK.B	COST	Algorithm 1	MI	MT	KS	RI	TN	MN	NV	ME	MD	IN		
	0.43	0.56	0.51	0.72	0.50	0.36	0.70	0.33	0.52	0.64		0.79	0.66	0.74	0.67	0.68	0.74	0.43	0.67	0.6	0.62		
			Aver	age Con	Average Correlation Score: 0.66 ± 0.099																		
PCA (11)	NVDA	NFLX	AMZN	ADBE		CAT	MA	GOOG	BA	GOOGL	PCA (11)	CA	DE	CO	IL	ND	WV	IA	VA	WY	MA		
	0.56	0.60	0.68	0.63	0.65	0.27	0.67	0.63	0.28	0.63		0.55	0.46	0.54	0.63	0.72	0.52	0.51	0.56	0.59	0.58		
			Average Correlation Score: 0.57 ± 0.072																				
GL-SigRep	GOOGL	GOOG	LLY	USB	EMR	DUK	ORCL	GD	VZ	V	GL-SigRep	CA	DE	WV	CO	IL	VA	ND	IA	WY	AZ		
[13]	0.63	0.63	0.17	0.43	0.59	0.11	0.70	0.53	0.27	0.71	[13]	0.55	0.46	0.52	0.54	0.63	0.56	0.72	0.51	0.59	0.31		
	Average Correlation Score: 0.54 ± 0.108																						
KNN	ACN	HON	ALL	BRK.B	IBM	AXP	EMR	MMM	CSCO	XOM	KNN	ND	CA	IL	WV	DE	VA	AZ	CO	WY	IA		
	0.56	0.51	0.43	0.52	0.50	0.72	0.59	0.33	0.63	0.55		0.72	0.55	0.63	0.52	0.46	0.56	0.31	0.54	0.59	0.51		
	Average Correlation Score: 0.54 ± 0.108																						
SpecTemp	ACN	ORCL	PG	LLY	SUBX	PYPL	MDLZ	FB	PFE	MRK	SpecTemp	AL	ND	WV	CA	DE	IL	MO	MA	VA	SD		
[14]	0.56	0.70	0.36	0.17	0.58	0.65	0.41	0.61	0.14	0.20	[14]	0.61	0.72	0.52	0.55	0.46	0.63	0.57	0.58	0.56	0.56		
		Average Correlation Score: 0.58 ± 0.069																					
Kalofolias	ACN	HON	BRK.B	ALL	AXP	IBM	XOM	KO	USB	COST	Kalofolias	AL	AK	AZ	AR	WV	VA	CA	CO	CT	DE		
[44]	0.56	0.51	0.52	0.43	0.72	0.50	0.55	0.32	0.43	0.64	[44]	0.61	0.63	0.31	0.47	0.52	0.56	0.55	0.54	0.45	0.46		
	Average Correlation Score: 0.51 ± 0.093																						
Inforr	Information Technology/ Communication Services/ Industrials/ Financials/other sectors.												Republican/ Democrat/ Mixed.										

^{4†}The number below each stock/state shows its normalized correlation score with the S&P100 index and number of 'Yay's in the voting result [cf. (36)]. The average correlation scores are taken over the set of central nodes found and the number after '±' is the standard deviation.

(a) Detected central nodes with performance measured on correlation of nodes with (left) S&P500 index, (right) voting outcomes.

Extension: Multiple graph learning from streaming data¹¹.

¹¹[He and Wai, 2023b] Y. He, H.-T., "Online Inference for Mixture Model of Streaming Graph Signals with Non-White Excitation", TSP, 2023.

Leveraging Low-passness with Partial Observation

- In many settings, we do not observe complete graph signals on every nodes, e.g., large social network, power network, etc.
- Hidden nodes remain influential and affect the observations:

$$m{y} = \mathcal{H}(m{L})m{x}$$
 with $m{y} = \begin{bmatrix} m{y}_{obs} \\ m{y}_{hid} \end{bmatrix}$, $m{L} = \begin{bmatrix} m{L}_{o,o} & m{L}_{o,h} \\ m{L}_{h,o} & m{L}_{h,h} \end{bmatrix}$

Learning with Partial Observation

Goal: infer about the subgraph of observable nodes, $L_{o,o}$:

$$\boldsymbol{y} = \mathcal{H}(\boldsymbol{L})\boldsymbol{x} = \begin{bmatrix} \boldsymbol{y}_{\text{obs}} \\ \boldsymbol{y}_{\text{hid}} \end{bmatrix}, \ \boldsymbol{C}_{\boldsymbol{y}} = \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{y}}^{\circ} & \boldsymbol{C}_{\boldsymbol{y}}^{\circ,\text{h}} \\ \boldsymbol{C}_{\boldsymbol{y}}^{\text{h,o}} & \boldsymbol{C}_{\boldsymbol{y}}^{\text{h}} \end{bmatrix}, \ \boldsymbol{L} = \begin{bmatrix} \boldsymbol{L}_{\text{o,o}} & \boldsymbol{L}_{\text{o,h}} \\ \boldsymbol{L}_{\text{h,o}} & \boldsymbol{L}_{\text{h,h}} \end{bmatrix}$$

I. Leveraging Smoothness: observing that¹²

$$\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{y}_{\ell}^{\top} \boldsymbol{L} \boldsymbol{y}_{\ell} \approx \operatorname{Tr}(\boldsymbol{C}_{y}^{o} \boldsymbol{L}_{o,o}) + \operatorname{Tr}(\underbrace{2\boldsymbol{C}_{y}^{o,h}\boldsymbol{L}_{o,h}^{\top}}_{\text{low rank if } |\boldsymbol{V}_{hid}| \ll N}) + \underbrace{\operatorname{Tr}(\boldsymbol{C}_{y}^{h}\boldsymbol{L}_{h,h})}_{\geq 0} \geq 0$$

$$\implies \underset{L_{o,o},\boldsymbol{K},\boldsymbol{R}}{\min} \quad \operatorname{Tr}(\boldsymbol{C}_{y}^{o}\boldsymbol{L}_{o,o}) + \operatorname{Tr}(\boldsymbol{K}) + \operatorname{Tr}(\boldsymbol{R}) + \alpha g(\boldsymbol{L}_{o,o}) + \gamma \|\boldsymbol{K}\|_{\star}$$
s.t.
$$\operatorname{Tr}(\boldsymbol{C}_{y}^{o}\boldsymbol{L}_{o,o}) + \operatorname{Tr}(\boldsymbol{K}) + \operatorname{Tr}(\boldsymbol{R}) \geq 0, \quad \operatorname{Tr}(\boldsymbol{R}) \geq 0, \quad \boldsymbol{L}_{o,o} \in \mathcal{L},$$

where $g(\cdot)$, \mathcal{L} are respectively regularization, constraint for $L_{o,o}$ to be a proper sub-matrix of Laplacian.

¹²[Buciulea et al., 2022] A. Buciulea, S. Rey, A. G. Marques. Learning graphs from smooth and graph-stationary signals with hidden variables. TSIPN, 2022.

Learning with Partial Observation

Goal: infer about **the subgraph of observable nodes**, **L**_{0,0}:

$$\boldsymbol{y} = \mathcal{H}(\boldsymbol{L})\boldsymbol{x} = \begin{bmatrix} \boldsymbol{y}_{\text{obs}} \\ \boldsymbol{y}_{\text{hid}} \end{bmatrix}, \ \boldsymbol{C}_{\boldsymbol{y}} = \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{y}}^{\circ} & \boldsymbol{C}_{\boldsymbol{y}}^{\circ,\text{h}} \\ \boldsymbol{C}_{\boldsymbol{y}}^{\text{h,o}} & \boldsymbol{C}_{\boldsymbol{y}}^{\text{h}} \end{bmatrix}, \ \boldsymbol{L} = \begin{bmatrix} \boldsymbol{L}_{\text{o,o}} & \boldsymbol{L}_{\text{o,h}} \\ \boldsymbol{L}_{\text{h,o}} & \boldsymbol{L}_{\text{h,h}} \end{bmatrix}$$

I. Leveraging Smoothness: observing that¹²

$$\frac{1}{m} \sum_{i=1}^{m} \mathbf{y}_{\ell}^{\top} \mathbf{L} \mathbf{y}_{\ell} \approx \operatorname{Tr}(\mathbf{C}_{y}^{o} \mathbf{L}_{o,o}) + \operatorname{Tr}(\underbrace{2\mathbf{C}_{y}^{o,h} \mathbf{L}_{o,h}^{\top}}_{\text{low rank if } |\mathbf{V}_{hid}| \ll N} + \underbrace{\operatorname{Tr}(\mathbf{C}_{y}^{h} \mathbf{L}_{h,h})}_{\geq 0} \geq 0$$

$$\implies \lim_{\mathbf{L}_{o,o},\mathbf{K},\mathbf{R}} \operatorname{Tr}(\mathbf{C}_{y}^{o} \mathbf{L}_{o,o}) + \operatorname{Tr}(\mathbf{K}) + \operatorname{Tr}(\mathbf{R}) + \alpha g(\mathbf{L}_{o,o}) + \gamma ||\mathbf{K}||_{\star}$$
s.t.
$$\operatorname{Tr}(\mathbf{C}_{y}^{o} \mathbf{L}_{o,o}) + \operatorname{Tr}(\mathbf{K}) + \operatorname{Tr}(\mathbf{R}) \geq 0, \ \operatorname{Tr}(\mathbf{R}) \geq 0, \ \mathbf{L}_{o,o} \in \mathcal{L},$$

where $g(\cdot)$, \mathcal{L} are respectively regularization, constraint for $L_{o,o}$ to be a proper sub-matrix of Laplacian.

 $^{^{12}}$ [Buciulea et al., 2022] A. Buciulea, S. Rey, A. G. Marques. Learning graphs from smooth and graph-stationary signals with hidden variables. TSIPN, 2022.

Learning with Partial Observation

Goal: infer about **the subgraph of observable nodes**, **L**_{0,0}:

$$\boldsymbol{y} = \mathcal{H}(\boldsymbol{L})\boldsymbol{x} = \begin{bmatrix} \boldsymbol{y}_{\text{obs}} \\ \boldsymbol{y}_{\text{hid}} \end{bmatrix}, \ \boldsymbol{C}_{\boldsymbol{y}} = \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{y}}^{\circ} & \boldsymbol{C}_{\boldsymbol{y}}^{\circ,\text{h}} \\ \boldsymbol{C}_{\boldsymbol{y}}^{\text{h,o}} & \boldsymbol{C}_{\boldsymbol{y}}^{\text{h}} \end{bmatrix}, \ \boldsymbol{L} = \begin{bmatrix} \boldsymbol{L}_{\text{o,o}} & \boldsymbol{L}_{\text{o,h}} \\ \boldsymbol{L}_{\text{h,o}} & \boldsymbol{L}_{\text{h,h}} \end{bmatrix}$$

II. Leveraging Lowrank-ness: provided $\mathcal{H}(\mathbf{L})$ is (η, K) low pass,

$$C_y^o = E_o C_y E_o^\top \approx (E_o U_K) C_{\tilde{x}} (E_o U_K)^\top$$

where E_o is row-selection matrix for V_{obs} . \uparrow can estimate $E_o U_K \approx U_{K,o}$

- **Key observation**: low-rankness of $\mathcal{H}(L)$ supersedes partial obs.
- Straightforward extension for graph feature learning: partial community detection¹², partial centrality inference¹³

¹²[Wai et al., 2022] H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, "Community Inference From Partially Observed Graph Signals: Algorithms and Analysis", TSP, 2022.
 ¹³[He and Wai, 2023a] Y. He, H.-T., Central nodes detection from partially observed graph signals, in ICASSP 2023.

Complete Learning with Partial Observation

Goal: inferring the graph features of **the whole A**,

$$m{y} = \mathcal{H}(m{A})m{x} = \begin{bmatrix} m{y}_{obs} \\ m{y}_{hid} \end{bmatrix}, \ m{C}_y = \begin{bmatrix} m{C}_y^o & m{C}_y^{o,h} \\ m{C}_y^{h,o} & m{C}_y^h \end{bmatrix}, \ m{A} = \begin{bmatrix} m{A}_{o,o} & m{A}_{o,h} \\ m{A}_{h,o} & m{A}_{h,h} \end{bmatrix}$$

Requires side information or sub-graph topology:

We rely on *low-rankness* and aim to learn community or centrality.

Complete Learning with Partial Observation

Goal: inferring the graph features of the whole A,

$$m{y} = \mathcal{H}(m{A})m{x} = \begin{bmatrix} m{y}_{obs} \\ m{y}_{hid} \end{bmatrix}, \ m{C}_y = \begin{bmatrix} m{C}_y^{\circ} & m{C}_y^{\circ,h} \\ m{C}_y^{h,o} & m{C}_y^{h} \end{bmatrix}, \ m{A} = \begin{bmatrix} m{A}_{o,o} & m{A}_{o,h} \\ m{A}_{h,o} & m{A}_{h,h} \end{bmatrix}$$

Requires side information or sub-graph topology:

ŀ

(I) If $A_{o,h}$ is known¹⁴: Nyström method [Fowlkes et al., 2004] to 'interpolate' eigenvectors,

(i) top-
$$\mathcal{K} \ \widehat{\boldsymbol{U}}_{\mathcal{K}}$$
 of $\widehat{\boldsymbol{C}}_{\mathcal{Y}}^{\text{obs}}$, (ii) $\widehat{\boldsymbol{V}}_{\mathcal{K}} := \begin{pmatrix} \widehat{\boldsymbol{U}}_{\mathcal{K}} \\ \boldsymbol{A}_{h,o} \widehat{\boldsymbol{U}}_{\mathcal{K}} / \widehat{\lambda} \end{pmatrix}$, (iii) *k*-means on $\widehat{\boldsymbol{V}}_{\mathcal{K}}$.

Assume that V_{obs} is chosen at random, then w.h.p.,

$$\underbrace{F(\widehat{\mathcal{N}}_{1},\ldots,\widehat{\mathcal{N}}_{k};\boldsymbol{V}_{K})}_{\text{K-means obj. on whole graph.}}-F^{\star}=\mathcal{O}\left(\eta_{K}+\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{|V_{\text{obs}}|}}+\frac{|V_{\text{hid}}|}{|V|}\right)$$

¹⁴[Wai et al., 2022] H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, "Community Inference From Partially Observed Graph Signals: Algorithms and Analysis", TSP, 2022.

Complete Learning with Partial Observation

Goal: inferring the graph features of **the whole A**,

$$oldsymbol{y} = \mathcal{H}(oldsymbol{A})oldsymbol{x} = \left[egin{array}{c} oldsymbol{y}_{ ext{obs}} \\ oldsymbol{y}_{ ext{hid}} \end{array}
ight], oldsymbol{C}_y = \left[egin{array}{c} oldsymbol{C}_y^{ ext{o}, ext{h}} \\ oldsymbol{C}_y^{ ext{h}, ext{o}} \end{array}
ight], oldsymbol{A} = \left[egin{array}{c} oldsymbol{A}_{ ext{o}, ext{o}} & oldsymbol{A}_{ ext{o}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{C}_y^{ ext{h}, ext{o}} \end{array}
ight], oldsymbol{A} = \left[egin{array}{c} oldsymbol{A}_{ ext{o}, ext{o}} & oldsymbol{A}_{ ext{o}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{C}_y^{ ext{o}, ext{h}} \end{array}
ight], oldsymbol{A} = \left[egin{array}{c} oldsymbol{A}_{ ext{o}, ext{o}} & oldsymbol{A}_{ ext{o}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{C}_y^{ ext{h}} \end{array}
ight], oldsymbol{A} = \left[egin{array}{c} oldsymbol{A}_{ ext{o}, ext{h}} & oldsymbol{A}_{ ext{o}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{C}_y^{ ext{h}} \end{array}
ight], oldsymbol{A} = \left[egin{array}{c} oldsymbol{A}_{ ext{o}, ext{h}} & oldsymbol{A}_{ ext{h}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{C}_y^{ ext{h}} \end{array}
ight], oldsymbol{A} = \left[egin{array}{c} oldsymbol{A}_{ ext{o}, ext{h}} & oldsymbol{A}_{ ext{h}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{C}_y^{ ext{h}} \end{array}
ight], oldsymbol{A} = \left[ella_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \end{array}
ight], oldsymbol{A} = \left[ella_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \\ oldsymbol{A}_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{o}} \end{array}
ight], oldsymbol{A} = \left[ella_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \end{array}
ight], oldsymbol{A} = \left[ella_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \end{array}
ight], oldsymbol{A} = \left[ella_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \end{array}
ight], oldsymbol{A} = \left[ella_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \end{array}
ight], oldsymbol{A} = \left[ella_{ ext{h}, ext{o}} & oldsymbol{A}_{ ext{h}, ext{h}} \end{array}
ight], oldsymbol{A} = \left[ella_$$

Requires side information or sub-graph topology:

(II) Excitation signal is known¹⁴: recall $x^{(t)} = Bz^{(t)}$ and we know $B, z^{(t)}$.

$$\boldsymbol{Y}_{\text{obs}}\boldsymbol{Z}^{\dagger} = \underbrace{\widetilde{h}_{\rho}(\lambda_{1})\boldsymbol{c}_{\text{obs}}\boldsymbol{c}^{\top}\boldsymbol{B}}_{\text{rank-1 w/ eig-centrality}} + \underbrace{\rho\boldsymbol{E}_{o}\boldsymbol{B}}_{\text{sparse}} + \mathcal{O}(\widetilde{\eta}), \quad \text{holds} \quad \underbrace{\forall \ \rho > 0}_{\text{'boosting'}}$$

Full eigen-centrality c can be estimated if

Excitation rank = $\operatorname{rank}(B) = K \ge |V_{hid}| + 1$

¹⁴[He and Wai, 2023a] Y. He, H.-T., Central nodes detection from partially observed graph signals, in ICASSP 2023.

Numerical Experiment: Complete Graph Learning

Increasing the excitation rank K improves the detection performances.

Agenda

Background

- Basics of GSP Models
 - A Quick Introduction
 - Low Pass Graph Signals
- Graph Learning from Network Data
 - Smoothness and Graph Learning
 - Low-rank Model and Graph Feature Learning
 - Learning with Partial Observation

Beyond Inference Problems & Wrapping Up

References

Detecting Low-pass Signals

Question: How do we know if a set of graph signals are low pass?

• Topology inferred from non low pass signals can be **deceptive**.

(a) Ground truth. (b) Topology learnt by GL-SigRep on non-low-pass signals.

- Challenges: graph topology **A** and filter $\mathcal{H}(\mathbf{A})$ are unknown.
- Warning: an ill posed problem graph signals is *smooth* on one graph, but *non-smooth* on another.

Detecting Low-pass Signals

- ► Assume: no. of dense clusters, *K*, in the graph is known a-priori. $\Rightarrow \lambda_1, \ldots, \lambda_K \approx 0 \Rightarrow$ if the filter is low pass, it will be *K* low pass.
- Observation: graph signals from K low pass filter exhibit particular spectral signature. E.g., SBM graph with K = 3 clusters,

Idea: Measure *clusterability* of principal eigenvectors.

Application: Robustifying Graph Learning

What if graph signals are corrupted with non-low-pass observations? \implies screen them out by a blind detector and apply [Dong et al., 2016].

- (a) Ground truth graph learnt from clean data.
- (b) Graph learnt from corrupted data (mixed w/ high-pass signals).
- (c) Graph learnt after the **pre-screening** procedure.
 - Other applications: blind detection of network dynamics, blind anomaly detection, etc.¹⁵

¹⁵[Zhang et al., 2023a] C. Zhang, Y. He, **H.-T.**. Detecting Low Pass Graph Signals via Spectral Pattern: Sampling Complexity and Applications. ArXiv, 2023.

Stability of Graph Filter with Edge Rewiring

- Graph filter is an important building block of Graph Convolutional Neural Network (GCN) → trained on H(L), but applied on H(L̂).
- Stability¹⁶ is related to *transferability* of GCNs. Existing results require small no. of edge rewires.

Frequency-domain bound: If $\mathcal{H}(\mathbf{L})$ is low pass, then

$$\|\mathcal{H}(\mathbf{L}) - \mathcal{H}(\hat{\mathbf{L}})\| = \mathcal{O}(\eta + \|\mathbf{U}_k - \hat{\mathbf{U}}_k\| + \|\mathbf{\Lambda}_k - \hat{\mathbf{\Lambda}}_k\|),$$

where $U_k - \hat{U}_k$, $\Lambda_k - \hat{\Lambda}_k$ are perturbations of top eigenvectors/values.

• Residuals \rightarrow 0 for edge rewiring on SBMs perturbations¹⁷.

- Proof: depends on convergence of graph filter on SBM.

 $^{16}[{\sf Gama}$ et al., 2020] F. Gama, J. Bruna, A. Ribeiro. Stability properties of graph neural networks. TSP, 2020.

¹⁷[Nguyen et al., 2022] H. Nguyen, Y. He, **H.-T.**, "On the stability of low pass graph filter with a large number of edge rewires," in ICASSP, 2022.

Stability of Graph Filter with Edge Rewiring

Frequency-domain bound: If $\mathcal{H}(\mathbf{L})$ is low pass, then

$$\|\mathcal{H}(\mathcal{L}) - \mathcal{H}(\hat{\mathcal{L}})\| = \mathcal{O}(\eta + \|\mathcal{U}_k - \hat{\mathcal{U}}_k\| + \|\Lambda_k - \hat{\Lambda}_k\|),$$

where $U_k - \hat{U}_k$, $\Lambda_k - \hat{\Lambda}_k$ are perturbations of top eigenvectors/values.

Low pass filters are insensitive to no. of rewiring vs. high pass filters.

Generalization Bound

▶ Sample complexity of MPNN (GCN) learning¹⁸ analyzed via

$$\mathcal{E}_{m}^{n} = \mathbb{E}_{\mu_{G}^{m}} \left[\sup_{\Theta} \left(\underbrace{\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\Theta_{G^{i}}(\mathbf{x}^{i}), \mathbf{y}^{i})}_{\text{empirical risk}} - \underbrace{\mathbb{E}_{\mu_{G}} \left[\mathcal{L}(\Theta_{G}(\mathbf{x}), \mathbf{y}) \right]}_{\text{expected risk}} \right]^{2} \right] \leq \frac{C}{m} n^{-\frac{1}{D_{\mathcal{X}}+1}}$$

where m = no. of training sets, n = no. of nodes, and $G^i, \mathbf{x}^i, \mathbf{y}^i$ is the *i*th training set of graph, attributes (signals), labels.

- **Proof**: MPNN \rightarrow graphon limit as $n \rightarrow \infty$ [Keriven et al., 2020].
- ► C depends on Lipschitz-ness of message (activation) functions, etc. ← no explicit dependence on graph filter.
- ► Recent work¹⁹ provide transferability bound utilizing the spectrum of graph filter similar to [Keriven et al., 2020] ← open problem?

¹⁸[Maskey et al., 2022] S. Maskey, R. Levie, Y. Lee, and G. Kutyniok. Generalization analysis of message passing neural networks on large random graphs. in NeurIPS, 2022. ¹⁹[Ruiz et al., 2021] L. Ruiz, L. F. Chamon, A. Ribeiro. Transferability properties of graph neural networks. ArXiv, 2021

Wrapping Up

- Takehome Point: Low pass graph signals are prevalent + entail structure that enables (blind) graph topology learning.
 - ► Smoothness → graph topology learning.
 - ▶ Low-rankness → topology feature learning (centrality, community).
 - also for learning from partial observation, ...
- Related problems: how to detect low pass signals, application to graph ML, ...

Perspectives

- Graph learning from partial observations with many hidden nodes.
 it is the case for observations on social/economics networks.
- Learning from multi-attribute signal: graphs do not live in isolation, e.g., multiplex networks in ecology, social systems, etc.

- needs new notion for graph filter:

Prod-Graph Filter : $\mathcal{H}(\mathbf{L}^{c}, \mathbf{L}^{G}) = \sum_{i,j} h_{ij}(\mathbf{L}^{c})^{i} \otimes (\mathbf{L}^{G})^{j}$,

and **interpretation** for low pass multi-layer graph filter [Zhang et al., 2023b, Kadambari and Chepuri, 2021, Einizade and Sardouie, 2022].

Thank you! Questions & comments are welcomed.

Agenda

Background

- Basics of GSP Models
 - A Quick Introduction
 - Low Pass Graph Signals
- Graph Learning from Network Data
 - Smoothness and Graph Learning
 - Low-rank Model and Graph Feature Learning
 - Learning with Partial Observation
- Beyond Inference Problems & Wrapping Up

References

References

[Billio et al., 2012] Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. *Journal of financial economics*, 104(3):535–559.

[Buciulea et al., 2022] Buciulea, A., Rey, S., and Marques, A. G. (2022). Learning graphs from smooth and graph-stationary signals with hidden variables. *IEEE Transactions on Signal and Information Processing over Networks*, 8:273–287.

[DeGroot, 1974] DeGroot, M. H. (1974).

Reaching a consensus.

Journal of the American Statistical association, 69(345):118-121.

[Dong et al., 2016] Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P. (2016). Learning Laplacian matrix in smooth graph signal representations. *IEEE Trans. Signal Process.*, 64(23):6160–6173.

[Einizade and Sardouie, 2022] Einizade, A. and Sardouie, S. H. (2022). Learning product graphs from spectral templates. arXiv preprint arXiv:2211.02893.

[Fowlkes et al., 2004] Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004). Spectral grouping using the nystrom method. IEEE transactions on pattern analysis and machine intelligence, 26(2):214–225.

[Friedman et al., 2008] Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441. [Fu et al., 2019] Fu, X., Huang, K., Sidiropoulos, N. D., and Ma, W.-K. (2019). Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications.

IEEE Signal Process. Mag., 36(2):59-80.

[Gama et al., 2020] Gama, F., Bruna, J., and Ribeiro, A. (2020). Stability properties of graph neural networks. IEEE Transactions on Signal Processing, 68:5680–5695.

[He and Wai, 2022] He, Y. and Wai, H.-T. (2022). Detecting central nodes from low-rank excited graph signals via structured factor analysis. *IEEE Transactions on Signal Processing.*

[He and Wai, 2023a] He, Y. and Wai, H.-T. (2023a). Central nodes detection from partially observed graph signals. In ICASSP. IEEE.

[He and Wai, 2023b] He, Y. and Wai, H.-T. (2023b).

Online inference for mixture model of streaming graph signals with non-white excitation. *IEEE Trans. Signal Processing.*

[Isufi et al., 2022] Isufi, E., Gama, F., Shuman, D. I., and Segarra, S. (2022). Graph filters for signal processing and machine learning on graphs. arXiv preprint arXiv:2211.08854.

[Kadambari and Chepuri, 2021] Kadambari, S. K. and Chepuri, S. P. (2021). Product graph learning from multi-domain data with sparsity and rank constraints. IEEE Transactions on Signal Processing, 69:5665–5680.

[Keriven et al., 2020] Keriven, N., Bietti, A., and Vaiter, S. (2020). Convergence and stability of graph convolutional networks on large random graphs. Advances in Neural Information Processing Systems, 33:21512–21523. [Maskey et al., 2022] Maskey, S., Levie, R., Lee, Y., and Kutyniok, G. (2022). Generalization analysis of message passing neural networks on large random graphs. In Advances in Neural Information Processing Systems.

[Mei and Moura, 2016] Mei, J. and Moura, J. M. (2016). Signal processing on graphs: Causal modeling of unstructured data. IEEE Transactions on Signal Processing, 65(8):2077–2092.

[Nguyen et al., 2022] Nguyen, H.-S., He, Y., and Wai, H.-T. (2022). On the stability of low pass graph filter with a large number of edge rewires. In *IEEE ICASSP*.

[Püschel and Moura, 2003] Püschel, M. and Moura, J. M. (2003). The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. *SIAM Journal on Computing*, 32(5):1280–1316.

[Ramakrishna et al., 2020] Ramakrishna, R., Wai, H.-T., and Scaglione, A. (2020). A user guide to low-pass graph signal processing and its applications. *IEEE Signal Processing Magazine*.

[Roddenberry et al., 2020] Roddenberry, T. M., Schaub, M. T., Wai, H.-T., and Segarra, S. (2020). Exact blind community detection from signals on multiple graphs. *IEEE Transactions on Signal Processing*, 68:5016–5030.

[Roddenberry and Segarra, 2021] Roddenberry, T. M. and Segarra, S. (2021). Blind inference of eigenvector centrality rankings. *IEEE Transactions on Signal Processing*, 69:3935–3946.

[Ruiz et al., 2021] Ruiz, L., Chamon, L. F., and Ribeiro, A. (2021). Transferability properties of graph neural networks. *arXiv preprint arXiv:2112.04629.*

[Sandryhaila and Moura, 2013] Sandryhaila, A. and Moura, J. M. (2013).

Discrete signal processing on graphs. IEEE transactions on signal processing, 61(7):1644–1656.

[Schaub et al., 2020] Schaub, M. T., Segarra, S., and Tsitsiklis, J. N. (2020). Blind identification of stochastic block models from dynamical observations. *SIAM Journal on Mathematics of Data Science*, 2(2):335–367.

[Segarra et al., 2017] Segarra, S., Marques, A. G., Mateos, G., and Ribeiro, A. (2017). Network topology inference from spectral templates. IEEE Trans. Signal and Info. Process. over Networks, 3(3):467–483.

[Wai et al., 2022] Wai, H.-T., Eldar, Y. C., Ozdaglar, A. E., and Scaglione, A. (2022). Community inference from partially observed graph signals: Algorithms and analysis. *IEEE Transactions on Signal Processing*, 70:2136–2151.

[Wai et al., 2019] Wai, H.-T., Segarra, S., Ozdaglar, A. E., Scaglione, A., and Jadbabaie, A. (2019). Blind community detection from low-rank excitations of a graph filter. *IEEE Transactions on signal processing*, 68:436–451.

[Zhang et al., 2023a] Zhang, C., He, Y., and Wai, H.-T. (2023a). Detecting low pass graph signals via spectral pattern: Sampling complexity and applications. *ArXiv.*

[Zhang et al., 2023b] Zhang, C., He, Y., and Wai, H.-T. (2023b). Product graph learning from multi-attribute graph signals with inter-layer coupling. In *ICASSP*.