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Stochastic Approximation (SA) Scheme: Background

I SA scheme [Robbins and Monro, 1951] is a stochastic process:

θt+1 = θt − γt+1H(θt ;Xt+1), t ∈ N

where θt ∈ Rd is the t-th iterate, γt > 0 is the step size, H(θt ;Xt+1)
is the drift term and Xt+1 represents the data drawn.

I Application: SGD – take H(θt ;Xt+1) = ∇`(θt ;Xt+1) for stochastic
optimization minθ E[`(θ;X )] [Bottou et al., 2018].

I Drift H(θn;Xt+1) relies on i.i.d. data Xt+1 ⇒ mean-field:

h(θt) = E
[
H(θt ;Xt+1)|Ft

]
=: Et

[
H(θt ;Xt+1)

]
,

where Ft is the filtration generated by {θ0, {Xm}m≤t}.
I Fact: θt → θ̄ such that h(θ̄) = 0 (+ appropriate step size).
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SA with Decision-Dependent Data: Motivation

I What if data Xt+1 is not i.i.d., and depends on θt?

SA : θt+1 = θt − γt+1H(θt ;Xt+1).

I Example 1: in reinforcement learning (RL),

Xt = (St ,At) – state/action, θt – policy.

A policy describes conditional probability for selecting At .

I Online policy gradient –

· · · → At → St −→︸︷︷︸
SA step

θt −→︸︷︷︸
Use Policy

At+1 → St+1︸ ︷︷ ︸
Calc. Reward

→ · · ·
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SA with Decision-Dependent Data: Motivation

I What if data Xt+1 is not i.i.d., and depends on θt?

SA : θt+1 = θt − γt+1H(θt ;Xt+1).

I Example 2: in Strategic Classification, data may react to your decision,

θt – classifier, Xt+1 ∼ D(θt) – observed data

such as in loan application, spam email classification, etc.

I Greedy Deployment [Perdomo et al., 2020]:

· · · → Xt −→︸︷︷︸
SA step

θt −→︸︷︷︸
Adopt/deploy the decision

Xt+1 → · · ·
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SA with Decision-Dependent Data: Challenges

Key Q: Will SA with decision-dependent data converge to h(θ̄) = 0 (or
other meaningful point)? Under what condition? How fast?

Challenges —

I The drift term is biased, i.e., E
[
H(θt ;Xt+1)|Ft

]
6= h(θt).

I If Xt+1 is too sensitive to θt , it may not converge.

This Talk —

I Recent results on convergence to stationary or stable solution with
decision dependent data SA.

I Applications to online policy gradient, performative prediction,
two-timescale SA, etc.
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Overview of This Talk

I General Convergence for SA with Decision-dependent Data1

I Focus on a non-convex (but smooth) setting.
I Expected convergence at E[‖h(θT )‖2] = O(1/

√
T ).

I Application: Online Policy Gradient.

I State-dependent Performative Prediction2

I Refined analysis on a ‘strongly convex’ setting.
I Expected convergence at E[‖θT − θPS‖2] = O(1/T ).

I Two Timescale SA and Application to Actor-Critic3

I Bi-level optimization where lower level gives decision-dependent data.

1B. Karimi B. Miasojedow, É. Moulines, H.-T. Wai, “Non-asymptotic Analysis of
Biased Stochastic Approximation Scheme”, in COLT 2019.

2Q. Li, H.-T. Wai, “State Dependent Performative Prediction with Stochastic
Approximation”, in AISTATS 2022.

3M. Hong, H.-T. Wai, Z. Wang, Z. Yang, “A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic”, in ArXiv, 2020.
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Roadmap

1. General Convergence of SA
Application to Policy Gradient

2. Performative Prediction

3. Two-timescale SA for Bilevel Problem

4. Conclusions and Perspectives
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SGD Method as an SA Scheme

Consider a possibly non-convex optimization problem:

min
θ∈Rd

V (θ), (1)

where V : Rd → R ∪ {∞} is a smooth (Lyapunov) function. Our goal is
to find a stationary point of (1) by SA:

θt+1 = θt − γt+1H(θt ;Xt+1).

I Special case – SGD: draw i.i.d. samples Xt+1 such that H(θt ;Xt+1)
is unbiased estimate of gradient, i.e., E

[
H(θt ;Xt+1)|Ft

]
= ∇V (θt).

This Part: We analyze the decision-dependent relaxation to SA
scheme for tackling (1).
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Biased SA Scheme

We relax two restrictions in classical SA/SGD. Consider:

θt+1 = θt − γt+1H(θt ;Xt+1). (2)

I The mean field is not a gradient

=⇒ relevant to non-gradient method where the gradient is hard to
compute, e.g., expectation-maximization, policy gradient.

I {Xt}t≥1 is not i.i.d. and form a decision-dependent Markov chain:

E[H(θt ;Xt+1)|Ft ] = Pθt
H(θt ;Xt) =

∫
H(θt ; x)Pθt

(Xt ,dx),

where Pθt
: X×X → R+ is Markov kernel with a unique stationary

distribution πθt , and the mean field h(θ) =
∫
H(θ; x)πθ(dx).

=⇒ relevant to policy gradient.
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Biased SA Scheme

We relax two restrictions in classical SA/SGD. Consider:

θt+1 = θt − γt+1H(θt ;Xt+1). (2)

Prior Works —

I Asymptotic Analysis: studied with h(θ) = ∇V (θ) in [Kushner and Yin,

2003], similar biased SA setting in [Tadić and Doucet, 2017].

I Non-asymptotic Analysis:
I Sun et al. [2018] and Duchi et al. [2012] assumed h(θ) = ∇V (θ) &

decision-independent Markov chain.
I Bhandari et al. [2018] studied a similar setting but focuses on linear SA

with convex Lyapunov function.
I Recent works [Chen et al., 2020, Mou et al., 2020, Durmus et al.,

2021a,b] provided tight bounds for linear SA.
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Assumptions

(A1) For all θ, there exists c0 ≥ 0, c1 > 0, d0 ≥ 0, d1 > 0 such that

c0 + c1 〈∇V (θ) | h(θ)〉 ≥ ‖h(θ)‖2, d0 + d1‖h(θ)‖ ≥ ‖∇V (θ)‖

Moreover, the Lyapunov function V is L-smooth,

‖∇V (θ)−∇V (θ′)‖ ≤ L‖θ − θ′‖, ∀ θ,θ′.

I Mean field h(θ) can be indirectly related to ∇V (θ).

I Requires smooth Lyapunov function yet V (θ) is possibly non-convex.

(A2) It holds that supθ∈Rd ,x∈X ‖H(θ; x)− h(θ)‖ ≤ σ.

Remark: (A2) requires noise is uniformly bounded for all x ∈ X.
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Assumptions (on the Markov Chain)

(A3) There exists a bounded measurable function Ĥ : Rd ×X→ Rd s.t.

Ĥθ(x)− PθĤθ(x) = H(θ; x)− h(θ), ∀ θ ∈ Rd , x ∈ X,

and supx∈X ‖PθĤθ(x)− Pθ′Ĥθ′(x)‖ ≤ L
(1)
PH‖θ − θ′‖, ∀ (θ,θ′).

I Ĥθ(.) exists if MC Pθ is uniformly geometric ergodic [Douc et al., 2018].

I Consequence: allows error decomposition of

H(θt ;Xt+1)− h(θt) = Ĥθt (Xt+1)− Pθt
Ĥθt (Xt+1)

= Ĥθt (Xt+1)− Pθt
Ĥθt (Xt)︸ ︷︷ ︸

Martingale with conditional 0-mean

+ Pθt
Ĥθt (Xt)− Pθt

Ĥθt (Xt+1)
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Main Results

Theorem

Let A1–A3 hold. Suppose that the step sizes satisfy

γn+1 ≤ γn, γn ≤ aγn+1, γn − γn+1 ≤ a′γ2
n , γ1 ≤ 0.5

(
c1(L + Ch)

)−1
,

for a, a′ > 0 and all t ≥ 0, then

E[h(θT )‖2] ≤
2c1

(
V0,t + C0,t +

(
σ2L + Cγ

)∑t
k=0 γ

2
k+1

)∑t
k=0 γk+1

+ 2c0 ,

where Ch, Cγ , C0,t ,V0,t are O(1) constants.

I Stopping Criterion: fix any t ≥ 1 and T ∈ {0, . . . , t} is a discrete
random variable with (see [Ghadimi and Lan, 2013])

P(T = `) =
(∑n

t=0 γt+1

)−1
γ`+1 .

I If γt = (2c1L(1 + Ch)
√
t)−1, then E[‖h(θT )‖2] = O(c0 + log t/

√
t).
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Policy Optimization: Setup

I Consider a Markov Decision Process (MDP) (S,A,R,P):
I S, A is a finite set of state (state-space) / action (action-space)
I R : S× A→ [0,Rmax] is a reward function
I P is the transition model, i.e., given an action a ∈ A, Pa = {Pa

s,s′} is a
matrix, Pa

s,s′ is the probability of transiting from the sth state to the
s ′th state upon taking action a.

I A policy is parameterized by θ ∈ Rd as:

Πθ(a′; s ′) = probability of taking action a′ in state s ′

I {(St ,At)}t≥1 forms a MC with transition probability (s, a)→ (s ′, a′):

Qθ((s, a); (s ′, a′)) := Πθ(a′; s ′) Pa
s,s′ ,

also denote its invariant distribution as υθ(s, a).

Goal: optimize θ such that the average reward is maximized.
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Policy Optimization: Average Reward Maximization

I Goal: Find a policy θ to maximize the average reward:

J(θ) :=
∑

s∈S,a∈A υθ(s, a) R(s, a) .

I What is the gradient of J(θ) w.r.t. θ?

∇J(θ) = limT→∞ Eθ

[
R(ST ,AT )

∑T−1
i=0 ∇ log Πθ(AT−i ;ST−i )

]
.

I REINFORCE algorithm [Williams, 1992] uses the sample average
approximation. Let M � 1,T � 1,

∇J(θ) ≈ (1/M)
∑M

m=1

{
R(Sm

T ,A
m
T )
∑T−1

i=0 ∇ log Πθ(Am
T−i ;S

m
T−i )

}
where (Sm

1 ,A
m
1 , . . . ,S

m
T ,A

m
T ) ∼ Πθ are drawn from a roll-out for each

m =⇒ needs many samples and θ to be static during roll-out.
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Policy Optimization: Average Reward Maximization

I Goal: Find a policy θ to maximize the average reward:

J(θ) :=
∑

s∈S,a∈A υθ(s, a) R(s, a) .

I What is the gradient of J(θ) w.r.t. θ?

∇J(θ) = limT→∞ Eθ

[
R(ST ,AT )

∑T−1
i=0 ∇ log Πθ(AT−i ;ST−i )

]
.

I We use a biased estimate of ∇J(θ). Let λ ∈ [0, 1), consider the
approximation [Baxter and Bartlett, 2001]:

lim
T→∞

∇̂T J(θ) := lim
T→∞

R(ST ,AT )
T−1∑
i=0

λi ∇ log Πθ(AT−i ;ST−i ).

I Online method? design a Markov chain that converges to the limit.
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Online Policy Gradient (PG)

Online policy gradient [Baxter and Bartlett, 2001, Tadić and Doucet, 2017]:

Gt+1 = λGt +∇ log Πθn(At+1;St+1) , (3a)

θt+1 = θt + γt+1Gt+1 R(St+1,At+1) . (3b)

I Let the joint state be Xt = (St ,At ,Gt) ∈ S× A× Rd . Eq. (3b) is SA
with the drift term:

H(θt ;Xt+1) = Gt+1 R(St+1,At+1)

I {Xt}t≥1 forms a Markov chain and

h(θ) = lim
T→∞

EτT∼Πθ, S1∼Πθ

[
∇̂T J(θ)

]
.

I We shall next verify (A1)–(A3).
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Convergence Analysis

I Focus on exponential family (or soft-max) policy:

Πθ(a; s) =
{∑

a′∈A exp
(
〈θ | x(s, a′)〉

)}−1
exp

(
〈θ | x(s, a)〉

)
.

I Assume that sups,a ‖x(s, a)‖ ≤ b and,

(PG1) For any θ ∈ Rd , {St ,At}t≥1 is geometrically ergodic. Invariant

distribution υθ and its Jacobian Jθυθ
(θ) are Lipschitz:

‖υθ − υθ′‖ ≤ LQ‖θ − θ′‖, ‖ Jθυθ
(θ)− Jθυθ

(θ′)‖ ≤ Lυ‖θ − θ′‖.

I Consequence: J(θ) is Rmax |S||A|-smooth w.r.t. θ,

(1− λ)2Γ2 + 2 〈∇J(θ) | h(θ)〉 ≥ ‖h(θ)‖2,

where Γ := 2b Rmax KR
1

(1−ρ)2 . Other required assumptions are

satisfied too [Karimi et al., 2019].
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Convergence Analysis (cont’d)

Corollary

Under PG1 and set γt = (2c1L(1 + Ch)
√
t)−1. For any t ∈ N, the

algorithm (3) finds a policy θT with

E
[
‖∇J(θT )‖2

]
= O

(
(1− λ)2Γ2 + c(λ) log t/

√
t
)
, (4)

where c(λ) = O( 1
(1−max{ρ,λ} )2). Expectation taken w.r.t. T , (At ,St).

I It shows the first convergence rate for the online PG method.

I Variance-bias trade-off with λ ∈ (0, 1): λ→ 1 reduces the bias, but
increases the variance in static term as c(λ) = O((1− λ)−2).
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Roadmap

1. General Convergence of SA
Application to Policy Gradient

2. Performative Prediction

3. Two-timescale SA for Bilevel Problem

4. Conclusions and Perspectives
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Prediction/Machine Learning in Practice

I Prediction ∈ a broader system.

I When predictions are used to
support decisions, distribution of
future observations can be altered.

I Classical Supervised Learning: static world with i.i.d. data.

I But decision (classifier) can cause distribution shift in the world.

I Performative Prediction: stochastic optimization problem whose
data distribution depends on the decision variable4.

This Part: Performative prediction using SA comes naturally
with decision-dependent distribution. Is it stable?

4Thanks to Qiang Li for preparing the slides in this part.
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From Practice to Model

I Supervised learning:

Data Z = (x , y) ∼ D.

I Goal: minimize risk

min
θ

EZ∼D[`(θ;Z )]

I Performative Prediction:

Data Z = (x , y) ∼ D(θ).

I Goal: minimize performative risk

min
θ
L(θ) := EZ∼D(θ)[`(θ;Z )]

I Perdomo et al. [2020] uses D(θ) to capture distribution shift (agents’
response) of Z due to learner’s state θ.

I How should the learner deal with performativity?

I Agnostic Setting: SGD/GD on `(z ;θ) with z ∼ D(θ), e.g., Perdomo
et al. [2020], Mendler-Dünner et al. [2020].

I 3 Requires no extra knowledge on L(θ) and agents...

I Proactive Setting: Estimate true gradient of ∇L(θ), e.g., Izzo et al.
[2021], Miller et al. [2021].

I 7 Needs extra knowledge on L(θ) and agents...
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Greedy Deployment [Mendler-Dünner et al., 2020]

I Two different solutions to performative prediction:

θPO ∈ argmin
θ∈Rd

EZ∼D(θ)[`(θ;Z )], θPS = argmin
θ′∈Rd

EZ∼D(θPS )[`(θ
′;Z )].

I In agnostic setting, our aim is to get θPS , e.g., by fixed point
iteration. Can we find it in an online fashion?

Greedy deployment scheme [Mendler-Dünner et al., 2020]:

Learner : θt+1 = θt − γk+1∇`(θt ;Zt+1),

Agent : Zt+1 ∼ D(θt).

Essentially = SGD but with data from shifted distribution.

I Fact: `(·;Z ) is strongly-convex + D(θ) is ‘insensitive’ to θ, then

E[‖θt − θPS‖2] = O(1/t).
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State-dependent Performative Prediction

I Issue: Greedy deployment in Mendler-Dünner et al. [2020]:

Learner : θt+1 = θk − γt+1∇`(θt ; zt+1),

Agent : zt+1 ∼ D(θt) ← req. immediate adaptation

I Example: Loan applicants may take months to build up credit history
to adapt to changes in classifier of bank.

I Our Work: consider stateful (or unforgetful) agents5.

I In other words, both learner and agents are slow adapters ⇒ fully
state dependent performative prediction.

How to model it? Can the learner still find θPS?

5Brown et al. [2022] has similar setting but w/o sampling at learner.
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SA for Performative Prediction

I Idea: models agents’ adaptation via a controlled Markov Chain.
I Pθ : Z×Z → R+ = Markov kernel w/ stationary dist. D(θ).

State-dependent Performative Prediction with SA

Agent : Zt+1 ∼ Pθt (Zt , ·) (← allows slow adaptation)

Learner : θt+1 = θt − γt+1∇`(θt ;Zt+1) & deploys θt+1. (5)

I Example: agents running SGD to adapt to z ∼ D(θ):

Zt+1 = Zt + α∇zU(Zt ;θt , ζt+1), ← U = utility fct.

Observation: Learner’s updates (5) is biased SA in Part 1 w/

H(θt ;Xt+1) = ∇`(θt ;Zt+1)

Previous result only finds stationary point ⇐ stronger guaranteee?
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Illustration - State-dependent Performative Prediction
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Assumptions

(PP1). We assume that `(θ;Z ) is µ-strongly convex, L-smooth, and the
distribution D(θ) satisfies ε−sensitivity (W1 denotes Wasserstein-1 distance)

W1(D(θ),D(θ′)) ≤ ε‖θ − θ′‖, ∀ θ,θ′ ∈ Rd ,

I PP1 specifies sensitivity of D(θ) to θ [Mendler-Dünner et al., 2020].

I When agents are strategic with a linear utility function, Z ∼ D(θ) if

Z = Z0 + εθ, Z0 ∼ D0 - some base distribution

(PP2). σ-perturbation with sampled gradient

supz∈Z ‖∇`(θ; z)−∇f (θ;θPS)‖ ≤ σ (1 + ‖θ − θPS‖) .

I PP2 allows ∇`(θ; z) = O(1 + ‖θ − θPS‖) - compatible with strongly
convex loss.
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Convergence of SA for Performative Prediction

Theorem

Under PP1–PP2, Pθ satisfies A3. Let ε < µ
L , non-increasing step sizes

γt−1

γt
≤ 1 + γt(µ−Lε)

4 , γt ≤ min
{
µ−Lε

2L2 ,
µ−Lε

2C2
, min{(µ−Lε)/3,3L̂P}
C3+3L̂P (µ−Lε)

, 1

6L̂P

}
. (6)

For any k ≥ 1, there exists C where it holds

E[‖θt − θPS‖2] ≤
∏t

i=1

(
1− γi µ−Lε2

)
‖θ0 − θPS‖2︸ ︷︷ ︸

Transient

+ C γt︸︷︷︸
Fluctuation

.

I Convergence needs ε < µ/L (similar to [Mendler-Dünner et al., 2020]) + Step
size constrained by mixing time of MC.

I Oscillation of stochastic gradient σ, mixing time of MC L̂ appear in
fluctuation term C.

I Can be extended to general SA with strongly convex objective.

I (in the paper) Convergence to near-stationary point of L(θ).
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Simulation – Gausssian Mean Estimation

I Consider the toy problem:

min
θ∈R

Ez∼D(θ)

[
(z − θ)2/2

]
, D(θ) ≡ N

(
z̄ + εθ;σ2

)
.

I Agents: AR model zk+1 = (1− ρ)zk + ρz̃k+1 with independent r.v.
z̃k+1 ∼ N

(
z̄ + εθk ;σ2

)
and ρ ∈ (0, 1).

I Goal: compare state dependent SA
and [Mendler-Dünner et al., 2020].

I Both converge at O(1/t) to θPS .

I As ρ ↓ 0, SA is more stable and has a
smaller error as the AR has stationary
distribution with lower variance.

101 102 103 104 105 106 107

iteration number k

10 2

10 1

100

101

102

103

|
k

PS
|2

Greedy Deploy
SA,  = 0.1
SA,  = 0.01
SA,  = 0.001
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Simulation – Logistic Regression

I With Synthetic Data for SVM problem:

min
θ∈Rd

Ez∼D(θ)

[
β

2
‖θ‖2 + log(1 + exp(〈θ | x〉))− y 〈θ | x〉

]
I Agent Response: D(θ) obtained by the best response, i.e.

zk+1 ∈ argmax
z′∈Z

U(z ′; z̃k+1 ∼ D0), Uq(z ′; z , θ) = 〈θ | x ′〉 − ‖x
′ − x‖
2ε

I Goal: the impact of agents’
response rate (α) on SA.

I As α ↑ 1ε, state-dependent SA
→ greedy deployment
[Mendler-Dünner et al., 2020].

I α ↑ ⇒ fast Markov chain ⇒ L̂ ↓.
0 75000 150000 225000 300000 375000

number of samples drawn by learner

10 3

10 2

||
k

PS
||2

Greedy Deploy
SA, = 0.5
SA, = 0.1
SA, = 0.05
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Roadmap

1. General Convergence of SA
Application to Policy Gradient

2. Performative Prediction

3. Two-timescale SA for Bilevel Problem

4. Conclusions and Perspectives
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Bilevel Optimization

I Many problems can be described as bilevel optimization:

min
x∈X⊆Rd1

`(x) := f (x , y?(x))

s.t. y?(x) ∈ arg min
y∈Rd2

g(x , y),
(Bi)

I Upper-level = leader / decision maker, lower-level = follower.

I Related to mathematical program with equilibrium constraint (MPEC)
Luo et al. [1996], stackelberg game Stackelberg [1952].

I Applications: meta learning, policy optimization, etc..

This Part: f , g are stochastic functions – f (x , y) = Eξ∼D[f (x , y , ξ)].

⇒ Consider tackling upper level by SA: samples y?(x) are
decision-dependent: there are more structure than previous part.
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Motivation: Policy Optimization via Actor Critic

I Consider tabular policy given by π : S× A→ R+ with |S|, |A| <∞.

I Let ρ0 be init. distribution, the γ-discounted reward6 of π is:

Eπ[Qπ(S ,A)] = ES∼ρ0 [〈Qπ(S , ·) |π(·|S)〉] ,

with Qπ(S ,A) = Eπ
[∑

t≥0 γ
tR(St ,At)|S0 = S ,A0 = A

]
I Note Qπ(S ,A) is γ-discounted reward (Q-function) given init. (S ,A).

I With fixed π, Qπ(S ,A) can be evaluated by solving Bellman equation;
or through linear approximation Qπ(S ,A) ≈ 〈θ?(π) |φ(S ,A)〉.

A Bilevel Optimization problem:

min
π∈X⊆R|S|×|A|

`(π) = −〈Qθ?(π), π〉ρ0 (Actor)

s.t. θ?(π) ∈ argmin
θ∈Rd

1
2‖Qθ − R − γPπQθ‖2

µπ⊗π. (Critic)

6In Part 1, we have considered average reward with paramterized policy.
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Tackling the Bilevel Problem (Bi)

I Recall the bi-level optimization problem:

min
x∈X⊆Rd1

`(x) ⇐⇒
min

x∈X⊆Rd1

`(x) := f (x , y?(x))

s.t. y?(x) ∈ arg min
y∈Rd2

g(x , y),

I The gradient of `(x) is:

∇x`(x) = ∇x f (x , y?)−∇2
xyg(x , y?)[∇2

yyg(x , y?)]−1∇y f (x , y?)

Stationary Condition: (Bi) can be tackled by finding (x?, y?) s.t.

F (x , y) = 0, G (x , y) = ∇yg(x , y) = 0

where F (x , y) = ∇x f (x , y)−∇2
xyg(x , y)[∇2

yyg(x , y)]−1∇y f (x , y)
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Finding Fixed Points with Stochastic Samples

I We only have stochastic samples and the problems are coupled.

I Let ξk+1 denotes the random ‘seed’ at iteration k , and F (·; ξk+1),
G (·; ξk+1) denote the stochastic samples of F ,G , respectively.

I If x is fixed and under suitable conditions, the recursion

yk+1 = yk + βkG (x , yk ; ξk+1)
k→∞−→ y?(x) s.t. G (x , y?(x)) = 0.

I Furthermore, the recursion

xk+1 = xk + αkF (xk , y
?(xk); ξk+1)

k→∞−→ x? s.t. F (x?, y?(x?)) = 0.

I If one could run the two recursions ⇒ fixed point, but the yk recursion
requires x to be fixed; and xk recursion requires y?(xk).

Suggesting a double-loop algorithm? e.g., [Ghadimi and Wang, 2018].
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Two Timescale Stochastic Approximation (TTSA)

I Consider a single-loop, two timescale algorithm [Borkar, 1997]:

xk+1 = xk + αkF (xk , yk ; ξk+1)

yk+1 = yk + βkG (xk , yk ; ξk+1)

I We require that

lim
k→∞

αk

βk
= 0

x-update is at slow timescale; while y -update is at fast timescale.

I Intuition: when updating yk , as αk � βk , then xk is almost static;
when updating xk , the used yk have almost converged to y?(xk).
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TTSA for Tackling (Bi): The Algorithm

TTSA Algorithm for (Bi)

Follow the recursion:

xk+1 = xk − αkh
k
f [hk

f ≈ F (xk , y k)]

yk+1 = yk − βk∇yg(xk , yk ; ζk+1)
(TTSA-Bi)

I xk update uses decision-dependent data via yk driven by xk−1.
I Two timescale step sizes to balance upper and lower level updates.

I Challenge: easy to estimate G(·) = ∇yg(·), but F (·) is non-trivial since

F (x , y) = ∇x f (x , y)−∇2
xyg(x , y) [∇2

yyg(x , y)]−1︸ ︷︷ ︸
can’t replace by ∇2

yy g(x, y ; ζ)

∇y f (x , y)

Biased estimate is possible; see details in the paper.
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This Work

We characterize the rate of convergence for TTSA when:

I the inner objective g(x , y) is strongly convex in y , and

I the outer objective `(x) is smooth, convex, strongly convex.

`(x) Constraint Step Size (αk , βk) Rate (outer) Rate (Inner)

SC X ⊆ Rd1 O(k−1), O(k−2/3) O(K−2/3) O(K−2/3)

WC X ⊆ Rd1 O(K−3/5), O(K−2/5) O(K−2/5) O(K−2/5)

Prior Works — many and

I Linear TTSA ≈ solving quadratic upper/lower level
I Dalal et al. [2018, 2019] obtained high probability bounds with a

projection step, recent work [Kaledin et al., 2020].

I Finite-time Analysis of Bilevel Stochastic Optimization
I [Couellan and Wang, 2016, Ghadimi and Wang, 2018] – double loop SA

& recently [Yang et al., 2021, Chen et al., 2021, Guo and Yang, 2021].
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General Assumptions (Informal)

(TT1). Consider the upper-level function f (x , y), `(x) = f (x , y?(x)):

1. ∇y f (x , y) is Lipschitz in (x , y) + bounded; ∇x f (x , y) is Lipschitz in y .

2. The objective function is µ`-weakly convex

`(w) ≥ `(v) + 〈∇`(v),w − v〉+ µ`‖w − v‖2, ∀ w , v ∈ X .

(TT2). Consider the lower-level function g(x , y):

1. For any x ∈ X , g(x , y) is strongly convex in y .

2. The Jacobian/Hessian ∇2
xyg(x , y),∇2

yyg(x , y) are Lipschitz in (x , y).

Moreover, ∇2
xyg(x , y) is bounded.

Key Consequence

Under TT1–TT2, the following holds:

‖F (x , y)−∇`(x)‖ ≤ L‖y?(x)− y‖, ‖y?(x1)− y?(x2)‖ ≤ Ly‖x1 − x2‖
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Main Results (Strongly Convex `)

Theorem
Under TT1, TT2, suppose that µ` > 0, then

E[‖xk − x?‖2] .
k−1∏
i=0

(
1− µ`αi

)
V0︸ ︷︷ ︸

transient term - decay exponentially

+ α
2/3
k︸︷︷︸

steady state term

E[‖yk − y?(xk−1)‖2] .
k−1∏
i=0

(
1− βiµg/4

)
V0 + βk

where V0 depends on the initialization, the inequality is up to constants
not depending on k (exact expressions can be found in the paper)

I Consequence: if we set αk = cα/(k + kα), βk = cβ/(k + kβ)2/3,

∆k
x = O(1/k2/3), ∆k

y = O(1/k2/3).
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Main Results (Weakly Convex `)

Theorem

Under TT1, TT2, suppose that µ` ∈ R. Set K ∼ U{0, ...,K − 1} and
αk � K−3/5, βk � K−2/5. For sufficiently large K ≥ 1, it holds

E[‖∇`(xK)‖2] .
[
L2
(

∆0 +
σ2

µ2
g

)
+ µgσ

2
]K− 2

5

|µ`|2
,

E[‖yK − y?(xK−1)‖2] .
[∆0

µg
+
σ2

µ2
g

+
µgσ

2

L2

]
K−

2
5 ,

where ∆0 depends on the initialization, the inequality is up to constants
not depending on k (exact expressions can be found in the paper)

I Consequence: we get E[∆̃K
x ] = O(1/K 2/5), E[∆K

y ] = O(1/K 2/5).

I Note: ∆̃K
x is a stationarity measure for xK related to Moreau envelope.

I Actor-critic requires slightly different algorithm than (TTSA-Bi); but
similar analysis applies.
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Reflection: why two-timescale?

I In the upper-level update,

xk+1 = xk − αkh
k
f ← note hkf ≈ F (x , y) 6= ∇`(x)

I We recall that ‖F (x , y)−∇`(x)‖ = O(||y − y?(x)||).

I Need αk ≤ c0β
3/2
k to balance the errors, leading to the step sizes

strongly convex `(x): αk � k−1, βk � k−2/3

weakly convex `(x): αk � K−3/5, βk � K−2/5

I Ultimately, the convergence rate is limited by the ‘faster’ timescale;
also see [Kaledin et al., 2020].

I For 1-level problem, even naive SGD achieves E[∆̃K
x ] = O(1/K 1/2).

Accelerated bilevel optimization? Yes, [Khanduri et al., 2021].
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Summary

We have studied variants of SA with decision dependent data:

SA : θt+1 = θt − γt+1H(θt ;Xt+1),

where Xt+1 is not i.i.d., and depends on θt (via a controlled MC).

I General SA with possibly non-gradient H(θ;X ):

⇒ convergence to stationary point E[‖h(θT )‖2] = O(logT/
√
T ).

⇒ application to online policy gradient.

I Performative Prediction through SA:

⇒ modelling stateful agents through controlled MC.

⇒ convergence to PS solution E[‖θt − θPS‖2] = O(1/t).

I Bilevel optimization via TTSA:
⇒ utilizes two timescales for coupled SAs & application to actor-critic.

⇒ convergence rates to stationary solution.
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Perspectives

SA with decision dependent data:

SA : θt+1 = θt − γt+1H(θt ;Xt+1),

where Xt+1 is not i.i.d., and depends on θt (via a controlled MC).

Theory:

I Current results require ‘strong’ assumptions on MC which makes sense
only for finite-state space, see [Durmus et al., 2021b].

I Strong convergence, e.g., with high probability [Durmus et al., 2021a].

I Avoid saddle point in non-convex problems? [Lee et al., 2019]

Applications/Algorithmic:

I Decentralized & federated learning; see [Wai, 2020].

I Beyond reinforcement learning & performative prediction — Langevin
Monte-carlo [De Bortoli et al., 2021], search engine optimization
[Avrachenkov et al., 2022], etc.
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Proof Sketch: From the L-smoothness of V , we have

V (θk+1)− V (θk)︸ ︷︷ ︸
telescoping sum → repeated terms are cancelled

≤

−γk+1 〈∇V (θk) | h(θk)〉+
γ2
k+1L

2
‖h(θk) + ek+1‖2︸ ︷︷ ︸

sum controlled by biasedness + others

−γk+1 〈∇V (θk) | ek+1〉︸ ︷︷ ︸
good if summable!

Idea — under mild conditions, there exists Ĥθ(·) such that
ek+1 = Ĥθk (Xk+1)− Pθk

Ĥθk (Xk+1) (Poisson equation), consequently,

∑n
k=0 γk+1

〈
∇V (θk ) | Ĥθk

(Xk+1)− Pθk
Ĥθk

(Xk+1)
〉
≡ A1 + A2 + A3 + A4 + A5

Martingale → A1 =
∑n

k=1 γk+1

〈
∇V (θk ) | Ĥθk

(Xk+1)− Pθk
Ĥθk

(Xk )
〉

Smoothness → A2 =
∑n

k=1 γk+1

〈
∇V (θk ) |Pθk

Ĥθk
(Xk )− Pθk−1

Ĥθk−1
(Xk )

〉
Smoothness → A3 =

∑n
k=1 γk+1

〈
∇V (θk )−∇V (θk−1) |Pθk−1

Ĥθk−1
(Xk )

〉
Step size → A4 =

∑n
k=1

(
γk+1 − γk

) 〈
∇V (θk ) |Pθk−1

Ĥθk−1
(Xk )

〉
Finite number → A5 = γ1

〈
∇V (θ0) | Ĥθ0

(X1)
〉
− γn+1

〈
∇V (θn) |Pθn

Ĥθn (Xn+1)
〉
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