Network Effects on Performative Prediction Games

Hoi-To Wai

Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong (CUHK)

(Joint work with Xiaolu Wang and Chung-Yiu Yau)

April 6, 2023 NUS-IMS Workshop on Games on Networks Acknowledgement: HKRGC Project #24203520

Learning from Performative Data

Empirical risk minimization (ERM) for the loss function $\ell : \mathbb{R}^p \times Z \to \mathbb{R}$ $\min_{\theta} \mathbb{E}_{Z \sim D} \left[\ell(\theta; Z) \right].$

• Fixed data distribution D; Example: static data (cats vs dogs).

Performative Prediction (PP)¹: predictions support decisions that influence the outcome they aim to predict (data *react* to decision),

 $\min_{\boldsymbol{\theta}} \ \mathbb{E}_{\boldsymbol{Z} \sim \mathcal{D}(\boldsymbol{\theta})} \left[\ell(\boldsymbol{\theta}; \boldsymbol{Z}) \right].$

- Decision-dependent distribution: $\mathcal{D}(\boldsymbol{\theta})$.
- Example: bank loan application Individuals (data) may alter their profiles to increase the chance of success.
- Special case of PP: strategic classification².

¹[Perdomo et al., 2020] J. Perdomo, T. Zrnic, C. Mendler-Dunner, M. Hardt. Performative prediction. ICML 2020.

²By itself a **Stackelberg game** (agent = leader, population = follower), e.g., $Z \sim \mathcal{D}(\theta)$ satisfies $Z \in \arg \max_{\hat{Z}} U(\hat{Z}; \theta, Z_0)$ with $Z_0 \sim \mathcal{D}_0$ (base distribution).

Two Solution Concepts for PP

Performative Optimal Solution (PO):

 $\boldsymbol{\theta}^{\mathsf{PO}} \in \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \ \mathbb{E}_{\boldsymbol{Z} \sim \mathcal{D}(\boldsymbol{\theta})} \left[\ell(\boldsymbol{\theta}; \boldsymbol{Z}) \right].$

• Difficult \because non-convexity, unknown $\mathcal{D}(\cdot),$ etc.

Performative Stable Solution (PS):

 $\boldsymbol{\theta}^{\mathsf{PS}} \in \operatorname{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \ \mathbb{E}_{\boldsymbol{Z} \sim \mathcal{D}(\boldsymbol{\theta}^{\mathsf{PS}})} \left[\ell(\boldsymbol{\theta}; \boldsymbol{Z}) \right].$

• In general $\theta^{PS} \neq \theta^{PO}$. Fixed point of repeated risk minimization (RRM)

 $\boldsymbol{\theta}^+ \leftarrow \arg\min_{\tilde{\boldsymbol{\theta}} \in \mathbb{R}^p} \mathbb{E}_{\boldsymbol{Z} \sim \mathcal{D}(\boldsymbol{\theta})} \big[\ell(\tilde{\boldsymbol{\theta}}; \boldsymbol{Z}) \big].$

• RRM = deployment-and-optimize where agents are **agnostic** to the performative effect.

Multi-Agent Performative Prediction (Multi-PP)

This Talk: multiplex network game [Gómez-Gardenes et al., 2012] extension of PP with n agents, each agent i interacts with a local population $\mathcal{D}_i(\cdot)$.

- Agent network \mathcal{G}^{A} described by A, where agent i decision depends on $\theta_{j}, j \in \mathcal{M}_{i} := \{j : A_{ij} \neq 0\}.$
- Population network \mathcal{G}^{P} described by \boldsymbol{P} , where $\mathcal{D}_i(\cdot)$ react to decisions $\boldsymbol{\theta}_i$ and $\boldsymbol{\theta}_j, j \in \mathcal{N}_i := \{j : P_{ij} \neq 0\}.$

Example: Bank Loan Policy Learning

- Each bank trains a personalized classification model (policy) for predicting whether the loan applicants are creditworthy.
- Banks branches of the same corporate group share strategy to exploit more data \Rightarrow Inter-bank cooperation network \mathcal{G}^{A} .
- Applicants may be affected by local and neighbor branches' policies and manipulate their features to increase the chances of successfully applying for the loan ⇒ Applicant influence network G^P.

Example: Ride-Sharing Market

- Multiple platforms (agents) forecast supply-demand (Z_i) for rides at different locations in order to optimize their revenue (F_i) by using the forecasted demand to set prices (θ_i).
- Drivers/passengers participate in multiple platforms. Hence, the supply-demand vector Z_i ~ D_i(θ_i, θ_{Ni}) for platform i depends on their own price θ_i as well as their competitors' prices θ_{Ni}.
- Typical setup: $\mathcal{G}^{\mathtt{A}} = n$ -isolated nodes, $\mathcal{G}^{\mathtt{P}} =$ general graph.

Multi-Agent Performative Prediction (Multi-PP)

Setting: each agent minimizes its local risk F_i w.r.t. its own strategy θ_i ,

$$\min_{\boldsymbol{\theta}_{i} \in \mathbb{R}^{p}} F_{i}(\boldsymbol{\theta}_{i}, [\boldsymbol{\theta}_{j}]_{j \in \mathcal{M}_{i} \cup \mathcal{N}_{i}}) \coloneqq \underbrace{\mathbb{E}_{\boldsymbol{Z}_{i} \sim \mathcal{D}_{i}(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{N}_{i}})} [f_{i}(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{M}_{i}}; \boldsymbol{Z}_{i})]}_{\text{Performative Risk}}, \quad (1)$$

neighbors' strategies $[\boldsymbol{\theta}_j]_{j\in\mathcal{M}_i}$ are known and samples can be drawn from $\mathcal{D}_i(\boldsymbol{\theta}_i, \boldsymbol{\theta}_{\mathcal{N}_i})$.

• Focus on personalized learning [Bellet et al., 2018]:

$$f_i(\boldsymbol{\theta}_i, \boldsymbol{\theta}_{\mathcal{M}_i}; \boldsymbol{Z}_i) \coloneqq \underbrace{\ell_i(\boldsymbol{\theta}_i; \boldsymbol{Z}_i)}_{\text{Loss Function}} + \underbrace{\frac{\rho_i}{2} \sum_{j \in \mathcal{M}_i} A_{ij} \|\boldsymbol{\theta}_i - \boldsymbol{\theta}_j\|_2^2}_{\text{Graph Regularization}}.$$

- local risk and partial (non)cooperation controlled by $\rho_i \in \mathbb{R}$.

Interested in equilibrium of the agents' strategies θ₁,..., θ_n − performative stable equilibrium (~PS) & Nash equilibrium (~PO).

³WLOG, assume that A is normalized with $\sum_{j} A_{ij} = 1$.

Multi-PP Game: Existing Works

- Agent *i* optimizes & deploys θ_i , local distribution $\mathcal{D}_i(\theta_1, \ldots, \theta_n)$. (left)
 - [Narang et al., 2022] A. Narang E. Faulkner, D. Drusvyatskiy, M. Fazel, L. Ratliff, Multiplayer performative prediction: Learning in decision-dependent games. JMLR, 2022.
- Similar model but identical distribution $\mathcal{D}(\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_n)$. (middle)
 - [Piliouras and Yu, 2022] G. Piliouras, F.-Y. Yu. Multi-agent performative prediction: From global stability and optimality to chaos. arXiv, 2022.
- Agents deploy $\theta_1 = \cdots = \theta_n$; distribution $\mathcal{D}_i(\theta_i)$. (right)
 - ▶ [Li et al., 2022] Q. Li, C.-Y. Yau, HT. Multi-agent performative prediction with greedy deployment and consensus seeking agents. NeurIPS 2022.
- Related works: multi-leader-follower game, multiplex network game, etc.

Questions & Our Results

- How and when can we find an (unique) equilibrium? How will the interaction between topologies affect the game's equilibrium?
 - we derive the conditions on sensitivity of $\mathcal{D}_i(\cdot)$, (non)cooperation strength ρ , for the existence/uniqueness of equilibriums.
 - symmetric vs asymmetric topology.
- If the data distribution at a local population/agent is perturbed, how will the perturbation affect the equilibrium solution at other agents on the network (\approx 'butterfly effect')?
 - for a special case (quadratic loss), we derive closed form solution for the PSE.

Outline

Background and Problem Formulation

Performative Stable Equilibrium

Case Studies and Numerical Examples

Nash Equilibrium

Multi-PP Game: Assumptions

Recall the Multi-PP game: for $i \in [n]$,

$$\min_{\boldsymbol{\theta}_i \in \mathbb{R}^p} \mathbb{E}_{\boldsymbol{Z}_i \sim \mathcal{D}_i(\boldsymbol{\theta}_i, \boldsymbol{\theta}_{\mathcal{N}_i})} \left[\ell_i(\boldsymbol{\theta}_i; \boldsymbol{Z}_i) + \frac{\rho_i}{2} \sum_{j \in \mathcal{M}_i} A_{ij} \| \boldsymbol{\theta}_i - \boldsymbol{\theta}_j \|_2^2 \right].$$

Assumption 1: For $i \in [n]$, it holds i) $\mathbb{E}_{\mathbf{Z}_i \sim \mathcal{D}_i(\boldsymbol{\theta}_i, \boldsymbol{\theta}_{\mathcal{N}_i})}[\ell_i(\cdot; \mathbf{Z}_i)]$ is μ_i -strongly convex. ii) $\|\nabla \ell_i(\boldsymbol{\theta}_i; \mathbf{Z}_i) - \nabla \ell_i(\boldsymbol{\theta}'_i; \mathbf{Z}'_i)\|_2 \leq L_i(\|\boldsymbol{\theta}_i - \boldsymbol{\theta}'_i\|_2 + \|\mathbf{Z}_i - \mathbf{Z}'_i\|_2)$.

Assumption 2: For $i \in [n]$, there exists $\epsilon_i \ge 0$ such that

 $W_1(\mathcal{D}_i(\boldsymbol{\theta}_i, \boldsymbol{\theta}_{\mathcal{N}_i}), \mathcal{D}_i(\boldsymbol{\delta}_i, \boldsymbol{\delta}_{\mathcal{N}_i})) \leq \boldsymbol{\epsilon_i} \| [\boldsymbol{\theta}_i; \boldsymbol{\theta}_{\mathcal{N}_i}] - [\boldsymbol{\delta}_i; \boldsymbol{\delta}_{\mathcal{N}_i}] \|_2,$

where $W_1(\cdot, \cdot)$ is the Wasserstein-1 distance.

- Common assumptions for PP problems, see [Perdomo et al., 2020].
- ϵ_i bounds the **sensitivity** of the *i*-th population $\mathcal{D}_i(\cdot)$.

Repeated Risk Minimization Dynamics

• Repeated Risk Minimization (RRM): In iteration t, agent i does

$$\boldsymbol{\theta}_{i}^{t+1} = \mathcal{T}_{i}\left(\boldsymbol{\theta}_{i}^{t}, \left[\boldsymbol{\theta}_{j}^{t}\right]_{j \in \cup \mathcal{M}_{i} \cup \mathcal{N}_{i}}\right)$$

$$\coloneqq \operatorname*{argmin}_{\boldsymbol{\theta}_{i} \in \mathbb{R}^{p_{i}}} \mathbb{E}_{\boldsymbol{Z}_{i} \sim \mathcal{D}_{i}\left(\boldsymbol{\theta}_{i}^{t}, \boldsymbol{\theta}_{\mathcal{N}_{i}}^{t}\right)}\left[f_{i}\left(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{M}_{i}}^{t}; \boldsymbol{Z}_{i}\right)\right].$$

- A natural setting for distributed learning (can be extended to SGD-like algorithm).
- Agent *i* does not need to know $\theta_{\mathcal{N}_i}^t$, but need to know the neighbors' strategies / models $\theta_{\mathcal{M}_i}^t$.

Performative Stable Equilibrium

Definition 1 (Performative Stable Equilibrium, PSE)

The strategy profile $\theta^{\text{pse}} = (\theta_1^{\text{pse}}, \dots, \theta_n^{\text{pse}}) \in \mathbb{R}^{np}$ is a **performative** stable equilibrium of (1) if for all $i \in [n]$,

$$\boldsymbol{\theta}_{i}^{\mathsf{pse}} \in \operatorname*{arg\,min}_{\boldsymbol{\theta}_{i} \in \mathbb{R}^{p}} \left\{ \mathbb{E}_{\boldsymbol{Z}_{i} \sim \mathcal{D}_{i}(\boldsymbol{\theta}_{i}^{\mathsf{pse}}, \boldsymbol{\theta}_{\mathcal{N}_{i}}^{\mathsf{pse}})} \left[f_{i}(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{M}_{i}}^{\mathsf{pse}}; \boldsymbol{Z}_{i}) \right] \right\}.$$

- At the PSE, agent i has no incentive to alter $\boldsymbol{\theta}^{\text{pse}}_i$ based only on response $\mathcal{D}_i(\boldsymbol{\theta}^{\text{pse}}_i, \boldsymbol{\theta}^{\text{pse}}_{\mathcal{N}_i}).$
- Observation: PSE is a fixed point of RRM, but when does PSE exist and is unique? depends on the map $\mathcal{T}_i(\cdot)$...

Existence and Uniqueness of PSE

Theorem 2

Suppose that $\sum_{j=1}^{n} A_{ij} = 1$ and $\mu_i + \rho_i > 0$ for all $i \in [n]$, Assumptions 1 and 2 hold. Let $\boldsymbol{\mu} \coloneqq [\mu_i]_{i=1}^n$ and $\boldsymbol{\rho} \coloneqq [\rho_i]_{i=1}^n$. Under the condition

$$\sqrt{\max_{j\in[n]}\sum_{i=1}^{n} \left(\frac{P_{ij}L_{i}\epsilon_{i}}{\mu_{i}+\rho_{i}}\right)^{2}} + \left\|\operatorname{Diag}\left(\frac{\rho}{\mu+\rho}\right)A\right\|_{2} < 1,$$
(2)

(i) the Multi-PP game admits a unique PSE, and (ii) the RRM converges linearly to the PSE.

- Eq. (2) gives sufficient condition for stability of RRM.
- Stability of RRM depends on $\mathcal{G}^{\mathbb{A}}, \mathcal{G}^{\mathbb{P}}$, ρ_i and ϵ_i ; see next slides for elaboration.

Effects of Network Structure on PSE: Non Graph Regularized Cases ($\rho = 0$)

• If
$$n = 1$$
, $\rho_1 = 0$, and $\mu_1 > 0$, then

$$(2) \Longleftrightarrow \epsilon_1 < \mu_1/L_1,$$

which coincides with single-agent PP [Perdomo et al., 2020, Theorem 3.5].

• If $\mathbf{P} = \mathbf{1}\mathbf{1}^{\top}$ (\mathcal{G}^{P} is fully connected) and $\rho_i = 0$, then

(2)
$$\iff \sum_{i=1}^{n} L_i^2 \epsilon_i^2 / \mu_i^2 < 1$$

This coincides with [Narang et al., 2022, Theorem 2]. If further $\epsilon_i = \epsilon$, $L_i = L$, $\mu_i = \mu$, then

(2)
$$\iff \epsilon < \mu/(\sqrt{nL})$$

Effects of Network Structure on PSE: Graph Regularized Cases ($\rho \neq 0$)

Suppose that $\mu_i = \mu$, $\rho_i = \rho$, $L_i = L$. In this case, (2) can be implied by

$$L\sqrt{\|\boldsymbol{P}\|_{\infty}}\max_{i\in[n]}\epsilon_i < \mu - \rho(\|\boldsymbol{A}\|_2 - 1),$$
(3)

- Population network with less edges and small *L* can be beneficial for stability.
- If A is symmetric⁴, then $||A||_2 = 1$ and thus (3) is independent of ρ .
- If A is asymmetric, then $||A||_2 > 1$ and increasing ρ may violate (3) (although this may have better generalization performance).
- Intuition? a possible reason is that RRM is no longer 'fair' for all agents (see the SG-GD algorithm).

⁴Recall that $\sum_{j} A_{ij} = 1$ still holds.

Stochastic Algorithm for Computing PSE

Algorithm 1 Stochastic Gradient with Greedy Deployment (SG-GD)

1: for
$$t = 0, 1, ...$$
 do
2: Deploy the models $\{\boldsymbol{\theta}_i^t\}_{i=1}^n$.
3: for $i = 1$ to n do {executed in parallel}
4: Sample $\boldsymbol{Z}_i^{t+1} \sim \mathcal{D}_i(\boldsymbol{\theta}_i^t, \boldsymbol{\theta}_{\mathcal{N}_i}^t)$
5: $\boldsymbol{g}^t = \nabla \ell_i(\boldsymbol{\theta}_i^t; \boldsymbol{Z}_i^{t+1}) + \rho_i \sum_{j=1}^n A_{ij} \left(\boldsymbol{\theta}_i^t - \boldsymbol{\theta}_j^t\right)$ {decen. opt.}
6: $\boldsymbol{\theta}_i^{t+1} = \boldsymbol{\theta}_i^t - \gamma_{t+1} \boldsymbol{g}^t$

Theorem 3

Suppose that $\mathbb{E}[\|\nabla \ell(\theta; Z) - \mathbb{E}[\nabla \ell(\theta; Z)]\|_2^2] \le \sigma_0^2 + \sigma_1^2 \|\theta - \theta^{pse}\|_2^2$ and the same conditions as Theorem 2 holds, then for all $t \ge 1$,

$$\mathbb{E}[\|\boldsymbol{\theta}^{t} - \boldsymbol{\theta}^{\mathsf{pse}}\|_{2}^{2}] \leq \prod_{s=1}^{t} (1 - \gamma_{s}\widetilde{\mu})\Delta^{0} + \frac{2\sigma_{0}^{2}}{\widetilde{\mu}}\gamma_{t}.$$
 (4)

where $\Delta_0 := \|\boldsymbol{\theta}^0 - \boldsymbol{\theta}^{\text{pse}}\|_2^2$, $\widetilde{\mu} = \mu + \rho(1 - \|\boldsymbol{A}\|_2) - L\epsilon \sqrt{\|\boldsymbol{P}\|_{\infty}}$, and $\widetilde{\sigma}^2 = \sigma_1^2 + 2\left(L^2\epsilon^2\|\boldsymbol{P}\|_{\infty} + (L + \rho\|\boldsymbol{I}_n - \boldsymbol{A}\|_2)^2\right).$

Case Study: Quadratic Loss Game

• Consider the loss function as

$$\ell_i(\boldsymbol{\theta}_i; \boldsymbol{Z}_i) = \frac{1}{2} \|\boldsymbol{\theta}_i - \boldsymbol{Z}_i\|_2^2.$$
(5)

with the graph regularization parameter $\rho_i = \rho \ge 0$.

• The sample $oldsymbol{Z}_i \sim \mathcal{D}_i(oldsymbol{ heta}_i, oldsymbol{ heta}_{\mathcal{N}_i})$ satisfies

where $\varepsilon \in \mathbb{R}$ is a sensitivity parameter (can be negative!) and

$$\mathbb{E}[\bar{Z}_i] = m_i, \ \operatorname{Cov}(\bar{Z}_i) = \sigma^2 I_p.$$

• A 'toy' problem, both PSE and NE can be computed in closed form.

Existence and Uniqueness of PSE

Proposition 1

Consider the Multi-PP game with (5), (6). Suppose that $\sum_{j=1}^{n} A_{ij} = 1$. Then, the RRM finds a unique PSE if and only if

$$\max_{i \in [n]} \left| \lambda_i \left(\frac{\rho}{1+\rho} \boldsymbol{A} + \frac{\varepsilon}{1+\rho} \boldsymbol{P} \right) \right| < 1.$$
 (7)

Moreover, the PSE admits the closed-form:

$$\boldsymbol{\theta}^{pse} = \left(\left[(1+\rho)\boldsymbol{I}_n - \rho \boldsymbol{A} - \varepsilon \boldsymbol{P} \right] \otimes \boldsymbol{I}_{\bar{p}} \right)^{-1} \boldsymbol{m}.$$
(8)

• **Sufficient and necessary** condition for stability of RRM (extensible to SG-GD) with explicit dependence on the weighted graph:

$$\overline{oldsymbol{A}}(arepsilon,
ho):=rac{arepsilon}{1+
ho}oldsymbol{P}+rac{
ho}{1+
ho}oldsymbol{A}$$

see the next slide.

• Shows the combined effect of $G^{\rm A}, G^{\rm P}$.

Structure of the PSE Solution

If
$$p = 1$$
, then $\boldsymbol{\theta}^{\mathsf{pse}} = ((1 + \rho)\boldsymbol{I}_n - \varepsilon \boldsymbol{P} - \rho \boldsymbol{A})^{-1}\boldsymbol{m}$.

- Suppose that the *j*-th mean m_j is perturbed by κ and let $\bar{\theta}^{\text{pse}}(j) \in \mathbb{R}^n$ be the new PSE. Then, the changes in the PSE solution at agent *i* after perturbing the *j*th population is

$$\Delta_{ij} \coloneqq \bar{\theta}_i^{\mathsf{pse}}(j) - \theta_i^{\mathsf{pse}} = \frac{\kappa}{1+\rho} \sum_{k=1}^{\infty} [(\overline{\boldsymbol{A}}(\varepsilon, \rho))^k]_{ij}.$$

If $\varepsilon > 0$ and $\rho = 0$, then $\overline{A}(\varepsilon, \rho) = \varepsilon P$ and Δ_{ij} is proportional to the total number of walks from i to j in \mathcal{G}^{P} .

Effects of Cooperation on the Stability of PSE

• For small (resp. large) sensitivity, $\varepsilon = 0.1$ (resp. $\varepsilon = 0.5$), (7) is always satisfied (resp. violated) irrespective of the value of ρ .

- For $\varepsilon = 0.3$, increasing ρ lead to violation of (7) for the case when both $\mathcal{G}^{\mathbb{A}}, \mathcal{G}^{\mathbb{P}}$ are star graphs. This coincides with the previous observation that $\rho \gg 1$ can destabilize the PSE when A is asymmetric.
- For $\varepsilon = -0.5$, increasing ρ can stabilize the PSE, i.e., satisfying (7).

Structure of the PSE Solution

Figure 1: Illustrating $|\Delta_{ij}|$ for the PSE of mean estimation problem when the mean of one of the local populations ('Mover') is perturbed. ($\mathcal{G}^{\mathbb{A}}$: red, $\mathcal{G}^{\mathbb{P}}$: blue.)

- |Δ_{ij}| increases if agent i is closer to agent j on the combined graph.
- Increasing ρ makes the variations of $|\Delta_{ij}|$ more uniform across the network.

Case Study: Logistic Regression Game

• Each agent trains a personalized logistic regression model with

$$\ell_i(\boldsymbol{\theta}_i; \boldsymbol{Z}_i) = -y_i \boldsymbol{\theta}_i^\top \boldsymbol{x}_i + \log\left(1 + e^{\boldsymbol{\theta}_i^\top \boldsymbol{x}_i}\right), \qquad (9)$$

where $oldsymbol{Z}_i = (oldsymbol{x}_i, y_i) \in \mathbb{R}^{p_i} imes \{0, 1\}$ is the feature-label pair.

• Features are generated according to:

$$\boldsymbol{x}_{i} = \begin{cases} \bar{\boldsymbol{x}}_{i}^{0} + \varepsilon \sum_{j=1}^{n} P_{ij} \boldsymbol{\theta}_{j}, & \text{if } y_{i} = 0, \\ \bar{\boldsymbol{x}}_{i}^{1}, & \text{if } y_{i} = 1, \end{cases}$$
(10)

where \bar{x}_i^0 and \bar{x}_i^0 follow some base distributions with $\mathbb{E}[\bar{x}_i^0] = m_i^0 \in \mathbb{R}^p$ and $\mathbb{E}[\bar{x}_i^1] = m_i^1 \in \mathbb{R}^p$, and $\varepsilon_i \in \mathbb{R}$.

When n = 1, this setting reduces to the *strategic classification* problem that has been studied in the literature [Hardt et al., 2016, Dong et al., 2018, Perdomo et al., 2020, Zrnic et al., 2021].

Case Study: Logistic Regression Game

- Enabling graph regularization (with $\rho = 1$) allows the agents to maintain a high accuracy in classification for small distribution shifts $\varepsilon \in \{0, 0.1\}$.
- But setting $\rho = 1$ under large distribution shifts ($\varepsilon = 10$) may lead to degraded performance.

Nash Equilibrium

Definition 4 (Nash Equilibrium, NE)

A vector $\theta^{ne} = [\theta_1^{ne}; \ldots; \theta_n^{ne}] \in \mathbb{R}^p$ is called a Nash equilibrium (NE) of the game (1) if it holds for all $i \in [n]$ that

$$\boldsymbol{\theta}_{i}^{\mathrm{ne}} \in \operatorname*{arg\,min}_{\boldsymbol{\theta}_{i} \in \mathbb{R}^{p_{i}}} \left\{ \mathbb{E}_{\boldsymbol{Z}_{i} \sim \mathcal{D}_{i}(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{N}_{i}}^{\mathrm{ne}})} \left[f_{i}(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{M}_{i}}^{\mathrm{ne}}; \boldsymbol{Z}_{i}) \right] \right\}.$$

• Recall that PSE was defined as:

$$\boldsymbol{\theta}_{i}^{\mathsf{pse}} \in \mathop{\mathrm{arg\,min}}_{\boldsymbol{\theta}_{i} \in \mathbb{R}^{p}} \left\{ \mathbb{E}_{\boldsymbol{Z}_{i} \sim \mathcal{D}_{i}(\boldsymbol{\theta}_{i}^{\mathsf{pse}}, \boldsymbol{\theta}_{\mathcal{N}_{i}}^{\mathsf{pse}})} \left[f_{i}(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{M}_{i}}^{\mathsf{pse}}; \boldsymbol{Z}_{i}) \right] \right\}$$

• The NE can be found with the best response (BR) dynamics,

$$\boldsymbol{\theta}_{i}^{t+1} = \mathcal{B}_{i}\left(\left[\boldsymbol{\theta}_{j}^{t}\right]_{j \in \mathcal{M}_{i} \cup \mathcal{N}_{i}}\right) \coloneqq \argmin_{\boldsymbol{\theta}_{i} \in \mathbb{R}^{p_{i}}} \mathbb{E}_{\boldsymbol{Z}_{i} \sim \mathcal{D}_{i}\left(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{N}_{i}}^{t}\right)}\left[f_{i}(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{\mathcal{M}_{i}}^{t}; \boldsymbol{Z}_{i})\right],$$

for all $i \in [n] \leftarrow can be difficult!$

Existence and Uniqueness of NE: Assumptions

Assumption 3: For any $i \in [n]$, the map $\mathbb{E}_{\mathbf{Z}_i \sim \mathcal{D}_i(\cdot, \boldsymbol{\theta}_{\mathcal{N}_i})} [f_i(\boldsymbol{\theta}_i, \boldsymbol{\theta}_{\mathcal{M}_i}; \mathbf{Z}_i)]$ is differentiable at $\boldsymbol{\theta}_i$ and its derivative is continuous in $[\boldsymbol{\theta}_i; \boldsymbol{\theta}_{\mathcal{N}_i}]$.

Assumption 4: For any $i \in [n], \delta, \theta$, the map $H^{i}_{\delta}(\theta) \coloneqq \frac{\partial}{\partial u_{i}} \mathbb{E}_{\mathbf{Z}_{i} \sim \mathcal{D}_{i}(u_{i}, \delta_{\mathcal{N}_{i}})} \left[f_{i}(\theta_{i}, \theta_{\mathcal{M}_{i}}; \mathbf{Z}_{i}) \right] \Big|_{u_{i} = \delta_{i}}$ is monotone w.r.t. δ .

- Standard for guaranteeing strong monotonicity.
- Our focus is on the network effects on NE.

Existence and Uniqueness of NE

Theorem 5

Suppose that $\sum_{j=1}^{n} A_{ij} = 1$ for all $i \in [n]$ and Assumptions 1-4 hold. Let $\mu_{\min} \coloneqq \min_{i \in [n]} \{\mu_i\}$ and $\rho_{\min} \coloneqq \min_{i \in [n]} \{\rho_i\}$. If it holds that

$$\sqrt{\max_{j\in[n]}} \left\{ \sum_{i=1}^{n} \left(\frac{P_{ij}L_{i}\epsilon_{i}}{\mu_{\min} + \rho_{\min}} \right)^{2} \right\} + \left\| \operatorname{Diag} \left(\frac{\boldsymbol{\rho}}{\mu_{\min} + \rho_{\min}} \right) \boldsymbol{A} \right\|_{2} < 1 - \frac{\max_{i\in[n]} \left\{ L_{i}\epsilon_{i} \right\}}{\mu_{\min} + \rho_{\min}},$$

then (1) is strongly monotone, and admits a unique NE (Facchinei and Pang [2003, Theorem 2.3.3(b)]).

- If $\mu_i = \mu > 0$ for all $i \in [n]$, then the condition in Theorem 5 is equivalent to $\sqrt{\sum_{i=1}^n L_i^2 \epsilon_i^2} + \max_{i \in [n]} \{L_i \epsilon_i\} \le \mu$.
- Strictly weaker than the condition $2\sqrt{\sum_{i=1}^{n}L_{i}^{2}\epsilon_{i}^{2}} \leq \mu$ required by [Narang et al., 2022, Theorem 5].

Conclusions & Perspectives

- Multi-PP game is a new class of game at the intersection of machine learning and game theory.
- We characterize the equilibriums (PSE and NE) of Multi-PP, highlighting on the effects of sensitivity of population, strength of cooperation, graph topology.
- Perturbation analysis (with quadratic loss) reveals how network centrality affects equilibrium.

Open Problems

- Fine-grained analysis on the general case beyond quadratic loss.
- Algorithms for reaching the equilibrium(s) in the general setting (with non-convex loss, imperfect signaling, etc.).
- Inverse problem for learning the graph topologies from PSEs.

Thank you! Pre-print available soon (or email me: htwai@cuhk.edu.hk)

References I

- Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. Personalized and private peer-to-peer machine learning. In *Proceedings* of the 21st International Conference on Artificial Intelligence and Statistics, pages 473–481. PMLR, 2018.
- Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven Wu. Strategic classification from revealed preferences. In *Proceedings of the 2018 ACM Conference on Economics and Computation*, pages 55–70, 2018.
- Francisco Facchinei and Jong-Shi Pang. *Finite-Dimensional Variational Inequalities and Complementarity Problems*. Springer, 2003.
- Jesús Gómez-Gardenes, Irene Reinares, Alex Arenas, and Luis Mario Floría. Evolution of cooperation in multiplex networks. *Scientific Reports*, 2(1):1–6, 2012.
- Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary Wootters. Strategic classification. In *Proceedings of the 2016 ACM conference on Innovations in Theoretical Computer Science*, pages 111–122, 2016.

References II

- Matthew O Jackson. *Social and Economic Networks*. Princeton University Press, 2010.
- Qiang Li, Chung-Yiu Yau, and Hoi To Wai. Multi-agent performative prediction with greedy deployment and consensus seeking agents. In *Advances in Neural Information Processing Systems 35*, 2022.
- Adhyyan Narang, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, and Lillian J Ratliff. Multiplayer performative prediction: Learning in decision-dependent games. *arXiv preprint arXiv:2201.03398*, 2022.
- Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction. In *Proceedings of the 37th International Conference on Machine Learning*, pages 7599–7609. PMLR, 2020.
- Georgios Piliouras and Fang-Yi Yu. Multi-agent performative prediction: From global stability and optimality to chaos. *arXiv preprint arXiv:2201.10483*, 2022.
- Tijana Zrnic, Eric Mazumdar, Shankar Sastry, and Michael Jordan. Who leads and who follows in strategic classification? *Advances in Neural Information Processing Systems 34*, 34:15257–15269, 2021.