Network Effects on Performative Prediction Games

Hoi-To Wai
Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong (CUHK)
(Joint work with Xiaolu Wang and Chung-Yiu Yau)
April 6, 2023

NUS-IMS Workshop on Games on Networks
Acknowledgement: HKRGC Project #24203520

1/29



Learning from Performative Data

Empirical risk minimization (ERM) for the loss function £: RP x Z — R
ming ]EZ~D [6(0, Z)] .
e Fixed data distribution D; Example: static data (cats vs dogs).

Performative Prediction (PP)!: predictions support decisions that
influence the outcome they aim to predict (data react to decision),

mil’lg EZN'D(G) [5(0, Z)] .

e Decision-dependent distribution: D(6).

e Example: bank loan application — Individuals (data) may alter their
profiles to increase the chance of success.

e Special case of PP: strategic classification?.

1[Perdomo et al., 2020] J. Perdomo, T. Zrnic, C. Mendler-Dunner, M. Hardt.
Performative prediction. ICML 2020.

2By itself a Stackelberg game (agent = leader, population = follower), e.g.,
Z ~ D(0) satisfies Z € argmax U(Z; 80, Zo) with Zg ~ Dy (base distribution).
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Two Solution Concepts for PP

Performative Optimal Solution (PO):

67° € argmin Ez.pe) [((6; Z)].
OcRr

o Difficult -.- non-convexity, unknown D(-), etc.

Performative Stable Solution (PS):

2~ Do) 6°S € argmingy, Ezpor [0(0; Z).
e In general 875 #£ 670 Fixed point of repeated
) risk minimization (RRM)

0" «+ argming_p, Ezpe) [((0; Z)].

- Population e RRM = deployment-and-optimize where

agents are agnostic to the performative effect.
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Multi-Agent Performative Prediction (Multi-PP)

This Talk: multiplex network game [Gémez-Gardenes et al., 2012] extension
of PP with n agents, each agent ¢ interacts with a local population D;(-).
e Agent network G* described by A, where agent i decision depends

on 0j,j eM,;:= {] : Ai]‘ 750}
e Population network G* described by P, where D;(+) react to
decisions 6; and 6;,j € N; := {j : P;; # 0}.

. Agent

Population

4/29



Example: Bank Loan Policy Learning

e Each bank trains a personalized classification model (policy) for
predicting whether the loan applicants are creditworthy.

e Banks branches of the same corporate group share strategy to
exploit more data = Inter-bank cooperation network G*.

e Applicants may be affected by local and neighbor branches’ policies
and manipulate their features to increase the chances of successfully
applying for the loan = Applicant influence network G¥.
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Example: Ride-Sharing Market

e Multiple platforms (agents) forecast supply-demand (Z;) for rides
at different locations in order to optimize their revenue (F;) by
using the forecasted demand to set prices (6;).

e Drivers/passengers participate in multiple platforms. Hence, the
supply-demand vector Z; ~ D;(0;,0,,) for platform i depends on
their own price 6; as well as their competitors’ prices 8, .

e Typical setup: G* = n-isolated nodes, G® = general graph.
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Multi-Agent Performative Prediction (Multi-PP)

Setting: each agent minimizes its local risk F; w.r.t. its own strategy 6,

Jin Fi(05 03] e an,on:) = Eziwmi0.,00,) 303003 Z0)), 1)

Performative Risk

neighbors’ strategies [Bj]jeM_ are known and samples can be drawn from
e Focus on personalized learning [Bellet et al., 2018]:

£i(0:, 00,5 Zs) = (035 Zy) Z Aij||6; — 65113
H/_/ jEM

Loss Function

Graph Regularization
- local risk and partial (non)cooperation controlled by? p; € R.

e Interested in equilibrium of the agents’ strategies 64,...,6,, —
performative stable equilibrium (~PS) & Nash equilibrium (~PO).

3WLOG, assume that A is normalized with > A =1
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Multi-PP Game: Existing Works

D;(6;)

2.0) @

D,(6,)

e Agent i optimizes & deploys 6;, local distribution D;(61,...,8,). (left)
» [Narang et al., 2022] A. Narang E. Faulkner, D. Drusvyatskiy, M. Fazel, L.

Ratliff, Multiplayer performative prediction: Learning in decision-dependent
games. JMLR, 2022.

e Similar model but identical distribution D(04,...,0,). (middle)

» [Piliouras and Yu, 2022] G. Piliouras, F.-Y. Yu. Multi-agent performative
prediction: From global stability and optimality to chaos. arXiv, 2022.

e Agents deploy 61 = --- = 0,,; distribution D;(0;). (right)
» [Lietal, 2022] Q. Li, C.-Y. Yau, HT. Multi-agent performative prediction with
greedy deployment and consensus seeking agents. NeurlPS 2022.

e Related works: multi-leader-follower game, multiplex network game, etc.

8 /29



Questions & Our Results

e How and when can we find an (unique) equilibrium? How will the
interaction between topologies affect the game's equilibrium?

e we derive the conditions on sensitivity of D,(+),
(non)cooperation strength p, for the existence/uniqueness of
equilibriums.

e symmetric vs asymmetric topology.

e If the data distribution at a local population/agent is perturbed, how
will the perturbation affect the equilibrium solution at other agents
on the network (= ‘butterfly effect’)?

e for a special case (quadratic loss), we derive closed form
solution for the PSE.
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Multi-PP Game: Assumptions

Recall the Multi-PP game: for i € [n],

2
eﬂgﬂg Ez,~D,(0:.0x,) V (0:; Z;) % Aijll60; — 6513
]6 i

Assumption 1: For i € [n], it holds

i) Ez,~p;(0:.0x,)[li(; Zi)] is pi-strongly convex.
i) [|V€:(65; Zi) = VEi(07; Zj)ll2 < Li(|6; = Oill2 + 1 Zi = Zi|2)-

Assumption 2: For i € [n], there exists ¢; > 0 such that

W1i(Di(6:,0n,), Di(8:, ) < €ill[0:;0n;] — [0i5 07 ] I,

where Wy (-, -) is the Wasserstein-1 distance.

e Common assumptions for PP problems, see [Perdomo et al., 2020].
e ¢; bounds the sensitivity of the i-th population D;(-).
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Repeated Risk Minimization Dynamics

\ 0! PREAN
)

la o
~D; (Bf ) 05\41}/\; B /'*w‘——‘/

e Repeated Risk Minimization (RRM): In iteration ¢, agent ¢ does

05“ =Ti (07‘5 [Ot']jeu/vt uN)

=argminE, _p, (6!,6%) [fz(ezue_/\/l ; )] :
0,ERPi

e A natural setting for distributed learning (can be extended to
SGD-like algorithm).

e Agent ¢ does not need to know 95\/ but need to know the
neighbors’ strategies / models 95\41-
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Performative Stable Equilibrium

Definition 1 (Performative Stable Equilibrium, PSE)

The strategy profile 8P = (67°°,... 6P%) € R" is a performative
stable equilibrium of (1) if for all i € [n],

6" € argmin {Bzimior o) (16,0555 20)] }
i ERP ’

e At the PSE, agent i has no incentive to alter 87*° based only on

response D; (67>, 657 ).

e Observation: PSE is a fixed point of RRM, but when does PSE exist
and is unique? depends on the map 7;(+)...

13 /29



Existence and Uniqueness of PSE

Theorem 2

Suppose that Z?zl A;; =1 and p; + p; > 0 for all i € [n], Assumptions
1 and 2 hold. Let p = ;] and p := [p;]?_,. Under the condition

* ( PyLiei\”
max ( d 6') +HDiag( P )A
je€nl i \ i + pi w+p

(i) the Multi-PP game admits a unique PSE, and (ii) the RRM converges
linearly to the PSE.

<1, (2)

e Eq. (2) gives sufficient condition for stability of RRM.

e Stability of RRM depends on G*, G, p; and ¢;; see next slides for
elaboration.
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Effects of Network Structure on PSE:
Non Graph Regularized Cases (p = 0)

e Ifn=1,p; =0, and py; > 0, then
(2) — e < Nl/Lh

which coincides with single-agent PP [Perdomo et al., 2020,
Theorem 3.5].

o If P=11" (GP is fully connected) and p; = 0, then
(2) = X Lie /i <1

This coincides with [Narang et al., 2022, Theorem 2]. If further
€ =¢, L; =L, u; = p, then

(2) = e <p/(VnL)
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Effects of Network Structure on PSE:
Graph Regularized Cases (p # 0)

Suppose that p; = p, p; = p, Li = L. In this case, (2) can be implied by
L/||Pl| oo maxepn) € < pu — p(||All2 = 1), (3)

e Population network with less edges and small L can be beneficial for
stability.
e If A is symmetric*, then || Al = 1 and thus (3) is independent of p.

o If A is asymmetric, then ||A|]2 > 1 and increasing p may violate (3)
(although this may have better generalization performance).

e Intuition? a possible reason is that RRM is no longer ‘fair’ for all
agents (see the SG-GD algorithm).

*Recall that 35, A;; = 1 still holds.
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Stochastic Algorithm for Computing PSE

Algorithm 1 Stochastic Gradient with Greedy Deployment (SG-GD)

1: fort=0,1,... do

2. Deploy the models {60!},

3: fori=1ton do {executed in parallel}

4: Sample Z/ ™' ~ D;(6!,6%)

5 g' =V (685 Z) + p; >y Aij (6] — 6%) {decen. opt.}
6 ;"' =0} — 719"

Theorem 3

Suppose that E[||V£(0; Z) — E[V£(0; Z)]||3] < 02 + 2|0 — 6P*||3 and
the same conditions as Theorem 2 holds, then for all t > 1,
t

E[ll6* — 673 < J[(1 —vm)A° +220,, (4)

s=1

where Ao i= 1|6 — 873, fi = ju + p(1 - || A2) - Le\/nPnoo, and
5 = 03 +2(L2¢|1Pllo + (L + | L, — All2)?)
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Case Study: Quadratic Loss Game

e Consider the loss function as
(05 Z;) = 50: - Zi 3.
with the graph regularization parameter p; = p > 0.
e The sample Z; ~ D;(0;,0,) satisfies
Z; = Z; +e ZFl P;;0; ,

‘base’ distributio . .
istribution influences from neighbors on G°

where € € R is a sensitivity parameter (can be negative!) and

E[ZZ] =m;, COV(Z,L) = 02Ip.

e A ‘toy’' problem, both PSE and NE can be computed in closed form.
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Existence and Uniqueness of PSE

Proposition 1

Consider the Multi-PP game with (5), (6). Suppose that Z?Zl A =1
Then, the RRM finds a unique PSE if and only if

p €
M| —A+—P]| <1 7
<1+p +1+p >’ ")

Moreover, the PSE admits the closed-form:

max
i€[n]

67 = ((1+ p)L, — pA —PI @ L) ' m. (8)

e Sufficient and necessary condition for stability of RRM (extensible
to SG-GD) with explicit dependence on the weighted graph:

Ale,p) =1, P+ A

see the next slide.

e Shows the combined effect of G*, GF.
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Structure of the PSE Solution

If p=1, then 87 = ((1 + p)I,, —eP — pA)~'m.

e If £ > 0, then 67 is the weighted Katz-Bonacich centrality vector
[Jackson, 2010] for the weighted adjacency matrix A(e, p).

e Suppose that the j-th mean m; is perturbed by  and let
6P¢(j) € R™ be the new PSE. Then, the changes in the PSE
solution at agent i after perturbing the jth population is

Aij = 07(5) — 07 = 5 el [(Ale, 0) i

If e >0and p=0, then A(c, p) =P and A;; is proportional to
the total number of walks from i to j in GF.
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Effects of Cooperation on the Stability of PSE

£=01 -

2o —~1.100 £=02

. $1075
o 8.8 ~ 1.050
=0.7 £1.025
% 0.6 4 G* = complete, ¢* = complete E 1.000 T
+05 G* = complete, ¢° = star + 0.975¢ 7
< 0.4 — = ¢*=star, ¢" = complete <« 0.950 ,’
Kl — = (A=star, ¢ =star 20.9251+
=<0.3 ~0.900

0 2 4 6 8 10 : 0 2 4 6 8 10

P
£=0.5

X(pA + €P)/(1 + p)
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ONPOOOND

0O 2 4 6 8 10

e For small (resp. large) sensitivity, ¢ = 0.1 (resp. € = 0.5), (7) is always
satisfied (resp. violated) irrespective of the value of p.

e For € = 0.3, increasing p lead to violation of (7) for the case when both
G*, G® are star graphs. This coincides with the previous observation that
p > 1 can destabilize the PSE when A is asymmetric.

e For ¢ = —0.5, increasing p can stabilize the PSE, i.e., satisfying (7).
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Structure of the PSE Solution

Mover=0,0=0.0,€=0.3 Mover=1,0=0.0,€=0.3
0.20 1.0 119
0.20 ’ 0.01 1.00
o 1 0-3um—J o8 | [10.75
3 o, 064 o oso  ® |A;j| increases if
0.4 0.25 agent i is closer to
o2 . agent j on the
Mover=0,p=0.5,€=0.3 Mover=1,0=0.5,€=0.3 b d h
0.23 081 combined graph.
0.23 10113 1.00 grap
m 1| 108 15 | [[075
al o 065 o 0.50 e Increasing p makes
0.4 025 the variations of
-02 N |A;;| more uniform
Figure 1: lllustrating |A,;| for the PSE of across the network.

mean estimation problem when the mean of
one of the local populations (‘Mover') is
perturbed. (G*: red, G*: blue.)
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Case Study: Logistic Regression Game

e Each agent trains a personalized logistic regression model with

(65 Z;) = —y,0, z; + log (1 + 69"’Tmi) ; (9)
where Z; = (x;,y;) € RPi x {0,1} is the feature-label pair.
e Features are generated according to:
™
T, if yi =1,

where 2 and z{ follow some base distributions with
E[z?] = m? € R? and E[z}] = m] € R?, and ¢; € R.

When n = 1, this setting reduces to the strategic classification problem
that has been studied in the literature [Hardt et al., 2016, Dong et al.,
2018, Perdomo et al., 2020, Zrnic et al., 2021].
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Case Study: Logistic Regression Game

—— p=0,e=0
—— p=1e=0 >‘0.8 e
n — p=0,6=0.1 %
% — p=1,e=01 50.7
o — p=0,e=10 _—— o]
4‘7'1100 — p=1¢e=10 < 0.6
(V] -
'_ wn
% O e e
; ; ; ; : ; 0.4
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Iterations 16 Iterations 1e6

(QA: complete, G*: star)

e Enabling graph regularization (with p = 1) allows the agents to maintain
a high accuracy in classification for small distribution shifts ¢ € {0,0.1}.

e But setting p = 1 under large distribution shifts (¢ = 10) may lead to
degraded performance.
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Nash Equilibrium

Definition 4 (Nash Equilibrium, NE)
A vector "¢ = [67°;...;02°] € R? is called a Nash equilibrium (NE)
of the game (1) if it holds for all 7 € [n] that

o™ c a;"g glin {EZiNDi(ehoy\?) [fi(&i, 0% Zl)] } .
i ERPi ‘

o Recall that PSE was defined as:

a?se € arg min {EZiNDi(BPse,GRS;) [fz (0,;7 Ois/tei; Zz)] }
6, ERP ! g

e The NE can be found with the best response (BR) dynamics,

t+1 _ g2 t — : (0. At - 7.
ei =B; <[0]]jEMiUNi) T aerigegllinEZiNDi<9i79}\[‘i) [-fl(oheszl)] ’

for all ¢ € [n] < can be difficult!
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Existence and Uniqueness of NE: Assumptions

Assumption 3: For any i € [n], the map Ez, p,(.ay.) [fi(6i, Or1,; Zi)]
is differentiable at 6; and its derivative is continuous in [6;; O7,].

Assumption 4: For any i € [n], 4,0, the map
H(0) = 32-Ez, D, (u, 6x,) [[i(6i, Onn,; Z1)] \ui:di

is monotone w.r.t. 4.

e Standard for guaranteeing strong monotonicity.
e Our focus is on the network effects on NE.
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Existence and Uniqueness of NE

Theorem 5

Suppose that 37| A;; = 1 for all i € [n] and Assumptions 1-4 hold. Let
Hhmin = mlnle[n]{uz} and puin = mine{pi}. If it holds that

" PyjLe \°
max Z<7” il > +HDiag(L‘7p )A
J€[n] Mmin i Pmin min+pmin

then (1) is strongly monotone, and admits a unique NE (Facchinei and Pang
[2003, Theorem 2.3.3(b)]).

maX;e[n) { Li€i
< 1 _ Waxiepn {Lies}
2 Mmin"’pmin

o If u; = o> 0 for all ¢ € [n], then the condition in Theorem 5 is
equivalent to \/> " | L7e? + max;e, {Lie;} < p.

e Strictly weaker than the condition 2./> """ | LZ¢? < i required by
[Narang et al., 2022, Theorem 5].
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Conclusions & Perspectives

e Multi-PP game is a new class of game at the intersection of
machine learning and game theory.

e We characterize the equilibriums (PSE and NE) of Multi-PP,
highlighting on the effects of sensitivity of population, strength of
cooperation, graph topology.

e Perturbation analysis (with quadratic loss) reveals how network
centrality affects equilibrium.

Open Problems
e Fine-grained analysis on the general case beyond quadratic loss.

e Algorithms for reaching the equilibrium(s) in the general setting
(with non-convex loss, imperfect signaling, etc.).

e Inverse problem for learning the graph topologies from PSEs.

Thank yOU! Pre-print available soon (or email me:
htwai@cuhk.edu.hk)
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