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Learning from Performative Data

Empirical risk minimization (ERM) for the loss function ` : Rp × Z→ R
minθ EZ∼D [`(θ;Z)] .

• Fixed data distribution D; Example: static data (cats vs dogs).

Performative Prediction (PP)1: predictions support decisions that
influence the outcome they aim to predict (data react to decision),

minθ EZ∼D(θ) [`(θ;Z)] .

• Decision-dependent distribution: D(θ).

• Example: bank loan application – Individuals (data) may alter their
profiles to increase the chance of success.

• Special case of PP: strategic classification2.

1[Perdomo et al., 2020] J. Perdomo, T. Zrnic, C. Mendler-Dunner, M. Hardt.
Performative prediction. ICML 2020.

2By itself a Stackelberg game (agent = leader, population = follower), e.g.,

Z ∼ D(θ) satisfies Z ∈ argmaxẐ U(Ẑ;θ, Z0) with Z0 ∼ D0 (base distribution).
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Two Solution Concepts for PP
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Agent

Population

Performative Optimal Solution (PO):

θPO ∈ arg min
θ∈Rp

EZ∼D(θ) [`(θ;Z)] .

• Difficult ∵ non-convexity, unknown D(·), etc.

Performative Stable Solution (PS):

θPS ∈ arg minθ∈Rp EZ∼D(θPS) [`(θ;Z)] .

• In general θPS 6= θPO. Fixed point of repeated
risk minimization (RRM)

θ+ ← arg minθ̃∈Rp EZ∼D(θ)

[
`(θ̃;Z)

]
.

• RRM = deployment-and-optimize where
agents are agnostic to the performative effect.
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Multi-Agent Performative Prediction (Multi-PP)

This Talk: multiplex network game [Gómez-Gardenes et al., 2012] extension
of PP with n agents, each agent i interacts with a local population Di(·).

• Agent network GA described by A, where agent i decision depends
on θj , j ∈Mi := {j : Aij 6= 0}.

• Population network GP described by P , where Di(·) react to
decisions θi and θj , j ∈ Ni := {j : Pij 6= 0}.

Population

Agent
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GA = (V, EA)

<latexit sha1_base64="6TD04v2UjW9N2cTLE6H4oDkzX9A=">AAACMnicbVDLSgNBEJz1GeNr1aMeBoMQIYRdCepFCIroMYJ5QBLD7GSSDJnZXWZ6xbDk4td4VfwZvYlX/0EnD8QkFjQUVV3QXV4ouAbHebPm5hcWl5YTK8nVtfWNTXtru6SDSFFWpIEIVMUjmgnusyJwEKwSKkakJ1jZ614M/PI9U5oH/i30QlaXpO3zFqcEjNSw967u4hoALvTxGU7jUgZf/gqHDTvlZJ0h8CxxxySFxig07O9aM6CRZD5QQbSuuk4I9Zgo4FSwfrIWaRYS2iVtVjXUJ5Lpejz8oo8PjNLErUCZ8QEP1b+J+GG0OKERqXVPeiYtCXT0tDcQM57819Ygieqp5tRZ0Dqtx9wPI2A+HV3VigSGAA/6w02uGAXRM4RQxc1jmHaIIhRMy0nTmDvdzywpHWXd42zuJpfKn4+7S6BdtI/SyEUnKI+uUQEVEUWP6Ak9oxfr1Xq3PqzP0eqcNc7soAlYXz/3Aqkg</latexit>

GP = (V, EP)
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Example: Bank Loan Policy Learning

• Each bank trains a personalized classification model (policy) for
predicting whether the loan applicants are creditworthy.

• Banks branches of the same corporate group share strategy to
exploit more data ⇒ Inter-bank cooperation network GA.

• Applicants may be affected by local and neighbor branches’ policies
and manipulate their features to increase the chances of successfully
applying for the loan ⇒ Applicant influence network GP.
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Example: Ride-Sharing Market

• Multiple platforms (agents) forecast supply-demand (Zi) for rides
at different locations in order to optimize their revenue (Fi) by
using the forecasted demand to set prices (θi).

• Drivers/passengers participate in multiple platforms. Hence, the
supply-demand vector Zi ∼ Di(θi,θNi) for platform i depends on
their own price θi as well as their competitors’ prices θNi

.

• Typical setup: GA = n-isolated nodes, GP = general graph.
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Multi-Agent Performative Prediction (Multi-PP)

Setting: each agent minimizes its local risk Fi w.r.t. its own strategy θi,

min
θi∈Rp

Fi(θi, [θj ]j∈Mi∪Ni
) := EZi∼Di(θi,θNi

) [fi(θi,θMi
;Zi)]︸ ︷︷ ︸

Performative Risk

,
(1)

neighbors’ strategies [θj ]j∈Mi
are known and samples can be drawn from

Di(θi,θNi
).

• Focus on personalized learning [Bellet et al., 2018]:

fi(θi,θMi
;Zi) := `i(θi;Zi)︸ ︷︷ ︸

Loss Function

+
ρi
2

∑
j∈Mi

Aij‖θi − θj‖22︸ ︷︷ ︸
Graph Regularization

.

- local risk and partial (non)cooperation controlled by3 ρi ∈ R.

• Interested in equilibrium of the agents’ strategies θ1, . . . ,θn –
performative stable equilibrium (∼PS) & Nash equilibrium (∼PO).

3WLOG, assume that A is normalized with
∑

j Aij = 1.
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Multi-PP Game: Existing Works

• Agent i optimizes & deploys θi, local distribution Di(θ1, . . . ,θn). (left)

I [Narang et al., 2022] A. Narang E. Faulkner, D. Drusvyatskiy, M. Fazel, L.
Ratliff, Multiplayer performative prediction: Learning in decision-dependent
games. JMLR, 2022.

• Similar model but identical distribution D(θ1, . . . ,θn). (middle)

I [Piliouras and Yu, 2022] G. Piliouras, F.-Y. Yu. Multi-agent performative
prediction: From global stability and optimality to chaos. arXiv, 2022.

• Agents deploy θ1 = · · · = θn; distribution Di(θi). (right)

I [Li et al., 2022] Q. Li, C.-Y. Yau, HT. Multi-agent performative prediction with
greedy deployment and consensus seeking agents. NeurIPS 2022.

• Related works: multi-leader-follower game, multiplex network game, etc.
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Questions & Our Results

• How and when can we find an (unique) equilibrium? How will the
interaction between topologies affect the game’s equilibrium?

• we derive the conditions on sensitivity of Di(·),
(non)cooperation strength ρ, for the existence/uniqueness of
equilibriums.

• symmetric vs asymmetric topology.

• If the data distribution at a local population/agent is perturbed, how
will the perturbation affect the equilibrium solution at other agents
on the network (≈ ‘butterfly effect’)?

• for a special case (quadratic loss), we derive closed form
solution for the PSE.
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Outline

Background and Problem Formulation

Performative Stable Equilibrium

Case Studies and Numerical Examples

Nash Equilibrium
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Multi-PP Game: Assumptions

Recall the Multi-PP game: for i ∈ [n],

min
θi∈Rp

EZi∼Di(θi,θNi
)

[
`i(θi;Zi) +

ρi
2

∑
j∈Mi

Aij‖θi − θj‖22
]
.

Assumption 1: For i ∈ [n], it holds
i) EZi∼Di(θi,θNi

)[`i(·;Zi)] is µi-strongly convex.
ii) ‖∇`i(θi;Zi)−∇`i(θ′i;Z ′i)‖2 ≤ Li(‖θi − θ′i‖2 + ‖Zi −Z ′i‖2).

Assumption 2: For i ∈ [n], there exists εi ≥ 0 such that

W1(Di(θi,θNi
),Di(δi, δNi

)) ≤ εi‖[θi;θNi
]− [δi; δNi

]‖2,

where W1(·, ·) is the Wasserstein-1 distance.

• Common assumptions for PP problems, see [Perdomo et al., 2020].

• εi bounds the sensitivity of the i-th population Di(·).
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Repeated Risk Minimization Dynamics

• Repeated Risk Minimization (RRM): In iteration t, agent i does

θt+1
i = Ti

(
θti ,
[
θtj
]
j∈∪Mi∪Ni

)
:= arg min

θi∈Rpi

EZi∼Di(θt
i ,θ

t
Ni

)

[
fi(θi,θ

t
Mi

;Zi)
]
.

• A natural setting for distributed learning (can be extended to
SGD-like algorithm).

• Agent i does not need to know θtNi
, but need to know the

neighbors’ strategies / models θtMi
.
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Performative Stable Equilibrium

Definition 1 (Performative Stable Equilibrium, PSE)

The strategy profile θpse = (θpse
1 , . . . ,θpse

n ) ∈ Rnp is a performative
stable equilibrium of (1) if for all i ∈ [n],

θpse
i ∈ arg min

θi∈Rp

{
EZi∼Di(θ

pse
i ,θpse

Ni
)

[
fi(θi,θ

pse
Mi

;Zi)
]}
.

• At the PSE, agent i has no incentive to alter θpse
i based only on

response Di(θpse
i ,θpse

Ni
).

• Observation: PSE is a fixed point of RRM, but when does PSE exist
and is unique? depends on the map Ti(·)...
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Existence and Uniqueness of PSE

Theorem 2

Suppose that
∑n
j=1Aij = 1 and µi + ρi > 0 for all i ∈ [n], Assumptions

1 and 2 hold. Let µ := [µi]
n
i=1 and ρ := [ρi]

n
i=1. Under the condition√√√√max

j∈[n]

n∑
i=1

(
PijLiεi
µi + ρi

)2

+

∥∥∥∥Diag

(
ρ

µ+ ρ

)
A

∥∥∥∥
2

< 1, (2)

(i) the Multi-PP game admits a unique PSE, and (ii) the RRM converges
linearly to the PSE.

• Eq. (2) gives sufficient condition for stability of RRM.

• Stability of RRM depends on GA,GP, ρi and εi; see next slides for
elaboration.
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Effects of Network Structure on PSE:
Non Graph Regularized Cases (ρ = 0)

• If n = 1, ρ1 = 0, and µ1 > 0, then

(2)⇐⇒ ε1 < µ1/L1,

which coincides with single-agent PP [Perdomo et al., 2020,
Theorem 3.5].

• If P = 11> (GP is fully connected) and ρi = 0, then

(2)⇐⇒∑n
i=1 L

2
i ε

2
i /µ

2
i < 1

This coincides with [Narang et al., 2022, Theorem 2]. If further
εi = ε, Li = L, µi = µ, then

(2)⇐⇒ ε < µ/(
√
nL)
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Effects of Network Structure on PSE:
Graph Regularized Cases (ρ 6= 0)

Suppose that µi = µ, ρi = ρ, Li = L. In this case, (2) can be implied by

L
√
‖P ‖∞maxi∈[n] εi < µ− ρ(‖A‖2 − 1), (3)

• Population network with less edges and small L can be beneficial for
stability.

• If A is symmetric4, then ‖A‖2 = 1 and thus (3) is independent of ρ.

• If A is asymmetric, then ‖A‖2 > 1 and increasing ρ may violate (3)
(although this may have better generalization performance).

• Intuition? a possible reason is that RRM is no longer ‘fair’ for all
agents (see the SG-GD algorithm).

4Recall that
∑

j Aij = 1 still holds.
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Stochastic Algorithm for Computing PSE

Algorithm 1 Stochastic Gradient with Greedy Deployment (SG-GD)

1: for t = 0, 1, . . . do
2: Deploy the models {θti}ni=1.
3: for i = 1 to n do {executed in parallel}
4: Sample Zt+1

i ∼ Di(θti ,θtNi
)

5: gt=∇`i(θti ;Zt+1
i ) + ρi

∑n
j=1Aij

(
θti − θtj

)
{decen. opt.}

6: θt+1
i = θti − γt+1g

t

Theorem 3

Suppose that E[‖∇`(θ;Z)− E[∇`(θ;Z)]‖22] ≤ σ2
0 + σ2

1‖θ − θpse‖22 and
the same conditions as Theorem 2 holds, then for all t ≥ 1,

E[‖θt − θpse‖22] ≤
t∏

s=1

(1− γsµ̃)∆0 +
2σ2

0

µ̃
γt. (4)

where ∆0 := ‖θ0 − θpse‖22, µ̃ = µ+ ρ(1− ‖A‖2)− Lε
√
‖P ‖∞, and

σ̃2 = σ2
1 + 2

(
L2ε2‖P ‖∞ + (L+ ρ‖In −A‖2)2

)
.
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Case Study: Quadratic Loss Game

• Consider the loss function as

`i(θi;Zi) = 1
2‖θi −Zi‖22. (5)

with the graph regularization parameter ρi = ρ ≥ 0.

• The sample Zi ∼ Di(θi,θNi
) satisfies

Zi = Z̄i︸︷︷︸
‘base’ distribution

+ ε
∑n
j=1 Pijθj︸ ︷︷ ︸

influences from neighbors on GP

, (6)

where ε ∈ R is a sensitivity parameter (can be negative!) and

E[Z̄i] = mi, Cov(Z̄i) = σ2Ip.

• A ‘toy’ problem, both PSE and NE can be computed in closed form.

18 / 29



Existence and Uniqueness of PSE

Proposition 1

Consider the Multi-PP game with (5), (6). Suppose that
∑n
j=1Aij = 1.

Then, the RRM finds a unique PSE if and only if

max
i∈[n]

∣∣∣∣λi( ρ

1 + ρ
A+

ε

1 + ρ
P

)∣∣∣∣ < 1. (7)

Moreover, the PSE admits the closed-form:

θpse = ([(1 + ρ)In − ρA− εP ]⊗ Ip̄)−1
m. (8)

• Sufficient and necessary condition for stability of RRM (extensible
to SG-GD) with explicit dependence on the weighted graph:

A(ε, ρ) := ε
1+ρP + ρ

1+ρA

see the next slide.

• Shows the combined effect of GA, GP.
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Structure of the PSE Solution

If p = 1, then θpse = ((1 + ρ)In − εP − ρA)−1m.

• If ε > 0, then θpse is the weighted Katz-Bonacich centrality vector
[Jackson, 2010] for the weighted adjacency matrix A(ε, ρ).

• Suppose that the j-th mean mj is perturbed by κ and let
θ̄pse(j) ∈ Rn be the new PSE. Then, the changes in the PSE
solution at agent i after perturbing the jth population is

∆ij := θ̄pse
i (j)− θpse

i = κ
1+ρ

∑∞
k=1[(A(ε, ρ))k]ij .

If ε > 0 and ρ = 0, then A(ε, ρ) = εP and ∆ij is proportional to
the total number of walks from i to j in GP.
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Effects of Cooperation on the Stability of PSE

0 2 4 6 8 10
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+
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/(1
+
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• For small (resp. large) sensitivity, ε = 0.1 (resp. ε = 0.5), (7) is always
satisfied (resp. violated) irrespective of the value of ρ.

• For ε = 0.3, increasing ρ lead to violation of (7) for the case when both
GA,GP are star graphs. This coincides with the previous observation that
ρ� 1 can destabilize the PSE when A is asymmetric.

• For ε = −0.5, increasing ρ can stabilize the PSE, i.e., satisfying (7).
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Structure of the PSE Solution
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Figure 1: Illustrating |∆ij | for the PSE of
mean estimation problem when the mean of
one of the local populations (‘Mover’) is
perturbed. (GA: red, GP: blue.)

• |∆ij | increases if
agent i is closer to
agent j on the
combined graph.

• Increasing ρ makes
the variations of
|∆ij | more uniform
across the network.
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Case Study: Logistic Regression Game

• Each agent trains a personalized logistic regression model with

`i(θi;Zi) = −yiθ>i xi + log
(

1 + eθ
>
i xi

)
, (9)

where Zi = (xi, yi) ∈ Rpi × {0, 1} is the feature-label pair.

• Features are generated according to:

xi =

{
x̄0
i + ε

∑n
j=1 Pijθj , if yi = 0,

x̄1
i , if yi = 1,

(10)

where x̄0
i and x̄0

i follow some base distributions with
E[x̄0

i ] = m0
i ∈ Rp and E[x̄1

i ] = m1
i ∈ Rp, and εi ∈ R.

When n = 1, this setting reduces to the strategic classification problem
that has been studied in the literature [Hardt et al., 2016, Dong et al.,
2018, Perdomo et al., 2020, Zrnic et al., 2021].
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Case Study: Logistic Regression Game
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(GA: complete, GP: star)

• Enabling graph regularization (with ρ = 1) allows the agents to maintain
a high accuracy in classification for small distribution shifts ε ∈ {0, 0.1}.

• But setting ρ = 1 under large distribution shifts (ε = 10) may lead to
degraded performance.
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Nash Equilibrium

Definition 4 (Nash Equilibrium, NE)

A vector θne = [θne
1 ; . . . ;θne

n ] ∈ Rp is called a Nash equilibrium (NE)
of the game (1) if it holds for all i ∈ [n] that

θne
i ∈ arg min

θi∈Rpi

{
EZi∼Di(θi,θne

Ni
)

[
fi(θi,θ

ne
Mi

;Zi)
]}
.

• Recall that PSE was defined as:

θpse
i ∈ arg min

θi∈Rp

{
EZi∼Di(θ

pse
i ,θ

pse
Ni

)

[
fi(θi,θ

pse
Mi

;Zi)
]}

• The NE can be found with the best response (BR) dynamics,

θt+1
i = Bi

([
θtj
]
j∈Mi∪Ni

)
:= arg min

θi∈Rpi

EZi∼Di(θi,θ
t
Ni

)

[
fi(θi,θ

t
Mi

;Zi)
]
,

for all i ∈ [n] ← can be difficult!
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Existence and Uniqueness of NE: Assumptions

Assumption 3: For any i ∈ [n], the map EZi∼Di(·,θNi
) [fi(θi,θMi ;Zi)]

is differentiable at θi and its derivative is continuous in [θi;θNi
].

Assumption 4: For any i ∈ [n], δ,θ, the map

Hi
δ(θ) := ∂

∂ui
EZi∼Di(ui,δNi

) [fi(θi,θMi ;Zi)]
∣∣
ui=δi

is monotone w.r.t. δ.

• Standard for guaranteeing strong monotonicity.

• Our focus is on the network effects on NE.
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Existence and Uniqueness of NE

Theorem 5

Suppose that
∑n
j=1Aij = 1 for all i ∈ [n] and Assumptions 1-4 hold. Let

µmin := mini∈[n]{µi} and ρmin := mini∈[n]{ρi}. If it holds that√√√√max
j∈[n]

{
n∑

i=1

(
PijLiεi

µmin + ρmin

)2
}

+

∥∥∥∥Diag

(
ρ

µmin+ρmin

)
A

∥∥∥∥
2

< 1−
maxi∈[n] {Liεi}
µmin + ρmin

,

then (1) is strongly monotone, and admits a unique NE (Facchinei and Pang
[2003, Theorem 2.3.3(b)]).

• If µi = µ > 0 for all i ∈ [n], then the condition in Theorem 5 is
equivalent to

√∑n
i=1 L

2
i ε

2
i + maxi∈[n]{Liεi} ≤ µ.

• Strictly weaker than the condition 2
√∑n

i=1 L
2
i ε

2
i ≤ µ required by

[Narang et al., 2022, Theorem 5].
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Conclusions & Perspectives

• Multi-PP game is a new class of game at the intersection of
machine learning and game theory.

• We characterize the equilibriums (PSE and NE) of Multi-PP,
highlighting on the effects of sensitivity of population, strength of
cooperation, graph topology.

• Perturbation analysis (with quadratic loss) reveals how network
centrality affects equilibrium.

Open Problems

• Fine-grained analysis on the general case beyond quadratic loss.

• Algorithms for reaching the equilibrium(s) in the general setting
(with non-convex loss, imperfect signaling, etc.).

• Inverse problem for learning the graph topologies from PSEs.

Thank you! Pre-print available soon (or email me:
htwai@cuhk.edu.hk)

28 / 29



References I
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