
Variance Reduced Policy Evaluation with
Smooth Function Approximation
Hoi-To Wai (CUHK), Mingyi Hong (UMN), Zhuoran Yang (Princeton), Zhaoran Wang (Northwestern), Kexin Tang (UMN)

Motivation

⋄ Policy evaluation (PE) evaluates the value function
of average reward at a state, given a policy.

⋄ For large state space, nonlinear (and smooth) func-
tion approximation is widely used, e.g., neural net.

Aim: Theoretical study of an efficient algorithm for
policy evaluation with nonlinear function approx..

Problem Formulation

Discounted MDP: (S,A, P , R , γ)

⋄ S – state space, A – action space.
⋄ Pa : S×S → R+ – Markov kernel for state transition
under action a ∈ A.

⋄ R(s, a) – reward at state s and under action a.
⋄ γ ∈ (0, ҍ) – discount factor.

Policy: π is a conditional probability π(a|s) of
choosing action a under state s.

Goal: given a policy π, learn the value function

V π(s) := E
[∞∑

t=0
γtR(st, at)

∣∣∣ s0 = s, at ∼ π(·|st),
st+ҍ ∼ Pat(st, ·)

]
PE can be solved by

(Bellman eq.) =⇒ V π(s) = T πV π(s).

where for any measurable function f on S ,(
T πf

)
(s) := E[R(s, a) + γ

(
Paf

)
(s)|a ∼ π(·|s)]

Challenges:
⋄ The state space S is large (can be infinite).
⋄ State transition probability is unknown.

Remedy: nonlinear function approximation:
⋄ Replace V π(s) by a parameterized function Vθ(s)

⋄ E.g., θ ∈ Θ ⊆ Rd are the weights of a NN.
⋄ Objective: find θ ∈ Θ to minimize

J(θ) :=
ҍ
2

∥∥∥Π(T πVθ(·)− Vθ(·)
)∥∥∥2

pπ(·)

pπ(·) is stationary distribution of s under π and Π is
projection onto the function approximation space.

⋄ Prior work: [1] studied a TD learning algo.

Projected Bellman Error Minimization as Primal-dual Optimization

⋄ The function Vθ is smooth w.r.t. θ, with gradient gθ(s) :=
(
∇θVθ

)
(s) and Hessian Hθ(s) :=

(
∇2

θVθ

)
(s).

⋄ Evaluating unbiased stochastic gradient of J(θ) is hard ∵ sampling from pπ(·) and forming G−ҍ
θ .

⋄ Define Gθ := Es∼pπ(·)[gθ(s)g
⊤
θ (s)], the loss function J(θ) admits a Fenchel’s dual reformulation [1]:

J(θ) =
ҍ
2Es∼pπ(·)

[
(T πVθ(s)− Vθ(s))gθ(s)

⊤] G−ҍ
θ Es∼pπ(·)

[
(T πVθ(s)− Vθ(s))gθ(s)

]
=

ҍ
2

∥∥∥Es∼pπ(·)
[
(T πVθ(s)− Vθ(s))gθ(s)

]∥∥∥2

G−ҍ
θ

= max
w∈Rd

(
− ҍ

2Es∼pπ(·)
[
(w⊤gθ(s))

2] + ⟨
w,Es∼pπ(·)

[
(T πVθ(s)− Vθ(s))gθ(s)

]⟩)
Batch RL setting – observe a trajectory of state-action pairs {sҍ, aҍ, s2, a2, ..., sm, am, sm+ҍ} generated from π,

min
θ∈Θ

J(θ)
approx. by
=⇒ min

θ∈Θ
max
w∈Rd

ҍ
m

m∑
t=ҍ

Lt(θ,w) w/ Lt(θ,w) = ⟨w, gθ(st)
(
R(st, at) + γVθ(st+ҍ)− Vθ(st)

)
⟩ − (w⊤gθ(st))

2

2
⋄ If Gθ = positive definite, inner max. is strongly concave w.r.t. w; yet outer min. w.r.t. θ is non-convex.
⋄ A finite-sum, one-sided non-convex primal-dual opt. ⇒ natural algo = primal dual gradient descent/ascent.

Nonconvex Primal-Dual Gradient with Variance Reduction (nPD-VR) Algorithm

⋄ Directly optimizing the finite-sum problem has high complexity ⇒ SGD is fast but slow convergence...
⋄ Philosophy: balance between complexity and speed of convergence ⇒ variance reduction via SAGA [2].

for k ≥ ҍ do
Select ik, jk ∈ {ҍ, ...,m} uniformly and independently.
Primal-dual gradient update through

θ(k+ҍ) = PΘ

{
θ(k) − β

(
G
(k)
θ +

(
∇θLik(θ

(k),w(k))−∇θLik(θ
(k)
ik
,w

(k)
ik
)
)) }

w(k+ҍ) = w(k) + α
(
G(k)
w +

(
∇wLik(θ

(k),w(k))−∇wLik(θ
(k)
ik
,w

(k)
ik
)
))

.

Update stored variables as:

θ
(k+ҍ)
i =

θ(k) if i = jk

θ
(k)
i if i ̸= jk

, w
(k+ҍ)
i =

w(k) if i = jk

w
(k)
i if i ̸= jk

G
(k+ҍ)
θ = G

(k)
θ +

ҍ
m

(
∇θLjk(θ

(k),w(k))−∇θLjk(θ
(k)
jk
,w

(k)
jk
)
)
,

G(k+ҍ)
w = G(k)

w +
ҍ
m

(
∇wLjk(θ

(k),w(k))−∇wLjk(θ
(k)
jk
,w

(k)
jk
)
)
,

Primal-dual SAGA —
⋄ A primal-dual version of
non-convex SAGA in [2].

⋄ Update w/ indices ik, jk to
ensure unbiasedness.

⋄ O(d2) FLOPS per iteration
(reduced to O(d) w/ approx.)

Challenges of analysis —
⋄ One-sided non-convexity.
⋄ Algorithm is non-monotone.

Assumptions —
⋄ Strong concavity for L w.r.t. w.
⋄ Lipschitz cts. gradient for L.
⋄ (θ(k),w(k))Kk=ҍ = bounded.

Theorem 1. Choosing step sizes β, α = Θ(ҍ/m). Let K̃ be uniformly picked from {ҍ, ..., K}. It holds that

E

[
ҍ
β2∥θ

(K̃) − θ(K̃)∥2 + ∥∇wL(θ(K̃),w(K̃)∥2

]
≤

F (K) + 4
µ

(
3 + 2m

(
2L2

wα + L2
θβ

))
∥∇wL(θ(0),w(0))∥2

K min{α, β4}

⋄ Left hand side is a measure of primal-dual stationarity ⇒ convergence rate is roughly O(m/K).
⋄ Caveat: bounded iterate assumption can be hard to verify, in practice we project w to a bounded set.

Main Steps of Proof

⋄ Bound primal-dual updates’ progress on the
objective value L(θ(k),w(k)).

⋄ By carefully controlling the step size, we show

Ω
(
min{α, β}

)∑K−ҍ
k=0 E

[
G(θ(k),w(k))

]
≤ O(α)

∑K−ҍ
k=0 E[∥∇wL(θ(k),w(k))∥2]

+O(m− ҍ
β)
∑K−ҍ

k=0 E[∥θ(k+ҍ) − θ(k)∥2].

(A)

⋄ Involves new technique in controlling the er-
ror due to SAGA.

⋄ Green term ≤
∑K−ҍ

k=0 E[∥θ(k+ҍ) − θ(k)∥2].
⋄ Selecting the right step size ensures the RHS
of (A) is O(ҍ).

⋄ Using K̃ ∼ U{ҍ, ..., K} finishes the proof.

Preliminary Experiments

⋄ Setting: mountaincar dataset w/ m = 5000.
⋄ Nonlinear function Vθ(·) is parameterized as 2-layer
Neural network with n neurons.

⋄ Set constraints as Θ = [0, ҍ]n and w ∈ [0, ҍ00]n.
⋄ Step sizes are α = ҍ0−4, β = ҍ0−8.

0 200 400 600
Epochs

-4

-3

-2

-1

0

1

2

L(
,w
)

10-3

nPD-VR
SGD

(n = 50 neurons)

0 200 400 600
Epochs

-2

0

2

4

6

L(
,w
)

10-3

nPD-VR
SGD (n = ҍ00 neurons)

⋄ Compared to plain SGD, nPD-VR converges to a station-
ary point with less no. of epochs.

Future work — mini-batch design to speed up
convergence, improve analysis with projection of w, etc.
References.

1. S. Bhatnagar, et al. Convergent temporal-difference learning with
arbitrary smooth function approximation. NeurIPS 2009.

2. S. J. Reddi, et al. Proximal stochastic methods for nonsmooth non-
convex finite-sum optimization. NeurIPS, 2016.

NeurIPS 2019, Vancouver, Canada. Contact E-mail: htwai@se.cuhk.edu.hk Acknowledgement: CUHK Direct Grant #4055113 (HT), NSF-CMMI 1727757, CIF-1910385 (MH), AFORSR 19RT0424 (MH).

