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Abstract

We characterize Ornstein-Uhlenbeck processes time changed with additive subordinators as time-
inhomogeneous Markov semimartingales, based on which a new class of commodity derivative
models is developed. Our models are tractable for pricing European, Bermudan and American fu-
tures options. Calibration examples show that they can be better alternatives than those developed
in Li and Linetsky [6]. Our method can be applied to many other processes popular in various
areas besides finance to develop time-inhomogeneous Markov processes with desirable features and
tractability.
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1. Introduction

Li and Linetsky [6] developed a class of commodity derivative models where under the risk-
neutral measure chosen by the market, the spot price St is assumed to follow

St = F (0, t)eX
φ
t −G(t), Xφ

0 = x0, (1)

where {F (0, t), t ≥ 0} is the futures curve observed from the market at time 0, and G(t) is a
function of time such that E[St] = F (0, t) under the risk-neutral measure. Xφ is a subordinate

Ornstein-Uhlenbeck (SubOU) process defined by Xφ
t := XTt , where X is an Ornstein-Uhlenbeck

(OU) diffusion, i.e., dXt = κ(θ − Xt)dt + σdBt, X0 = x0 (κ, σ > 0, B: a standard Brownian
motion), and T is a Lévy subordinator (nonnegative Lévy process with T0 = 0), independent of X.
The Laplace transform of T is well known and given by (e.g., [12])

E[e−λTt ] = e−φ(λ)t, φ(λ) = γλ+

∫
(0,∞)

(
1− e−λτ

)
ν(dτ), γ ≥ 0,

∫
(0,∞)

(τ ∧ 1)ν(dτ) <∞.

[6] characterized Xφ as a time-homogeneous Markov semimartingale and explicitly found its char-
acteristics and sample path decomposition. In general, Xφ is a jump-diffusion (if γ > 0) or pure
jump (if γ = 0). Furthermore, its jump measure is state-dependent and mean-reverting, making it
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ideal for modeling commodities. Using the eigenfunction expansion of the transition semigroup of
Xφ, [6] obtained analytical formulas for European futures options. Li and Linetsky [7] extended
this approach and obtained analytical formulas for Bermudan options with American option prices
computed efficiently via Richardson extrapolation.

SubOU-based models are mean-reverting commodity market counterparts of exponential Lévy
models for equities. Just as the exponential Lévy models, they can calibrate to a single maturity
implied volatility smile very well. However, these models have difficulties calibrating across ma-
turities (see [6]). This is due to the time-dependent behavior of commodity prices and the slower
decay rate of the smile effect than that implied by SubOU processes. This difficulty is attenu-
ated in [6] by further time-changing Xφ with an independent absolutely continuous time change

At :=
∫ t
0 (a(u) + Zu)du, and replacing Xφ by Y := Xφ

At
in (1) (a similar approach is used by [1] to

improve the calibration performance of Lévy-based equity models). We refer to the process Y as
the time-dependent stochastic volatility SubOU (TDSVSubOU) process. Here a(·) is a deterministic
function of time to model time dependency, and Z is a CIR process to model stochastic volatility.
Correspondingly, the TDSVSubOU-based models are the counterpart of Lévy models with stochas-
tic volatility (e.g., [1]). These models are able to calibrate to multiple maturities simultaneously.
However, they are heavily parameterized and computationally challenging. For instance, compared
to SubOU models, TDSVSubOU models require at least four extra parameters for the CIR pro-
cess, in addition to the parameters required for the function a(·). Also, since the process Y is not
Markov, but the bivariate process (Y,Z) is, one needs to deal with an additional dimension, which
makes it very difficult to compute Bermudan and American option prices. [6] managed to get an
analytical formula for European options. However, computing it is quite time consuming.

Therefore, we are led to the following question: can we find a more parsimonious model which
is tractable and fast for option pricing and at the same time achieves good calibration results to
multiple maturities? Our solution is to time change the OU diffusion by an additive subordinator,
which is a nonnegative additive process (additive processes are Lévy process without the station-
ary increment requirement; see [12]). The resulting process is named as additive subordinate OU
(ASubOU) process. We characterize it as a Markov semimartingale, and explicitly give its local
characteristics and sample path decomposition. Compared to SubOU processes, ASubOU processes
in general are time-inhomogeneous. In particular, the jump measure is time-dependent in addition
to being state-dependent and mean-reverting. This provides more flexibility for calibration. Under
ASubOU processes, pricing European, Bermudan and American options is just as easy as the Sub-
OU case using eigenfunction expansions. The only change is to replace the Laplace transform of a
Lévy subordinator by that of an additive subordinator.

In practice, our modeling framework is very flexible as there is a great variety of additive
subordinators to choose from. We present some examples in section 4. In our numerical experiments
we revisit two calibration cases considered in [6] and use the Inverse Gaussian-Sato subordinator.
This specification is much more parsimonious than the TDSVSubOU model as it only requires
one more parameter compared to the SubOU model. Our results show that under this simple
specification, the ASubOU model already calibrates almost as well to multiple maturities as the
TDSVSubOU model, but the calibration of the ASubOU model is much faster. Hence, from the
perspective of parsimony, tractability for option pricing and calibration time, the ASubOU model
can be a better alternative than the TDSVSubOU model.

While Lévy subordination is already a standard technique in probability for building new pro-
cesses, additive subordination is new in the literature. To the best of our knowledge, Mijatovic
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and Pistorius [9] is the only paper so far on additive subordination of Markov processes, which
extended Phillips’ theorem [10] on Lévy subordination to additive subordination, while our paper
is the first one which develops new financial models with desirable features by additive subordination
of a non-Lévy process and also obtains tractability for pricing European, Bermudan and American
options. We give Markov characterization of ASubOU processes based on [9], and further derive
semimartingale characterization and eigenfunction expansions of the transition operator.

The eigenfunction expansion approach is developed by [3] to price European options for scalar
diffusions and extended by [7] to options with early exercise for general subordinate diffusions, all of
which are time-homogeneous Markov processes. This paper provides an example of how to extend
this approach to time-inhomogeneous ones. In general starting with a time-homogeneous Markov
process with known eigenfunction expansions of the transition operator, one can easily incorporate
time dependency by additive subordination while retaining tractability by eigenfunction expansions.
Our results shed light on the usefulness of additive subordination as a tool for transforming time-
homogenous processes into time-inhomogeneous ones and we anticipate applications to be found in
various application areas besides finance.

2. ASubOU Processes as Time-inhomogeneous Markov Semimartingales

We start with a probability space (Ω,F ,P) supporting an OU diffusion X as defined in section
1, and an additive subordinator T , independent of X. The Laplace transform of T is given by (see
e.g., [4])

E[e−λ(Tt−Ts)] = e−
∫ t
s ψ(λ,u)du, with ψ(λ, u) = λγ(u) +

∫
(0,∞)

(
1− e−λτ

)
ν(u, dτ).

where for all u ≥ 0, γ(u) ≥ 0,
∫
(0,∞)(τ∧1)ν(u, dτ) <∞, and

∫ t
0 (γ(u)+

∫
(0,∞)(τ∧1)ν(u, dτ))du <∞

for all t > 0. Let (qs,t)0≤s≤t be the family of transition probability measures of T .

The ASubOU process (Xψ
t )t≥0 is constructed as Xψ

t := XTt with Xψ
0 = x0 (we write ψ in

the superscript to signify the Laplace exponent of T is ψ). Let F0
t := σ(Xψ

u : 0 ≤ u ≤ t) be
the natural filtration generated by Xψ, and Ft :=

⋂
u≥tF0

u be the right-continuous version of

F0
t . It is easy to see that the sample paths of Xψ are càdlàg, and that, in general, if T is an

additive (resp., a Lévy) subordinator then Xψ is a time-inhomogeneous (resp., time-homogeneous)
process. In order to facilitate our analysis of the ASubOU process Xψ, in what follows, we use
the associated time-space process (s + t,Xψ

s+t)t≥0 and define E := R+ × R. First we have the

following Markov characterization. C1,2
c (E) refers to functions f(s, x) with compact support which

are once continuously differentiable in s and twice continuously differentiable in x. Other notations
are defined alike.

Theorem 1. For any s ≥ 0, (s+ t,Xψ
s+t)t≥0 is a time-homogenous Markov (in fact Feller) process

w.r.t. (Fs+t)t≥0. Denote by Gψ its infinitesimal generator. Then C1,2
c (E) is in the domain of Gψ,

and for f ∈ C1,2
c (E)

Gψf(s, x) =
∂f

∂s
(s, x) +

1

2
γ(s)σ2

∂2f

∂x2
f(s, x) + b(s, x)

∂f

∂x
(s, x)

+

∫
y 6=0

(
f(s, x+ y)− f(s, x)− y1{|y|≤1}

∂f

∂x
(s, x)

)
Π(s, x, dy), (2)
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where b(s, x) = γ(s)κ(θ − x) +
∫
(0,∞)

(∫
{|y|≤1} yp(τ, x, x+ y)dy

)
ν(s, dτ), and the time- and state-

dependent jump measure Π(s, x, dy) = π(s, x, y)dy having density defined for all y 6= 0, and

π(s, x, y) =

∫
(0,∞)

p(τ, x, x+ y)ν(s, dτ),

where p(τ, x, x + y) is the OU diffusion transition density from x to x + y after τ units of time.
Furthermore, Π(s, x, dy) is a Lévy-type measure, i.e.,

∫
|y|6=0(y

2 ∧ 1)Π(s, x, dy) <∞.

Proof. Since the OU diffusion X is Feller, Thm.1 in Mijatovic and Pistorius [9] shows (s+ t,Xψ
s+t)

is Markov and Feller w.r.t. (F0
t )t≥0. The Feller property allows us to further deduce that it must

also be Markov w.r.t. (Ft)t≥0 ([11, Prop.2.14]). [9, Thm.1] also shows for f ∈ C1,2
c (E), Gψ is given

by (fs(x) := f(s, x))

Gψf(s, x) =
∂f

∂s
(s, x) + γ(s)Gfs(x) +

∫
(0,∞)

(
Pτfs(x)− fs(x)

)
ν(s, dτ). (3)

where G and (Pt)t≥0 are the infinitesimal generator and transition semigroup of the OU diffusion

X, and Gf(x) = 1
2σ

2 d2f
dx2

(x) + κ(θ − x) dfdx(x) for f ∈ C2
c (R). For each (s, x) ∈ E we can write

(Pτfs − fs)(x) =

∫
R

(
f(s, x+ y)− f(s, x)− 1{|y|≤1}y

∂f

∂x
(s, x)

)
p(τ, x, x+ y)dy

+

(∫
{|y|≤1}

yp(τ, x, x+ y)dy

)
∂f

∂x
(s, x). (4)

To prove (2), we point out several useful facts. From [8, Thm.4.5], p(τ, x, x+y) satisfies the following
as τ → 0: (a)

∫
|y|≥1 p(τ, x, x+y)dy ≤ C1τ , (b)

∫
|y|≤1 y

2p(τ, x, x+y)dy ≤ C2τ , (c)
∣∣ ∫
|y|≤1 yp(τ, x, x+

y)dy
∣∣ ≤ C3τ . ν(s, dτ) satisfies (d)

∫
(0,∞)(τ ∧ 1)ν(u, dτ) < ∞. Now substituting (4) into (3), and

interchanging the integration in y and in τ for the first integral results in (2). This interchange is
justified by Fubini’s theorem, by noticing that |f(s, x+ y)− f(s, x)−1{|y|≤1}y

∂f
∂x (s, x)| ≤ C(y2 ∧ 1)

for some constant C > 0, (a), (b) and (d). (c) and (d) ensures the integral in b(s, x) is well defined,
and (a) (b) and (d) ensures Π(s, x, dy) is a Lévy-type measure.

We are also able to characterize Xψ as a special semimartingale.

Theorem 2. (i) Xψ is a special semimartingale with the following characteristics (B,C, νψ) w.r.t
to the truncation function h(x) = x1{|x|≤1} (b(s, x) and π(s, x, y) are defined in Theorem 1)

Bt(ω) =

∫ t

0
b(s,Xs−(ω))ds, Ct(ω) =

∫ t

0
γ(s)ds · σ2t, νψ(ω, ds, dy) = π(s,Xs−(ω), y)dsdy.

(ii) Denote by µψ the integer-valued random measure associated with the jumps of Xψ ([4, p.69])
and Xψ,c the continuous local martingale part of Xψ. Then Xψ has the following sample path
decomposition (∗ denotes integration w.r.t. a random measure; see [4, Chap.II])

Xψ
t (ω) = x0 +Bt(ω) + (x− h(x)) ∗ νψt (ω) +Xψ,c

t (ω) + x ∗ (µψ − νψ)t(ω),

with the quadratic variation [Xψ,c, Xψ,c]t(ω) = Ct(ω).
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Proof. Step 1. To show Xψ is a semimartingale with (B,C, νψ) as its characteristics, it suffices
to show for every f(s, x) ∈ C1,2

b (E) (see [4, Thm.II.2.42] and [13, Thm.2.26]; C1,2
b (E) refers to

functions f(s, x), once continuously differentiable in s, twice continuously differentiable in x, and
f, ∂f/∂t, ∂f/∂x, ∂2f/∂x2 all bounded),

Mf
t := f(t,Xψ

t )− f(0, Xψ
0 )−

∫ t

0

∂f

∂s
(s,Xψ

s−)ds−
∫ t

0

∂f

∂x
(s,Xψ

s−)b(s,Xψ
s−)ds

− 1

2
σ2t

∫ t

0

∂2f

∂x2
(s,Xψ

s−)γ(s)ds

+

∫
[0,t]×{y 6=0}

[
f(s,Xψ

s− + y)− f(s,Xψ
s−)− ∂f

∂s
(s,Xψ

s−)

]
π(s,Xψ

s−, y)dsdy (5)

is a local martingale. Choose χ(s, x) ∈ C∞c (E) such that χ(s, x) = 1 for ‖(s, x)‖ ≤ 1, χ(s, x) ≤ 1
for 1 < ‖(s, x)‖ ≤ 2 and χ(s, x) = 0 for ‖(s, x)‖ > 2. Define χn(s, x) := χ(s/n, x/n) and fn := fχn

for n = 1, 2, · · · . Then fn ∈ C1,2
c (E), fn → f , ∂fn

∂s →
∂f
∂s , ∂fn

∂x →
∂f
∂x and ∂2fn

∂x2
→ ∂f2

∂x2
uniformly on

compacts as n→∞, and (‖ · ‖∞ denotes the L∞-norm)

‖fn‖∞ +

∥∥∥∥∂fn∂s
∥∥∥∥
∞

+

∥∥∥∥∂fn∂x
∥∥∥∥
∞

+

∥∥∥∥∂2fn∂x2

∥∥∥∥
∞
≤ C <∞ for all n (C is a constant). (6)

From [11, Prop.VII.1.6] and Thm.1, Mfn
t as defined in (5) by replacing f with fn is a martingale.

Define TK = K ∧ inf{t : |Xψ
t | > K} for K = 1, 2, · · · , then TK is a stopping time. Since

Xψ is conservative, TK → ∞ as K → ∞. The stopped process Mfn,K
t := Mfn

t∧TK is also a

martingale ([11, Cor.II.3.6]). If we can prove Mf,K
t := Mf

t∧TK is a martingale, or equivalently,

limn→∞ E[Mfn,K
t |Fs] = E[Mf,K

t |Fs] for s ≤ t, then Mf
t is a local martingale. From (6) we can

apply dominated convergence theorem to show the convergence for the first five terms in (5). For

the last term, note that for all s ≤ TK , |Xψ
s−| ≤ K, and for all n and (s, x) ∈ E, |fn(s, x +

y) − fn(s, x) − 1{|y|≤1}y
∂fn
∂x (s, x)| ≤ C1(y

2 ∧ 1) for some constant C1. It is also not hard to show
for all |x| ≤ K,

∫
y 6=0(y

2 ∧ 1)p(τ, x, x + y)dy ≤ C2(τ ∧ 1) for some constant C2. This shows∫
[0,t∧TK ]×{y 6=0}

∣∣∣fn(s,Xψ
s− + y)− fn(s,Xψ

s−)− ∂fn
∂s (s,Xψ

s−)
∣∣∣π(s,Xψ

s−, y)dsdy ≤ C1C2

∫K
0

∫
(0,∞)(τ ∧

1)ν(s, dτ)ds <∞ for all n, which implies convergence by the dominated convergence theorem.
Step 2. To show Xψ is a special semimartingale, from [4, Prop.II.2.29], it suffices to show

for each TK , E[
∫ TK
0

∫
|y|6=0(y

2 ∧ |y|)π(s,Xψ
s−, y)dyds] < ∞. Note that for all |x| ≤ K,

∫
y 6=0(y

2 ∧
|y|)p(τ, x, x+y)dy ≤ C3(τ∧1) for some constant C3. Hence,

∫ TK
0

∫
(0,∞)

∫
y 6=0(y

2∧|y|)p(s,Xψ
s−, X

ψ
s−+

y)dyν(s, dτ)ds ≤ C3

∫K
0

∫
(0,∞)(τ ∧ 1)ν(s, dτ)ds < ∞ a.s. This shows the finiteness of the expecta-

tion. The sample path decomposition is a result of [4, Prop.II.2.29,Cor.II.2.38].

3. Option Pricing Under ASubOU-Based Commodity Models

Based on ASubOU processes, we develop a new class of commodity derivative models. Under
the risk-neutral measure chosen by the market, the spot price St follows (1) with Xφ replaced by

Xψ, and G(t) = lnE[eX
ψ
t ]. In order to obtain G(t) and derivative prices, we study the transition
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operator Pψs,t (0 ≤ s < t <∞) defined as

Pψs,tf(x) := E[f(Xψ
t )|Xψ

s = x] =

∫
[0,∞)

Puf(x)qs,t(du). (7)

In (7), Pψs,tf(x) is well-defined and finite for a given x provided E[|f(Xψ
t )||Xψ

s = x] < ∞. This
is true in particular for measurable bounded functions. The equality comes from the sample path
construction of Xψ, where (Pu)u≥0 is the OU diffusion transition semigroup and qs,t is the transition
probability measure for T from s to t. Since not every financial payoff is bounded, we have to go
beyond this space and instead we consider L2(R,m) payoffs, where the measure m(dx) = m(x)dx,

and m(x) =
√

κ
πσ2 exp{−κ(θ−x)2

σ2 } is the OU diffusion stationary density. Given f ∈ L2(R,m), we

show that under some further conditions, Pψs,tf(x) is well-defined and finite for all x and can be
calculated by the following eigenfunction expansion which converges uniformly on compacts in x:

Pψs,tf(x) =
∞∑
n=0

e−
∫ t
s ψ(κn,u)dufnϕn(x), fn =

∫
R
f(x)ϕn(x)m(dx), (8)

where ϕn(x) = 1√
2nn!

Hn

(√
κ
σ (x− θ)

)
, and Hn(x) is the Hermite polynomial of order n (e.g., [5]).

Each ϕn(x) is called an eigenfunction since Ptϕn(x) = e−κntϕn(x), Pψs,tϕn(x) = e−
∫ t
s ψ(κn,u)duϕn(x).

Theorem 3. (i) For f ∈ L2(R,m), if
∑∞

n=1 |fn|n
− 1

4 <∞ then (8) is valid.

(ii) If
∑∞

n=1 e
−

∫ t
s ψ(κn,u)dun−1/4 <∞, then (8) is valid for any f ∈ L2(R,m).

Under both (i) and (ii), Pψs,tf ∈ L2(R,m) and ‖Pψs,tf‖ ≤ ‖f‖, where ‖ · ‖ denotes the L2-norm.

Proof. The proof parallels [6, Thm.2.23]. For any f ∈ L2(R,m), Puf(x) =
∑∞

n=0 e
−κnufnϕn(x),

which converges uniformly on compacts in x. From (7), Pψs,tf(x) =
∫
[0,∞)

∑∞
n=0 e

−κnufnϕn(x)qs,t(du)

=
∑∞

n=0

∫
[0,∞) e

−κnuqs,t(du)fnϕn(x), which gives us (8) provided we can justify the interchange
of summation and integration in the second equality. This, as well as the uniform convergence
on compacts of (8) can be justified under the conditions in (i) and (ii) using similar arguments
as in [6, Thm.2.23]. We omit the details here for the sake of brevity. We note that for each

u > 0, ‖Puf‖ ≤ ‖f‖, and from (7):
∫
R

(
Pψs,tf(x)

)2
m(dx) ≤

∫
R
∫
[0,∞) (Puf(x))2 qs,t(du)m(dx) =∫

[0,∞) ‖Puf‖
2qs,t(du) ≤ ‖f‖2. This shows the last statement.

The condition in Thm.3 (ii) is mild and satisfied for a wide class of additive subordinators
of interest in finance. In particular, if the drift function γ(·) is not identically zero, then it is
verified. Using Thm.3, pricing commodity derivatives under the ASubOU model is just as easy as
the SubOU case. All the formulas in [6] remain valid by substituting the Laplace exponent φ by its
time-dependent counterpart ψ. This solves the problem for pricing futures and European futures
options. For Bermudan futures options, [7] calculated the continuation value at each time by an
eigenfunction expansion, with the coefficients determined recursively. To extend to the additive
case, the formulas in [7, Thm.3.2] hold true by replacing φ with ψ. Hence, pricing Bermudan
options is also tractable under the ASubOU model. [7] shows that American futures options under
the SubOU model can be efficiently computed using Richardson extrapolation from Bermudan
prices as the convergence pattern from Bermudan to American is linear and monotone. This
pattern is again observed in the ASubOU model which suggests that extrapolation can also be
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applied here (see Figure 1 for an illustration). These results are quite remarkable, since Bermudan
and American option pricing remains tractable even though the ASubOU process is a complicated
time-inhomogeneous process with state- and time-dependent jumps.
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Figure 1: 1 year put option with the underlying futures contract maturing after 1.04 years. F (0, 1.04) = 100 and strike
= 105. N is the number of Bermudan exercise dates with N = 2, 3, 4, · · · , 10, 20, 30, 40, 50. θ = −1, κ = 0.2, σ = 0.35,
x0 = 0.0. The IG-Sato subordinator (see section 4) is used with parameters γ = 0.4, C = 0.48, η = 0.9, ρ = 0.8. We
regress the Bermudan put price against 1/N and R2 ≥ 99.9%. This verifies numerically that PA = PBN + O(1/N),
where PA is the American put price and PBN is the Bermudan put price with N exercise dates. Pricing errors are
defined as PA − PBN . PA is approximated by extrapolating PB40 and PB50.

4. Examples of Additive Subordinators

We discuss two approaches to construct additive subordinators from known Lévy subordinators,
which are abundant. This provides us with plenty of additive subordinators to use in practice. To
simplify our exposition, we consider the following three parameter family of Lévy measures which are
widely used in finance: ν(ds) = Cs−α−1e−ηsds, with C > 0, α < 1, and η ≥ 0. When α ∈ (0, 1), the
Lévy measures correspond to the so-called temperate stable subordinators. In particular, if α = 1/2
we have the Inverse Gaussian (IG) process. For α < 0, the Lévy measures correspond to compound
Poisson processes. Lastly, the limiting case for which α → 0, corresponds to the gamma process.
The Laplace exponent for this family of subordinators with drift, γ ≥ 0, is given by,

φ(λ) =

{
γλ− CΓ(−α) ((λ+ η)α − ηα) , α 6= 0

γλ+ C ln(1 + λ/η), α = 0
. (9)

Approach 1. The simplest approach is to make the parameters of some Lévy subordinator
time dependent. For example, consider a time-dependent three-parameter family of Lévy measures.
In this case, the Laplace exponent ψ(λ, t) has the same functional form as φ(λ) of (9), where for
all t ≥ 0, C(t) > 0, α(t) < 1, and γ(t), η(t) ≥ 0, are functions of time. Such a specification is
parameterized by four deterministic functions. However, if we have to calibrate to, say, a volatility
surface on a time interval [0, T ] with N maturities, then one can reduce the number of degrees of
freedom by simply considering a piece-wise constant choice for these functions that are constant
between maturities (this yields a characterization with 4 × N parameters). In this case, one can
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easily show that e−
∫ t
0 ψ(λ,u)du = exp{−

∑k−1
i=0 φi(λ)(ti+1− ti)−φk(λ)(t− tk)}, where k is the largest

integer such that tk ≤ t (here tk are the nodes – maturity dates at which the parameters change,
and φi(λ) are Laplace exponents with constant parameters on each of these time intervals from ti
to ti+1). By appropriately choosing parameters, excellent calibration results are essentially assured
to implied volatility across multiple maturities. However, the downside is that there may be too
many parameters.

Approach 2. A much more parsimonious alternative is given by the so-called Sato process with
increasing paths. Let ρ > 0 denote a self-similarity index. A process (Tt)t≥0 is called a ρ-Sato process

if it is additive (i.e., with independent increments), and is ρ-self-similar (i.e., (Tct)t≥0
(law)
= (cρTt)t≥0,

for all c > 0). From [12, Thm.16.1], a r.v. Z is self-decomposable if and only for every ρ > 0,

there exists a ρ-Sato process (Tt)t≥0 such that T1
(law)
= Z. In particular, if the self-decomposable

law of Z has support on R+, then the Sato process has increasing paths. From [12, Cor.15.11], the

Laplace transform of Z, satisfies E[e−λZ ] = e−φ(λ), where φ(λ) := γλ+
∫∞
0 (1− e−λ s)h(s)s ds, for all

λ > 0 and γ ≥ 0. The function h(s) is positive and decreasing on (0,∞). From [1, Thm.1], the
ρ-Sato process Tt with increasing paths is an additive subordinator with drift γ(t) = γρtρ−1 and

Lévy measure ν(t, ds) = −ρh′(st−ρ)
tρ+1 ds such that E[e−λTt ] = e−

∫ t
0 ψ(λ,u)du = e−φ(λt

ρ) for all ρ, λ > 0.
Consequently, one can easily construct Sato-type additive subordinators from Lévy subordinators
with self-decomposable distributions, e.g., tempered stable subordinators. For instance, the Laplace
exponent for the IG-Sato and Gamma-Sato additive subordinators can be readily obtained from
the Laplace exponent φ(λ) of Eq. (9).

5. Calibration Examples to Multiple Maturities

Our goal is to find a more parsimonious alternative than the TDSVSubOU model used in [6]
for calibration to multiple maturities, and at the same time more tractable and faster for option
pricing. To be parsimonious we consider the IG-Sato subordinator, which only introduces one
additional parameter compared to a SubOU model using an IG subordinator. To compare with
the TDSVSubOU model proposed in [6], we redo calibrations for crude oil and zinc as considered
in [6] using the same data. [6] considered 4 maturities (approximately 0.5, 1, 1.5 and 2 years).
Following [2], moneyness (defined as strike/initial futures price) ranges between 0.6 and 1.4. As
in [6], we minimize the sum of squared differences between model and market implied volatilities.
The goodness of fit is evaluated using average percentage error (APE) as in [2], which is defined as
the average absolute error divided by the average option price (all options used are OTM except
the ATM ones). It is pointed out in [2] that market practice regards a particular model as having
failed if APE exceeds 5%. We set x0 = 0 in our calibration as θ can be changed to θ − x0 without
affecting the European option prices. The calibration results are summarized in Table 1. Under
the TDSVSubOU model, [6] set the deterministic activity rate a(·) to be piecewise constant (PC)
where a(·) is a constant for each maturity, and used IG as the Lévy subordinator. The SubOU

No. Parameters Crude Oil APE Zinc APE

SubOU (IG) 6 5.52% 2.19%
TDSVSubOU (PC-CIR-IG) 14 0.72% 0.45%
ASubOU (IG-Sato) 7 1.39% 0.58%

Table 1: Comparison of SubOU, TDSVSubOU and ASubOU models
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model fails to calibrate crude oil and both the TDSVSubOU and the ASubOU model outperform
the SubOU model substantially. It is not surprising the TDSVSubOU model has smaller APE than
the ASubOU model, as additional parameters provide more flexibility in calibration. However,
the ASubOU model is much more parsimonious and its APE is small enough to be considered
as very good according to market practice. Pricing European options is also much faster under
the ASubOU model than the TDSVSubOU model. Under the TDSVSubOU model, the European
option price is expressed as an integral with the integrand expressed as an eigenfunction expansion
(c.f.[6, Thm.4.5]). To evaluate it numerically one has to discretize the integral (usually over 50
intervals are needed to get good accuracy using Simpson’s rule), which results in computing more
than 100 eigenfunction expansions. In contrast under the ASubOU model only one eigenfunction
expansion needs to be computed. This, together with the significant reduction in the number of
parameters, makes calibration of the ASubOU model much faster, a key aspect in market practice.
Furthermore, the ASubOU model is completely tractable for pricing Bermudan and American
options while it is difficult to do so under the TDSVSubOU model.

To assess the out-of-sample performance of the ASubOU model, we continue to consider the
crude oil and zinc example. We used parameters calibrated from four maturities (approximately
0.5, 1, 1.5 and 2 years) and evaluated the pricing error for another six maturities, which are
approximately 0.75, 1.25, 1.75, 2.25, 2.5, 2.75 years. The APEs are summarized in table 2. By
calibrating to just four key maturities, the ASubOU achieves excellent pricing results for the others.

Crude Oil APE Zinc APE

ASubOU (IG-Sato) 1.54% 0.67%

Table 2: Out-of-sample performance of the ASubOU model
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