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Abstract

The Basic Affine Jump Diffusion (BAJD) process is widely used in financial modeling. In this
paper, we develop an exact analytical representation for its transition density in terms of a series
expansion that is uniformly-absolutely convergent on compacts. Computationally, our formula
can be evaluated to high level of accuracy by easily adding new terms which are given explicitly.
Furthermore, it can be easily generalized to give an analytical expression for the transition density
of the subordinate BAJD process which is more realistic than the BAJD process, while existing
approaches cannot.
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1. Introduction

We consider the Basic Affine Jump Diffusion (BAJD) process introduced in Duffie and Gârleanu
[1], which is the unique strong solution to the following stochastic differential equation:

dXt = κ(θ −Xt)dt+ σ
√
XtdBt + dJt, X0 = x ≥ 0.

Here κ, θ, σ > 0 are the rate of mean reversion, the long-run mean, and the volatility coefficient,
respectively. J := (Jt)t≥0 is a compound Poisson process with arrival rate $ ≥ 0, and its jumps
are exponentially distributed with mean µ > 0. When the Feller condition 2κθ ≥ σ2 is satisfied,
zero is an unattainable boundary and the state space of this process, denoted by E, is given by
E = (0,∞) (Cheridito et al. [2]). If 0 < 2κθ < σ2, the process is instantaneously reflected at zero
and E = [0,∞). When $ ≡ 0 (i.e., J ≡ 0) the BAJD process reduces to the Cox, Ingersoll, and
Ross [3] (CIR) process.

The BAJD process has found many applications in finance. For instance, it is used to model
the default intensity in credit risk applications (see, e.g., Duffie and Gârleanu [1], Mortensen [4],
Brigo and El-Bachir [5, 6], and Eckner [7]), the short-rate process in interest rate markets (see,
e.g., Brigo and Mercurio [8]) and the volatility of an asset (see, e.g., Duffie et al. [9], Eraker et al.
[10], and Eraker [11]). In energy markets, the BAJD process is used as the background process for
modeling the spot price of electricity (Li et al. [12]).
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In these applications, one is interested in computing expectations of the form

Pαt f(x) := Ex
[
e−α

∫ t
0 Xuduf(Xt)

]
(α ≥ 0).

In financial terms, f is the payoff function and X is the default intensity factor in credit risk
applications, or the short rate in interest rate models, or the spot price (in such case we are
concerned with α = 0). The collection of the operators (Pαt )t≥0 forms a Feynman-Kac (FK)
semigroup of contractions on Bb(E), the space of Borel-measurable and bounded functions on E.
The kernel of the BAJD semigroup is Sub-Markovian as Pαt 1 ≤ 1. It is absolutely continuous w.r.t.
the Lebesgue measure and we denote its density by pα(t, x, y), i.e.,

Pαt f(x) =

∫
E
f(y)pα(t, x, y)dy. (1.1)

Once pα(t, x, y) is known, the integral in (1.1) can be obtained either analytically or numerically.
In spite of the extensive use of the BAJD process in applications, to our best knowledge,

pα(t, x, y) is unknown in any analytical form. In the literature, there exist two approaches for
computing pα(t, x, y). It is well known that the Laplace transform is given by (c.f. Duffie and
Gârleanu [1])

Pαt e−zx = Ex
[
e−α

∫ t
0 Xudue−zXt

]
= C($,α, z; t)D($,α; t) A(α, z; t) exp{−B(α, z; t)x}, z, α ≥ 0.

(1.2)
where

A(α, z; t) :=
( 2εe(κ+ε)t/2

2ε+ (ε+ κ+ zσ2)(eεt − 1)

)b
,

B(α, z; t) :=
2α(eεt − 1) + z(ε− κ)eεt + z(ε+ κ)

2ε+ (ε+ κ+ zσ2)(eεt − 1)
,

C($,α, z; t) :=
(

1 +
(eεt − 1)

(
ε+ κ+ zσ2 + µ(2α+ z(ε− κ))

)
2ε(1 + zµ)

)−$a
, (1.3)

D($,α; t) := exp
{
−$

(κ+ ε

2ε

)( b

b− 1

)
t
}
,

with

a :=
2µ

σ2 − 2µκ− 2αµ2
, b :=

2µε

σ2 + µ(ε− κ)
, ε :=

√
κ2 + 2ασ2, and b :=

2κθ

σ2
. (1.4)

The formula can be obtained following the theory of affine processes (Duffie et al. [13]) to solve
the corresponding generalized Riccati equation. Thus one approach to obtain pα(t, x, y) is to
invert the Laplace transform numerically. The other approach approximates the transition density
either by polynomial approximations (Filipovic et al. [14]) or by approximations of the Kolmogorov
forward/backward PIDE (Yu [15]).

In this paper, we derive an exact analytical expression for pα(t, x, y) in terms of multiple infinite
series which are uniformly-absolutely convergent on compacts. A series

∑∞
n=0 fn(x) is said to

converge uniformly-absolutely convergent if
∑∞

n=0 |fn(x)| converges uniformly (a series of functions
satisfying the Weierstrass’s criterion for uniform convergence is uniformly-absolutely convergent,
see, e.g., Itô [16], Definition 435.A, p.1647). As a by-product of our result for pα(t, x, y), we also
obtain the stationary density of the BAJD process.
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In general, when the Laplace transform of a function is known, the function can be recovered
from Laplace inversion via the Bromwich integral. In our case, we first derive an alternative
representation for the Laplace transform Pαt e−zx based on the spectral representation of the FK
semigroup of the CIR process (Cox et al. [3]) and the binomial expansion. This representation
allows us to calculate the Laplace inversion analytically.

To implement the existing closed-form approximations, one typically first fixes the number of
terms to be used and then uses symbolic computational software to obtain the formula for these
terms. Once the formula is obtained and stored, the subsequent evaluation at given parameter
values can be done instantaneously. However, a potential drawback is that, one usually does not
know a priori how many terms need to be used to achieve a certain level of accuracy, and adding
a new term that has not been pre-computed can be costly. In contrast, in our expansion, every
term is given explicitly and one can easily add a new term if it is needed to improve accuracy. In
Section 4, we compare the approximation developed in Filipovic et al. [14] with our method, and
it will be shown that the approximation formula which uses the first two to four terms can have
quite significant error. Another nice feature of our method is that it can be easily generalized after
subordination while the existing approaches cannot. The BAJD process is quite unrealistic in that
it can only jump upward. Applying subordination to it allows us to develop more realistic models
with two-sided jumps that are mean-reverting (see e.g., Boyarchenko and Levendorskii [17], Lim
et al. [18], Mendoza-Arriaga and Linetsky [19] for applications of subordination to other processes
in finance). Figure 1 illustrates typical sample paths for (a) the CIR process X̃, (b) the BAJD
process X, and (c) the Subordinate BAJD (SubBAJD) process Y . All three processes are mean
reverting, the BAJD process exhibits only positive jumps, while the SubBAJD process exhibits
mean reverting (positive and negative) jumps without leaving the state space E.

(a) CIR process, X̃ (b) BAJD process, X (c) SubBAJD process, Y

Figure 1: Typical sample paths. All paths are started at x = 1, and the long-run mean is θ = 0.5 (horizontal
dashed line). Further details, including the values of the rest of the parameters, are provided in Section 4.

The rest of the paper is organized as follows. In Section 2, we obtain analytical representations
for pα(t, x, y) and Pαt f(x). In Section 3, we extend these results to the case with subordination.
Section 4 presents numerical examples. All proofs are collected in the appendix.

2. Analytical formula for pα(t, x, y)

We make the following important observation: when $ = 0, since the BAJD process becomes
the CIR process and C(0, α, z; t) = 1, D(0, α; t) = 1, the term A(α, z; t) exp{−B(α, z; t)x} is the
Laplace transform of the CIR process. Hence we can rewrite Eq. (1.2) as

Pαt e−zx = C($,α, z; t)D($,α; t) P̃αt e−zx, x ∈ E, z, α, t ≥ 0.
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where P̃α = (P̃αt )t≥0 is the FK semigroup of the CIR process with killing rate αx. The FK
semigroup of the CIR process can be represented by an eigenfunction expansion for functions that
belong to L2(E,m) where m(dx) = m(x)dx is the CIR’s speed measure with its density given by

m(x) = 2xb−1

σ2 e−2κx/σ2
. Hence, from Proposition 9 in Davydov and Linetsky [20], for all f ∈ L2(E,m)

we have

P̃αt f(x) = Ex[e−α
∫ t
0 Xuduf(Xt)] =

∞∑
n=0

cne
−λntϕn(x), cn =

∫
E
f(x)ϕn(x)m(x)dx, (2.5)

where for n = 0, 1, · · · ,

λn = nε+
b

2
(ε− κ) , ϕn(x) = Nα

n e
((κ−ε)x)/σ2

Lb−1
n

(
2xε

σ2

)
, Nα

n =

√
σ2n!

2Γ(b+ n)

(
2ε

σ2

)b/2
, (2.6)

with the variables b and ε defined in (1.4), and where Lνn(x) are the generalized Laguerre polyno-
mials. It is straightforward to verify that for all z ≥ 0, e−zx ∈ L2(E,m), hence we can calculate the
Laplace transform of the CIR process using eigenfunction expansions. In particular, the expansion
coefficients cn entering into the expansion (2.5) for the function f(x) = e−zx, z ≥ 0, are available
in close form (the calculation details are omitted), and they are given by

cn(z) =
1

Nα
n

(κ− ε+ σ2z

κ+ ε+ σ2z

)n( 2ε

κ+ ε+ σ2z

)b
. (2.7)

Lemma 1. The spectral expansion (2.5) for the function f(x) = e−zx, is uniformly-absolutely
convergent on compacts for x, z and t.

The function C($,α, z; t) can also be expanded in series such that time t enters the expression
in an exponential form.

Lemma 2. Define Q(z) :=
(

1
b −

1
aε

(
1

µz+1

))
with a, b and ε defined as in (1.4). Then, the function

C($,α, z; t) of Eq. (1.3) accepts the following representation

C($,α, z; t) =
∞∑
m=0

($a)m

(
Q(z)−1
Q(z)+1

)m
m!(1 +Q(z))$a

[
m∑
`=0

(m
`

)
(−1)m−`2`+$ae−(`+$a)εt

]
, (2.8)

which converges uniformly-absolutely convergent for all z, t ≥ 0. Here, (a)n = Γ(a+ n)/Γ(a) is the
Pochhammer symbol.

Next, for each n = 0, 1, . . . and p = 0, 1, · · · ; define

ϑm,n(t) :=

m∑
`=0

(m
`

)
(−1)m−`2`+$ae−β`,nt, and %m(z) :=

($a)m
m!

(
Q(z)−1
Q(z)+1

)m
(1 +Q(z))$a

, (2.9)

with β`,n =
(
λn +$

(
κ+ε
2ε

)(
b

b−1

)
+ (`+$a)ε

)
. Hence, we arrive at the following lemma.

Lemma 3. The Laplace transform (1.2) of the BAJD process can be written as,

Pαt e−zx =
∞∑
n=0

∞∑
m=0

ϑm,n(t)%m(z)cn(z)ϕn(x),

which is uniformly-absolutely convergent for x, z and t on compacts.
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The following lemma allow us to rewrite the coefficients cn(z) and %m(z) of (2.7) and (2.9),
respectively, in a more convenient way.

Lemma 4. The coefficients cn(z) and %m(z) can be written as

cn(z) =

n∑
j=0

c̃j,n

((κ+ ε

σ2

)
+ z
)−(b+j)

, with c̃j,n :=
1

Nα
n

( n
j

)
(−1)j

(2ε

σ2

)b+j
, (2.10)

and

%m(z) =

∞∑
k=0

k∑
h=0

%̃h,k,m

(
z +

1

µ

)−h
, with %̃h,k,m :=

( k
h

)(
− 2

µ

)h
Um Vk,m (2.11)

where

Um :=
($a)m

(
Q(1/µ)−1
Q(1/µ)+1

)m
(Q(1/µ) + 1)$am!

, and Vk,m :=

($a)k 2F1

(−m, −k
$a

; −2
Q(1/µ)−1

)
(
(−2aε)(Q(1/µ) + 1)

)k
k!

.

2F1(a, b; c; z) is the Gauss hypergeometric function. (2.11) is uniformly-absolutely convergent for
all z ≥ 0.

Therefore, using Lemma 4, we arrive at the final series representation of the Laplace transform
of the BAJD process,

Pαt e−zx =
∞∑
m=0

∞∑
n=0

∞∑
k=0

ϑm,n(t)ϕn(x)
k∑

h=0

n∑
j=0

c̃j,n%̃h,k,m

((κ+ ε

σ2

)
+ z
)−(b+j)(

z +
1

µ

)−h
. (2.12)

We now obtain the transition density function pα(t;x, y) of the BAJD process. For this pur-
pose, we use Theorem 30.1 in Doetsch [21], which allows us to obtain pα(t;x, y) as the term-by-term

Laplace inversion of the series expansion (2.12). Indeed, observe that
((

κ+ε
σ2

)
+z
)−(b+j)(

z+ 1
µ

)−h
=

σ2

2

∫∞
0 e−zye−

ε−κ
σ2 y 1F1(h;h+b+j;Ay)

Γ(h+b+j) yh+jm(y)dy, where m(y) = 2yb−1

σ2 e−2κy/σ2
is the CIR’s speed den-

sity, A =
(
κ+ε
σ2 − 1

µ

)
, and 1F1(a, b;x) is the confluent hypergeometric function (see Prudnikov et al.

[22], Eq. 2.1.2.71). That is,
((

κ+ε
σ2

)
+ z
)−(b+j)(

z + 1
µ

)−h
is the Laplace transform of the function

fh,j(y) = σ2

2 e
− ε−κ

σ2 y 1F1(h;h+b+j;Ay)
Γ(h+b+j) yh+jm(y). The analytical representation of pα(t;x, y) is presented

in the following theorem.

Theorem 1. Let m(y) = 2yb−1

σ2 e−2κy/σ2
be the CIR’s speed density. Then, the transition density

pα(t;x, y) of the BAJD process X is given by

pα(t;x, y) := pαm(t;x, y)m(y), with pαm(t;x, y) =

∞∑
n=0

∞∑
m=0

ϑm,n(t)ϕn(x)ψm,n(y), (2.13)

and where

ψm,n(y) :=

∞∑
k=0

ψ̃k,m,n(y) with ψ̃k,m,n(y) =
σ2

2

k∑
h=0

n∑
j=0

c̃j,n%̃h,k,m 1F1

( h
h+ b+ j

;Ay
)

y−(h+j)e
ε−κ
σ2 y Γ(h+ b+ j)

, (2.14)

with A :=
(
κ+ε
σ2 − 1

µ

)
. The expansion (2.13) of pαm(t;x, y) is uniformly-absolutely convergent on

compacts for x, y ≥ 0 and t > 0.
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Theorem 2. The probability that at time t > 0 the process Xt (has not yet been killed, α > 0, and)
is found at or below some level R > 0 is given by

Ex
[
e−α

∫ t
0 Xudu1{Xt≤R}

]
=

∫ R

0
pαm(t;x, y)m(y)dy =

∞∑
n=0

∞∑
m=0

ϑm,n(t)ϕn(x)fm,n(R),

where fm,n(R) =
∑∞

k=0 f̃k,m,n(R) with

f̃k,m,n(R) =
∞∑
`=0

k∑
h=0

n∑
j=0

c̃j,n%̃h,k,m(h)`A
`(

κ+ε
σ2

)h+b+j+`
`!
γ̃
(
h+ b+ j + `,

κ+ ε

σ2
R
)
. (2.15)

γ̃(a, x) = γ(a,x)
Γ(a) is the regularized lower incomplete gamma function.

Our last result of this section is the stationary density π(y) of the BAJD process X, which is
the stationary density for the kernel pα(t, x, y) with α = 0 (a density function π is called stationary
density for pα(t, x, y) if π(y) =

∫
(0,∞) π(x)pα(t, x, y)dx). The Chapman-Kolmogorov equation says

that p0(s + t, x, y) =
∫

(0,∞) p
0(s, x, z)p0(t, z, y)dz. Note that limt→∞ p

0(t;x, y) exists and does not

depend on x. Letting s go to ∞ in the C-K equation, we see that π(y) = limt→∞ p
0(t;x, y). When

α > 0, pα(t;x, y) can be interpreted as the transition density of a BAJD process that is killed by
the additive functional

∫ t
0 r(Xu)du with r(x) = αx (see, e.g., Applebaum [23], Sec.6.7.2). Since

the process is killed a.s., its stationary density (and hence the stationary density for the kernel
pα(t;x, y)) does not exist.

Theorem 3. Let α = 0, then the stationary density π(y) of the BAJD process X is given by

π(y) = 2
2$µ

σ2−2µκ
−1
σ2 m(y)

(2κ

σ2

)b ∞∑
m=0

∞∑
k=0

k∑
h=0

(−1)m%̃h,k,m
Γ(h+ b)

1F1

( h
h+ b

;
(2κ

σ2
− 1

µ

)
y
)
yh, (2.16)

with %̃h,k,m evaluated at α = 0.

3. Subordination

We consider applying Bochner’s subordination (see e.g., Schilling et al. [24] for detailed account)
to the semigroup (Pαt )t≥0, that is, we define a new semigroup by

Pα,φt f(x) :=

∫
[0,∞)

Pαs f(x)qt(ds), (3.17)

where (qt)t≥0 is the family of transition probabilities for a Lévy subordinator (a nonnegative Lévy
process), and the Laplace transform of qt is given by the Lévy-Kchinchine formula∫

[0,∞)
e−λsqt(ds) = e−φ(λ)t, φ(λ) = γλ+

∫
(0,∞)

(1− e−λs)ν(ds), λ ≥ 0, (3.18)

where γ ≥ 0 is the drift and ν is the Lévy measure satisfying the integrability condition
∫

(0,∞)(s ∧
1)ν(ds) <∞. There is a Markov process Y associated with (Pα,φt )t≥0, i.e.,

Pα,φt f(x) = Ex
[
e−

∫ t
0 rα(Yu)duf(Yt)

]
.
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We can find out the function rα(x) and the infinitesimal generator of Y explicitly by extending the
arguments in Lim et al. [18], and Mendoza-Arriaga and Linetsky [19]. The process Y now has a
jump component that is two-sided and mean-reverting (see Figure 1). For brevity, we omit such
discussions here. Below we derive an expression for pα,φ(s;x, y), the transition density of Y . As a
direct consequence of (3.17), it is related to pα(s;x, y) as

pα,φ(t;x, y) =

∫
[0,∞)

pα(s;x, y)qt(ds). (3.19)

Since time s enters the expression of pα(s;x, y) in an exponential form (see (2.9) and (2.13)), as-
suming that we can interchange integration and summation, the calculation of the integral in (3.19)
reduces to computing

∫
[0,∞) e

−λsqt(ds) (λ > 0), which is the Laplace transform of the subordinator

and it is known analytically. Thus we immediately obtain the expression for pα,φ(s;x, y). The
following theorem provides the exact formula and gives out sufficient conditions under which the
interchange is valid.

Theorem 4. Let λn be given as in (2.6) and φ(λ) be the Lévy-Kintchine exponent (3.18). Assume
that for all t > 0,

∞∑
n=1

e−φ(λn)t(1 + n1{b∈(0,1)})n
2b−3

4 <∞. (3.20)

Then, the transition density of the subordinate BAJD process Y with Y0 = x ≥ 0 is given by
pα,φ(t;x, y) := pα,φm (t;x, y)m(dy), where

pα,φm (t;x, y) =

∞∑
n=0

∞∑
m=0

ϑφm,n(t)ϕn(x)ψm,n(y), (3.21)

with ψm,n(y) defined as in Theorem 1, and the time-dependent coefficient ϑφm,n is given by,

ϑφm,n(t) =

∫
[0,∞)

ϑm,n(s)qt(ds) =
m∑
`=0

(m
`

)
(−1)m−`2`+$ae−φ(β`,n)t,

with β`,n =
(
λn+$

(
κ+ε
2ε

)(
b

b−1

)
+(`+$a)ε

)
. (3.21) is uniformly-absolutely convergent on compacts

for x, y ≥ 0 and t > 0.

Observe that condition (3.20) on the Laplace transform of the Lévy subordinator is automati-
cally satisfied if the drift of the subordinator is positive, i.e., γ > 0. On the other hand, when γ = 0,
the previous assumption is satisfied for a large number of subordinators, including the temperate
stable ones, for which φ(λ) is in the form of −CΓ(−p)[(λ + η)p − ηp] for some p ∈ (0, 1), C, η > 0
and Γ(·) is the Gamma function.

4. Numerical Examples

We implemented our formula (2.13) by approximating the double infinite series by a double
finite sum which is accurate enough (how many terms to use is determined dynamically and we
truncate when the specified error tolerance level is reached). To compute ψm,n(y), we also truncate
the infinite series in (2.14) when enough accuracy is obtained. We first provide the transition
density function (with α = 0) for the CIR process X̃, the BAJD process X, and the SubBAJD
process Y , whose sample paths are illustrated in Figure 1. All processes are started at x = 1 at
time t = 0. The long-run mean is θ = 0.5, the mean reversion level is κ = 1.5, and the volatility
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coefficient is σ = 0.5. The arrival rate of jumps for the compound Poisson component J is $ = 2.5,
and the expected jump size is µ = 1/3. For the SubBAJD process, we use the Inverse Gaussian

subordinator, and its Laplace exponent is given by φ(λ) = λγ + δ2

ν

(√
2νλ
δ + 1− 1

)
, where δ is the

mean rate and ν is the variance rate. We set γ = 1, δ = 3, and ν = 24. Figure 2a illustrates the
1/2 year transition density of these processes. Due to the presence of upward jumps, the transition
density of the BAJD and SubBAJD processes exhibits a more pronounced right skew than the
CIR transition density. Meanwhile, compared to the BAJD process, the transition density of the
SubBAJD process exhibits a larger mass on the left side of the long-run mean θ, since it is possible
for the SubBAJD process to return sooner to θ via downward mean-reverting jumps.

(a) Transition densities for the CIR,
BAJD and SubBAJD processes.

(b) Stationary density, π(y) (c) Maximum number of terms M×N
as a function of time t > 0.

Figure 2: Transition density analysis.

In Figure 2b we illustrate how the BAJD transition density converges to the stationary distri-
bution π(y), as we vary the time horizon t. We observe that for t = 5 yrs, the transition density has
practically converged to the stationary density (and hence, it cannot be identified from the graph).
In Figure 2c we illustrate the maximum number of terms required to compute the value of the
transition density of the BAJD process from its initial level x = 1 to the end level y = θ = 0.5 while
varying t. The maximum number of terms is calculated as M × N , where M and N correspond
to the number of terms required in each sum of (2.13), so that each partial sum SP =

∑P
p=0 ap,

P ∈ {M,N}, has an absolute relative error ARE =
∣∣aP+1

SP

∣∣ < 10−6. We observe that, the maximum
number of terms N practically decays to N = 1 at an exponential rate with respect to t, while the
number of terms M increase slightly but it is stabilized by t = 2 where it reaches M = 8. The
maximum number of terms M × N required at t = 1/4 is 190 and it decays to M × N = 8 by
t = 20. This shows our formula converges faster as the time to maturity increases.

We compare our method to the closed-form approximation derived in Filipovic et al. [14] using
the first two, three and four polynomial moments for different maturities. The results are plotted in
Figure 3. As one can see, the approximation formula in Filipovic et al. [14] up to fourth order is less
accurate than our formula (using ARE < 10−6 as the stopping criterion). From Figure 3, we also
observe that the deviation of Filipovic et al. [14] is more significant for shorter maturities even when
four polynomial moments are used. Upon precomputing the moments and storing the formulas,
subsequent calculations of Filipovic et al. [14] approximation can be done almost instantaneously.
We implemented our formula in Mathematica. The time for evaluation of the series expansion (2.13)
at each (x, y) pair varies, and it can take a few seconds. Nonetheless, we expect the computation
time can be significantly reduced if we code the formula in more basic programming language like
C. The real advantage of our method is that it allows high level of accuracy to be achieved by
easily adding new terms, while it is not easy to do so in the existing approaches. In addition, our
method can be extended to the subordination case effortlessly.
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(a) Transition density at 0.5 yrs. (b) Deviation at 0.5 yrs.

(c) Transition density at 1 yr. (d) Deviation at 1 yr.

(e) Transition density at 5 yrs. (f) Deviation at 5 yrs.

Figure 3: Right: BAJD’s transition density p0(t;x, y) using the series expansion (2.13) and the approximation,
g(t;x, y), derived in Filipovic et al. [14], using 2, 3, and 4th order. Left: difference between the approximation and
the series expansion, i.e., p0(t;x, y) − g(t;x, y).
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Appendix A. Proofs

First, we need the following preliminary results (Lemmas 5-8).

Lemma 5. Let x ≥ 0 and b > 0, then for all n ∈ N0, |Lb−1
n (x)| ≤ ex/2

n!

[
1{b∈(0,1)}

(
(x+b)(b+1)n

b+n +

x(b+2)n
b+n

)
+ 1{b≥1}(b)n

]
= (b)nex/2

n!

[
1 + 1{b∈(0,1)}

2+2b+n
b(b+1) x

]
.

Proof. First observe that Lb−1
n (x) = 1

b+n((x + b)Lbn(x) − xLb+1
n (x)), and that, for all n ∈ N0, and

ν, x ≥ 0, we have |Lνn(x)| ≤ ex/2Lνn(0) = ex/2 (ν+1)n
n! (see Olver et al. [25], Eq.18.14.8). Hence, the

proof follows from an application of the triangular inequality.

Lemma 6. Let a ∈ R and k ∈ N0, then limk→∞

∣∣∣ (a)k+1

(k+1)!

/
(a)k
(k)!

∣∣∣ = limk→∞

∣∣∣ (a)k+1

k!

/
(a)k

(k−1)!

∣∣∣ = 1.

Proof. It follows directly from substituting the asymptotic expansions (a)k ≈ e−kkk−
1
2

+a and

k! ≈ e−kkk−
1
2 as k →∞ and taking the limit.

Lemma 7. Let x, b ∈ R with b bounded, then
∣∣∣ 1F1(−a;b;x)

1F1(1−a;b;x)

∣∣∣→ 1 as a→∞. Similarly,
∣∣∣Lb−1

n+1(x)

Lb−1
n (x)

∣∣∣→ 1
as n→∞.

Proof. For all x, b ∈ R and b bounded, we have 1F1(−a; b;x) ≈ Γ(b)√
π
ex/2

(
b
2 + a

) 1−2b
4 x

1−2b
4 cos

(
π
4 (1−

2b) + x1/2
√

2b+ 4a
)

as a → ∞ (see Abramowitz and Stegun [26], Eq.13.5.14). Assume that

x ≥ 0, in this case 1F1(−a; b;x) ≈ Γ(b)√
π
ex/2

(
b
2 + a

) 1−2b
4 x

1−2b
4 (since | cos(z)| ≤ 1, z ∈ R), and

hence,
∣∣∣ 1F1(−a;b;x)

1F1(1−a;b;x)

∣∣∣ ≈ (
b+2a
b+2a−2

) 1−2b
4 → 1. Next assume x < 0, using the identities | cos(a +

b i)| =
√

cos2(a) cosh2(b) + sin2(a) sinh2(b) =
√

1
2(cos(2a) + cosh(2b)), we obtain

∣∣∣ 1F1(−a;b;x)

1F1(1−a;b;x)

∣∣∣ ≈(
b+2a
b+2a−2

) 1−2b
4

√
cos
(
π
2

(1−2b)
)

+cosh
(

2|x|1/2
√

2b+4a
)

cos
(
π
2

(1−2b)
)

+cosh
(

2|x|1/2
√

2b+4(a−1)
) → 1 (since cosh(0) = 1, and for all x ∈ R \ {0},

we have cosh(x
√
a) → ∞, and cosh(x

√
a)

cosh(x
√
a−1)

→ 1 as a → ∞). Since Lb−1
n (x) = (b)n

n! 1F1(−n, b, x),

then
∣∣∣Lb−1

n+1(x)

Lb−1
n (x)

∣∣∣ =
∣∣∣ (b)n+1n!

(n+1)!(b)n

∣∣∣∣∣∣ 1F1(−(n+1);b;x)

1F1(−n;b;x)

∣∣∣→ 1, from the previous result and Lemma 6.

Lemma 8. Let c, x ∈ R, and m, k ∈ N0, then
∣∣∣ 2F1(−m,−(k+1);c;x)

2F1(−m,−k;c;x)

∣∣∣→ 1 as k →∞.

Proof. Using the identity 2F1(a,b;c;x)
Γ(c) = 2F1(a,b+1;c;x)

Γ(c) − ax
c

2F1(a+1,b+1;c+1;x)
Γ(c) (see Ramanathan [27],

Eq.18) we obtain
∣∣∣ 2F1(−m,−(k+1);c;x)

2F1(−m,−k;c;x)

∣∣∣ =
∣∣∣1 + xm 2F1(1−m,−k;c+1;x)/Γ(c+1)

2F1(−m,−k;c;x)/Γ(c)

∣∣∣. Hence, we need to show

that limk→∞
xm 2F1(1−m,−k;c+1;x)/Γ(c+1)

2F1(−m,−k;c;x)/Γ(c) = 0. Using the definition of 2F1(−a, b, x) when a ∈ N,

the fact that (a)mΓ(a) = Γ(a + m), and the asymptotic (a)n ≈ an as a → ∞, we obtain

xm 2F11−m,−k;c+1;x)/Γ(c+1)

2F1(−m,−k;c;x)/Γ(c) =
x
∑m−1
p=0

m(1−m)px
p(−k)p

Γ(c+1+p)p!

(−m)mxm(−k)m
Γ(c+m)m!

+
∑m−1
p=0

(−m)pxp(−k)p
Γ(c+p)p!

≈
xm

∑m−1
p=0

Γ(c+m)(1−m)px
p

Γ(c+1+p)p!
(−k)p

km(−x)m+
∑m−1
p=0

Γ(c+m)(−m)pxp

Γ(c+p)p!
(−k)p

→

0 as k →∞ and all x ∈ R.

Proof of Lemma 1: Let K(t;x, z) = e−
b
2

(ε−κ)t
(

2ε
κ+ε+σ2z

)b
eκx/σ

2
and w = κ−ε+σ2z

κ+ε+σ2z
(see that |w| < 1

for all z <∞, and |w| = 1 in the limit as z →∞). From Lemma 5, we have
∑∞

n=0 e
−λnt|cn(z)ϕn(x)| ≤

K(t;x, z)
∑∞

n=0
Γ(b+n)

Γ(b+1)n! |w|
ne−nεt

(
(b+x) +x (b+n+1)

(b+1)

)
, which is a continuous function of x, z, and t.
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Moreover, the right-hand-side sum converges to K(t;x, z)
(
1+
(
1+ b|w|

2(b+1)(eεt−|w|)
)

2x
b

)
(1−|w|e−εt)−b,

which is finite for all x, z and t on compact sets. Hence the result follows.

Proof of Lemma 2: C($,α, z; t) can be written as

C($,α, z; t) = e−$aεt
(
e−εt + (1− e−εt)Q(z)

)−$a
= e−$aεt

(
1 + (Q(z)− 1)(1− e−εt)

)−$a
. (A.1)

We shall make use of the expansion valid for all w ∈ R,

(a+ bz)w = (a+ br)w
∞∑
k=0

(−1)k(−w)k
k!

( z − r
(a/b) + r

)k
= (a+ br)w 1F0

(
− w, ;− z − r

(a/b) + r

)
, (A.2)

where 1F0(a, ;x) =
∑∞

k=0((a)k/k!)xk = (1 − x)−a is the generalized hypergeometric function,
which converges absolutely provided

∣∣ z−r
a/b+r

∣∣ < 1 (see Theorem 2.1.1 in Andrews et al. [28], p.62).

Next, we obtain the expression (2.8). Applying (A.2) to (A.1) with r = 1 − e−εt = 1
2 we obtain,

C($,α, z; t) = 2$a(1 + Q(z))−$ae−$aεt
∑∞

m=0
($a)m
m! 2m

(Q(z)−1
Q(z)+1

)m(
e−εt − 1

2

)m
. To show that we

can actually apply (A.2), we need to show that
∣∣2(Q(z)−1

Q(z)+1

)(
e−εt − 1

2

)∣∣ < 1. We already have∣∣2(e−εt − 1
2

)∣∣ ≤ 1 (since ε > 0). It is not difficult to show that Q(z) > 0 for all z ≥ 0. Indeed,
it is easy to see that Q(∞) = 1/b > 0, Q(0) = (κ + ε + 2αµ)/(2ε) > 0, and Q(1/µ) = (σ2 +
2αµ2 + 2µε)/(4µε) > 0. Applying the binomial expansion to

(
e−εt − 1

2

)m
we obtain (2.8). We now

show that the convergence of (2.8) is uniform for all z ≥ 0 and all t ≥ 0. Note that for z ≥ 0,
Q(z) > 0 and maxz∈[0,∞]Q(z) < ∞. Hence, for all z ≥ 0, there exists a K ∈ (0, 1) such that∣∣Q(z)−1
Q(z)+1

∣∣ ≤ K < 1. Thus, for all z ≥ 0 and all t ≥ 0 ,
∣∣2(Q(z)−1

Q(z)+1

)(
e−εt − 1

2

)∣∣ ≤ K < 1. Since∑∞
m=0

($a)m
m! Km is convergent (independently of t and z), then by virtue of the Weierstrass test,

(2.8) is uniformly-absolutely convergent for all z, t ≥ 0.

Proof of Lemma 3: Since ϑm,n(t) = e−(λn+$(κ+ε
2ε

)( b
b−1

)) t(2e−εt)$a(2e−εt − 1)m, it follows that 0 ≤
|ϑm,n(t)| ≤ e−λnt2$a for all t ≥ 0, which means that we can disentangle the double summation into a
product of uniformly-absolutely convergent sums. Since the product of absolutely convergent series
is absolute convergent, and each of them is also continuous uniformly convergent (on compacts),
the result follows.

Proof of Lemma 4: Using the identity b+az
d+cz = a

c + 1
c

(
bc−ad
d+cz

)
, cn(z) can be written as, cn(z) =

(2ε/σ2)b

Nα
n

(
1 + −2ε/σ2

((κ+ε)/σ2)+z

)n(κ+ε
σ2 +z

)−b
. Applying the binomial formula we arrive at (2.10). Next we

obtain the expansion of %m(z). Applying again the identity b+az
d+cz = a

c + 1
c

(
bc−ad
d+cz

)
and the binomial

formula we obtain: %m(z) = ($a)m
m!

∑m
`=0

(m
`

)
(−2)`(Q(z) + 1)−$a−`. Expand

(
Q(z) + 1

)−($a+`)

using (A.2) with r = Q(1/µ) to obtain: (Q(z) + 1)−$a−` = (1 + Q(1/µ))−($a+`)
∑∞

k=0

(
2aε(1 +

Q(1/µ))
)−k ($a+`)k

k! 2k
(

1
µz+1 −

1
2

)k
. The latter converges uniformly-absolutely according to the Weier-

strass test since, for all z ∈ [0,∞] and all σ, κ, µ > 0 and α ≥ 0, we have
∣∣2( 1

µz+1 −
1
2

)∣∣ ≤ 1, and∣∣(2aε(1 + Q(1/µ))
)−1∣∣ =

∣∣∣ σ2−2µ(κ+αµ)
σ2+2µ(3ε+αµ)

∣∣∣ < 1. Thus, changing the summation order we arrive at

%m(z) =
∑∞

k=0

∑m
`=0

(m
`

)
(−2)`($a)m($a+`)k
(1+Q(1/µ))$a+`m! k!

( 1
µz+1

− 1
2

aε(1+Q(1/µ))

)k
. Using the binomial formula we ob-

tain: %m(z) =
∑∞

k=0

∑k
h=0 %̃h,k,m

(
z+ 1

µ

)−h
with %̃h,k,m =

∑m
`=0

( k
h

)(m
`

)
µ−h(−2)`+h−k($a+`)k($a)m
(aε)k(1+Q(1/µ))$a+`+kk!m!

.
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Next, observing that
(m
`

)
= m!

`! (m−`)! , (−m)` = (−1)`m!
(m−`)! for m ∈ N with ` ≤ m, and ($a + `)k =

($a)k($a+k)`
($a)`

, and using the definition of Gauss hypergeometric function 2F1(a, b; c; z) with −a ∈ N,

we arrive at %̃h,k,m =
( k
h

)(
1
2

)k−h( 1
µ

)h ($a)m($a)k 2F1(−m,$a+k;$a; 2
1+Q(1/µ)

)

(−1)h−k(aε)k(1+Q(1/µ))$a+k k!m!
. Lastly, using the iden-

tity 2F1(a, b; c;x) = (1 − x)−a 2F1(a, c − b; c;x/(x − 1)) we obtain (2.11). We now show that∑∞
k=0

∣∣∑k
h=0 %̃h,k,m(z + 1/µ)−h

∣∣ is uniformly convergent using the Weierstrass’s criterion. First,

observe that,
∣∣∑k

h=0 %̃h,k,m(z + 1/µ)−h
∣∣ = |Um Vk,m|

∣∣1−µz
1+µz

∣∣k, and that for all z ∈ [0,∞] we have∣∣1−µz
1+µz

∣∣ ≤ 1. Also, observe that from Lemmas 6 and 8, and since
∣∣Q(1/µ)−1
Q(1/µ)+1

∣∣ ≤ K < 1 and

|(2aε)(Q(1/µ) + 1)|−1 ≤ K < 1, it follows that

lim
k→∞

∣∣∣Vk+1,m

Vk,m

∣∣∣ ≤ K < 1, and lim
m→∞

∣∣∣Um+1Vk,m+1

UmVk,m

∣∣∣ ≤ K < 1. (A.3)

The latter implies (ratio test) that
∑∞

k=0

∣∣∑k
h=0 %̃h,k,m(z + 1/µ)−h

∣∣ is uniformly convergent for all
z ∈ [0,∞]. Hence, (2.11) is uniformly-absolutely convergent.

Proof of Theorem 1: To show that the conditions of Theorem 30.1 in Doetsch [21] are satis-

fied, it suffices to show the convergence of the series
∑∞

k=0

∑∞
m=0

∑∞
n=0 |ϑm,n(t)| |ϕn(x)| L|ψ̃|k,m,n(z),

where L|ψ̃|k,m,n(z) =
∫∞

0 e−zy|ψ̃k,m,n(y)|m(y)dy and where ψ̃k,m,n(y) is defined in (2.14). Using

the fact that for all x, b ∈ R, 1F1(0, b, x) = 1, and the integral representation 1F1(a;b;x)
Γ(b) =

1
Γ(a)Γ(b−a)

∫ 1
0 e

xtta−1(1− t)b−a−1dt, which is valid for <(b) > <(a) > 0, we obtain, |ψ̃k,m,n(y)| =
∣∣∣σ2

2

e−
ε−κ
σ2 y UmVk,m

Nα
n

(
2ε
σ2

)b(∑n
j=0

n! ( 2εy

σ2 )j(−1)j

(n−j)! j!Γ(b+j)+
∫ 1

0

(∑k
h=1

∑n
j=0

n! k! ( 2εy

σ2 )j(−1)h+j( 2y
µ

)h

(n−j)! j! (k−h)!h!
eAytth−1(1−t)b+j−1

Γ(h)Γ(b+j)

)
dt
)∣∣∣

=
∣∣∣σ2

2
UmVk,m
Nα
nΓ(b)

(
2ε
σ2

)b
e−

ε−κ
σ2 y

(
1F1

(
− n, b, 2εy

σ2

)
+
(2y
µ

) ∫ 1
0 (1 − t)b−1(−k)eAyt 1F1

(
1 − k; 2; 2y

µ t
)

1F1

(
−

n; b; 2εy
σ2 (1−t)

)
dt
)∣∣∣. Using Eq. 7.11.1.24 in Prudnikov et al. [29], we obtain |ψ̃k,m,n(y)| =

∣∣∣σ2

2
UmVk,m
Nα
nΓ(b)

(
2ε
σ2

)b
e−

ε−κ
σ2 y

(
1F1

(
− n, b, 2εy

σ2

)
+
(2y
µ

) ∫ 1
0 (1 − t)b−1eAyt 1F1

(
− n; b; 2εy

σ2 (1 − t)
)[

1F1

(
− k; 1; 2y

µ t
)
− (1 +

k) 1F1

(
−k; 2; 2y

µ t
)]
dt
)∣∣∣ =

∣∣∣σ2

2
UmVk,m
Nα
nΓ(b)

(
2ε
σ2

)b
e−

ε−κ
σ2 y n!

(b)n

(
Lb−1
n

(2εy
σ2

)
+
(2y
µ

) ∫ 1
0 (1−t)b−1eAytLb−1

n

(2εy
σ2 (1−

t)
)[
L0
k

(2y
µ t
)
− L1

k

(2y
µ t
)]
dt
)∣∣∣ ≤ σ2

2
|UmVk,m|
Nα
nΓ(b)

(
2ε
σ2

)b
e−

ε−κ
σ2 y

(
e
ε
σ2 y
[
1 + 1{b∈(0,1)}

2+2b+n
b(b+1)

(2εy
σ2

)]
+
(2y
µ

)
(2 +

k)
∫ 1

0 e
εy

σ2 (1−t)+ y
µ
t+Ayt

(1− t)b−1
[
1 +1{b∈(0,1)}

2+2b+n
b(b+1)

(2εy
σ2

)
(1− t)

]
dt
)

, where in the last inequality we

used Lemma 5. Hence, after integrating and simplifying,

|ψ̃k,m,n(y)| ≤σ
2

2

|UmVk,m|
Nα
n

(2ε

σ2

)b(
e
κ
σ2 y
[ 1

Γ(b)
+ 1{b∈(0,1)}

(2 + 2b+ n

Γ(b+ 2)

)(2εy

σ2

)]
+ (2 + k)

(2y

µ

)
×

e
2κ
σ2 y

[
1F1

(
b; b+ 1;− κ

σ2 y
)

Γ(b+ 1)
+ 1{b∈(0,1)}

(2 + 2b+ n

b+ 1

)(2εy

σ2

)
1F1

(
b+ 1; b+ 2;− κ

σ2 y
)

Γ(b+ 2)

])

= ψ∗k,m,n(y) (A.4)

Then, multiplying both sides by e−zym(y) and integrating (see Eq.3.35.1.3 in Prudnikov et al. [30]),
we obtain the following inequality for the Laplace transform

L|ψ̃|k,m,n(z) ≤
|UmVk,m|

Nα
n

(2ε

σ2

)b (
1 +

2(2 + k)

µz

)
12



×

[( κ
σ2

+ z
)−b

+ 1{b∈(0,1)}

(2 + 2b+ n

b+ 1

)(2ε

σ2

)( κ
σ2

+ z
)−(b+1)

]
= L∗k,m,n(z). (A.5)

Hence, from Eq. (A.3) and (A.5), it is clear that L∗k+1,m,n(z)
/
L∗k,m,n(z) ≤ K < 1 as k → ∞.

Similarly, since 0 ≤ |ϑm,n(t)| ≤ e−λnt2$a for all t ≥ 0 (see the proof of Lemma 3), it follows that

|ϑm+1,n(t)|L∗k,m+1,n(z)
/
|ϑm,n(t)|L∗k,m,n(z) ≤ K < 1 as m→∞. Now, with respect to the index n,

we have that
∑∞

n=0 |ϑm,n(t)||ϕn(x)|L|ψ̃|k,m,n(z) ≤ 2$a
∑∞

n=0 e
−λnt|ϕn(x)|L∗k,m,n(z). From (A.3) and

Lemma 7, and since λn = nε+ b
2 (ε− κ), it follows that for all t > 0,

(
e−λn+1t|ϕn+1(x)|L∗k,m,n+1(z)

)
/(

e−λnt|ϕn(x)|L∗k,m,n(z)
)
≤ K < 1 as n→∞. Hence, the series

∑∞
k=0

∑∞
m=0

∑∞
n=0 |ϑm,n(t)| |ϕn(x)|

L|ψ̃|k,m,n(z) converges uniformly-absolutely on compacts for z, x ≥ 0 and t > 0. Therefore, the con-
ditions of Theorem 30.1 in Doetsch [21] are satisfied. One can also prove that the expansion (2.13)
of pαm(t;x, y) satisfies the Weierstrass criterion in exactly the same way as above (i.e., via the ra-
tio test) by using the bound ψ∗k,m,n(y) in (A.4) instead of (A.5) (details are, therefore, omitted).
Hence, we conclude that pαm(t;x, y) is uniformly-absolutely convergent on compacts for x, y ≥ 0 and
t > 0.

Proof of Theorem 2: Since pαm(t;x, y) defined as in (2.13) is uniformly-absolutely convergent on
compacts for x, y ≥ 0 and t > 0, we observe that for all compact subsets I of [0,∞), the integral∫
I p

α(t;x, y)dy can be done term-by-term for all t > 0. Hence, let I = [0, R], then fm,n(R) =∫
I ψm,n(y)m(y)dy. Applying the definition of 1F1(a; b;x), and since A = κ+ε

σ2 − 1
µ , we obtain

f̃k,m,n(R) =
k∑

h=0

n∑
j=0

c̃j,n%̃h,k,m
Γ(h+ b+ j)

∞∑
`=0

(h)`A
`

(h+ b+ j)``!

∫ R

0
e−

κ+ε

σ2 yyh+b+j+`−1dy (A.6)

=
k∑

h=0

n∑
j=0

c̃j,n%̃h,k,m
Γ(h+ b+ j)

[ ∞∑
`=0

(h)`A
`

(h+ b+ j)``!

(κ+ ε

σ2

)−(h+b+j+`)
γ
(
h+ b+ j + `,

κ+ ε

σ2
R
)]
,

using the fact that
γ(h+b+j+`,κ+ε

σ2 R)

Γ(h+b+j)(h+b+j)`
=

γ(h+b+j+`,κ+ε

σ2 R)

Γ(h+b+j+`) we arrive at (2.15). Now, we justify the

interchange of the sum and integral in (A.6). Since for all r > 0 and x ≥ 0, and γ(r, x) ≤ Γ(r),

then 0 ≤
∑∞

`=0
(h)`|A|`

(h+b+j)``!

(
κ+ε
σ2

)−(h+b+j+`)
γ
(
h+ b+ j + `, κ+ε

σ2 R
)
≤
∑∞

`=0
(h)`|A|`

(h+b+j)``!

(
κ+ε
σ2

)−(h+b+j+`)

Γ(h+b+ j+`) =
(
κ+ε
σ2

)−(h+b+j)(
1−|A| σ2

κ+ε)
−hΓ(h+b+ j) <∞ (observe that |A|/((κ+ε)/σ2) < 1,

and hence, the identity 1F0(a; ;x) = (1 − x)−a is valid). Therefore, the interchange is allowed by
Fubini’s theorem.

Proof of Theorem 3: When α = 0, β`,n ≥ 0 is reduced to β`,n = κ(n + `). This implies that
limt→∞ ϑm,n(t) = (−1)m2$a1{n=0}. Hence limt→∞ p

0(t;x, y) = 2$a
∑∞

m=0(−1)mϕ0(x)ψm,0(y)m(y),

where ψm,0(y) = σ2

2N0
0

(
2κ
σ2

)b∑∞
k=0

∑k
h=0

%̃h,k,m 1F1(h;h+b;Ay)
Γ(h+b) yh, and ϕ0(x) = N0

0 . Using this limit in

the transition density pα(t;x, y) of Theorem 1 (with all the other parameters evaluated at α = 0)
we arrive at (2.16).

Proof of Theorem 4: To show that the integral pα,φm (s;x, y) =
∫

[0,∞) p
α
m(s;x, y)qt(ds) yields (3.21)

we apply the dominated convergence theorem. Recall that |ϑm,n(t)| ≤ e−λnt2$a. The dominating

13



function for the integrand is given by 2$a
∑∞

n=0 e
−λns|ϕn(x)|

∑∞
m=0

∑∞
k=0 ψ

∗
k,m,n(y) (recall that

|ψ̃k,m,n(y)| ≤ ψ∗k,m,n(y); see (A.4)). Hence if we can show that∫
[0,∞)

2$a
∞∑
n=0

e−λns|ϕn(x)|
∞∑
m=0

∞∑
k=0

ψ∗k,m,n(y)qt(ds) = 2$a
∞∑
n=0

e−φ(λn)t|ϕn(x)|
∞∑
m=0

∞∑
k=0

ψ∗k,m,n(y) <∞,

then we can apply the dominated convergence theorem. Below we prove the convergence of the
above series with respect to n (its convergence with respect to k and m can be easily proved
using (A.3) and (A.4)). Indeed, using Lemma 5, we observe that e−φ(λn)t |ϕn(x)|ψ∗k,m,n(y) ∝
K(y)(1 +n1{b∈(0,1)})e

−φ(λn)tLb−1
n

(
2xε
σ2

)
for some 0 < K(y) <∞ for y ≥ 0 on compacts (the symbol

“∝” indicates “proportional to”). Using the asymptotic representation 4.22.19 in [31] we have

|Lb−1
n (x)| ∝ n

2b−3
4 as n→∞ for all x ≥ 0 on compacts. Therefore, under our assumption, the sum

converges uniformly-absolutely on compacts for x, y ≥ 0 and t > 0.
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