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Abstract

To capture mean reversion and sharp seasonal spikes observed in electricity prices, this paper
develops a new stochastic model for electricity spot prices by time changing the Jump Cox-
Ingersoll-Ross (JCIR) process with a random clock that is a composite of a Gamma subordinator
and a deterministic clock with seasonal activity rate. The time-changed JCIR process is a time-
inhomogeneous Markov semimartingale which can be either a jump-diffusion or a pure-jump
process, and it has a mean-reverting jump component that leads to mean reversion in the prices
in addition to the smooth mean-reversion force. Furthermore, the characteristics of the time-
changed JCIR process are seasonal, allowing spikes to occur in a seasonal pattern. The Laplace
transform of the time-changed JCIR process can be efficiently computed by Gauss-Laguerre
quadrature. This allows us to recover its transition density through efficient Laplace inversion
and to calibrate our model using maximum likelihood estimation. To price electricity derivatives,
we introduce a class of measure changes that transforms one time-changed JCIR process into
another time-changed JCIR process. We derive a closed-form formula for the futures price and
obtain the Laplace transform of futures option price in terms of the Laplace transform of the
time-changed JCIR process, which can then be efficiently inverted to yield the option price.
By fitting our model to two major electricity markets in the US, we show that it is able to
capture both the trajectorial and the statistical properties of electricity prices. Comparison
with a popular jump-diffusion model is also provided.

Keywords: electricity spot prices, electricity futures and futures options, spikes,
mean-reversion, seasonality, stochastic time change, Laplace transform.

JEL Classification: G12, G13.

1 Introduction

The deregulation of electricity markets in many countries has drastically changed the behavior
of electricity prices, which are now determined according to the fundamental law of demand and
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supply. In practice, electricity prices are extremely volatile, with annualized volatility typically
being several hundred percent (Eydeland and Wolyniec (2003), p.86), which is a level that has
never been observed for any other financial asset or commodity. A stochastic model that captures
the peculiar behavior of electricity prices is therefore necessary and crucial for risk management,
derivative pricing and operational decisions in electricity markets.

In this paper, we are concerned with modelling electricity spot prices and pricing electricity
derivatives including futures and futures options based on the spot model. Electricity markets are
different from other commodity markets for both spot and futures. For electricity, a large part of
the spot trading is organized in the day-ahead market. On each day, the price for every hour in
the following day is determined by the aggregate supply and demand for that hour. The day-ahead
average price is calculated by averaging twenty-four hourly prices, and it is used as the reference
price in many financially settled futures contracts. For these reasons, the literature often regards
the day-ahead average price as the spot price (see, e.g., Lucia and Schwartz (2002)). In this paper
we model the day-ahead average price and follow the convention to call it as the spot price. In the
futures market, unlike other commodities, electricity futures require delivery over a time period
which is typically a month, a quarter or a year, rather than at a fixed time. This special feature
imposes restrictions on the spot model if one wants to obtain tractability for pricing futures and
futures options, which is a very important consideration in practice.

Electricity prices display two salient features in their sample paths. First, similar to many other
commodities, they are reverting to a mean level. Depending on the market, this level can display
weekly, quarterly or annual seasonality. Second, unlike other commodities, electricity prices exhibit
very sharp spikes, which are large upward moves followed shortly by steep downward moves towards
a normal price range. Due to the inelastic demand, the exponentially increasing supply function,
and the non-storable nature of electricity, power prices can easily jump by orders of magnitude, for
instance from $40/MWH to $120/MWH, as a result of demand and supply shocks caused by, e.g.,
extreme weather conditions, plant outages and transmission disruptions (Geman (2005)). These
shocks usually last for a short time, causing the price to quickly fall back to the normal level, and
hence, creating sharp spikes in the price trajectory. A further feature of spikes is that in some
markets they are concentrated in summer and/or winter.

Let (St)t≥0 denote the electricity spot price process. In the literature, the spot price is often
modeled as

St = Λ(t)Xt,

where Λ(t) is a deterministic function that models the seasonal trend to which the price reverts,
and Xt is a stochastic process to model the random fluctuations from the trend. In the literature,
Xt is also known as the deseasonalized spot price, i.e., the price after removing the seasonal trend.
We observe, however, that even after factoring out Λ(t), the behavior of Xt may still exhibit some
seasonal behavior, e.g., the arrival rate of spikes, as well as the volatility level, tend to increase
during peak seasons. The challenge lies in specifying Xt so that the model is not only able to
capture trajectorial as well as statistical features of electricity prices, but also computationally
tractable for calibration and pricing purposes.

There are already many models for Xt. As an extension to the classical commodity model of
Schwartz (1997), which is based on the Ornstein-Uhlenbeck (OU) diffusion, some authors (e.g.,
Cartea and Figueroa (2005), Kjaer (2008), Weron (2008)) propose to model lnXt by a Markovian
mean-reverting jump diffusion, where the diffusion part is specified as OU, and jumps are modeled
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by a compound Poisson process that is independent of the diffusion part. By specifying the jump
size to follow the normal distribution, Cartea and Figueroa (2005) obtained an analytical formula
for the futures price, but pricing futures options is not tractable. A common drawback of this
type of models is that they require a high level of mean-reversion speed to generate spikes, because
mean-reversion is only realized through the diffusion drift. Consequently, normal price variations
may be smoothed out. This issue motivated Geman and Roncoroni (2006) to introduce state-
dependent jumps in the mean-reverting jump-diffusion process, where the direction of the jump
depends on the relation between the pre-jump price and some threshold. If the price is below the
threshold, then the next jump will be upward, otherwise downward. In this model, mean reversion
to the normal price range is not only generated by the smooth mean-reversion force from the drift,
but also by downward jumps. A potential problem with the threshold specification is that upward
jumps are impossible when the price exceeds the threshold. Nonetheless, it is sometimes observed
in the market that the spot price jumps up even when it is already very high. To estimate their
model, Geman and Roncoroni (2006) develop an iterative procedure and show that it provides a
good fit to the data from major US power markets. However, pricing electricity futures and options
is not tractable in their model. To price such contracts, methods based on trees and numerically
solving PIDEs are developed by Geman and Kourouvakalis (2008) and Albanese et al. (2012). Other
ideas to model electricity spot prices include multi-factor models as in, e.g., Burger et al. (2004),
Benth et al. (2007), Cartea and Villaplana (2008), Meyer-Brandis and Tankov (2008), Hambly et al.
(2009), Birge et al. (2010), Klüppelberg et al. (2010), Jaimungal and Surkov (2011), Hayfavi and
Talasli (2014) and Veraart and Veraart (2014); regime switching models as in, e.g., Deng (1999),
Huisman and Mahieu (2001), Weron et al. (2004) and Nomikos and Soldatos (2008); and time-series
models based on autoregressive and GARCH specifications as in e.g., Escribano et al. (2011).

In this paper, we aim to develop a new stochastic model for electricity spot prices within the
one-dimensional Markovian framework in view of the fact that models based on one-dimensional
Markov processes are often more tractable, and they require less computational effort in pricing
derivatives, especially exotic ones. In particular, we want our stochastic model to exhibit jumps
that contribute to mean-reversion, and it should be able to capture the trajectorial as well as the
statistical properties of electricity prices (that is, we want our model to reproduce mean reversion
and seasonal spikes, and also provide a good match of the moments, including skewness and kurto-
sis). Moreover, the model should be tractable for pricing futures and futures options. To construct
a jump process model with the required features, we employ the method of random time changes.
The typical approach used in the literature for constructing a Markovian jump process Y via time
changes starts with a time-homogeneous diffusion process X that is subsequently time changed
with an independent Lévy subordinator L (a nonnegative Lévy process), i.e., Yt = XLt , for t ≥ 0.
The resulting process Y is often called a subordinate diffusion. Y is a time-homogeneous Markov
process due to the independent and stationary increments of L, and it can be either a jump-diffusion
or a pure-jump process, depending on whether the drift of L is positive or zero. When the jumps
of L have infinite (resp., finite) activity, the jumps of Y have infinite (resp., finite) activity as well.
If X is a Brownian motion, Y is a Lévy process whose jumps are state-independent. But more
generally, the jumps of Y are state-dependent. For instance, if X is a mean-reverting diffusion, then
the jumps of Y are also mean-reverting (see Li and Linetsky (2014) for an example). Applications
of Lévy subordination of diffusions in equity, credit, interest rate and commodity markets can be
found in e.g. Madan et al. (1998), Barndorff-Nielsen (1998), Madan and Yor (2008), Boyarchenko
and Levendorskĭi (2007), Mendoza-Arriaga et al. (2010), Lim et al. (2012), Mendoza-Arriaga and
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Linetsky (2013) and Li and Linetsky (2014). Unfortunately, subordinate diffusions are not quite
appropriate for modelling electricity prices. For instance, although subordinate diffusions exhibit
jumps, the probability of having extremely large jumps like a jump from $40/MWH to $120/MWH
is very small. Moreover, subordinate diffusions have time-homogeneous characteristics, which do
not match the seasonal volatility and jumps that are typically observed in electricity markets.

Therefore, in order to develop a time-changed process with the desirable features, we must
use different specifications for the background process and the time change from those used in the
literature. To produce upward jumps with large magnitude and to obtain tractability, we choose the
Cox-Ingersoll-Ross (CIR) diffusion interspersed with compound Poisson jumps with exponentially
distributed jump size as our background process X (see Eq. (2)). This process is often known
as the Basic Affine Jump-Diffusion in the literature (Duffie and Gârleanu (2001)), but hereafter
we call it Jump-CIR (JCIR) process. To create seasonal spikes, we set the random clock T to be
defined as Tt = LAt , where L is a Gamma process (a popular Lévy subordinator used in finance)
and At =

∫ t
0 a(u)du with the activity rate a(u) being a deterministic seasonal function of time.

Then, the deseasonalized spot price process is modelled by the time-changed JCIR process XTt ,
which is a time-inhomogeneous Markov process, and it can be specified either as a jump-diffusion
(γ > 0) or as a pure-jump process (γ = 0), where γ is the drift of the Gamma subordinator (see
Eq. (3)). Our model exhibits two notable features in its sample paths. First, in contrast to the JCIR
process, which can only jump upward with jumps being state-independent, the jump measure of
the time-changed JCIR process has a state-dependent and mean-reverting component which allows
both upward and downward jumps. Thus in our model, mean reversion can be realized via jumps
as well as continuous drift. In the pure-jump specification, the diffusion drift term vanishes, and
hence, mean reversion is solely carried out by jumps. Compared to the threshold specification of
Geman and Roncoroni (2006), our model does not rule out the possibility of upward jumps at high
spot prices. Second, in our model the diffusion drift, volatility, and jump measure are all time
dependent and seasonal. To be more specific, during seasons like summer and winter when demand
and supply shocks are more likely to occur, the diffusion volatility and upward jump intensity
become stronger, meanwhile the smooth mean-reversion force and downward jump intensity also
strengthen. Therefore, during these seasons, any large price deviations from the mean level will be
pulled back quickly, resulting in more spikes compared to other seasons.

The time-changed JCIR process is computationally tractable. Its Laplace transform can be
computed efficiently through Gauss-Laguerre quadrature. From the Laplace transform, one can
recover the transition density of the time-changed JCIR process via an efficient Laplace inversion
algorithm, such as the one by Abate and Whitt (1992). This allows us to estimate our model using
maximum likelihood estimation.

To price electricity derivatives, we develop a class of equivalent measure changes that transforms
one time-changed JCIR process into another time-changed JCIR process. Using these measure
transformations, our model remains in the same form under the pricing measure so that derivative
pricing is also tractable. We obtain a simple closed-form formula for the futures price as well as
the Laplace transform of the futures option price, which can then be efficiently inverted to yield
the option price. To price popular exotic options like swing options, one can apply the efficient
Fourier-cosine expansion method of Zhang and Oosterlee (2013).

We provide a detailed mathematical analysis of the time-changed JCIR process in this paper.
We characterize it as a time-inhomogeneous Markov semimartingale and obtain its family of gen-
erators as well as semimartingale characteristics. These results allow us to obtain insights into the
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trajectorial features of our model, and they are also the basis for developing equivalent measure
changes. Our analysis is built upon the recent theory of additive subordination developed in Li
et al. (2015) by recognizing that the time change we use is a special type of additive subordinators,
which are nonnegative and nondecreasing additive processes. However, there are several places
where the analysis of the time-changed JCIR process requires arguments that are different from
those used in the analysis of additive subordinate diffusions in Li et al. (2015).

The rest of the paper is organized as follows. Section 2 describes the modelling framework.
Section 3 provides a detailed mathematical analysis of time-changed JCIR processes. In this section,
we go beyond the Gamma process to consider general Lévy subordinators as the theoretical results
hold generally. In Section 4, we first study equivalent measure changes for time-changed JCIR
processes and then price electricity futures and futures options. Section 5 shows how to estimate
the model and provides calibration examples to two major electricity markets in the US. The results
show that our model provides a good fit both trajectorially and statistically. We also compare our
model with the popular model of Cartea and Figueroa (2005) in terms of moment matching and
price prediction. Section 6 concludes the paper. The appendix contains the exact simulation scheme
for the time-changed JCIR process and proofs.

2 The Model Set-Up

We model the spot price as
St = Λ(t)Xφ

t ,

where Λ(t) is a deterministic function of time that models the trend, and Xφ is a positive stochastic
process that models random fluctuations from the trend. We set Λ(t) to be a parametric function
of the form

ln Λ(t) = a0 + b0t+
n∑
i=1

ai cos(2πfit+ bi), fi > 0. (1)

Observe that the trend function Λ(t) includes the possibility for multiple seasonal behaviors that
can occur at different frequencies, e.g., annual, semi-annual, quarterly, etc. Similar forms for the
trend function are used in Geman and Roncoroni (2006), Meyer-Brandis and Tankov (2008) and
Benth et al. (2012). We find that Eq.(1) is appropriate for the US markets we consider.

We model (Xφ
t )t≥0 as a time-changed JCIR process, i.e., Xφ

t = XTt , where X is a JCIR process
and T is a random clock. A JCIR process is the unique solution to the following SDE:

dXt = κ(1−Xt)dt+ σ
√
XtdBt + dJt, X0 = x0 > 0, (2)

where κ, σ > 0 and J is a compound Poison process with arrival rate $ > 0 and the jump size
follows an exponential distribution with mean µ > 0. We set the mean level of X to be 1 since
Λ(t) is the trend to which St reverts. We also impose the Feller condition 2κ ≥ σ2 so that zero
is an unattainable boundary for X (see Cheridito et al. (2005), p.1727). The JCIR process is a
suitable candidate for the background process, since its drift term exhibits mean-reversion and
the compound Poisson part can generate large upward jumps. Furthermore, the JCIR’s Laplace
transform has a simple closed-form expression, which is important for obtaining tractability for
Xφ.
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We choose Tt to be in the form Tt = LAt . Here L is a Gamma process (see Madan et al. (1998)).
Its Lévy measure is given by

ν(dτ) =
m2/v

τ
e−

m
v
τdτ,

where m = E[L1]− γ and v = Var[L1] are the mean and variance rate of the stochastic part of the
Gamma process respectively and γ ≥ 0 is the drift of L. The Laplace transform of the Gamma
process is given by

E[e−λLt ] = e−ψ(λ)t,

with the Laplace exponent

ψ(λ) = γλ+
m2

ν
ln

(
1 +

λν

m

)
. (3)

We further assume that L is independent of X. At is a deterministic and absolutely continuous
function of time which is written as At =

∫ t
0 a(u)du, where a(u) is interpreted as the activity rate.

To model the phenomenon that spikes concentrate in winter and/or summer, we choose the activity
rate a(u) to be a positive bimodal periodic function with one-year period, depicted in Figure 1. The
function is only plotted for one year, and it is extended to other times using periodicity. We choose
the peak time tp1 to be in winter and tp2 to be in summer, and τ1 (resp., τ2) is the half length of
the spike concentration period in winter (resp., summer). The value of a(u) is normalized to one
in periods outside winter and summer, and 1 + c1 (resp., 1 + c2) gives the maximum activity rate
in winter (resp., summer). If spikes only concentrate in one of these seasons, then we set c1 = 0
or c2 = 0 accordingly. Under our specification, the integral

∫ t
s a(u)du can be easily computed in

closed-form. We remark that, any other specification with similar shape can be used for a(u), as
long as

∫ t
s a(u)du is easy to compute.

Figure 1: Activity rate a(u) in a one-year period

From Tt = LAt , it is easy to see that T is an additive subordinator, i.e., a nonnegative and
nondecreasing additive process (Sato (1999)). We refer readers to Li et al. (2015) for detailed
discussions on general additive subordinators. In our case, the Laplace transform of T is given by
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(0 ≤ s < t)

E[e−λ(Tt−Ts)] = e−
∫ t
s φ(λ,u)du = e−ψ(λ)

∫ t
s a(u)du, φ(λ, u) = γa(u)λ+

∫
(0,∞)

(
1− e−λτ

)
a(u)ν(dτ),

where φ(λ, ·) is called the density of the Laplace exponent, which explains why we use Xφ
t as the

notation for XTt .
Under our modelling framework, other Lévy subordinators can also be used together with At

to time change the JCIR process. The resulting models are able to produce similar trajectorial
features as the model obtained from Gamma subordination. However, using the Gamma process
we obtain a model that is most tractable for calibration and derivatives valuation (see Remark 2).

3 Time-Changed JCIR Processes

We call Xφ defined in Section 2 as the Lévy-AC time-changed JCIR process or LAC-JCIR for
short if a general Lévy subordinator is used. In the case where the Gamma process is used, we
call Xφ as the GMAC-JCIR process. In Section 3.1, we provide a detailed mathematical analysis
of the LAC-JCIR process and results for the GMAC-JCIR process follow as a special case. The
Markov and semimartingale characterization of the LAC-JCIR process help us understand the
effect of time change and gain insights into the trajectories that can be generated by our model.
The semimartingale characterization is also the basis for studying equivalent measure changes. In
Section 3.2, we calculate the Laplace transform of the GMAC-JCIR process.

3.1 Markov and Semimartingale Characterization

We characterize the LAC-JCIR process as a time-inhomogeneous Markov semimartingale based
on the general theory of additive subordination developed by Li et al. (2015). In general, the
method of time changing a Markov process with an independent additive subordinator is called
additive subordination. A LAC-JCIR process can be viewed as being obtained by applying additive
subordination to a JCIR process with the additive subordinator obtained from time changing a Lévy
subordinator by a deterministic absolutely continuous process.

Let I = (0,∞). We first point out some useful properties of the JCIR process X (see Eq. (2)).
We denote its transition operator by Pt and its infinitesimal generator by G. Since X is a regular
affine process, from Theorem 2.7 in Duffie et al. (2003), X is a Feller-Dynkin process, i.e., (Pt)t≥0

is a strongly continuous semigroup of positivity-preserving contractions on C0([0,∞)) (the space
of continuous functions on I vanishing at infinity), C2

c (I) ⊂ Dom(G) (C2
c (I) is the space of twice

continuously differentiable functions with compact support in I), and for all f ∈ C2
c (I) we have:

Gf(x) =
1

2
σ2xf ′′(x) + κ(1− x)f ′(x) +

$

µ

∫
(0,∞)

(f(x+ y)− f(x))e
− y
µdy. (4)

We next present a precise mathematical framework for the LAC-JCIR process. We assume
on a probability space (Ω,P), we have a JCIR process X satisfying (2) and an independent Lévy
subordinator L with drift γ ≥ 0 and Lévy measure ν satisfying

∫
(0,∞)(s ∧ 1)ν(ds) < ∞. Both X

and L have càdlàg sample paths. We refer readers to, for example, Song and Vondraček (2008)

for the construction of such Ω and P. We let Tt(ω) := LAt(ω) and define Xφ
t (ω) := XTt(ω)(ω),

whose sample paths are also càdlàg, and we call (κ, σ,$, µ, γ, ν(·), a(·)) the generating tuple of Xφ.
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Letting F0
t = σ(Xφ

u : 0 ≤ u ≤ t) to be the natural filtration generated by Xφ, Xφ is a Markov
process with respect to (F0

t )t≥0 due to the independent increments of T . In the following, in order
to use results from Jacod and Shiryaev (2003), we will work with Ft := F0

t+ =
⋂
τ>tF0

τ , the right-
continuous extension of the natural filtration. It turns out that Xφ is also Markov w.r.t. (Ft)t≥0,
which we explain below.

Let us recall several notions first. A two-parameter family of operators (Qs,t)0≤s≤t on a Banach
space B is called a backward propagator if it satisfies (i) Q(s, t) = Q(s, u)Q(u, t) for 0 ≤ s ≤ u ≤ t;
(ii) Q(t, t) = I for t ≥ 0. Backward propagator generalizes the notion of semigroup to the time
dependent case. A backward propagator (Qs,t)0≤s≤t is called strongly continuous if for every f ∈ B,
(s, t) 7→ Qs,tf is continuous (0 ≤ s ≤ t < ∞). Qs,t is called a contraction if ‖Qs,tf‖ ≤ ‖f‖ for

every f ∈ B. Define Gtf = limh→0+
Qt,t+hf−f

h . The domain of Gt consists of f ∈ B such that
the limit exists. We call (Gt)t≥0 the family of infinitesimal generators of the backward propagator
(Qs,t)0≤s≤t.

Let qs,t denote the distribution of Tt − Ts. From the time-change construction for Xφ, the

backward propagator associated with Xφ, denoted by (Pφs,t)0≤s≤t, is given by

Pφs,tf(x) :=

∫
[0,∞)

Puf(x)qs,t(du), f ∈ C0([0,∞)). (5)

Applying Theorem 3.1 in Li et al. (2015), (Pφs,t)0≤s≤t is a strongly continuous backward propagator
of positivity-preserving contractions on C0([0,∞)), i.e., it is Feller-Dynkin (c.f. Gulisashvili and
Van Casteren (2006), Definition 2.5). Hence, from Theorem 2.13 in Gulisashvili and Van Casteren
(2006), Xφ is a Markov process with respect to (Ft)t≥0.

Denote the family of infinitesimal generators for Xφ by (Gφt )t≥0. Li et al. (2015) derived a

relation between Gφt and G under general additive subordination. Based on this relation, the next

proposition presents an explicit expression for Gφt . In the following, p(τ, x, y) denotes the transition
probability density of the JCIR process, and for notational simplicity, we extend p(τ, x, y) for y
from I to R by defining p(τ, x, y) = 0 for y /∈ I.

Proposition 1. For f ∈ C2
c (I),

Gφt f(x) =
1

2
(σφ(t, x))2f ′′(x) + µφ(t, x)f ′(x)

+

∫
y 6=0

(
f(x+ y)− f(x)− 1{|y|≤1}yf

′(x)
)(

1{y>0}γa(t)
$

µ
e
− y
µdy + Πφ(t, x, dy)

)
where for t ≥ 0,

µφ(t, x) = γa(t)[κ(1− x) +$(1− e−
1
µ )] + a(t)

∫
(0,∞)

∫
{|y|≤1}

yp(τ, x, x+ y)dyν(dτ),

σφ(t, x) = σ
√
γa(t)x,

Πφ(t, x, dy) = πφ(t, x, y)dy, πφ(t, x, y) = a(t)

∫
(0,∞)

p(τ, x, x+ y)ν(dτ), for y 6= 0. (6)

Πφ(t, x, dy) is a Levy-type measure, i.e.
∫
y 6=0(1 ∧ y2)Πφ(t, x, dy) <∞.
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We define π0(t, y) := 1{y>0}γa(t)$µ e
− y
µ , and

π̂φ(t, x, y) := π0(t, y) + πφ(t, x, y), Π̂φ(t, x, dy) := π̂φ(t, x, y)dy. (7)

Then Π̂φ(t, x, dy) is the jump measure in the generator, which is both time and state dependent.
It consists of two parts. The first part is the JCIR jump measure scaled by γa(t), which has finite
activity and it is concentrated on y > 0. The second part, Πφ(t, x, dy), is generated by time change,
which places non-zero measure on both y > 0 and y < 0. Using the definition of Πφ(t, x, dy), it is
easy to see that ∫

y 6=0
Πφ(t, x, dy) = a(t)

∫
(0,∞)

ν(dτ).

Therefore Πφ(t, x, dy) (and hence Π̂φ(t, x, dy)) has infinite activity if and only if the Lévy subordi-
nator has infinite activity. We further observe that Πφ(t, x, dy) is a state-dependent measure that
exhibits mean-reverting effect due to mean-reversion in the JCIR process, i.e., when the current
state is above (below) the long-run level, downward (upward) jumps are more likely to occur. In
Figure 2, we plot the jump density πφ(t, x, y) for different values of x using the Gamma subordinator
while fixing the activity rate a(t)=1. We compute the density value by numerically integrating (6),
where the transition density of the JCIR process p(τ, x, x + y) is obtained from Laplace inversion
(the Laplace transform of the JCIR process is known in closed-form). To emphasize the value of
the current state, the horizontal axis plots the post jump state, not the jump size. Recall that the
mean-level is 1. The vertical line marks the current state value. It is clear from the graphs that
when x < 1, the area of the graph on the right of the current state is greater than the area on the
left, i.e. upward jumps are more likely than downward jumps. When x > 1, the reverse is observed,
and as x increases, downward (upward) jumps become more (less) likely to occur (compare the left
(right) tail of the graph for x = 2 and x = 3.5). Hence, when the spot price exceeds the mean-level
by a significant amount, one can expect a downward jump to occur next with very high probability.

Based on the Markov characterization, the next proposition shows that Xφ is also a semimartin-
gale and finds out its semimartingale characteristics and sample path decomposition (see Jacod and
Shiryaev (2003) Chapter I and II for the definition of related concepts).

Proposition 2. The LAC-JCIR process Xφ is a semimartingale on (Ω, (Ft)t≥0,P), which admits
the following semimartingale characteristics w.r.t. the truncation function h(x) = x1{|x|≤1},

Bφ
t (ω) =

∫ t

0

[
γa(s)κ(1−Xφ

s−(ω)) + γa(s)$(1− e−
1
µ )

+ a(s)

∫
(0,∞)

∫
{|y|≤1}

yp(τ,Xφ
s−(ω), Xφ

s−(ω) + y)dyν(dτ)
]
ds, (8)

Cφt (ω) =

∫ t

0
γa(s)Xφ

s−(ω)σ2ds, (9)

νφ(ω, dt, dy) = π̂φ(t,Xφ
t−(ω), y)dydt. (10)

where π̂φ(t, x, y) is defined in (7). Denote by Xφ,c the continuous local martingale part of Xφ

and Jφ the integer-valued random measure associated with the jumps of Xφ. νφ is the predictable
compensator of Jφ. Xφ has the following sample path decomposition (∗ denotes integration w.r.t.
a random measure)

Xφ
t (ω) = x0 +Bt(ω) +Xφ,c

t (ω) + h(x) ∗ (Jφ − νφ)t(ω) + (x− h(x)) ∗ Jφt (ω),

9



(a) x = 0.8 (b) x = 2

(c) x = 3.5

Figure 2: The value of the jump density πφ(t, x, y) for the GMAC-JCIR process, where x is the
current state and y is the post-jump state. The horizontal axis plots the post-jump state.

with the quadratic variation [Xφ,c, Xφ,c]t(ω) = Ct(ω).

From Proposition 1 and 2, we observe that Xφ is a time-inhomogeneous Markov semimartingale.
Moreover, we observe that time change produces the following notable features in our model.

• Jump-diffusion or pure-jump specification: In the LAC-JCIR process, the drift, diffu-
sion coefficient and jump measure of the JCIR process are all scaled by γ, the drift of the Lévy
subordinator. From (9), if γ = 0, then the diffusion component vanishes and Xφ becomes a
pure jump process, otherwise it is a jump-diffusion.

• Mean-reverting jumps: The Lévy measure of the Lévy subordinator introduces πφ(t, x, y),
a state-dependent component in the jump measure of the LAC-JCIR process, which allows for
both upward and downward jumps and exhibits mean-reversion. Now there are two ways in
which Xφ can return to the normal range after large upward jumps have occurred (and hence,
producing sharp spikes). It can be realized either by mean-reverting jumps, or by the mean-
reverting drift µφ(t, x) which continuously pulls the process to the mean level. Furthermore,
when γ = 0, i.e., in the pure-jump specification, the mean-reverting part of µφ(t, x) vanishes
and mean-reversion is solely carried out by jumps. We further remark that, in this case,
although π0(t, y) disappears, large upward jumps can still be generated by πφ(t, x, y) due to
the JCIR’s transition density p(t, x, y) in Eq.(6) (see Figure 2 for an illustration).

10



• Seasonal behavior in the drift, diffusion volatility and jumps: All the characteristics
in the LAC-JCIR process are scaled by the seasonal activity rate a(·), and hence they all
display seasonal behavior. In peak seasons, like summer and winter, while the diffusive
volatility and upward jump intensity become higher, the smooth mean-reversion force and
downward jump intensity also strengthen to pull back any large deviation from the normal
range, thus more spikes are created in these seasons.

• Consecutive positive spikes: The LAC-JCIR process is able to generate consecutive posi-
tive spikes in peak seasons, a phenomenon that is often observed in many markets in practice.
Recall that the jump measure of the LAC-JCIR process has two components (see (7)). The
first component gives the intensity for positive jumps from the JCIR process, with its level
modulated by γa(t). The second component shows the intensity for mean-reverting jumps
created by the time change, and the arrival rate of jumps with size in [y, y+ dy] given time t
and state x is given by a(t)

∫
(0,∞) p(τ, x, x+ y)ν(dτ)dy, also modulated by a(t). Now imagine

that a positive spike has just occurred. In peak seasons, the significant increase in the level
of a(t) can create a cluster of positive jumps from the first jump component as well as from
the second one (multiple upward jumps in a short time period). Therefore, shortly after the
first spike, it is very likely to observe another positive jump which will then be corrected
by the mean-reverting jumps and the mean-reverting drift, thus creating the second positive
spike. This process can go on, leading to several positive spikes in a row. The likelihood of
this pattern clearly increases with the magnitude of a(t). By setting c1 and c2 to appropri-
ate levels, our model is very likely to generate consecutive positive spikes. In Section 5, for
the New England market where consecutive positive spikes are observed in the summer, our
calibration shows that the value of a(t) in the summer is almost three times of its level in
the off-peak seasons. The simulated trajectory of the LAC-JCIR model shows consecutive
positive spikes in this case (Figure 5 (b)).

We now consider a special specification under our framework with Lt = t (i.e., no Lévy subor-
dination). In this case we call Xφ as the AC time-changed JCIR process or AC-JCIR process for

short, and its generator Gφt is given by the following. For f ∈ C2
c (I),

Gφt f(x) =
1

2
a(t)σ2xf ′′(x) + a(t)κ(1− x)f ′(x) + a(t)

$

µ

∫
(0,∞)

(f(x+ y)− f(x))e
− y
µdy.

Similar to the general specification, all the characteristics are seasonal in this process. However,
since in this case the time-change T is continuous, the AC-JCIR process cannot exhibit mean-
reverting jumps, and hence, mean-reversion is solely realized via the smooth mean-reversion force.
In Section 5, we will test this specification against the general case to see whether the contribution
of jumps to mean-reversion is statistically significant in practice.

Remark 1. The existence of stochastic volatility in electricity markets is documented in e.g.,
Escribano et al. (2011). The volatility term in the LAC-JCIR process is local and seasonal, but our
modelling framework is flexible enough that it allows us to easily introduce stochastic volatility. Let
(Vt)t≥0, with V0 = v ≥ 0, be a non-negative stochastic process independent of L and X (a typical
choice for V is the CIR process). We propose two alternatives for the time change T to construct

the time-changed process Xφ
t = XTt:

(a) Define T as Tt = LAt +
∫ t

0 Vudu where At =
∫ t

0 a(u)du as before.
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(b) Define T as Tt = L
Ãt

where Ãt =
∫ t

0 (a(u) + Vu)du.

It can be easily shown that in both specifications, V plays the role of a stochastic volatility factor
as in the Heston model. The only difference between these specifications is that (a) introduces the
stochastic volatility factor V only into the diffusion component of Xφ, while (b) also introduces
V into the jump component of Xφ, hence the jump intensity is also stochastic (see Mendoza-
Arriaga et al. (2010) for details). While adding stochastic volatility improves the realism of the
LAC-JCIR process, the new process with stochastic volatility is undoubtedly less parsimonious,
more difficult to estimate from data and more computationally demanding for pricing derivatives
compared to the LAC-JCIR process. Since the purpose of this paper is to develop a relatively simple
and parsimonious electricity price model that captures key features of the prices and is also tractable
for pricing various types of derivatives, we do not consider the stochastic volatility specification
further in this paper. In Section 5, we will show that the model based on the LAC-JCIR process
already provides a good fit to data.

3.2 The Laplace Transform of the GMAC-JCIR Process

We calculate the Laplace transform of the GMAC-JCIR process. The Laplace transform of the
JCIR process is well known (see, e.g., Duffie and Gârleanu (2001), Appendix A)

Ex
[
e−λXt

]
= C(λ; t)A(λ; t)e−B(λ;t)x (11)

where

A(λ; t) =

[
2κeκt

2κ+ (2κ+ λσ2)(eκt − 1)

]b
, B(λ; t) =

2κλ

2κ+ (2κ+ λσ2)(eκt − 1)
,

C(λ; t) =

[
e−κt +

(2κ+ λσ2)(1− e−κt)
2κ(1 + λµ)

]−$a
, a =

2µ

σ2 − 2µκ
, b =

2κ

σ2
.

It follows from (5) that the Laplace transform of Xφ
t can be computed as (Es,x denotes taking

expectation under P conditional on Xs = x):

Es,x
[
e−λX

φ
t

]
=

∫
[0,∞)

Ex
[
e−λXu

]
qs,t(du) (12)

Let gt(du) be the transition probability distribution of a Gamma subordinator with zero drift, mean
and variance rate m and v, then gt(du) is given by the following Gamma distribution:

gt(du) =
(mv )

m2

v
t

Γ(m
2

v t)
u
m2

v
t−1e−

m
v
udu. (13)

Now for Tt = LAt where L is a Gamma subordinator with drift γ, mean and variance rate m and
v, (12) becomes

Es,x
[
e−λX

φ
t

]
=

∫
[0,∞)

Ex
[
e−λXγ(At−As)+u

]
gAt−As(du). (14)

This integral can be efficiently computed by the Gauss-Laguerre quadrature, i.e.

Es,x
[
e−λX

φ
t

]
≈

N∑
i=1

wiEx
[
e−λXγ(At−As)+ui

]
gAt−As(ui).
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Typically even with a small number of quadrature points, the quadrature can achieve high level
of accuracy. Table 1 provides a numerical example. We set the parameter values according to our
calibration results for the jump-diffusion specification for the New England market with s = 0.2,
t = s+ 1/365 (i.e. Laplace transform of the state one day ahead) and x = 0.8. In this case, using
10 quadrature points we already achieve accuracy to the 10th decimal place.

N λ = 5 λ = 10

5 0.0153786755 0.0003106615
6 0.0153785878 0.0003106632
7 0.0153785743 0.0003106661
8 0.0153785728 0.0003106674
9 0.0153785728 0.0003106679
10 0.0153785729 0.0003106680
11 0.0153785729 0.0003106680
12 0.0153785729 0.0003106680

Table 1: Convergence of the Gauss-Laguerre quadrature for computing the Laplace transform of
the LAC-JCIR process

When Xφ is the AC-JCIR process, its Laplace transform is particularly simple to calculate,
which is given by

Es,x
[
e−λX

φ
t

]
= Ex

[
e−λXAt−As

]
.

This is a major advantage of the AC-JCIR specification.

Remark 2. Besides the Gamma process, there are other Lévy subordinators that have explicit
transition density (e.g. the Inverse-Gaussian process). To compute the Laplace transform of the
LAC-JCIR process under these subordinators, one can still apply Gauss quadrature. But now
the abscissae and weights must be determined using discretization as the associated orthogonal
polynomials are not known (see e.g., Press et al. (1996)). In the Gamma case, the associated
orthogonal polynomials for Gauss quadrature are Laguerre polynomials, so the abscissae and weights
can be determined easily without discretization. For this reason, we use Gamma subordinator for
our model, and we show that it is able to provide good fit to market data in Section 5.

4 Derivatives Pricing

We price electricity derivatives under an equivalent martingale measure. Since electricity is a
non-tradable asset, any probability measure equivalent to the physical measure P is an equivalent
martingale measure (Benth et al. (2008)). In Section 4.1, we introduce a class of equivalent measure
changes such that under the new measure P, the LAC-JCIR process Xφ remains a LAC-JCIR pro-
cess, but with possibly different parameters (see Proposition 3). Applying these measure changes,
the GMAC-JCIR process remains to be a GMAC-JCIR process under the pricing measure and this
makes our model tractable for derivative pricing. In general the choice of equivalent martingale
measures is not unique. In practice, one can pin down one martingale measure by calibrating the
model to observed prices of liquid derivatives. In Section 4.2, for general LAC-JCIR processes, we
obtain a closed-form formula for the futures price. We also obtain the Laplace transform of the
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futures put option price as a function of the shifted and scaled strike using the Laplace transform
of Xφ. Hence the put price can be efficiently recovered through Laplace inversion given the Laplace
transform of Xφ.

4.1 Equivalent Measure Changes

We are in the same setting as Section 3.1. Under P, Xφ is a Markov semimartingale on
(Ω, (Ft)t≥0), with generating tuple (κ, σ,$, µ, γ, ν(·), a(·)) and its semimartingale characteristic-
s are given by (Bφ, Cφ, νφ). Consider another tuple (κ, σ,$, µ, γ, ν(·), a(·)), with κ, σ,$, µ > 0,
2κ ≥ σ2, γ ≥ 0,

∫
(0,∞)(τ ∧1)ν(dτ) <∞ and a(u) is a continuous positive bimodal periodic function

with one-year period as in Figure 1 without normalization to be one outside winter and summer. Let
p(τ, x, x+ y) be the transition probability density of the JCIR process with parameter (κ, σ,$, µ),
and φ(λ, u) is the density of the Laplace exponent of the additive subordinator, constructed from
time changing a Lévy subordinator with parameter (γ, ν(·)) by the activity rate process a(·). We

can define a triplet of characteristics (Bφ, Cφ, νφ) as in (8), (9) and (10) by fixing the trunca-
tion function to be h(x) = x1{|x|≤1}. The first question that needs to be addressed is whether

there exists a unique probability measure on (Ω, (F0,t)t≥0) such that Xφ is a semimartingale with

characteristics (Bφ, Cφ, νφ). The solution to such problem is called the solution to the martingale

problem associated with (Bφ, Cφ, νφ) (c.f. Jacod and Shiryaev (2003), Definition III.2.4). Obvi-
ously, in our case, the solution exists. One can construct a family of probability transition function
pφ(s, t, x, x+ y) as

pφ(s, t, x, x+ y) =

∫
[0,∞)

p(τ, x, x+ y)qs,t(dτ)

where qs,t(dτ) is the transition probability distribution determined by the Laplace transform

e−
∫ t
s φ(λ,u)du. Then a probability measure P can be defined on Ω using pφ(s, t, x, x + y), under

which Xφ is a semimartingale on (Ω, (Ft)t≥0) with characteristics (Bφ, Cφ, νφ) by applying Propo-
sition 2. The remaining question is whether such probability measure is unique. The following
lemma provides an affirmative answer.

Lemma 1. The solution to the martingale problem associated with (Bφ, Cφ, νφ) is unique.

We denote the unique solution by P. The next proposition provides sufficient conditions under
which P and P are equivalent.

Proposition 3. Suppose the following conditions are satisfied,

(i) a(s)γ · σ2 = a(s)γ · σ2 for all s ≥ 0.

(ii) The Hellinger integral ∫
y 6=0

(√
πφ(s, x, y)−

√
πφ̄(s, x, y)

)2

dy

is bounded on [0, t]×K, for any t ≥ 0 and any compact subset K of I.

Then P|Ft ∼ P|Ft for every t ≥ 0.
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Note that Condition (i) implies∫ t

0
a(s)ds · γ · σ2 =

∫ t

0
a(s)ds · γ · σ2, (15)

for all t ≥ 0, i.e., the quadratic variation of the continuous local martingale part does not change.
Eq. (15) also implies the equality in (i) must hold for all s ≥ 0 due to the continuity of a(s)
and a(s). Next we consider how to verify Condition (ii). Note that when

∫
(0,∞) ν(dτ) < ∞ and∫

(0,∞) ν(dτ) < ∞, i.e., ν(·) and ν(·) have finite activity, it is automatically satisfied (see Li and

Mendoza-Arriaga (2015), Remark 3.1 for details). We next consider the more challenging case

where both ν(·) and ν(·) have infinite activity. In this case both πφ(s, x, y) and πφ(s, x, y) go to ∞
as y → 0. From Li and Mendoza-Arriaga (2015) Proposition 4.1, for any ε > 0,∫

|y|>ε

(√
πφ(s, x, y)−

√
πφ(s, x, y)

)2

dy

is bounded on [0, t] ×K for any t > 0 and any compact set K of I. Thus Condition (ii) depends

on the behavior of πφ(s, x, y) and πφ(s, x, y) near y = 0, and to verify it, we need to study the
asymptotic behavior of πφ(s, x, y) as y → 0, which clearly depends on the choice of the subordinator.
In the following, we consider the tempered stable family of Lévy subordinators, which includes the
Gamma process as a special case. This family is used in Barndorff-Nielsen and Levendorskĭi (2001)
and Boyarchenko and Levendorskĭi (2002) for modelling equity derivatives. The Lévy measure
ν(dτ) and the Laplace exponent ψ(λ) of this family are given by

ν(dτ) = Cτ−1−pe−ητdτ, ψ(λ) =

{
γλ− CΓ(−p) [(λ+ η)p − ηp] , 0 < p < 1

γλ+ C ln(1 + λ/η), p = 0
. (16)

with C > 0, 0 ≤ p < 1, η > 0. While (16) is the standard parametrization in the literature, a more
intuitive way to parameterize the Lévy measure is to use m and v, the mean and variance rate of
the stochastic part of the Lévy subordinator (i.e. m = E[L1]− γ and v = Var[L1]). For tempered
stable Lévy subordinators, C, η and m, v are related as follows.{

m = −CΓ(−p)pηp−1, v = −CΓ(−p)p(1− p)ηp−2, 0 < p < 1

m = C
η , v = C

η2 , p = 0
.

We derive the following explicit conditions which are equivalent to Condition (i) and (ii) for
tempered stable subordinators.

Proposition 4. Suppose ν(dτ) is in the tempered stable family. Then Condition (i) and (ii) in
Proposition 3 are equivalent to the following:

p = p, a(s)γ · σ2 = a(s)γ · σ2, a(s)Cσ2p = a(s)Cσ2p for all s ≥ 0. (17)

Proposition 4 implies that, for tempered stable Lévy subordinators, under the class of equivalent
measure changes we consider, a(s) should be a constant multiple of a(s). If we require the value of
a(s) to be one in periods outside summer and winter, then a(s) = a(s) for all s. For the remaining
parameters, κ, $, µ, η can be changed freely, while γ, σ, C and p must satisfy (17).
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4.2 Pricing Electricity Futures Contracts and European-style Futures Options

We now work under the equivalent martingale measure P obtained by calibrating the model
to the market. Under P, the parameters of Xφ are denoted with an overhead bar and taking
expectation under P is denoted by E. In electricity markets, unlike other markets, delivery for a
futures contract is made over a specified time period. Let F (t, T1, T2) (t < T1 < T2) be the futures
price at time t for delivery between T1 and T2. The futures price is given by (see Lucia and Schwartz
(2002) or Benth et al. (2008)):

F (t, T1, T2) =
1

M
E

[
M∑
i=0

ST1+ih

∣∣∣Ft] ,
where h = 1/365 year and T2 − T1 = Mh for some positive integer M , i.e. there are M days in
(T1, T2].

Proposition 5. Under our model, the futures price F (t, T1, T2) is given by

F (t, T1, T2) = A(t, T1, T2)Xφ
t +B(t, T1, T2) (18)

where

A(t, T1, T2) =
1

M

M∑
i=0

Λ(T1 + ih)e−ψ(κ)
∫ T1+ih
t a(u)du,

B(t, T1, T2) =
1

M

(
1 +

µ ·$
κ

) M∑
i=0

Λ(T1 + ih)
(

1− e−ψ(κ)
∫ T1+ih
t a(u)du

)
.

Note that the futures formula holds for any Lévy subordinator. Here ψ is the Laplace exponent
of the Lévy subordinator under the pricing measure and it is given by a simple closed-form formula
for many subordinators, including in particular the Gamma process (see Eq.(3)). The integral∫ T1+ih
t a(u)du can also be calculated in closed-form for our specification of the activity rate (see

Figure 1). Hence the futures formula under our model is particularly simple to evaluate.
We next consider how to price a European-style option on the electricity futures contract. We

assume the risk-free rate is a positive constant, denoted by r. We only consider how to price a
put option, and the call option price can be easily obtained from the put-call parity. Let K be
the strike price and T be the maturity time of the option (T ≤ T1), written on a futures contract
with delivery period [T1, T2]. At time t (t ≤ T ) the put option price P (K, t, T, T1, T2) is given the
following:

P (K, t, T, T1, T2) = e−r(T−t)E
[
(K − F (T, T1, T2))+

∣∣∣Ft] .
Let k = (K −B(T, T1, T2))/A(T, T1, T2). From (18), the put price can be rewritten as:

P (k, t, T, T1, T2) = e−r(T−t)A(T, T1, T2)E
[
(k −Xφ

T )+
∣∣∣Ft] . (19)

The next proposition shows that when k ≤ 0, the put price is zero and when k > 0, it obtains a
closed-form expression for the Laplace transform of the put price using k as the transform variable.
The put option can then be efficiently and accurately recovered using a fast and accurate Laplace
inversion algorithm, such as the one by Abate and Whitt (1992).
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Proposition 6. If K ≤ B(T, T1, T2), P (K, t, T, T1, T2) = 0. If K > B(T, T1, T2), define

LP (λ) :=

∫ ∞
0

e−λkP (k, t, T, T1, T2)dk, λ > 0,

which is the Laplace transform of the put price as a function of k. Then given Xφ
t = x,

LP (λ) = e−r(T−t)A(T, T1, T2)
1

λ2
Et,x

[
e−λX

φ
T

]
. (20)

Below we provide numerical examples under two sets of parameters for the GMAC-JCIR model.
For the first set of parameters, we use calibration results for the New England market but set κ = 5.
In the second set, we set κ = 10, m = 1.2, v = 0.8 and values for the other parameters are the same
as the calibration results for the New-England market. We consider an at-the-money put option
with t = 0.3, T = 0.8−1/52, T1 = 0.8, T2 = 0.8+1/12, i.e. the underlying futures contract matures
in 6 months with one-month delivery period and the option matures one week before the futures
contract. We set Xφ

t = 1.2 and the corresponding futures price F (t, T1, T2) = 75.81 and 59.42
for the first and second set of parameters respectively. The put price is calculated by numerically
inverting the Laplace transform in (20) using the Abate-Whitt algorithm with 35 terms, and the
Laplace transform of the GMAC-JCIR process is computed by the Gauss-Laguerre quadrature with
N quadrature points. The benchmark is obtained using 150 terms in the Abate-Whitt algorithm
and 100 quadrature points. Results are displayed in Table 2. Typically for option prices, a relative
error on the order of 0.1% is good enough in applications. Clearly even with just 5 quadrature
points, we have already achieved a high level of accuracy.

N Put Price Abs Error

5 4.8228301760 4.2579E-11
6 4.8228301761 1.0099E-12
7 4.8228301761 2.9310E-14

Benchmark 4.8228301761

N Put Price Abs Error

5 3.5867756641 3.7741E-05
6 3.5867873432 2.6062E-05
7 3.5867958564 1.7548E-05

Benchmark 3.5868134048

Table 2: Absolute error for the put price for different number of quadrature points under two sets
of parameters.

Our model is further computationally tractable for options with early exercise and barrier
features. Given the Laplace transform of the GMAC-JCIR process, the characteristic function

Es,x[eiuX
φ
t ] can be obtained by replacing −λ with iu. With the knowledge of the characteristic

function, one can apply the efficient Fourier-cosine algorithm developed by Fang and Oosterlee
(2009) for Bermudan and barrier options, and by Zhang and Oosterlee (2013) for swing options.
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5 Model Calibration and Examples

In this section, we first discuss how to calibrate our model from electricity spot prices and then
we show its performance by calibrating to the data from two major electricity markets in the US.

5.1 Calibration Procedure

The calibration procedure consists of two steps. The first step estimates the trend function Λ(t)
defined in (1), which can be done via the standard technique in the literature (see, e.g., Geman
and Roncoroni (2006) and Meyer-Brandis and Tankov (2008)). To adjust for the influence of large
spikes, we bound the data series by a suitable quantile of their empirical distribution, and the trend
function is fitted to the adjusted data using the least squares method. After obtaining an estimate
for Λ(t), which is denoted by Λ̂(t), we can turn the spot price data series into a time series for the

GMAC-JCIR process Xφ by setting Xφ
t = St/Λ̂(t).

In the second step, we estimate the parameters of Xφ. We observe that in general, the GMAC-
JCIR process Xφ has the following scale-invariance property. Recall that γ, m and v are the drift,
mean rate and variance rate of the Gamma process, respectively.

Proposition 7. For any c > 0, (κ, σ,$, µ, γ,m, v, a(·)) and (cκ,
√
cσ, c$, µ, 1

cγ,
1
cm,

1
c2
v, a(·)) give

the same probability law for Xφ.

Proposition 7 implies that from the observations of Xφ, we can only identify the parameters
up to a constant. Hence, in our calibration we set γ = 1 for the jump-diffusion specification (i.e.,
γ > 0) and m = 1 for the pure-jump specification (i.e., γ = 0) to fix the scale. In the activity
rate function a(·), we assume time t = 0 is the beginning of a winter period, and we set tp1 = 1.5

12 ,
tp2 = 7.5

12 , and τ1 = τ2 = 1.5
12 , since in the examples we consider, spikes are concentrated in summer

and winter, and typically they are clustered around the middle of summer and winter. We next
estimate the remaining parameters, which are (κ, σ,$, µ,m, v, c1, c2) in the jump-diffusion case and
(κ, σ,$, µ, v, c1, c2) in the pure-jump case. Availability of the Laplace transform of Xφ allows us
to estimate the parameters via two methods. In the first approach, we can recover the transition
probability density of Xφ through an efficient numerical Laplace inversion algorithm such as the
one by Abate and Whitt (1992), and then estimate the parameters through maximum likelihood
estimation (MLE). Alternatively, we can use the empirical characteristic function (ECF) method of
Singleton (2001), which derives estimators directly using the characteristics function, and it achieves
the efficiency of MLE asymptotically (note that for our model knowing the Laplace transform is
equivalent to knowing the characteristic function). Computationally, the ECF method can be more
efficient than MLE, especially in high dimensions since it does not require inversion to obtain the
density. Nevertheless, we adopt the MLE approach in our calibration for two reasons. First, our
model is one-dimensional and Laplace inversion can be done fast and accurately in our case. Second,
the MLE approach allows us to test various interesting hypotheses using the likelihood ratio test
and compare different specifications by information criteria like AIC and BIC.

5.2 Calibration Examples

We calibrate our model to two major power markets in the US, namely, the New England
(NE) market and the Midwest (MW) market. For each market, we download daily data for the
day-ahead average prices from Bloomberg for the 3-year period from Nov 30, 2009 to Nov 30,
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2012, including the weekends. The spot prices for these two markets are plotted in Figure 5 (a)
and Figure 6 (a). Clearly, they are very different in the spike magnitude with spikes in the New
England market being much larger. Therefore, one could think of these markets as representative
examples of “high-pressure” and “low-pressure” markets.

We first estimate the trend function. To adjust for the influence of large spikes, we bound the
data by the 70% quantile of the empirical distribution as in Geman and Roncoroni (2006). Choices
of other quantiles do not significantly affect the results for the trend function. Since it is possible
that seasonality occurs annually, semi-annually, quarterly, monthly and weekly, we set n = 5
and f1 = 1, f2 = 2, f3 = 4, f4 = 12 and f5 = 52, respectively. The parameters are estimated by
ordinary least-squares (OLS). We carried out Durbin-Watson test and Breusch-Pagan test to detect
autocorrelation and heteroskedasticity in the residuals, and the test results confirm significance of
these phenomena (the p-value is less than 1.0E-8 in both tests for both markets). From the Q-Q
plot of the residuals, we also see that the residuals do not follow the normal distribution. We
calculate the standard error of the estimates using estimators that are robust to autocorrelated and
heteroscedastic residuals. Table 3 displays the estimated parameter values, the t-statistics and the
p-value. The estimated trend is plotted in green in Figure 5 and Figure 6. The results indicate that
for both markets, monthly seasonality is not significant and for the New England market, quarterly
seasonality is also not present. From the magnitude of ai, for New England annual seasonality
prevails while for Midwest semi-annual seasonality is the strongest. The sign of b0 shows that
in the three-year sampling period, in addition to seasonality, the price trend experiences a slight
decrease.

(a) New England (b) Midwest

Figure 3: Q-Q plot of Residuals of New England and Midwest

Given the trend function we obtain the time series for the deseasonalized process Xφ. In Figure
4 we plot the annualized rolling historical volatility for the log return of Xφ with a rolling window
of 30 days for the New England market. A clear seasonal pattern is observed, which suggests the
necessity of modelling seasonality in the volatility. This is an issue that has not been addressed
in one-dimensional Markov models for electricity prices in e.g., Geman and Roncoroni (2006) and
Kjaer (2008), which assume the volatility is constant.

We estimate the parameters of the GMAC-JCIR processXφ by the maximum likelihood method.
Results are displayed in Table 4 (standard errors of the estimates are presented in parentheses). For
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New England Midwest
estimates t-statistics p-value estimates t-statistics p-value

a0 3.8583 129.49 0.00E+00 3.5705 243.45 0.00E+00
b0 -0.1310 -5.83 7.22E-09 -0.0606 -6.11 1.35E-09
a1 0.0918 2.88 4.08E-03 -0.0372 -2.87 4.18E-03
b1 0.9625 4.09 4.59E-05 -0.9917 -3.15 1.68E-03
a2 0.0744 3.09 2.05E-03 0.0527 4.15 3.55E-05
b2 -1.4080 3.95 8.22E-05 -1.0648 -4.86 1.31E-06
a3 -0.0362 -1.51 0.133 -0.0323 -2.85 4.41E-03
b3 -1.0680 -1.64 0.102 -1.0943 -2.94 3.31E-03
a4 0.0017 0.17 0.861 -0.0045 -0.48 0.631
b4 0.4047 0.08 0.938 1.9037 0.86 0.391
a5 0.0226 4.01 6.48E-05 0.0339 6.18 8.82E-10
b5 0.4301 1.84 0.066 0.0597 0.27 0.791

Table 3: Estimation results for the trend function Λ(t).

Figure 4: The annualized rolling historical volatility of the log return of deseasonalized prices in
New England
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the New England market, the jump-diffusion (JD) specification achieves the maximum likelihood
while for the Midwest market, the pure-jump (PJ) specification attains the maximum likelihood.
Recall that due to scaling invariance, in the JD case we set γ = 1 and in the PJ case we set m = 1.

GMAC-JCIR AC-JCIR
New England Midwest New England Midwest

κ 25.4924 (8.0568) 128.3875 (17.1987) 77.6725 (7.5533) 113.3108 (11.9951)
σ 1.2665 (0.2055) 2.5709 (0.1312) 2.1665 (0.0724) 2.4243 (0.0830)
$ 10.8253 (4.3166) 50.8181 (20.1961) 27.0497 (6.3062) 50.2732 (15.9269)
µ 0.3516 (0.0600) 0.1799 (0.0440) 0.3914 (0.0662) 0.1749(0.0351)
γ 1.0000 0.0000 N.A. N.A.
m 2.2790 (1.0627) 1.0000 N.A. N.A.
v 0.0297 (0.0180) 0.0012 (0.0003) N.A. N.A.
c1 0.7823 (0.3041) 1.00E-06(0.2620) 1.3156 (0.3218) 4.00E-06(0.0003)
c2 1.9239 (0.5291) 0.5614 (0.3079) 3.5419 (0.6599) 0.8161 (0.2912)

Table 4: Estimation results for the GMAC-JCIR and the AC-JCIR process (standard errors are
shown in parentheses)

We plot in Figure 5 (a) and 6 (a) the observed price path for the New England market and the
Midwest market. It is clear that prices in New England are much more volatile and have much larger
spikes than in Midwest. Economically, this is due to the differences in the market fundamentals.
Midwest has much larger generating capacity and capacity reserve than New England. Furthermore,
coal is the primary fuel for generation in Midwest while in New England, natural gas is used, which
is more expensive. Consequently, when demand or supply shocks occur, their influence can die away
quickly in Midwest without causing huge price hikes due to sufficient capacity reserve and low-cost
fuel. These observations are reflected in our estimated parameter values. Comparing the value of
κ and µ in the AC-JCIR specification, which are the mean-reversion speed and the average jump
size in the background JCIR process, one can see that in Midwest mean-reversion is much stronger
and the mean upward jump size is much smaller (we do not compare mean-reversion and average
upward jump size under the GMAC-JCIR specification as one cannot directly compare them for
a jump-diffusion and a pure-jump process). From the observed price path for both markets, one
can see that spikes are concentrated in both summer and winter for New England, but mainly in
summer for Midwest. Our estimation results are consistent with this observation. For New England,
both c1 and c2 are significantly different from zero while for Midwest, c1 ≈ 0 and c2 is positive.
Lastly, we observe that the values of κ, σ, $, c1 and c2 for New England are significantly larger
under the AC-JCIR specification than under the GMAC-JCIR specification. The reason for this
difference is that the AC-JCIR specification only permits upward jumps. This means that, after an
upward jump occurs, the process Xφ must quickly return to the normal range via diffusion in order
to be able to generate spikes. Consequently, κ must be significantly larger under the AC-JCIR
specification. Similarly, σ, $, c1 and c2 are found to be significantly larger under the AC-JCIR
specification as they need to compensate for the lack of large spike-like movements generated by
the infinite activity mean-reverting jump measure πφ(t, x, y)dy available under the GMAC-JCIR
specification.
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To check whether our model is able to capture the trajectorial features of electricity prices, we
plot in Figure 5 (b) and 6 (b) a simulated sample path under the estimated parameters in Table 4.
The simulation is done using the exact simulation scheme in Appendix A. These graphs show that
our model can reproduce mean-reversion and seasonal spikes very well.

(a) Market price path (b) Simulated price path

Figure 5: The New England market price path and simulated price path under the GMAC-JCIR
process

(a) Market price path (b) Simulated price path

Figure 6: The Midwest market price path and simulated price path under the GMAC-JCIR process

In the following, we consider several alternative specifications which are special cases under our
modelling framework to answer the following three questions for the markets under consideration.

• Q1: Do spikes concentrate in summer and/or winter? By setting c1 = c2 = 0, the activity
rate does not show any seasonality. This special case corresponds to spikes without seasonal
features.

• Q2: Do mean-reverting jumps exist? Under the AC-JCIR specification there exist only
upward jumps, and hence, the mean-reversion is solely carried out by the continuous drift
term. While this specification is also able to reproduce spikes (see Figure 7 for the simulated
price paths under parameters obtained from calibrating the AC-JCIR model to data; the
calibrated parameter values are shown in Table 4), we want to see statistically how it compares
to the GMAC-JCIR model where mean-reverting jumps are present.
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• Q3: For the GMAC-JCIR process, should we use the JD specification or the PJ one? Given
that jumps in the GMAC-JCIR have infinite activity and the PJ specification can produce
both small frequent moves and large rare moves, the necessity of having a diffusion component
becomes questionable. The same question has been examined under the CGMY model for
various stock indexes and stocks in Carr et al. (2002).

(a) Simulated price path for New England (b) Simulated price path for Midwest

Figure 7: Simulated price paths under the AC-JCIR process

We address these questions in two ways. First, we formulate them as null hypotheses and test
them by the likelihood ratio test as the maximum likelihood value for each null hypothesis and the
full model is available (the likelihood ratio follows the Chi-square distribution asymptotically; see
Billingsley (1961) for the statistical inference theory for Markov processes). The null hypothesis
H0 for each question is listed as follows.

• For Q1, H0 : c1 = c2 = 0.

• For Q2, H0 : m = 0 (A Lévy subordinator with zero mean for all t is deterministic, and hence
m = 0 implies v = 0).

• For Q3, H0 : γ = 0.

Second, we compare different specifications by AIC and BIC. These information criteria consider
model parsimony and penalize increase in the likelihood value by extra number of parameters. The
degree of penalty imposed by AIC and BIC is different with the penalty in BIC being stronger.

Values for the likelihood ratio as well as for AIC and BIC are displayed in Table 5 for the
New England market and in Table 6 for the Midwest market. “Reject” means rejecting H0. The
likelihood ratio test is carried out at 5% significance level, and the 95% quantile of the Chi-Square
distribution with one and two degrees of freedom are 3.84 and 5.99 respectively. For AIC and BIC,
the model with smaller value is preferred. For each null hypothesis, the first row displays AIC
and BIC values under H0 while the second row shows values under the full model. We do not do
tests for the third question in the Midwest market as the PJ specification achieves the maximum
likelihood value.

For the New England market, the likelihood ratio test results indicate the seasonal occurrence
of spikes as well as the presence of mean-reverting jumps and a diffusion component are statistically
significant. With the penalty for extra parameters, the jump-diffusion GMAC-JCIR model is better
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Likelihood Ratio AIC BIC

H0 : c1 = c2 = 0 36.46 -1155.84 -1125.84
-1188.30 -1148.30

Reject Reject Reject

H0 : m = 0 74.62 -1117.69 -1087.68
-1188.30 -1148.30

Reject Reject Reject

H0 : γ = 0 4.69 -1185.61 -1150.61
-1188.30 -1148.30

Reject Reject Accept

Table 5: Likelihood ratio, AIC and BIC for New England

Likelihood Ratio AIC BIC

H0 : c1 = c2 = 0 5.69 -1356.86 -1331.86
-1358.55 -1323.55

Accept Reject Accept

H0 : m = 0 18.60 -1341.95 -1311.95
-1356.55 -1316.54

Reject Reject Reject

Table 6: Likelihood ratio, AIC and BIC for Midwest
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than more parsimonious specifications except that the pure-jump specification is preferred when
looking at BIC, which imposes stronger penalty on extra number of parameters.

For the Midwest market, the seasonal occurrence of spikes is not significant at the 5% level, but
the value of the likelihood ratio, 5.69, is close to the threshold 5.99. In fact, H0 is rejected if the
significance level is increased to 6%. For this market, we can conclude that there is some statistical
evidence of seasonality in spikes. The presence of mean-reverting jumps is statistically significant
and the GMAC-JCIR model is preferred over the AC-JCIR model even when the extra parameters
are penalized.

Next we assess how our model captures the statistical properties of market data. To do this,
we follow the usual practice in the literature (see e.g. Geman and Roncoroni (2006) and Benth
et al. (2012)) to compare the simulated moments of daily log returns with the empirical moments,
and the results are displayed in Table 7. To calculate the simulated moments, we simulate 10000
sample paths in the three-year sampling period under the calibrated parameter values of each
model, and for each path, we obtain a sample of daily price log returns and calculate its mean,
standard deviation, skewness and kurtosis. Then for each moment, the values of that moment in
all sample paths are averaged to produce the simulated value.

New England
Empirical GMAC-JCIR AC-JCIR MRJD

Average 5.99E-04 -2.79E-05 -3.54E-05 -1.23E-04
Stdev 0.1502 0.1610 0.1716 0.1608

Skewness 0.2000 1.1598 1.2372 -0.0610
Kurtosis 7.7458 8.6988 8.0706 9.6344

Midwest
Empirical GMAC-JCIR AC-JCIR MRJD

Average 1.72E-04 1.05E-04 1.15E-04 6.79E-05
Stdev 0.1402 0.1414 0.1409 0.1336

Skewness 0.4177 0.4364 0.4916 0.3165
Kurtosis 4.1553 4.9532 4.3858 5.9041

Table 7: Moment Matching

We compare our model to the popular model of Cartea and Figueroa (2005), where the desea-
sonalized price X is assumed to follow

d lnXt = −κ lnXtdt+ σdBt + Jdqt,

where κ, σ > 0, J ∼ N(µJ , σ
2
J) and q is a Poisson process with arrival rate λ. We follow the

literature to call it as the mean-reverting jump-diffusion (MRJD) model. In the original formulation
in Cartea and Figueroa (2005), they assume the diffusion volatility is a time-dependent function,
denoted by σ(t). However, they do not specify any functional form for it, and simply use the
rolling historical volatility as a substitute. That is, at any time t in the sampling period, they
estimate σ(t) by the rolling historical volatility at time t. Thus we only know σ(t) in the sampling
period. However, in the following we want to do out-of-sample prediction and need to calculate
the conditional expectation E[St+h|Ft], which requires the value of the volatility function σ(u) in
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the out-of-sample period (t, t+h]. In order to use the MRJD model for prediction, we assume σ(t)
is constant. We estimate the model parameters using the method in Cartea and Figueroa (2005),
with σ estimated by the average of the rolling historical volatility (see Benth et al. (2012)). The
estimated parameter values are shown in Table 8. Standard errors, when available, are given in
parentheses.

New England Midwest

κ 74.0879 (7.8865) 125.2408 (10.9371)
σ 2.6821 2.5527
λ 12 4.3333
µJ -0.0129 (0.0857) 0.1816 (0.1230)
σ2
J 0.2642 (0.0632) 0.1967 (0.0803)

Table 8: Estimation results for the MRJD model

The simulated moments of the MRJD are displayed in Table 7. For the first two moments,
all models match the empirical moments quite well. For skewness and kurtosis, the MRJD model
tends to underestimate skewness while overestimate kurtosis quite significantly for both markets.
In contrast, the GMAC-JCIR and AC-JCIR model provide a more satisfactory matching of these
moments. The only exception is the matching of the skewness in the New England market, for which
the GMAC-JCIR and AC-JCIR overestimates the skewness. This suggests that mean-reversion
ought to be more pronounced in these models for this market. For the Midwest market, the
GMAC-JCIR model provides a very close match of the skewness.

Remark 3. We have also calculated the simulated autocorrelation function under the GMAC-
JCIR, AC-JCIR and MRJD models. Comparing to the empirical autocorrelation function from the
market, all three models are able to match the empirical autocorrelation for short time lags quite
closely. However, for large time lags, the empirical autocorrelation remains to be strong and the
autocorrelation from all the models does not provide a good match. The result is not surprising as
all the models considered here only employ a single Markovian factor. To improve the fit for auto-
correlation, one can extend the current single factor Markovian framework by adding more factors,
i.e., one can assume the deseasonalized spot price is a product of several positive and independent
factors. Meyer-Brandis and Tankov (2008) considered a two-factor model using Non-Gaussian OU
processes to model the factors and show that it is able to fit the empirical autocorrelation function
well. Here, one can use the GMAC-JCIR or AC-JCIR process to model the factors. While the
multi-factor model can improve the fit, to estimate it and to price electricity derivatives require a
lot more computational efforts compared to the single factor case. Since the primary goal of this
paper is to develop a relatively simple and parsimonious electricity price model that captures key
features of the prices and is also tractable for pricing various types of electricity derivatives, we do
not pursue such extension here and will leave it for future research.

We also compare these models by looking at out-of-sample prediction errors for the spot price
in the period from Dec 1, 2012 to Nov 30, 2013. At any time t in this period, we predict the
price at time t+h using the conditional expectation E[St+h|Ft], which is the best prediction in the
mean-square sense. Its value is calculated using the parameter values calibrated from the 3-year
sampling period. For the prediction interval h, we use 1 day, 7 days and 30 days, representing
short, medium and long term. Let ei = |E[Sti+h|Fti ] − Sti+h|. We measure the overall prediction
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error by the Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE)
defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

e2
i , MAPE =

1

N

N∑
i=1

ei
Sti+h

.

For h = 1, 7, 30 days, we haveN = 365, 358, 335, respectively. The results show that all three models
are quite close for 1-day prediction, with the GMAC-JCIR model being the best in terms of RMSE
and the MRJD model being slightly better than the other two models in terms of MAPE. However
as the prediction horizon increases, both the GMAC-JCIR and the AC-JCIR model perform better
than the MRJD model under both RMSE and MAPE. The difference is particularly obvious for
the New England market which has large spikes. The prediction errors for New England are much
larger than those for Midwest. This is because big spikes with magnitude even greater than those
observed in the sampling period occur in the prediction period (see Figure 8).

(a) New England (b) Midwest

Figure 8: Market price path in the sampling and prediction period

New England RMSE MAPE
GMAC-JCIR AC-JCIR MRJD GMAC-JCIR AC-JCIR MRJD

1-day 18.0825 19.1414 18.9170 1-day 14.24% 14.45% 14.16%
7-days 36.9585 37.9958 38.2313 7-days 22.26% 22.70% 24.73%
30-days 41.1684 41.3546 42.8999 30-days 26.30% 26.59% 30.14%

Midwest RMSE MAPE
GMAC-JCIR AC-JCIR MRJD GMAC-JCIR AC-JCIR MRJD

1-day 3.8975 3.9028 3.9436 1-day 8.92% 8.95% 8.87%
7-days 5.5565 5.4911 6.0567 7-days 12.37% 12.32% 12.88%
30-days 5.9336 5.8786 6.5283 30-days 13.15% 13.13% 13.89%

Table 9: Prediction Errors

To check the statistical significance of the difference in the prediction error among these three
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models, we perform the Diebold-Mariano (DM) test (see Diebold and Mariano (1995)). Table 10
shows the p-value for the test. We consider two loss functions. One is the squared error, and the
other is the absolute percentage error (APE). The null hypothesis is that model 1 and 2 have the
same prediction accuracy while the alternative hypothesis is that model 1 is more accurate than
model 2. In Table 10, the name of model 1 appears first while the name of model 2 is given after
the hyphen.

New England Squared Error
GMAC-JCIR vs AC-JCIR GMAC-JCIR vs MRJD AC-JCIR vs MRJD

1-day 2.86E-04 0.029 0.743
7-days 7.32E-07 5.32E-12 0.043
30-days 2.01E-18 1.95E-20 1.07E-20

Midwest Squared Error
GMAC-JCIR vs AC-JCIR GMAC-JCIR vs MRJD AC-JCIR vs MRJD

1-day 0.276 0.136 0.206
7-days 1.000 5.68E-14 1.93E-13
30-days 1.000 4.19E-16 3.60E-15

New England APE
GMAC-JCIR vs AC-JCIR GMAC-JCIR vs MRJD AC-JCIR vs MRJD

1-day 0.053 0.676 0.887
7-days 1.17E-04 5.63E-12 3.94E-10
30-days 6.59E-09 7.76E-22 2.32E-23

Midwest APE
GMAC-JCIR vs AC-JCIR GMAC-JCIR vs MRJD AC-JCIR vs MRJD

1-day 0.063 0.746 0.795
7-days 0.948 8.53E-03 0.010
30-days 0.729 8.70E-04 2.10E-03

Table 10: p-Values for the DM Test

We consider the significance level to be 5%. The test results indicate that for 1-day prediction,
the difference in the prediction error is statistically insignificant except that when using the squared
error as the loss function, the GMAC-JCIR model is better than the other two. However as the
prediction horizon increases, both the GMAC-JCIR and the AC-JCIR model are significantly better
than the MRJD model using both loss functions. Comparing the GMAC-JCIR and the AC-JCIR
model, that the former is better than the latter is statistically significant for the New England
market but one cannot reject the null hypothesis that they have the same accuracy for the Midwest
market.

Finally, the GMAC-JCIR and the AC-JCIR model are more tractable than the MRJD model
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for derivatives valuation. The futures formula under our model is particularly simple to evaluate
while the analytical formula for the futures price obtained in Cartea and Figueroa (2005) requires
numerical evaluation of integrals. Furthermore, using Gauss-Laguerre quadrature and Abate-Whitt
inversion, futures options can be priced efficiently with high level of accuracy under our model. To
our best knowledge, under the MRJD model, pricing futures option needs to be done by numerical
PIDE methods, which typically require a large number of time steps and space nodes to achieve a
high level of accuracy.

6 Conclusions

This paper proposes a new stochastic model for electricity spot prices based on time changing the
JCIR process, where the random clock is a Gamma subordinator time changed by a deterministic
clock with seasonal activity rate. Our model differs from existing one-dimensional Markov models
for electricity prices in several ways. First, compared to classical jump-diffusion models where
mean reversion can only be realized via the smooth mean-reversion force in the drift term, we also
allow jumps to contribute to mean reversion. Second, compared to the threshold model of Geman
and Roncoroni (2006), upward jumps are possible even when the spot price is already very high, a
phenomenon that can be observed in practice. Third, under our model the drift, diffusion volatility
and jumps are all seasonal which are empirically supported in markets with seasonality, where as in
other models the drift and diffusion volatility typically do not depend on time. A further advantage
of our model is its tractability for pricing derivatives.

By calibrating to two major electricity markets in the US, we show that our model is able to
capture both the trajectorial and the statistical properties of electricity prices. This together with
its tractability can make our model an attractive alternative for electricity modelling in practice.
Future research could focus on further improving the realism of the model by introducing stochastic
volatility through absolutely continuous time change as discussed in Remark 1 and by exploring
the multi-factor extension as outlined in Remark 3.
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A Exact Simulation for the Time-Changed JCIR Process

The purpose of this section is to provide an exact simulation algorithm which can be used to
generate sample paths from the GMAC-JCIR process. Given Xφ

s = x, we want to simulate the r.v.
Xφ
t (t > s), which consists of three steps.

• Step 1: Calculate
∫ t
s a(u)du. Draw a value for L∫ t

s a(u)du (see Cont and Tankov (2004),

Chapter 7, Example 6.4, for the exact simulation of the Gamma subordinator). We denote
the realization by T .
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• Step 2: Simulate the r.v. XT (i.e., the value of the JCIR process at time T ) given it starts at
x.

– Simulate N from the Poisson distribution with parameter $T . N gives the total number
of jumps on the interval [0, T ].

– Simulate N independent r.v., U1, · · · , UN , uniformly distributed on the interval [0, T ].
These variables mark the jump times.

– Simulate N independent r.v. J1, · · · , JN from the Exponential distribution with mean
µ. These variables correspond to the jump sizes.

– Let Y denote the CIR process and set UN+1 = T . Simulate YU1 given Y0 = x. Then
for i = 2, · · · , N + 1, simulate YUi given the value of the CIR process at time Ui−1 is
YUi−1 + Ji−1 (see Glasserman (2003), Chapter 3.4, for the exact simulation of the CIR
process).

• Step 3: Set XT = YUN+1
.

B Proofs

Proof of Proposition 1: It is clear that the additive subordinator we use satisfies condition (a) to
(c) in Theorem 3.1 (ii) of Li et al. (2015). Applying that theorem and using (4), we have

Gφf(x) = γa(t)Gf(x) + a(t)

∫
(0,∞)

(Pτf − f)ν(dτ)

=
1

2
γa(t)σ2xf ′′(x) + γa(t)κ(1− x)f ′(x) + γa(t)

$

µ

∫
(0,∞)

(f(x+ y)− f(x))e
− y
µdy

+ a(t)

∫
(0,∞)

(Pτf − f)ν(dτ) (21)

We write the last term as follows.

a(t)

∫
(0,∞)

(Pτf − f)ν(dτ)

= a(t)

∫
(0,∞)

(∫
y 6=0

p(τ, x, x+ y)f(x+ y)dy − f(x)

)
ν(dτ)

= a(t)

∫
(0,∞)

(∫
y 6=0

p(τ, x, x+ y)[(f(x+ y)− f(x)− 1{|y|≤1}yf
′(x)) + f(x) + 1{|y|≤1}yf

′(x)]dy

− f(x)
)
ν(dτ)

= a(t)

∫
y 6=0

(
f(x+ y)− f(x)− 1{|y|≤1}yf

′(x)
)(∫

(0,∞)
p(τ, x, x+ y)ν(dτ)

)
dy (22)

+ a(t)f(x)

∫
(0,∞)

(
1−

∫
y 6=0

p(τ, x, x+ y)dy

)
ν(dτ)

+ a(t)f ′(x)

(∫
{|y|≤1}

yp(τ, x, x+ y)dy

)
ν(dτ).

30



In the second term, 1 −
∫
y 6=0 p(τ, x, x + y)dy = 0. Combining the above expression with the third

term in Eq.(21), we have

a(t)

∫
y 6=0

(f(x+ y)− f(x)− 1{|y|≤1}yf
′(x))

(∫
(0,∞)

p(τ, x, x+ y)ν(dτ)

)
dy

+ a(t)f ′(x)

(∫
{|y|≤1}

yp(τ, x, x+ y)dy

)
ν(dτ) + γa(t)

$

µ

∫
(0,∞)

(f(x+ y)− f(x))e
− y
µdy

=

∫
y 6=0

(f(x+ y)− f(x)− 1{|y|≤1}yf
′(x))

(
γa(t)

$

µ
e
− y
µ 1{y>0} + a(t)

∫
(0,∞)

p(τ, x, x+ y)ν(dτ)

)
dy

+

∫
y 6=0

1{|y|≤1}yf
′(x)γa(t)

$

µ
e
− y
µ 1{y>0}dy + f ′(x)a(t)

(∫
{|y|≤1}

yp(τ, x, x+ y)dy

)
ν(dτ)

=

∫
y 6=0

(f(x+ y)− f(x)− 1{|y|≤1}yf
′(x))

(
γa(t)

$

µ
e
− y
µ 1{y>0} + a(t)

∫
(0,∞)

p(τ, x, x+ y)ν(dτ)

)
dy

+ f ′(x)γa(t)$(1− e−
1
µ ) + f ′(x)a(t)

(∫
{|y|≤1}

yp(τ, x, x+ y)dy

)
ν(dτ).

Combining these equations yields the conclusion. In Eq.(22), we interchanged the order of integra-
tion, which we will justify below in two steps.
Step 1: We first show that for the JCIR process, p(τ, x, x+ y) satisfies the following for fixed x.

lim
τ→0

∫
|y|>1 p(τ, x, x+ y)dy

τ
= $

∫
|y|>1

1

µ
e
− y
µdy (23)

lim
τ→0

∫
|y|≤1 yp(τ, x, x+ y)dy

τ
= κ(1− x) +$

∫
|y|≤1

y

µ
e
− y
µdy (24)

lim
τ→0

∫
|y|≤1 y

2p(τ, x, x+ y)dy

τ
= σ2x+$

∫
|y|≤1

y2

µ
e
− y
µdy (25)

Let p(τ ;x, x+ y) be the transition density of the CIR process with the same parameters as in the
diffusion part of the JCIR process. Then p(τ, x, x+ y) satisfy (23), (24) and (25) with $ = 0 (see
Li et al. (2015) Eq.(4.2) to (4.4)). Applying the results in Yu (2007), p(τ, x, x+y) can be expanded
as follows.

p(τ, x, x+y) = τ−
1
2 exp

(
−C

(−1)(x, x+ y)

τ

)(
C(0)(x, x+ y) + C(1)(x, x+ y)τ

)
+D(1)(x, x+y)τ+o(τ),

(26)
with

C(−1)(x, x+ y) =
1

2

(∫ x+y

x

1

σ
√
s
ds

)2

=
2

σ2

(√
x+ y −

√
x
)2
,
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C(0)(x, x+ y) =
1√

2πσ2(x+ y)

(
x+ y

x

)− 1
4

+ κ
σ2

exp
(
−κy
σ2

)
,

D(1)(x, x+ y) =
ω

µ
e
− 1
µ
y
.

The coefficient C(1) is can be calculated recursively from and C(−1) and C(0) as explained in Yu
(2007), nonetheless the explicit expression of such coefficient will not be needed in our proof. Again
from Yu (2007), for the CIR process,

p(τ, x, x+ y) = τ−
1
2 exp

(
−C

(−1)(x, x+ y)

τ

)(
C(0)(x, x+ y) + C

(1)
(x, x+ y)τ

)
+ o(τ),

with the same C(−1)(x, x + y) and C(0)(x, x + y) as the JCIR process. For C
(1)

, again we do not
need its explicit expression. Hence

lim
τ→0

∫
|y|>1 p(τ, x, x+ y)dy

τ
− lim
τ→0

∫
|y|>1 p(τ, x, x+ y)dy

τ

= lim
τ→0

∫
|y|>1

τ−
1
2 exp

(
−C

(−1)(x, x+ y)

τ

)
(C(1)(x, x+ y)− C(1)

(x, x+ y))dy +

∫
|y|>1

D(1)(x, x+ y)dy

= $

∫
|y|>1

1

µ
e
− y
µdy,

which shows (23). Eqs. (24) and (25) can be proved similarly.
Step 2: For f ∈ C2

c (I), it is easy to see |f(x + y) − f(x) − 1{|y|≤1}yf
′(x)| ≤ Cx(1 ∧ y2) for some

positive constant Cx. If we can show∫
(0,∞)

∫
y 6=0

(1 ∧ y2)p(τ, x, x+ y)dyν(dτ) <∞,

then the dominated convergence theorem can be applied to justify the interchange. This result also
implies that Πφ(t, x, dy) is a Lévy-type measure. Eqs. (23) and (25) imply that

∫
|y|≤1 y

2p(τ, x, x+

y)dy +
∫
|y|>1 p(τ, x, x + y)dy ∼ O(τ) as τ → 0. Also, we know that

∫
(0,∞)(τ ∧ 1)ν(dτ) < ∞. So,

we can conclude
∫

(0,∞)

∫
y 6=0(1 ∧ y2)p(τ, x, x+ y)dyν(dτ) <∞. Similarly, we can conclude that the

term
∫

(0,∞)(
∫
{|y|≤1} yp(τ, x, x+ y)dy)ν(dτ) <∞ since

∫
{|y|≤1} yp(τ, x, x+ y)dy ∼ O(τ) as τ → 0 by

(24). This concludes the proof.

Proof of Proposition 2: Note that∫
|y|>1 p(τ, x, x+ y)dy

τ
,

∫
|y|≤1 yp(τ, x, x+ y)dy

τ
,

∫
|y|≤1 y

2p(τ, x, x+ y)dy

τ
(27)

are jointly continuous in (τ, x) for τ > 0 and x > 0. Since the right-hand-side in (23), (24) and (25)
is continuous in x, it is not difficult to see that for any compact set K for x, the three quantities in
(27) are bounded on [0, 1]×K. For τ > 1, notice that

∫
|y|>1 p(τ, x, x+y)dy and

∫
|y|≤1 yp(τ, x, x+y)dy

are bounded by 1. Therefore, for x ∈ K,∣∣∣∣∣
∫

(0,∞)

(∫
{|y|≤1}

yp(τ, x, x+ y)dy

)
ν(t, dτ)

∣∣∣∣∣ ≤ C1a(t)

∫
(0,∞)

(τ ∧ 1)ν(dτ),
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∣∣∣∣∫
y 6=0

(y2 ∧ 1)Π̂ψ(t, x, dy)

∣∣∣∣ ≤ C2a(t)

∫
(0,∞)

(τ ∧ 1)ν(dτ).

for some positive constant C1, C2 which do not depend on t and x. Furthermore, since a(t) is
continuous, on any compact set for t, a(t)

∫
(0,∞)(τ ∧ 1)ν(dτ) is bounded. This implies that

µφ(t, x), σφ(t, x) and

∫
y 6=0

(y2 ∧ 1)Π̂φ(t, x, dy)

are bounded on every compact set for t and x. To show Xφ is a semimartingale with characteristics
triplet (Bφ, Cφ, νφ) w.r.t. the truncation function h(x) = x1{|x|≤1}, one can then follow the argu-
ments in the proof of Proposition 3.2 in Cheridito et al. (2005). The sample path decomposition is
a result of Theorem II.2.34 in Jacod and Shiryaev (2003).

Proof of Lemma 1: Let A−1
t := inf{s ≥ 0 : As = t}, be the inverse of At =

∫ t
0 a(u)du. Since

a(u) > 0, the inverse is also increasing. Note that A−1
t =

∫ t
0

1
a(u)du. Define Xψ

t := Xφ

A−1
t

. It is

easy to see that Xψ
t = XLt . Consider a probability measure P on (Ω, (Ft)t≥0), such that Xφ is a

semimartingale with characteristics (Bφ, Cφ, νφ). From Corollary 10.12 in Jacod (1979), Xψ is also

a semimartingale on (Ω, (Ft)t≥0) with characteristics (Bψ, Cψ, νψ) w.r.t. to the truncation function
h(x) = x1{|x|≤1}, where

Bψ
t (ω) =

∫ t

0

[
γ · κ(1−Xψ

s−(ω)) + γ ·$
(

1− e−
1
µ

)
+

∫
(0,∞)

∫
{|y|≤1}

yp(τ,Xψ
s−(ω), Xψ

s−(ω) + y)dyν(dτ)
]
ds,

Cψt (ω) =

∫ t

0
γ · σ2Xψ

s−(ω)ds,

νψ(ω, dt, dy) =

[
1{y>0}γ

$

µ
e
− y
µ + πψ(Xψ

s−, y)

]
dydt, πψ(x, y) =

∫
(0,∞)

p(τ, x, x+ y)ν(dτ).

Thus a solution to the martingale problem for Xφ associated with (Bφ, Cφ, νφ) is also a solution

to the the martingale problem for Xψ associated with (Bψ, Cψ, νψ). We next show the solution to
the latter problem is unique, and hence so is the solution to the former problem.

We first find out the infinitesimal generator of Xψ, denoted by Gψ. Note that Xψ
t = XLt .

Applying the Phillips Theorem (Sato (1999), Theorem 32.1), and using similar arguments in the
proof of Proposition 1, for f ∈ C2

c (I),

Gψf(x) =
1

2

(
σψ(x)

)2
f ′′(x) + µψ(x)f ′(x)

+

∫
y 6=0

(f(x+ y)− f(x)− 1{|y|≤1}yf
′(x))

(
1{y>0}γ

$

µ
e
− y
µ + πψ(x, y)

)
dy

where

σψ(x) = σp
√
γx, µψ(x) = γ · κ(1− x) + γ ·$

(
1− e−

1
µ

)
+

∫
(0,∞)

∫
{|y|≤1}

yp(τ, x, x+ y)dyν(dτ).
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Notice that C2
c (I) is a core for the generator of the JCIR process (Duffie et al. (2003), Theorem

2.7), hence by the Phillips Theorem, it is also a core for the generator of Xψ.

Let P be a solution to the martingale problem for Xψ associated with (Bψ, Cψ, νψ). We want
to show, for f ∈ C2

c (I),

Mt := f(Xψ
t )− f(x0)−

∫ t

0
Gψf(Xψ

s−)ds

is a martingale. This implies a solution to the martingale problem in the sense of Jacod and
Shiryaev (2003) is also a solution to the martingale problem in the sense of Ethier and Kurtz
(1986). We can then conclude uniqueness of solutions using Theorem 4.1 and Corollary 4.3 in
Ethier and Kurtz (1986). Notice that, Mt is a local martingale by Theorem II.2.42(c) of Jacod and

Shiryaev (2003). Since Gψf ∈ C0(I), Gψf is bounded. f(Xψ
t ) is also bounded for all t. Hence,

E[M∗t ] < ∞ (M∗t := sups≤t |Ms|) for all t. By Protter (2004), Chapter 1, Theorem 51, Mt is a
martingale. This concludes the proof.

Proof of Proposition 3: With Lemma 1, the proof is similar to the proof of Theorem 3.2 in Li and
Mendoza-Arriaga (2015), which we refer to for details.

Proof of Proposition 4: To prove the claim, we will apply Proposition 4.3 and 4.4 in Li and
Mendoza-Arriaga (2015). Note that these results can still be applied if the background process is a
jump-diffusion although Li and Mendoza-Arriaga (2015) only considers the diffusion case. Define

q(τ, x, x+ y) =
1√

2πσ2τ(x+ y)

(
x+ y

x

)−1/4+κθ/σ2

exp

(
−2(
√
x+ y −

√
x)2

σ2τ
− κy

σ2

)
.

Using (26) and that the JCIR process is a stationary process with a continuous stationary density,
it is not difficult to check that q(τ, x, x + y) satisfies Assumption 4.1 and 4.2 in Li and Mendoza-
Arriaga (2015). We next calculate the asymptotics of a(s)

∫
[0,∆) q(τ, x, x + y)ν(dτ) as y → 0 for

some ∆ ∈ (0, 1). Define

f(x, y) := (x+ y)−
1
2

(
x+ y

x

)−1/4+κθ/σ2

exp
(
−κy
σ2

)
, g(s) := Ca(s).

Let u = 2(
√
x+ y −

√
x)2/(σ2τ). Then we have

a(s)

∫
[0,∆)

q(τ, x, x+ y)ν(dτ)

= a(s)f(x, y)
|
√
x+ y −

√
x|

σ2
√
π

∫ ∞
2(
√
x+y−

√
x)2

σ2∆

u−
3
2 e−uν

(
2(
√
x+ y −

√
x)2

σ2u

)
du

= f(x, y)g(s)
σ2p

2p+1
√
π

∣∣√x+ y −
√
x
∣∣−2p−1

∫ ∞
2(
√
x+y−

√
x)2

σ2∆

up−
1
2 e−u exp

(
−η2(

√
x+ y −

√
x)2

σ2u

)
du

∼ g(s)
σ2pΓ(p+ 1

2)

2p+1
√
πx

∣∣√x+ y −
√
x
∣∣−2p−1

as y → 0,

where Γ(·) is the Gamma function. Proposition 4.4 in Li and Mendoza-Arriaga (2015) implies that

p = p, Ca(s)
σ2pΓ(p+ 1

2)

2p+1
√
π

= Ca(s)
σ2pΓ(p+ 1

2)

2p+1
√
π

. (28)
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Proposition 4.3 in Li and Mendoza-Arriaga (2015) shows that (28) is also sufficient for Condition
(ii) in Proposition 3 to hold. Clearly (28) is equivalent to p = p, Ca(s)σ2p = Ca(s)σ2p. This
completes the proof.

Proof of Proposition 5: We first calculate Ex[Xt] and Es,x[Xφ
t ]. Since under P, Xφ remains as

a LAC-JCIR process, the result under P is obtained by using parameters with an overhead bar.
Recall that the Laplace transform of the JCIR process is given by (11). Note that

Ex[Xt] = −∂Ex[e−λXt ]

∂λ

∣∣∣
λ=0

.

The first order derivative of the Laplace transform can be calculated directly. Note that,

∂A(λ; t)

∂λ

∣∣∣
λ=0

= e−κt − 1,
∂B(λ; t)

∂λ

∣∣∣
λ=0

= e−κt,

∂C(λ; t)

∂λ

∣∣∣
λ=0

= −$ae−κt(e−κt − 1)

(
σ2

2κ
− µ

)
.

Hence,

∂Ex[e−λXt ]

∂λ

∣∣∣
λ=0

=
[∂A(λ; t)

∂λ
C($,λ; t)e−B(λ;t)x +

∂C($,λ; t)

∂λ
A(λ; t)e−B(λ;t)x

+A(λ; t)C(λ; t)(−x)e−B(λ;t)x∂B(λ; t)

∂λ

]∣∣∣
λ=0

= e−κt(1− x+
µ$

κ
)− (1 +

µ$

κ
)

Thus
Ex[Xt] = −e−κt(1− x+

µ$

κ
) + (1 +

µ$

κ
).

For the LAC-JCIR process,

Es,x[Xφ
t ] =

∫
[0,∞)

Ex[Xu]qs,t(du) =

∫
[0,∞)

[
−e−κu(1− x+

µ$

κ
) + (1 +

µ$

κ
)
]
qs,t(du)

= −e−ψ(κ)
∫ t
s a(u)du(1− x+

µ$

κ
) + (1 +

µ$

κ
) (29)

For the futures price, using (29),

F (t, T1, T2) =
1

M
E

[
M∑
i=0

ST1+ih

∣∣∣Ft] =
1

M
E

[
M∑
i=0

ST1+ih

∣∣∣Xφ
t

]

=
1

M

M∑
i=0

E
[
Λ(T1 + ih)Xφ

T1+ih

∣∣∣Xφ
t

]
= A(t, T1, T2)Xφ

t +B(t, T1, T2).

This concludes the proof.

Proof of Proposition 6: If K ≤ B(T, T1, T2), from (19), the put price is obviously zero. If K >

B(T, T1, T2), given Xφ
t = x,

P (k, t, T, T1, T2) = e−r(T−t)A(T, T1, T2)E
[
(k −Xφ

T )1{Xφ
T<k}

∣∣∣Xφ
t = x

]
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= e−r(T−t)A(T, T1, T2)

∫ k

0
(k − y)pφ(t, T, x, y)dy,

where pφ(t, T, x, y) is the transition probability density of Xφ. Clearly the above integral is the

convolution of two functions: f(y) = y and pφ(t, T, x, y). Hence its Laplace transform is the product
of the Laplace transform of each function. The Laplace transform of f is 1/λ2. Therefore

LP (λ) = e−r(T−t)A(T, T1, T2)
1

λ2
Et,x

[
e−λX

φ
T

]
.

This concludes the proof.

Proof of Proposition 7: This can be directly verified from Eq.(13), the transition density of the
Gamma subordinator and Eq.(14).
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Klüppelberg, C., T. Meyer-Brandis, and A. Schmidt (2010). Electricity spot price modelling with

37



a view towards extreme spike risk. Quantitative Finance 10 (9), 963–974.
Li, J., L. Li, and R. Mendoza-Arriaga (2015). Additive subordination and its applications in finance.

Preprint.
Li, L. and V. Linetsky (2014). Time-changed Ornstein-Uhlenbeck processes and their applications

in commodity derivative models. Mathematical Finance 24 (2), 289–330.
Li, L. and R. Mendoza-Arriaga (2015). Equivalent measure changes for subordinate diffusions.

Preprint.
Lim, D., L. Li, and V. Linetsky (2012). Evaluating Callable and Putable Bonds: An Eigenfunction

Expansion Approach. Journal of Economic Dynamics and Control 36 (12), 1888–1908.
Lucia, J. J. and E. S. Schwartz (2002). Electricity prices and power derivatives: evidence from the

nordic power exchange. Review of Derivatives Research 5 (1), 5–50.
Madan, D., P. Carr, and E. C. Chang (1998). The Variance Gamma process and option pricing.

European Finance Review 2, 79–105.
Madan, D. and M. Yor (2008). Representing the CGMY and Meixner Lévy processes as time
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