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Abstract

This paper develops an eigenfunction expansion approach to solve discretely monitored first
passage time problems for a rich class of Markov processes, including diffusions and subordi-
nate diffusions with jumps, whose transition or Feynman-Kac semigroups possess eigenfunction
expansions in L2 spaces. Many processes important in finance are in this class, including OU,
CIR, (JD)CEV diffusions and their subordinate versions with jumps. The method represents
the solution to a discretely monitored first passage problem in the form of an eigenfunction ex-
pansion with expansion coefficients satisfying an explicitly given recursion. A range of financial
applications is given, drawn from across equity, credit, commodity, and interest rate markets.
Numerical examples demonstrate that even in the case of frequent barrier monitoring, such as
daily, approximating discrete first passage time problems with continuous solutions may result in
unacceptably large errors in financial applications. This highlights the relevance of the method
to financial applications.
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1 Introduction

First passage problems are ubiquitous in modeling with Markov processes in physical, biological
and social sciences. In contrast to physical and biological applications, a distinguishing feature of
many barrier crossing problems arising in financial economics applications is that, while the under-
lying Markov process modeling some financial variable evolves continuously in time, the barrier is
monitored by an observer at discrete times. In financial contracts with barrier features, such as a
knock-out option that becomes null and void when the underlying asset price or financial variable
crosses a pre-specified level (barrier), barrier monitoring frequency is contractually specified to be
daily, weekly, monthly or quarterly. Contracts with such discrete observation barrier features are
traded in equity, foreign exchange, interest rate, and commodity markets. In corporate bond mar-
kets, bonds sometimes have indenture provisions that give bond holders the right to declare a bond
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issuing firm in default if some financial variable falls below a pre-specified barrier. Since in practice
bond holders monitor compliance with indentures at discrete times, this is another instance of a
discretely monitored first passage problem.

While continuous time first passage problems, and the methods to solve them, are widely studied
in applied probability and financial mathematics (see Davydov and Linetsky (2001, 2003), Kou and
Wang (2003), Mijatovic and Pistorius (2013), Boyarchenko and Levendorskĭi (2002, 2012), Alili
and Kyprianou (2005), Kuznetsov et al. (2012) for a sampling of papers in financial mathematics),
the literature on discretely monitored barrier crossing problems is substantially smaller. When a
solution to the continuous barrier crossing problem is available, one may wonder if it can be used as
an approximation to discrete problems when the barrier monitoring frequency is high enough, such
as approximating barrier options with daily monitoring with continuous barrier option solutions.
However, solutions to discrete barrier crossing problems typically converge to the continuous barrier
crossing solutions slowly as the time interval between the subsequent monitoring dates converges
to zero, making such approximations inaccurate and unsuitable for applications in finance. In this
paper we confirm this observation for several standard financial models (see Table 1, 3 and 4 in
Section 4).

Early important contributions to the study of discrete barrier problems include Broadie et al.
(1997, 1999), Kou (2003), Hörfelt (2003), Howison and Steinberg (2007), which derived simple and
elegant continuity corrections for discrete barrier and lookback options under the Black-Scholes
model that allow one to use solutions for continuous barrier options to value discrete barrier options
by appropriately shifting the barrier. Since then this method has become popular in financial
practice. Recently Chen et al. (2011) derived continuity corrections for the Merton jump-diffusion
model and Dia and Lamberton (2011a,b) for exponential Lévy models. However, many financial
models are based on Markov processes which do not have stationary and independent increments.
No continuity corrections are available for non-Lévy processes at present. Even for Lévy processes
and, indeed, even for the Black-Scholes model, the drawback of the continuity correction approach
is that it provides acceptable approximations only when the barrier monitoring frequency is high
enough. Alternatively, for the Black-Scholes model Fusai et al. (2006) obtained a solution by
the Wiener-Hopf technique. For models where the return distribution is a mixture of Gaussians
(including the Black-Scholes model and Merton’s jump-diffusion model), Broadie and Yamamoto
(2005) developed a fast and accurate method based on the fast Gauss transform. For general
Lévy processes, Petrella and Kou (2004) proposed a Laplace transform approach based on Spitzer’s
identity, while Feng and Linetsky (2008, 2009) and De Innocentis and Levendorskĭi (2013) developed
fast and accurate methods using the fast Hilbert transform and piecewise polynomial interpolation
together with efficient Fourier inversion respectively. Outside the class of Lévy processes, Fusai
and Recchioni (2007) applied a method based on numerical quadrature to the constant elasticity of
variance (CEV) diffusion, where the volatility is a negative power of the stock price (Cox (1975)).
In contrast to the continuity correction approach, which is purely analytical, the later methods
require numerical quadrature and/or numerical transform inversion.

The purpose of this paper is to apply the eigenfunction expansion method to solve discrete first
passage problems for a rich class of Markov processes, including diffusions, jump-diffusions, and pure
jump processes, whose transition or Feynman-Kac operators form symmetric semigroups with pure-
ly discrete spectra and possess eigenfunction expansions in appropriate Hilbert spaces. Fortunately,
many processes important for financial applications are in this class, including Ornstein-Uhlenbeck
(OU), Cox-Ingersoll-Ross (CIR) and CEV diffusions, as well as jump-diffusions and pure jump
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processes obtained from these diffusions by subordination in the sense of Bochner (i.e. via a time
change with a Lévy subordinator), as well as its extension to additive subordinators.

To introduce the idea of our method, we sketch the calculation of the discretely observed first
exit time of an OU diffusion from an interval. Let X be an OU diffusion with volatility σ > 0, long-
run mean θ ∈ R, and the rate of mean reversion κ > 0. It has a Gaussian stationary distribution

m(dx) =

√
κ

πσ2
e−

κ(θ−x)2

σ2 dx.

and a Gaussian transition kernel that can be written in the form Pt(x, dy) = pt(x, y)m(dy) with
the symmetric density pt(x, y) = pt(y, x) with respect to the stationary measure m. The density
pt(x, y) admits a well-known bi-linear eigenfunction expansion (e.g. Wong (1964), Karlin and Taylor
(1981), p.333)

pt(x, y) =

∞∑
n=0

e−λntϕn(x)ϕn(y), λn = κn, ϕn(x) =
1√

2nn!
Hn

(√
κ

σ
(x− θ)

)
, n = 0, 1, · · · ,

where Hn(x) are the Hermite polynomials. The ϕn form a complete orthonormal basis in L2(R,m)
and are eigenfunctions of the OU transition operator Ptϕn(x) =

∫
R ϕn(y)pt(x, y)m(dy) = e−λntϕn(x).

The bi-linear expansion converges uniformly on compacts in x, y for each t > 0 (cf. McKean (1956)).
For f ∈ L2(R,m), Ptf(x) admits an eigenfunction expansion in the following form

Ptf(x) =

∞∑
n=0

fne
−λntϕn(x), fn = (f, ϕn), (1)

where (f, g) =
∫
R f(x)g(x)m(dx) is the L2(R,m)-inner product. For t ≥ 0 the expansion converges

in L2(R,m). For t > 0 the expansion also converges uniformly on compacts in x.
Consider an interval (l, u) with −∞ ≤ l < u ≤ ∞ with at least one end-point finite, a positive

constant h > 0, and a set of times T h = {ti = ih, i = 1, 2, ...}. Suppose an observer monitors the
state of the OU diffusion at times ti and records the first exit time τe = inf{t ∈ T h : Xt /∈ (l, u)}.
We are interested in its distribution. Clearly Px(τe = tk) = pk−1

h (x)−pkh(x), k ≥ 1, where p0
h(x) = 1

and

pkh(x) := Px(τe > tk) = Px(Xt1 ∈ (l, u), ..., Xtk ∈ (l, u)) = Ex

[
k∏
i=1

1(l,u)(Xti)

]
, k ≥ 1,

where x ∈ R is the initial state and 1(l,u)(x) is the indicator function of the interval (l, u). At

first sight, this calculation requires numerically evaluating the k-dimensional integral pkh(x) =∫
(l,u)k ph(x, x1)m(dx1) · · · ph(xk−1, xk)m(dxk). In realistic applications k is often large, thus direct

calculation of this multidimensional integral is certainly not computationally efficient. Fortunately,
the eigenfunction expansion (1) can be profitably used to explicitly calculate this probability in an
efficient way as follows. Observe that pkh are related by recursion

pkh(x) = Ph(1(l,u)p
k−1
h )(x), k ≥ 1.

Since 1(l,u) ∈ L2(R,m) and Pt is L2(R,m)→ L2(R,m) for each t, pkh ∈ L2(R,m) for each k. Since

ϕn form a complete orthonormal basis in L2(R,m), each pkh has the eigenfunction expansion

pkh(x) =

∞∑
n=0

ckne
−λnhϕn(x), k ≥ 1, (2)
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with expansion coefficients satisfying the following recursion:

c1
n = (1(l,u), ϕn), ckn =

∞∑
m=0

(1(l,u)ϕm, ϕn)e−λmhck−1
m , k ≥ 2.

The convergence in (2) is uniform on compacts in x, as well as in L2(R,m). The calculation is
thus reduced to the calculation of (1(l,u), ϕn) and (1(l,u)ϕm, ϕn), which can be done in closed form
for the OU eigenfunctions. The solution is thus explicit. From the computational standpoint, it is
convenient to employ the classical recursion for Hermite polynomials to evaluate all the quantities
involved. Figure 1 in Section 4 provides a numerical example.

The purpose of this paper is to make precise and extend the idea sketched above in the fol-
lowing directions. (1) The process X can be a one-dimensional diffusion (possibly with killing to
model bankruptcy in the finance context) possessing an eigenfunction expansion of its transition
semigroup or its Feynman-Kac semigroup associated with a discount rate allowed to be a function
of the diffusion (for applications to stochastic interest rates), a diffusion time changed with a Lévy
subordinator (to model state-dependent jumps) or an additive subordinator (if time-inhomogeneity
is desired in an application). (2) The first passage problem may involve non-equidistant observa-
tion times ti, time-dependent barriers li and ui. We first solve the knock-out barrier option pricing
problem with rebates. The joint distribution of the discretely observed first passage time τe and
the state of the process at that time Xτe is then obtained as a special case. (3) Explore a range of
financial applications drawn from across equity, credit, interest rate, and commodity markets.

We stress, in particular, that the method applies to jump-diffusions and pure jump processes
obtained from diffusions via subordination as well as to pure diffusions. Time changing a time-
homogeneous diffusion with a Lévy subordinator yields a jump-diffusion or a pure jump process
with (depending on whether or not the subordinator has drift) with state-dependent jumps, which
leads to more realistic models in some financial applications compared to Lévy models that fea-
ture stationary and independent increments. Applications of Lévy subordination of diffusions with
state-dependent drift and volatility in finance include Barndorff-Nielsen and Levendorskĭi (2001)
for equity options modeling, Albanese and Kuznetsov (2004), Mendoza-Arriaga et al. (2010) for
unified credit-equity modeling, Li and Linetsky (2014) for commodity modeling, Boyarchenko and
Levendorskĭi (2007) and Lim et al. (2012) for interest rate modeling, and Mendoza-Arriaga and
Linetsky (2013) for credit risk modeling. The remarkable result is that, if the underlying diffu-
sion possesses the eigenfunction expansion, then the subordinate diffusion has the expansion in
the same eigenfunctions ϕn with φ(λn) replacing λn, where φ(λ) is the Laplace exponent of the
subordinator. Furthermore, recently Li and Mendoza-Arriaga (2013) and Li et al. (2014) replaced
Lévy subordinators with additive subordinators to introduce time inhomogeneity in the subordi-
nate process in order to be able to capture the term structure of implied volatilities in commodity
options markets (recall that an additive subordinator is a Lévy subordinator without the require-
ment of stationary increments, e.g. Sato (1999))). Time changing a time-homogeneous diffusion by
an additive subordinator yields a time-inhomogeneous jump-diffusion or a pure jump process with
state- and time-dependent jumps. Remarkably, the additive subordinator procedure also preserves
the eigenfunctions.

This paper is organized as follows. In Section 2, we make precise the class of Markov processes
we work with, and discuss conditions for their eigenfunction expansions to converge uniformly on
compacts, as well as extensions to bounded payoffs that are not necessarily in L2. In Section 3, we
formulate the eigenfunction expansion method to solve discretely monitored first passage problems
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and show how to compute a variety of quantities involving the first passage time and the state of the
process of interest in applied probability and finance using the eigenfunction expansion method.
To illustrate the versatility of the method, we consider several valuation problems which span
applications in equity, credit, commodity and interest rate markets. In Section 4.1, we compute
discretely monitored first passage probabilities for an OU diffusion and a jump-diffusion obtained by
time changing the OU diffusion with a Lévy subordinator. As an application, we price commodity
options with barriers under the commodity models in Li and Linetsky (2014) and Li and Mendoza-
Arriaga (2013). In Section 4.2, we price equity barrier options under the CEV model, its jump-to-
default extension (JDCEV) in Carr and Linetsky (2006), and the model obtained by subordination
of the JDCEV process in Mendoza-Arriaga et al. (2010). In Section 4.3, we evaluate bonds with
barriers under the CIR short rate models and its subordinate extension.

2 Subordination of Diffusions and Eigenfunction Expansions

2.1 One-Dimensional Diffusions and Subordinate Diffusions

Consider a 1D time-homogeneous diffusion process (Xt)t≥0 on an interval I ⊆ R with left and
right end-points e1 and e2 and starting at x, −∞ ≤ e1 < x < e2 ≤ +∞, with diffusion coefficient
σ(x), drift µ(x), and killing rate k(x). For simplicity we assume that µ(x), σ(x) and k(x) are
continuous and σ(x) > 0, k(x) ≥ 0 on (e1, e2). These assumptions are not necessary and the
theory of one-dimensional diffusions can be formulated in much greater generality (see Borodin and
Salminen (2002) Chapter II for a summary). We make this assumption to simplify exposition in
view of the fact that it is often satisfied in applications. The infinitesimal generator of X can be
written in the formally self-adjoint form:

Gdf(x) =
1

2
σ2(x)f ′′(x) + µ(x)f ′(x)− k(x)f(x) =

1

m(x)

(
f ′(x)

s(x)

)′
− k(x)f(x),

where s(x) and m(x) are the scale and speed densities s(x) = exp
(
−
∫ 2µ(y)
σ2(y)

dy
)

, m(x) = 2
σ2(x)s(x)

.

Feller’s classification of boundaries can be formulated in terms of the behavior of µ, σ and k
near boundaries e1 and e2 (see Borodin and Salminen (2002) pp.14-17 for details). If any of the
boundaries are regular, we specify it either as a killing boundary by sending the process to an
isolated cemetery state ∆ or as an instantaneously reflecting boundary. In the case of killing
boundaries, the process can be killed either at the first exit time Te1,e2 from the open interval

(e1, e2) or by the positive continuous additive functional
∫ t

0 k(Xu)du. The process is sent to the
cemetery state ∆ at its lifetime ζ, where it remains for all t ≥ ζ. The lifetime can be constructed
as ζ = inf{t ∈ [0, Te1,e2 ] :

∫ t
0 k(Xu)du ≥ E}, where E is an independent unit-mean exponential

random variable and, by convention, ζ = Te1,e2 if
∫ Te1,e2

0 k(Xu)du < E (see Borodin and Salminen
(2002) p.28). Killing is a natural tool for modeling bankruptcy (see e.g. Linetsky (2006), Carr and
Linetsky (2006), Mendoza-Arriaga et al. (2010)).

Under these assumptions, X is a symmetric Markov process with its speed measure m(dx) =
m(x)dx being its symmetrizing measure (cf. Fukushima et al. (2011) for the theory of symmetric
Markov processes). That is, the transition kernel of X defines a strongly continuous semigroup
(Pdt )t≥0 on L2(I,m) that is symmetric, i.e., (Pdt f, g) = (f,Pdt g), with respect to the inner product
(f, g) =

∫
I f(x)g(x)m(x)dx. Its infinitesimal generator Gd is a self-adjoint operator in L2(I,m). We
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can then apply the spectral theorem to obtain the spectral representation of Pdt . The spectral rep-
resentation of a transition semigroup of a general one-dimensional diffusion has been first obtained
by McKean (1956). From the computational point of view, things simplify when the spectrum is
purely discrete. Sufficient conditions for the spectra of Gd and Pdt to be purely discrete in terms of
the behavior of σ, µ and k near the boundaries e1 and e2 can be found in Linetsky (2004b, 2008).
Many important processes in finance satisfy these conditions, including the classical OU, CEV and
CIR diffusions. When the spectrum is purely discrete, we can write:

Pdt f(x) = Ex[1{ζ>t}f(Xt)] =
∞∑
n=1

e−λ
d
ntfnϕn(x) for f ∈ L2(I,m), (3)

where ϕn(x) are eigenfunctions of Gd and Pdt with eigenvalues −λdn and e−λ
d
nt, respectively (0 ≤

λd1 ≤ λd2 ≤ · · · ), and fn = (f, ϕn) are the expansion coefficients.
Next we consider subordinate diffusions. Let (Tt)t≥0 be a Lévy subordinator, i.e., a non-negative

Lévy process. Its Laplace transform is given by the Lévy-Khintchine formula (φ(·) is called the
Laplace exponent)

E[e−λTt ] = e−φ(λ)t, φ(λ) = γλ+

∫
[0,∞)

(1− e−λs)ν(ds) (4)

with drift γ ≥ 0 and the Lévy measure ν(ds) satisfying
∫

(0,∞)(s ∧ 1)ν(ds) < ∞ (see Sato (1999)).
A family of subordinators widely used in financial application is the tempered stable family where
ν(ds) = Cs−1−αe−ηsds with 0 < α < 1 and η > 0.

A subordinate diffusion process (Xφ
t )t≥0 is defined as: Xφ

t = XTt for t < ζφ and Xφ
t = ∆ for

t ≥ ζφ with lifetime ζφ = inf{t ≥ 0 : Tt ≥ ζ} (T is assumed to be independent of X; φ in Xφ
t

indicates the Laplace exponent of the subordinator is φ). In general Xφ is a Markov jump-diffusion
(when γ > 0) or pure jump (when γ = 0) process. Its infinitesimal generator is given in Li and
Linetsky (2013). There it is shown that in general when X is not a Brownian motion with drift,
the jump measure of Xφ is state-dependent.

It can be shown that Xφ is again a symmetric Markov process with the same symmetrizing
measure m(dx). That is, its transition semigroup (Pφt )t≥0 is a strongly continuous symmetric

semigroup in L2(I,m). If Pdt has the eigenfunction expansion (3), the transition operator P φt of
Xφ has the eigenfunction expansion (cf. Linetsky (2008), Schilling et al. (2010), Chapter 12):

P φt f(x) = Ex[1{ζφ>t}f(Xφ
t )] =

∞∑
n=1

e−φ(λdn)tfnϕn(x) for f ∈ L2(I,m). (5)

Subordination replaces the semigroup eigenvalues e−λ
d
nt with e−φ(λdn)t, leaving the eigenfunctions

unchanged. This result is key to a host of financial applications. Starting from diffusions with
known spectral representations of their transition semigroups, it allows us to construct rich families
of jump-diffusion and pure jump processes with state-dependent jumps by subordination and enjoy
immediate analytical tractability of their transition semigroups by replacing λdn with φ(λdn).

Remark 1. Additive Subordination of Diffusions. To improve calibration performance to the term
structure of interests, such as implied volatilities, Li and Mendoza-Arriaga (2013) and Li et al.
(2014) proposed to time change diffusions with additive subordinators (an additive subordinator
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is a Lévy subordinator without the assumption of stationary increments), which creates jump-
diffusions or pure-jump processes with time-dependent characteristics. We refer readers to Li et al.
(2014) for detailed characterization of additive subordinate diffusions, whose transition operator
admits an eigenfunction expansion in the same form as (5), with the Laplace transform of the Lévy
subordinator replaced by the Laplace transform of the additive subordinator.

Remark 2. Diffusion Short Rate Models and Their Subordinate Versions. In diffusion short rate
models, the state variable X is a conservative (i.e. no killing) diffusion process and the short rate
is a function of X, denoted by r(·). In these models the pricing operator is the Feynman-Kac (FK)
operator:

Prt f(x) := Ex
[
exp

(
−
∫ t

0
r(Xu)du

)
f(Xt)

]
.

By interpreting the short rate r(x) as a killing rate (Linetsky (2004b, 2008)), the spectral analysis
of the FK semigroup is equivalent to the analysis of the transition semigroup of a diffusion process
with the same drift and volatility, but killed at the rate r(x). Hence one can treat diffusion short
rate models as a special case of general diffusions with killing when computing the semigroup. The
FK semigroup in many popular short rate models admits an eigenfunction expansion representa-
tion, including the Vasicek model (Vasicek (1977)), Cox-Ingersoll-Ross (CIR) model (Cox et al.
(1985)), the 3/2 model (Ahn and Gao (1999)), Black’s model of interest rates as options (Gorovoi
and Linetsky (2004)), and the quadratic model (Beaglehole and Tenney (1992); Leippold and Wu
(2002)). These diffusion-based models can be further improved to incorporate jumps by applying
subordination to the diffusion FK semigroup and the resulting FK semigroup is also represented
by an eigenfunction expansion (see Lim et al. (2012) for details).

2.2 Convergence of Eigenfunction Expansions and Extensions to Bounded Pay-
offs

In this section we discuss convergence of eigenfunction expansions to prepare for the formulation
of our method for discrete first passage problems. In light of Remark 1 and 2, we only present results
for diffusions and Lévy subordination. The corresponding results for additive subordination and
diffusion short rate models can be obtained following these remarks. To save space, we discuss
diffusion transition semigroups and their subordinate versions in a unified manner, and make the
following notational convention. If the result applies to diffusion only, we use the superscript d as
in Pdt and λdn for diffusion, and superscript φ (for the Laplace exponent of the subordinator) as in

Pφt and λφn for the subordinate diffusion. If the result applies to both diffusions and subordinate
diffusions, the relevant quantity will not have a superscript as in Pt and λn.

In the example in the introduction we used the fact that the OU transition semigroup has a
purely discrete spectrum in L2(R,m) and, moreover, the corresponding eigenfunction expansion (1)
converges not only in the L2(R,m) norm, but, for each t > 0, uniformly on compacts in x as well.
The later property is important in financial applications, since we are interested in option prices at
particular values of the underlying variable, and the L2 convergence does not generally guarantee
pointwise convergence. Moreover, to compute eigenfunction expansions numerically we need to
truncate the infinite summation. Uniform on compacts convergence yields uniform truncation error
bounds on compact computational domains. We are thus interested in conditions that ensure that
the transition semigroup of a subordinate diffusion possesses an eigenfunction expansion converging
uniformly on compacts in the state variable for each t > 0.
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We start by citing Propositions 1 and 2 from Li and Linetsky (2013) (which we combine into
one here).

Theorem 1. (i) Suppose a symmetric, strongly continuous contraction semigroup (Pt)t≥0 defined
on L2(I,m) is trace-class, i.e. for each t > 0 the operator Pt is trace class (see e.g. Reed and
Simon (1980), p.206). Then (Pt)t≥0 and its infinitesimal generator G have purely discrete spectra
with eigenvalues (e−λnt)n∈N1 (for t > 0) and (−λn)n∈N1, respectively, and Ptf has an eigenfunction
expansion of the form

Ptf(x) =

∞∑
n=1

e−λntfnϕn(x), fn = (f, ϕn) for any f ∈ L2(I,m), t ≥ 0, (6)

where 0 ≤ λ1 ≤ λ2 ≤ · · · <∞ and

trPt =

∞∑
n=1

e−λnt <∞ for t > 0.

The eigenfunctions (ϕn)n∈N1 form a complete orthonormal basis in L2(I,m). Moreover, each Pt
with t > 0 admits a unique symmetric kernel pt(x, y) ∈ L2(I × I,m ×m) with respect to m, i.e.
Ptf(x) =

∫
I pt(x, y)f(y)m(dy) for any f ∈ L2(I,m) and pt(x, y) = pt(y, x) and

∫
I×I p

2
t (x, y)

m(dx)m(dy) <∞, and trPt =
∫
I pt(x, x)m(dx) <∞, with the bi-linear eigenfunction expansion:

pt(x, y) =
∞∑
n=1

e−λntϕn(x)ϕn(y). (7)

The convergence in (6) and (7) are under the L2(I,m) and L2(I × I,m×m) respectively.
(ii) If in addition we assume that the kernel pt(x, y) is jointly continuous in x and y for each t > 0,
then the following results hold.

(a) Each ϕn is continuous and satisfies

|ϕn(x)| ≤ eλnt/2
√
pt(x, x) (8)

for all n, x and t > 0.

(b) For each f ∈ L2(I,m) the eigenfunction expansion (6) converges to Ptf(x) uniformly on
compacts (u.o.c.) in x, and Ptf(x) is continuous in x.

(c) The bi-linear expansion (7) converges u.o.c. in (x, y).

McKean (1956) showed that the transition semigroup of a general one-dimensional diffusion has
a continuous symmetric kernel pdt (x, y) = pdt (y, x) with respect to the speed measure m(dy) of the
diffusion. From Mercer’s theorem (see Davies (2007) Proposition 5.6.9), trPdt =

∫
I p

d
t (x, x)m(dx).

Thus for one-dimensional diffusions, the trace-class condition is equivalent to∫
I
pdt (x, x)m(dx) <∞,

which can be verified directly if pdt (x, x) is known. Under this condition both parts (i) and (ii) of
Theorem 1 hold for one-dimensional diffusions.

However, the transition semigroup of a subordinate diffusion does not, in general, possess a
continuous kernel. We now give an easy to verify sufficient condition that ensures the existence of
a continuous kernel for a subordinate diffusion.

8



Proposition 1. Suppose the diffusion semigroup (Pdt )t≥0 is trace class. The subordinate diffusion

semigroup (Pφt )t≥0 is trace class and has a symmetric kernel pφt (x, y) with respect to m(dy) which
is jointly continuous in x and y if one of the following two conditions are satisfied:

(i) The Lévy subordinator has a positive drift, i.e. γ > 0.

(ii) The Lévy subordinator has no drift, i.e. γ = 0, but for any compact set J ⊆ I there exists
some constant CJ such that for all n, |ϕn(x)| ≤ CJ for all x ∈ J , and its Laplace exponent φ

satisfies
∑∞

n=1 e
−φ(λdn)t <∞.

The proof is given in Appendix A. Combined with Theorem 1, this proposition gives explic-
it sufficient conditions to ensure that the subordinate diffusion has an eigenfunction expansion
converging uniformly on compacts in x.

Remark 3. The diffusion eigenvalues and eigenfunctions are solutions to the eigenvalue problem of
the associated Sturm-Liouville (SL) problem. For regular SL problems, on any compact J , there
exists some constant CJ that for all n, |ϕn(x)| ≤ CJ for all x ∈ J (c.f. Fulton and Pruess (1994)).
For singular SL problems this has to be checked case by case. It is satisfied in many financial
applications.

Based on Theorem 1 and Proposition 1, we make the following standing assumption for the rest
of this paper.

Assumption 1. The diffusion semigroup (Pdt )t≥0 is trace-class. The subordinator either has pos-
itive drift, or in the zero drift case its Laplace exponent φ(λ) and the eigenfunctions ϕn satisfy the
conditions in Proposition 1 (ii).

The eigenfunction expansion (7) holds for any f ∈ L2(I,m). In financial applications it is
sometimes the case that the function of interest is not in L2(I,m). Fortunately, under some
conditions it is possible to extend the eigenfunction expansion (7) for t > 0 to bounded functions
that are not in L2(I,m). Under these conditions, while f does not have an eigenfunction expansion,
Ptf does have an eigenfunction expansion for t > 0. This extension is important in the CEV and
JDCEV model (see Remark 6).

Theorem 2. For any f ∈ Bb(I) (Borel measurable bounded functions on I) denote by Sf the support
of f . Under Assumption 1, if

∫
Sf

√
pt(x, x)m(dx) < ∞ for all t > 0, then for any f ∈ Bb(I) the

function Ptf ∈ L2(I,m) for all t > 0, has an eigenfunction expansion

Ptf(x) =

∞∑
n=1

fne
−λntϕn(x), fn = (f, ϕn), (9)

converging uniformly on compacts in x, as well as in L2, and Ptf(x) is continuous in x.

Remark 4. In order for the expansion to hold for some given t, it is sufficient to assume
∫
Sf

√
pt′(x, x)

m(dx) <∞ for some t′ such that 0 < t′ < t.

Theorem 2 provides an explicit sufficient condition allowing us to apply the eigenfunction ex-
pansion method to options with bounded but non-L2 payoffs. In the literature, applications of the
eigenfunction expansion method to option pricing for non-L2 payoffs have been previously treated
in an ad-hoc way (e.g. Davydov and Linetsky (2003)).
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3 Discretely Monitored First Passage Problems

3.1 Discrete Barrier Options

We assume X is either a one-dimensional diffusion or a subordinate diffusion on the interval I
with end-points e1 and e2 as in section 2.1. We denote by I∆ := I ∪ {∆} the extended state space
with the cemetery state adjoined as an isolated point. Let T = {t1, . . . , tN}, 0 < t1 < t2 < · · · < tN ,
denote the set of times (not necessarily equidistant). Let (li, ui), e1 ≤ li < ui ≤ e2, be a sequence
of intervals in I associated with the times ti. We define the discrete first exit time τe := inf{t ∈
T : Xt /∈ (l(t), u(t))}, where l(ti) = li, u(ti) = ui. We consider a barrier option that delivers a
payoff f(Xt) at its expiration at time t = tN if τe > t, or pays a rebate g(Xτe , τe) at τe if τe ≤ t.
The payoff f depends on the state of the process at option expiration Xt, t = tN (the end of barrier
monitoring horizon). The rebate depends on the discrete first exit time and the state of the process
at τe. To simplify notation, we assume that the interest rate r is constant. Stochastic interest rate
models of section 2.2 can be treated similarly by replacing the transition operator of X with the
FK operator (see Remark 5 and an example will be considered in the applications section). We
wish to determine the value of the barrier option as a function of the initial state of the process:

V (x) = e−rtEx
[
f(Xt)1{τe>t}

]
+ Ex

[
e−rτeg(Xτe , τe)1{τe≤t}

]
, x ∈ I. (10)

To simplify notations, and without loss of generality, assume that the times are equidistant with
step h, i.e. ti = ih. We note that if τe = ti, then Xτe is either in (li, ui)

c = I\(li, ui) (the complement
of (li, ui) in I) or Xτe = ∆ (if the process is killed during (ti−1, ti], so it is observed in the cemetery
state ∆ at the observation time ti). In the former case, the rebate g(x, ti) is paid at ti if Xτe = x.
In the later case, the rebate is g(∆, ti).

Define the killing probability Kt(x) := Px(ζ ≤ t) = Pt(x, {∆}) for x ∈ I and t ≥ 0 (the
probability of entering the cemetery state by time t). We make the following assumptions on the
payoff f , rebate g, and K (below g(·, t) and Kt(·) should be understood as functions of x for fixed
t).

Assumption 2. (i) 1(lN ,uN )(·)f(·) is either in L2(I,m) or Bb(I). In the latter case, we also assume

that
∫
Sf ′

√
ph′(x, x)m(dx) < ∞ for some h′ such that 0 < h′ < h, where Sf ′ is the support of the

function 1(lN ,uN )(·)f(·).
(ii) For each i = 1, 2, · · · , N , 1(li,ui)c(·)g(·, ti) is in either L2(I,m) or Bb(I). In the latter case, we

assume
∫
Sg′
i

√
ph′(x, x)m(dx) < ∞ for some h′ such that 0 < h′ < h, where Sg′i is the support of

1(li,ui)c(·)g(·, ti).
(iii) For each i = 1, 2, · · · , N , 1(li,ui)(·)Kh(·) is either in L2(I,m), or we assume that∫
SK′

i

√
ph′(x, x)m(dx) < ∞ for some h′ such that 0 < h′ < h, where SK′i is the support of

1(li,ui)(·)Kh(·).

Recall that (f, g) denote the inner product of f and g in L2(I,m). Introduce the following
notation:

fn(A) := (1Af, ϕn), gin(A) := (1A g(·, ti), ϕn), Kh
n(A) := (1AKh, ϕn), πm,n(A) := (1Aϕm, ϕn)

10



for Borel set A ⊆ I, i = 1, 2, · · · , N , and m,n = 1, 2, · · · . When A = (l, u) we write fn(l, u), etc.
Note that (πm,n(A)) is the matrix of the operator of multiplication with 1A(x) in the eigenfunction
basis ϕn. We are now ready to formulate our main result.

Theorem 3. Suppose Assumptions 1 and 2 hold. Then V (x) has the following representation:

V (x) =

∞∑
n=1

cne
−(λn+r)hϕn(x) + e−rhg(∆, t1)Kh(x)

with the eigenfunction expansion converging uniformly on compacts in x and the expansion coeffi-
cients cn = c0

n, where cin satisfy the following recursion:

cN−1
n = fn(lN , uN ) + gNn ((lN , uN )c),

cin =
∞∑
m=1

ci+1
m e−(λm+r)hπm,n(li+1, ui+1) + e−rhg(∆, ti+2)Kh

n(li+1, ui+1) + gi+1
n ((li+1, ui+1)c)

for i = N − 2, · · · , 0.

This result gives an eigenfunction expansion for the value of the barrier option with N barrier
monitoring dates and with rebates, including the rebate in the event of killing (default in credit risk
applications). If we assume that Kh ∈ L2(I,m), then we can also expand Kh in the eigenfunction
basis and absorb the second term in V (x) in the expansion. However, here we only require that
Kh
n(A) = (1AKh, ϕn) exist for A = (li, ui) and do not require that Kh ∈ L2(I,m). This is sufficient

for the formulation of our result (this extension covers one of our applications in Section 4 – the
credit-equity JDCEV model).

Proof. Let V i(x) denote the value of the barrier option at time ti = ih, i = 0, 1, ..., N , with
V (x) = V 0(x). By repeatedly using conditioning and the Markov property, we can write the
following backward recursion starting from time tN :

V N (x) := 1(lN ,uN )(x)f(x) + 1I\(lN ,uN )(x)g(x, tN ) + 1∆(x)g(∆, tN ), x ∈ I∆

V i(x) := 1(li,ui)(x)e−rhEx[V i+1(Xh)] + 1I\(li,ui)(x)g(x, ti) + 1∆(x)g(∆, ti), x ∈ I∆, i = N − 1, · · · , 1,
V 0(x) = e−rhEx[V 1(Xh)], x ∈ I.

Define Ci(x) := e−rhEx
[
V i+1(Xh)1{ζ>h}

]
= e−rhPhV i+1(x) for x ∈ I and i = N − 1, · · · , 0.

Since

e−rhEx
[
V i+1(Xh)

]
= e−rhEx

[
V i+1(Xh)1{ζ>h}

]
+ e−rhEx

[
V i+1(Xh)1{ζ≤h}

]
= Ci(x) + e−rhg(∆, ti+1)Kh(x),

we have for i = N − 1, · · · , 1,

V i(x) = 1(li,ui)(x)
(
Ci(x) + e−rhg(∆, ti+1)D(x, h)

)
+ 1(li,ui)c(x)g(x, ti) + 1∆(x)g(∆, ti),

V 0(x) = C0(x) + e−rhg(∆, t1)Kh(x).

We first note that

CN−1(x) = e−rhEx
[
f(Xh)1(lN ,uN )(Xh)1{ζ>h}

]
+ e−rhEx

[
g(Xh, t)1(lN ,uN )c(Xh)1{ζ>h}

]
.

11



By Assumption 2, Theorem 1 and 2 imply that CN−1 ∈ L2(I,m) and possess the eigenfunction
expansion:

CN−1(x) = e−rh
∞∑
n=1

cN−1
n e−λnhϕn(x) with cN−1

n = f tn(lN , uN ) + gNn ((lN , uN )c).

Next consider CN−2(x):

CN−2(x) = e−rh
{
Ex
[
CN−1(Xh, t)1(lN−1,uN−1)(Xh)1{ζ>h}

]
+ e−rhg(∆, tN )Ex

[
Kh(Xh)1(lN−1,uN−1)(Xh)1{ζ>h}

]
+ Ex

[
g(Xh, tN−1)1(lN−1,uN−1)c(Xh)1{ζ>h}

]}
.

Again by Assumption 2, Theorem 1 and 2 imply that CN−2 ∈ L2(I,m) and possesses the eigen-
function expansion:

CN−2(x) = e−rh
∞∑
n=1

cN−2
n e−λnhϕn(x)

with

cN−2
n = (1(lN−1,uN−1)C

N−1, ϕn) + e−rhg(∆, tN )(1(lN−1,uN−1)Kh, ϕn) + (1(lN−1,uN−1)cg(·, tN−1), ϕn)

= (1(lN−1,uN−1)

∞∑
m=1

cN−1
m e−(λm+r)hϕm, ϕn) + e−rhg(∆, tN )Kh

n(lN−1, uN−1) + gN−1
n ((lN−1, uN−1)c)

=

∞∑
m=1

cN−1
m e−(λm+r)hπm,n(lN−1, uN−1) + e−rhg(∆, tN )Kh

n(lN−1, uN−1) + gN−1
n ((lN−1, uN−1)c).

In the last step is justified by the continuity of the inner product. By induction the result also
holds for i = N − 3, · · · , 0.

Theorem 3 reduces calculation of the barrier option value V (x) to the calculation of the expan-
sion coefficients of the payoff, rebate, and the killing probability fn(l, u), gin((l, u)c), Kh

n(l, u), as
well as the matrix πm,n(l, u) of the operator of multiplication with 1(l,u)(x). Fortunately for all the

applications shown in Section 4, fn(l, u), gin((l, u)c) and Kh
n(l, u) can be computed in closed form.

When eigenfunctions are expressed in terms of orthogonal polynomials, πm,n(l, u) can be efficiently
computed using classical recursions for orthogonal polynomials. In Section 4 we show results for
Hermite and generalized Laguerre polynomials.

Remark 5. For short rate models, the value of the barrier option becomes

V (x) = Ex
[
exp

(
−
∫ t

0
r(Xu)du

)
1{τe>t}f(Xt) + exp

(
−
∫ τe

0
r(Xu)du

)
g(Xτe , τe)1{τe≤t}

]
,

where X is the state variable and r(X) is the short rate process. We impose Assumption 1 on the
FK semigroup. Since X and the short rate process r are conservative, Kt(x) = 0, and only (i) and
(ii) in Assumption 2 are needed. Theorem 3 with the following change. Set g(∆, ti) = 0 for all
ti, and replace e−rhPh with Prh. The result is the same as in Theorem 3 with the factor e−(λn+r)h

replaced with e−λ
r
nh, where λrn is now the eigenvalue of the FK operator Prh.
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3.2 Joint Distribution of τe and Xτe

The distribution of τe, as well as the joint distribution of τe and Xτe , can be obtained as
immediate corollaries of Theorem 3. Suppose the lower and upper barrier are time-independent,
li = l and ui = u, respectively.

Proposition 2. Suppose Assumption 1 holds. (i) Suppose either 1(l,u) ∈ L2(I,m) or
∫ u
l

√
ph′(x, x)

m(dx) <∞ for some h′ such that 0 < h′ < h. Then for each i = 1, 2, · · · ,

Px(τe > ti) =
∞∑
n=1

pine
−λnhϕn(x) with p1

n = (1(l,u), ϕn), pin =
∞∑
m=1

pi−1
m e−λmhπm,n(l, u), i ≥ 2.

(ii) For a Borel set A ∈ I\(l, u), suppose either 1A ∈ L2(I,m) or
∫
A

√
ph′(x, x)m(dx) < ∞ for

some h′ such that 0 < h′ < h. Then for i = 1, 2, · · · ,

Px(τe = ti, Xτe ∈ A) =
∞∑
n=1

pin(A)e−λnhϕn(x),

with

p1
n(A) = (1A, ϕn), pin(A) =

∞∑
m=1

pi−1
m (A)e−λmhπm,n(l, u), i ≥ 2.

Suppose Assumption 2 (iii) holds with li = l and ui = u. Then for i = 1, 2, · · · ,

Px(τe = ti, Xτe = ∆) =
∞∑
n=1

kine
−λnhϕn(x) +Kh(x)1{i=1},

with

k1
n = 0, kin =

∞∑
m=1

ki−1
m e−λmhπm,n(l, u) +Kh

n(l, u)1{i=2}, i ≥ 2.

Proof. (i) Observe that for each ti the probability Px(τe > ti) can be cast in the form (10) with the
“payoff” f(x) = 1 at “maturity” ti and zero “rebates”, g(x, tj) = 0 for all j ≤ i and x ∈ I∆. Hence,
Theorem 3 yields the result. Here we changed the indexing of the coefficients from backward to
forward as follows. In the context of Theorem 3, ti is the “maturity” date (tN in Theorem 3). In
the notation of Theorem 3, the backward recursion for the coefficients starts from cin = (1(l,u), ϕn)

and proceeds as cjn =
∑∞

m=1 c
j+1
m e−λmhπm,n(l, u) for j = i− 1, ..., 0. In our forward notation in this

proposition p1
n = ci−1

n and pjn = ci−jn , j = 2, ..., i.
(ii) Observe that for each ti the probability Px(τe = ti, Xτe ∈ A) can be cast in the form (10)

with zero “payoff” f(x) = 0, and g(x, ti) = 1A(x) for x ∈ I∆ and g(x, tj) = 0 for all j < i and
x ∈ I∆. For each ti the probability Px(τe = ti, Xτe ∈ ∆) can be cast in the form (10) with the zero
“payoff” f = 0, g(∆, ti) = 1, g(∆, tj) = 0 for all j < i, and g(x, tj) = 0 for all j ≤ i and x ∈ I.
Hence, Theorem 3 yields the results (as in (i), here we changed notation from backward to forward
indexing).
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4 Applications and Examples

4.1 (Subordinate) OU Diffusions and Applications to Commodity Derivatives

When X is an OU diffusion, the reference measure m is Gaussian, the eigenfunctions ϕn are
given in terms of Hermite polynomials in Section 1, and λdn = κn, n = 0, 1, . . ..1 The OU semigroup
is clearly trace class, since

∑∞
n=0 e

−κnt < ∞ for all κ > 0 and t > 0. To efficiently compute the

eigenfunctions, we start with ϕ0(x) = 1 and ϕ1(x) =
√

2κ
σ (x − θ) and use the following recursion

easily derived from the classical recursion for Hermite polynomials:

ϕn(x) =

√
2

n

√
κ

σ
(x− θ)ϕn−1(x)−

√
n− 1

n
ϕn−2(x), n > 2.

For a subordinate OU (SubOU) process Xφ
t := XTt , where T is a Lévy subordinator with Laplace

exponent φ and independent of X, if γ > 0 the SubOU semigroup is trace class and the kernel is
continuous without any further conditions. If γ = 0, we assume φ satisfies

∞∑
n=0

e−φ(λdn)t <∞. (11)

We also note that on every compact subset J ⊆ I there exists a constant CJ such that maxx∈J |ϕn(x)|
≤ CJ/n

1
4 for all n (c.f. Nikiforov and Uvarov (1988) p.54). Therefore Assumption 1 holds for the

SubOU transition semigroup under the trace class condition (12).
Several alternative representations for the density of the continuous first passage time of an OU

diffusion through a single constant barrier are well known in the literature, including Keilson and
Ross (1975), Ricciardi and Sato (1988), Leblanc and Scaillet (1998), Leblanc et al. (2000), Göing-
Jaeschke and Yor (2003), Linetsky (2004a) and Alili et al. (2004). In the special case when the
barrier is equal to the long-run level θ, Yi (2010) gives a simple relation between the first passage
probability and the transition probability of the OU diffusion.

Here we consider the calculation of Px(τe > ti) for the discretely observed first exit time from
the interval (l, u). Single barrier results immediately follow by setting l = −∞ or u = ∞. Since
1(l,u) ∈ L2(R,m) for any −∞ ≤ l < u ≤ ∞, Proposition 2 applies. Since ϕ0 = 1 and (1(l,u), ϕn) =
π0,n(l, u) in this case, we only need to calculate πm,n(l, u) = πm,n(−∞, u)−πm,n(−∞, l). For x ∈ R
the inner products in πm,n(−∞, x) can be calculated in closed form, resulting in the following
convenient representation (as shown in Li and Linetsky (2013)):

π0,0(−∞, x) = Φ

(√
2κ(x− θ)

σ

)
,

πn,n(−∞, x) = πn−1,n−1(−∞, x)− 1√
2πn

ϕn−1(x)ϕn(x)e−
κ
σ2

(x−θ)2 , n ≥ 1,

πm,n(−∞, x) =

√
m+ 1ϕn(x)ϕm+1(x)−

√
n+ 1ϕm(x)ϕn+1(x)√

2π(m− n)
e−

κ
σ2

(x−θ)2 ,m 6= n,m ≥ 0, n ≥ 0,

where Φ(x) is the standard normal CDF.

1In this section we index eigenfunctions starting from zero, rather than one as in Sections 2 and 3. This notation
is more convenient when working with orthogonal polynomials.
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To illustrate, Table 1 computes the probability Px(τe > ti) for an OU diffusion to stay below an
upper barrier u at the barrier monitoring times ti = ih with different monitoring intervals h = 1/12
(monthly), h = 1/52 (weekly), and h = 1/252 (daily), and different volatilities σ (l = −∞ in this
example). The code was written in C++, Hermite polynomials were computed efficiently via their
classical recursion, and the infinite eigenfunction expansions were truncated after the desired user-
specified error tolerance was reached. The continuous time solution computed as in Yi (2010) is also
given for comparison. Next to each computed value for the discretely monitored probability the
percentage is given showing the percentage difference with the continuous probability. We observe
that the differences between discrete and continuous solutions are quite substantial even for the
daily barrier monitoring. Moreover, the differences increase with the volatility. This example
demonstrates that using continuous solutions to approximate discrete solutions would result in
sizable errors.

monitoring σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

monthly 0.9612 (2.53%) 0.8553 (8.87%) 0.7510 (15.86%) 0.6671 (22.70%)
weekly 0.9519 (1.54%) 0.8254 (5.06%) 0.7049 (8.73%) 0.6103 (12.25%)
daily 0.9447 (0.78%) 0.8048 (2.45%) 0.6751 (4.14%) 0.5748 (5.73%)
continuously 0.9374 0.7856 0.6482 0.5437

Table 1: The probability of an OU diffusion not crossing an upper barrier for different monitoring
frequencies. t = 0.5 years, θ = 0.0, κ = 0.5, x0 = −0.3, u = 0.0.

Figure 1 plots the probability distribution of the discrete random variable τe for an OU diffusion,
as well as a SubOU process, first passing through an upper barrier at the discrete monitoring times
ti = ih. For the OU diffusion, the shape of the distribution function under daily and weekly barrier
monitoring is similar to the continuous first hitting time density in Linetsky (2004a), page 19.
Under monthly monitoring, the distribution function is decreasing (the probability of crossing the
barrier is the highest at the end of the first month). The tail of the discrete first passage time
distribution under monthly monitoring is thicker than under weekly monitoring, which is in turn
thicker than under daily monitoring. This is not surprising, since as the monitoring frequency
decreases, it takes longer to observe the first passage. The figure also plots the distribution for a
SubOU process with the same OU parameters and the subordinator time change with drift γ = 1
and compound Poisson jumps with exponential jump sizes. This SubOU process has the same
OU diffusion component as the pure diffusion case, plus mean-reverting jumps arising from the
subordination. Mean-reverting jumps make the SubOU process more likely to cross the barrier
sooner (in this example u = θ, so the process tends to jump in the direction of the barrier). Figures
1 (b) and (c) show that for the SubOU process the peak of the distribution is higher, while the tail
is lighter than for the OU diffusion.

OU diffusions are ubiquitous in financial applications. To illustrate, in the corporate credit
risk model of Collin-Dufresne and Goldstein (2001), the logarithm of the default barrier minus the
logarithm of the value of the assets of the firm, denoted by X, is a mean-reverting OU diffusion with
the starting point x < 0. This reflects the fact that firms change their capital structure over time
to keep the leverage ratio around some target level. Collin-Dufresne and Goldstein (2001) assume
continuous monitoring of the default barrier for analytical tractability and derive analytical results
for the probability of default and corporate bond prices and credit spreads. In practice, bondholders
can only monitor the credit quality of a firm at discrete time intervals as the new financial data
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Figure 1: Probability distribution of τe for u = 0.0, l = −∞. For the OU diffusion, θ = 0.0, κ = 0.5,
σ = 0.35, x0 = −0.1. For the SubOU process, the time change is a compound Poisson random
clock with jump arrival rate of 5 jumps per year, with exponential jump size with mean jump of
0.1, and drift γ = 1.

16



are made available by the firm. Our method provides a solution to this more realistic setting.
In particular, coupon bonds can be priced by replacing the continuous probability in Eq.(25) of
Collin-Dufresne and Goldstein (2001) with the discretely monitored probability.

As our next application, we consider commodity options with barriers (see e.g. Geman (2005)
for a discussion of commodity barrier options). Li and Linetsky (2014) develop a class of commodity
models based on SubOU processes. Under the risk-neutral measure chosen by the market, the spot
price of a commodity is assumed as follows:

St = F (0, t)eX
φ
t −G(t), Xφ

0 = x0.

where Xφ is the SubOU process, {F (0, t), t ≥ 0} is the initial futures curve observed in the market

at time 0, and G(t) = lnE[eX
φ
t ] so that under the risk-neutral measure E[St] = F (0, t). This model

features mean-reverting jumps, Samuelson’s maturity effect in commodity futures, is consistent
with the initial futures curve, admits analytical solutions for futures options in terms of Hermite
expansions, and is capable of fitting a variety of single-maturity volatility smile patterns observed
in commodity futures options (Li and Linetsky (2014)). Li and Mendoza-Arriaga (2013) further
improve this model by the Lévy subordinator with the additive subordinator. Compared to the
SubOU model, the ASubOU model (A stands for Additive) is able to calibrate well to the entire
volatility surface. For the ASubOU model, if we impose the following condition on the additive
subordinator

∞∑
n=0

e−
∫ t
s ψ(λdn,u)du <∞ for 0 ≤ s < t,

then all results hold by replacing e−φ(λdn)t with e−
∫ t
s ψ(λdn,u)du, where ψ(λdn, u) is the density of the

Laplace exponent of the additive subordinator (see Li et al. (2014) for details).

Denote by F (x, s, t) the futures price at time s for maturity t given Xφ
s = x. Li and Linetsky

(2014) obtained the explicit eigenfunction expansion for the futures price:

eG(t) = E[eX
φ
t ] =

∞∑
n=0

e−φ(κn)tFnϕn(x0), Fn = eθ+
σ2

4κ
1√
n!

(
σ√
2κ

)n
,

F (x, s, t) = F (0, t)e−G(t)
∞∑
n=0

e−φ(κn)(t−s)Fnϕn(x).

We assume (11) holds if γ = 0 so that Assumption 1 is valid for the SubOU transition semigroup.
We are in the setting of Section 3.1 and price a call option with strike K and expiration at time
t written on a futures with maturity at t∗ > t and with barriers set at L and U based on the
level of the futures price and with no rebates. Assumptions 2 hold for any −∞ ≤ l < u ≤ ∞
in this case. We first transform L, U , K into the barrier and strike levels for the SubOU process
Xφ, which are solutions to the equations F (x, ti, t

∗) = L, F (x, ti, t
∗) = U (i = 1, 2, · · · , N) and

F (x, t, t∗) = K. The solution to each equation is unique since the futures price is strictly increasing
in x. Computationally it can be efficiently found by bisection. We denote the solutions by li, ui
and k. We note that in this application the barriers for the SubOU process are time dependent,
even though the barriers for the futures price are time-independent. This arises through the time
dependence of the futures price. The put payoff at option expiration is f(x) = (K − F (x, t, t∗))+.
Define l̃i = min{li, k}, ũ = min{ui, k}. By a calculation similar to Li and Linetsky (2014) Theorem
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3.4, the coefficients f in(li, ui) are given by:

f in(li, ui) = Kπ0,n(l̃i, ũi)− F (0, t∗)e−G(t)
∞∑
m=0

e−φ(κm)(t∗−t)Fmπm,n(l̃i, ũi),

where πm,n(l, u) = (1(l,u)ϕm, ϕn) have already been calculated for the OU eigenfunctions. The
single barrier result is obtained by setting L = 0 or U =∞. The result for the call option is derived
similarly.

Table 2 gives the prices of up-and-out puts under the ASubOU commodity model with time-
dependent mean-reverting jumps of Li and Mendoza-Arriaga (2013). In this example the additive
subordinator A is taken to be the Inverse-Gaussian Sato subordinator (see Li and Mendoza-Arriaga
(2013)). Its Laplace transform is given by E[e−λ(At−As)] = e−[φ(λtρ)−φ(λsρ)], where φ(λ) = γλ +
µ2

ν

[√
1 + 2 νµλ− 1

]
. Results for monthly, weekly, daily, and four times per day monitoring are

given. The column marked “1” gives the price of a European call where the barrier at U is only
checked at maturity. The four times per day monitoring result is given as an approximation for the
continuous barrier monitoring since continuous monitoring results are not available for ASubOU
processes (in contrast to OU diffusions). The percentage value listed under each option price gives
the percentage difference between that option and the option with the monitoring four times per
day. We observe that in this example the difference between daily monitoring and monitoring four
times per day is sizable at nearly two percent of the option price. The difference between the daily
and the continuous barrier option is even greater.

monitoring 1 monthly weekly daily 4x day

price 7.4204 6.8453 6.4957 6.2626 6.1567
(20.53%) (11.18%) (5.51%) (1.72%)

Table 2: The price of an up-and-out put option under the ASubOU model for different barrier
monitoring frequencies. Option expiration is t = 0.5 years, the underlying futures contract maturity
is 0.54 years, F (0, 0.54) = 100, K = 100, U = 110, r = 0.01, θ = −0.2, κ = 0.5, σ = 0.3, x0 = 0.0,
γ = 0.6, µ = 0.4, ν = 0.45, ρ = 0.8.

4.2 Equity Barrier Options under CEV, JDCEV and SubJDCEV Models

Cox’s (Cox (1975)) constant elasticity of variance (CEV) diffusion model captures the negative
relationship between the stock price and volatility (the leverage effect – volatility of the stock
increases as the stock price falls) by specifying the stock price volatility as the negative power of
the stock price. Carr and Linetsky (2006) extended the CEV model by introducing a killing rate
(default intensity) specified to be a negative power of the stock price (default intensity increases as
the stock price falls). The resulting model is called the jump-to-default extended CEV (JDCEV),
as the stock price jumps to zero from a positive value at the time of default. Mendoza-Arriaga et al.
(2010) time changed JDCEV with a Lévy subordinator (SubJDCEV) to introduce jumps into the
diffusive stock price dynamics of the (JD)CEV in addition to the terminal jump to default in the
JDCEV model. This model parsimoniously captures many empirical observations in both equity
and credit markets, including the well-known positive relationship between credit default swap
(CDS) spreads and corporate bond yields and implied volatilities of equity options, the leverage
effect, the volatility skew, and jumps in the stock price with the leverage effect (arrival rates of large
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jumps increase as the stock price falls). Carr and Linetsky (2006) derived analytical formulas for
European options and CDS under the JDCEV model via the theory of Bessel processes. Mendoza-
Arriaga et al. (2010) derived option pricing formulas for European options under the SubJDCEV
model via eigenfunction expansions. The continuous first passage problem for the JDCEV process
was solved in Mendoza-Arriaga and Linetsky (2010) (no solution to the continuous first passage
problem for SubJDCEV is known at present). Here we consider the pricing of discretely monitored
barrier options under the (Sub)JDCEV model.

Under the risk-neutral measure chosen by the market, the stock price S is modeled as:

St = eρtXφ
t .

Here X is a JDCEV diffusion (Carr and Linetsky (2006)) with drift µ(x) = (µ + h(x))x, local
volatility σ(x) = axβ+1, and killing rate k(x) = h(x) with h(x) = b + ca2x2β, where a > 0,
b ≥ 0, c ≥ 0, β < 0, and X0 = S0. The case b = c = 0 corresponds to Cox’s CEV model.
T is a Lévy subordinator with Laplace exponent φ and assumed to be independent of X. The
subordinate process Xφ

t = XTt is a jump-diffusion (if the subordinator has drift γ > 0) or a pure
jump process (if γ = 0) with killing called a SubJDCEV process (Mendoza-Arriaga et al. (2010))
(when T = t, the model reduces to the JDCEV model of Carr and Linetsky (2006)). The lifetime

of Xφ, τd = inf{t ≥ 0 : Xφ
t = ∆} = inf{t ≥ 0 : XTt = ∆}, is the bankruptcy time. The cemetery

state ∆ is identified with 0, so that the stock price jumps to zero at the bankruptcy time (the
assumption is that strict priority rules are followed in bankruptcy and equity becomes worthless).
The remaining model parameter ρ is a constant that is required to satisfy the martingale condition
ρ = r − q + φ(−µ), where r is the risk-free interest rate and q is the dividend yield (the drift
parameter −µ is required to be such that φ(·) < ∞). The martingale condition ensures that the
stock price process with dividends reinvested and taken relative to the money market account is a
martingale.

Detailed spectral analysis of JDCEV processes is given in Mendoza-Arriaga et al. (2010) and

Mendoza-Arriaga and Linetsky (2014). Define ε = sign(µ+b), ν = 1+2c
2|β| , w = 2|β(µ+b)|, A = |µ+b|

a2|β| ,

and

λ0 =

{
2(µ+ b)(|β|+ c) + b, µ+ b > 0,

|µ|, µ+ b < 0.

The speed density of the JDCEV diffusion is

m(x) =
2

a2
x2c−2−2βeεAx

−2β
.

We assume µ+ b 6= 0. In this case the spectrum is purely discrete with

λdn = wn+ λ0, ϕn(x) = A
ν
2

√
n!|µ+ b|

Γ(ν + n+ 1)
xe−

1
2

(1+ε)Ax−2β
L(ν)
n (Ax−2β), n = 0, 1, · · · . (12)

where L
(α)
n (·) are generalized Laguerre polynomials (see e.g. Koekoek et al. (2010)), and Γ(·) is the

gamma function. It is clear that the JDCEV transition semigroup is trace class,
∑∞

n=0 e
−λdnt <∞,

so Assumption 1 holds.
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If γ = 0, we assume the Laplace exponent φ of the subordinator satisfies

∞∑
n=0

e−φ(λdn)t <∞.

Also note that for the JDCEV eigenfunctions, on every compact subset J ⊆ I there exists a constant
CJ such that maxx∈J |ϕn(x)| ≤ CJ/n

1
4 for all n (c.f. Nikiforov and Uvarov (1988) p.54). Therefore

Assumption 1 hold for the SubJDCEV semigroup.
To efficiently calculate the eigenfunctions, it is convenient to introduce the following scaled

Laguerre polynomial:

l(ν)
n (x) =

√
n!

Γ(ν + n+ 1)
L(ν)
n (x). (13)

Then ϕn(x) = A
ν
2

√
|µ+ b|xe−

1
2

(1+ε)Ax−2β
l
(ν)
n

(
Ax−2β

)
. We will also express other things in terms

of l
(ν)
n (x). Based on the recursion for generalized Laguerre polynomials, l

(ν)
n (x) can be computed

recursively as follows.

l
(ν)
0 (x) =

1√
Γ(ν + 1)

, l
(ν)
1 (x) =

−x+ ν + 1√
Γ(ν + 2)

,

l(ν)
n (x) =

ν + 2n− 1− x√
n(ν + n)

l
(ν)
n−1(x)−

√
(ν + n− 1)(n− 1)

(ν + n)n
l
(ν)
n−2(x), n > 2.

We now consider pricing barrier options on the stock under the SubJDCEV model. We first
point out the following result. Let pt(x, y) =

∑∞
n=0 e

−λntϕn(x)ϕn(y) be the symmetric transition
density with respect to the speed measure for either the JDCEV (λn = λdn) or the SubJDCEV
(λn = φ(λdn)) transition semigroup.

Proposition 3. Suppose
∞∑
n=1

e−λntnν <∞. (14)

For µ + b < 0,
∫

(0,∞)

√
pt(x, x)m(dx) < ∞. For µ + b > 0,

∫
S

√
pt(x, x)m(dx) < ∞ for any

S ⊂ (0,∞) bounded above.

From (12) and (4), (14) is satisfied for JDCEV and for any subordinator with γ > 0. When
γ = 0, (14) is satisfied for all subordinators in the tempered stable family with p > 0 (p = 1

2
corresponds to the inverse Gaussian subordinator in Barndorff-Nielsen (1998)). Hereafter we assume
that condition (14) holds.

Based on Proposition 3, it is straightforward to verify the following for 1(lN ,uN )(·)f(·), where
f(·) is either the call or the put payoff. When µ + b < 0, the function 1(lN ,uN )(·)f(·) satisfies
Assumption 2 for all of the following options: down-and-out (DO), up-and-out (UO) and double
barrier (DB) calls and puts. When µ + b > 0, 1(lN ,uN )(·)f(·) satisfies Assumption 2 in all cases
except DO calls. To price a DO call, we first need to approximate it with a truncated call payoff,
i.e. (St −K)+1{St≤M} where the truncation level M is chosen large enough.

Remark 6. We note that the assumption that the option payoff is in L2((0,∞),m) is generally too
strong for the JDCEV model and excludes some practically relevant cases. Consider the up-and-out
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put. If we require 1(0,uN )(·)f(·) ∈ L2((0,∞),m), then c − β > 1/2 must be satisfied. Thanks to
Theorem 2 which extends the eigenfunction expansion approach to bounded payoffs that are not
necessarily in L2, this restriction can be removed.

Next we calculate fn(l, u) for the DB call. We are in the setting of Section 3.1, and L and U are
the lower and upper barriers for the stock price. The single barrier case is obtained by setting L = 0
or U = ∞ (when µ + b > 0 and U = ∞, we approximate f(x, t) by a truncated call payoff). The
result for puts can be derived similarly. The call payoff as a function of the underlying SubJDCEV
state varible is f(x) = (eρtx−K)+, where K is the strike. Define x ∨ y = max{x, y}, li = Le−ρti ,
ui = Ue−ρti for i = 1, · · · , N and k = Ke−ρt. li and ui are the lower and upper barrier for Xφ at
ti, and k is the strike for Xφ.

Proposition 4. Define ϑn(x) =
∫ x

0 (y − k)ϕn(y)m(dy) for x > 0. Then for n = 0, 1, · · ·

fn(l, u) = eρt (ϑn(u ∨ k)− ϑn(l ∨ k)) ,

where for µ+ b < 0,

ϑn(x) =
A
ν
2

+1

Γ(ν + 1)

√
Γ(ν + n+ 1)

|µ+ b|n!

{
1

ν + 1
x2c+1−2β

1F1

(
ν + n+ 1, ν + 2;−Ax−2β

)
− k|β|
c+ |β|

x2c−2β
2F2

(
ν + n+ 1, c

|β| + 1

ν + 1, c
|β| + 2

;−Ax−2β

)}
.

For µ+ b > 0,

ϑn(x) = A
ν
2

+1

√
1

|µ+ b|(n+ 1)(ν + n+ 1)
x2c+1−2βl(ν+1)

n (Ax−2β)

− kA
ν
2

+1

Γ(ν + 1)

√
Γ(ν + n+ 1)

|µ+ b|n!

|β|
c+ |β|

x2c−2β
2F2

(
−n, c

|β| + 1

ν + 1, c
|β| + 2

;Ax−2β

)
.

Here pFq are hypergeometric functions.

To indicate dependence of πm,n(l, u) on the order of the Laguerre polynomials, we write π
(ν)
m,n(l, u).

We only need to calculate π
(ν)
m,n(0, x) for x > 0, which can be done as follows:

π
(ν)
0,0 (0, x) =

γ(ν + 1, Ax−2β)

Γ(ν + 1)
,

π(ν)
n,n(0, x) =

1√
n
l(ν)
n (Ax−2β)l

(ν+1)
n−1 (Ax−2β)e−Ax

−2β
(
Ax−2β

)ν+1
+ π

(ν+1)
n−1,n−1(0, x), n ≥ 1,

π(ν)
m,n(0, x) =

(√
ml(ν)

n (Ax−2β)l
(ν+1)
m−1 (Ax−2β)−

√
nl(ν)
m (Ax−2β)l

(ν+1)
n−1 (Ax−2β)

)
· e
−Ax−2β

(Ax−2β)ν+1

m− n
, m 6= n,m ≥ 1, n ≥ 1.

π
(ν)
0,n(0, x) =

e−Ax
−2β

(Ax−2β)ν+1√
nΓ(ν + 1)

l
(ν+1)
n−1 (Ax−2β), n ≥ 1.
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Here γ(ν + 1, x) =
∫ x

0 e
−yyνdy is the lower incomplete gamma function.

For an up-and-out put, the barriers are at 0 and U , and we need to consider the possibility
of bankruptcy of the underlying firm, modeled by killing the underlying SubJDCEV process and
identifying the cemetery state with zero. If the SubJDCEV process is killed by the option expiration
time t, so the stock price is zero at t, and the upper barrier has not been hit at any of the barrier
monitoring times prior to the killing time, the UO put will deliver the payoff at the option expiration
t equal to the strike K. In our framework, this can be treated as a rebate in the amount of Ke−r(t−ti)

paid out at ti, where ti is such that τd ∈ (ti−1, ti]. In this case we thus need the coefficients Kh
n(0, u).

For the JDCEV process these can be calculated as follows (the killing probability Kt(x) for the
JDCEV process is given in Mendoza-Arriaga et al. (2010)).

Proposition 5. For µ+ b < 0,

Kh
n(0, u) =

A
ν
2

+1

Γ(ν + 1)

√
Γ(ν + n+ 1)

|µ+ b|n!

|β|
c+ |β|

u2c−2β
2F2

(
ν + n+ 1, c

|β| + 1

ν + 1, c
|β| + 2

;−Ax−2β

)

−
A
ν
2
− c
|β|Γ( c

|β| + 1)√
|µ+ b|

∞∑
m=0

e−λmh

(
1

2|β|

)
m√

m!Γ(ν +m+ 1)
πm,n(0, u).

For µ+ b > 0,

Kh
n(0, u) =

A
ν
2

+1

Γ(ν + 1)

√
Γ(ν + n+ 1)

|µ+ b|n!

|β|
c+ |β|

u2c−2β
2F2

(
−n, c

|β| + 1

ν + 1, c
|β| + 2

;Au−2β

)

−A
1

2|β|
Γ(1 + c

|β|)

Γ(ν + 1)

∞∑
m=0

e−(b+ωm)h

(
1

2|β|

)
m

m!
dm,n(0, u),

where dm,n(0, u) =
∫ u

0 xe
−Ax−2β

1F1

(
1−m+ c

|β| ; ν + 1;Ax−2β
)
ϕn(x)m(dx).

dm,0(0, u) =
A−ν

ν + 1

√
1

|µ+ b|Γ(ν + 1)

(
Au−2β

)ν+1
e−Au

−2β

1F1

(
2−m+

c

|β|
; ν + 2;Au−2β

)
,

dm,n(0, u) = A−ν

√
1

|µ+ b|

(
Au−2β

)ν+1
e−Au

−2β

n+ 1−m+ c/|β|

[
1−m+ c/|β|

ν + 1
l(ν)
n (Au−2β) 1F1

(
2−m+

c

|β|
; ν + 2;Au−2β

)

+
√
nl

(ν+1)
n−1 (Au−2β) 1F1

(
1−m+

c

|β|
; ν + 1;Au−2β

)]
, n ≥ 1,

c

|β|
6= m− n− 1,

dm,n(0, u) =
Γ(ν + 1)

Aν

√
n!

|µ+ b|Γ(ν + n+ 1)
πn,n(0, u), n ≥ 1,

c

|β|
= m− n− 1.

Thus all the quantities appearing in Theorem needed to calculate the expansion coefficients for
discrete barrier options under (Sub)JDCEV model are available analytically.

We now give a numerical example of the up-and-out call under the CEV model. We use the same
set of parameters as in Davydov and Linetsky (2001), which provide the solution for the continuously
monitored up-and-out call. The results are given in Table 3. The continuously monitored barrier
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option prices are from Davydov and Linetsky (2001). The column marked “1” gives the price of
a European call where the barrier at U is only checked at maturity. The percentages next to the
discretely monitored barrier option prices are the percentage differences between the continuously
monitored and the discretely monitored barrier option. We observe that the difference between the
daily monitored and continuously monitored up-and-out call price is as high as 12.7% of the option
price. In all the cases in Table 3 using the continuous solution to approximate the daily monitored
barrier option would result in practically unacceptable pricing error.

monitoring β = −1 β = −2 β = −3 β = −4

1 3.6731 (89.54%) 4.1393 (69.71%) 4.6779 (53.12%) 5.2956 (39.49%)
monthly 2.9436 (51.90%) 3.4727 (42.38%) 4.0906 (33.90%) 4.8011 (26.47%)
weekly 2.4731 (27.62%) 2.9999 (22.99%) 3.6284 (18.77%) 4.3645 (14.97%)
daily 2.1845 (12.73%) 2.7010 (10.74%) 3.3260 (8.87%) 4.0687 (7.17%)
continuously 1.9379 2.4391 3.0550 3.7963

Table 3: The price of an up-and-out call option under the CEV model for different barrier monitor-
ing frequencies and different values of the elasticity parameter β. Option expiration t = 0.5 years,
S0 = 100, K = 100, U = 120, r = 0.1, q = 0.0, σ(100) = 0.25.

4.3 Bond Options with Barriers under Short Rate Models

Our final example is the pricing of discretely monitored bond options with barriers. Bond
options with continuously monitored barriers have been considered by Kuan and Webber (2003)
under the Hull-White short rate model, which is a time-inhomogeneous extension of the Vasicek
model. Our method is applicable to diffusion short rate models in Remark 2, their subordinate
versions with jumps, and their time-inhomogeneous extensions by adding a deterministic function
of time to the short rate process to match the observed initial yield curve, such as Hull-White and
CIR++ models (cf. Brigo and Mercurio (2006)). Here we consider the (Sub)CIR model. Other
models can be treated similarly.

The short rate follows the CIR diffusion with drift µ(x) = κ(θ − x) and volatility σ(x) = σ
√
x

where κ > 0, θ > 0, and σ > 0 are the rate of mean reversion, the long run mean and volatility,
respectively. In this case r(x) = x. Define two constants γ :=

√
κ2 + 2σ2 and b := 2κθ/σ2. When

Feller’s condition b ≥ 1 is satisfied, the origin is an unattainable entrance boundary. In this case
I = (0,∞). When Feller’s condition is not satisfied, the origin is an attainable regular boundary and
is specified as instantaneously reflecting. In this case I = [0,∞). Infinity is an natural boundary
boundary in both cases. The CIR speed density is a gamma density (and is the stationary density
of the CIR diffusion):

m(x) =
2

σ2
xb−1e−

2κx
σ2 .

The eigenfunction expansion of the CIR Feymnan-Kac pricing semigroup is given in Davydov
and Linetsky (2003) (see also Mendoza-Arriaga and Linetsky (2013)). In this case the eigenvalues
and eigenfunctions are (n = 0, 1, 2, · · · )

λdn = γn+
b

2
(γ − κ), ϕn(x) =

σ√
2

(
2γ

σ2

)b/2
e(κ−γ)x/σ2

l(b−1)
n

(
2γx

σ2

)
.
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where l
(α)
n (x) is the scaled generalized Laguerre polynomial defined in (13). It is clear that∑∞

n=0 e
−λdnt < ∞, so the trace-class condition is satisfied and Assumption 1 holds for the CIR

FK semigroup. For the SubCIR model, when γ = 0 we assume the Laplace exponent of the
subordinator satisfies

∞∑
n=0

e−φ(λdn)t <∞

to ensure that the SubCIR semigroup is trace class. Similar to the JDCEV model, the eigenfunctions
satisfy that, on every compact subset J ⊆ I, there exists a constant CJ such that maxx∈J |ϕn(x)| ≤
CJ/n

1
4 for all n. Therefore Assumption 1 holds for the SubCIR FK semigroup.

In the following, X is either the CIR diffusion or the SubCIR short rate process (see Lim et al.
(2012) or Mendoza-Arriaga and Linetsky (2013)). Denote by P (x, t, T ) the time-t price of a zero-

coupon bond with unit face value at maturity T , i.e. P (x, t, T ) = Ex
[
exp

(
−
∫ T
t Xudu

)]
. The

celebrated CIR zero-coupon bond pricing formula is (Cox et al. (1985); define τ = T − t)

P (x, t, T ) = A(τ)e−B(τ)x, A(τ) =

(
2γe(κ+γ)τ/2

(γ + κ)(eγτ − 1) + 2γ

)b
, B(τ) =

2(eγτ − 1)

(γ + κ)(eγτ − 1) + 2γ
.

The CIR bond pricing function also has the following eigenfunction expansion:

P (x, t, T ) =
∞∑
n=0

pne
−λdnτϕn(x), pn = (1, ϕn) =

(
2γ

σ2

)b/2√2Γ(b+ n)

σ2n!

(
σ2

γ + κ

)b(
κ− γ
κ+ γ

)n
. (15)

Under the SubCIR model, the zero-coupon bond pricing function is represented by the eigenfunction
expansion (15) with λdn replaced by φ(λdn).

We are in the setting of Section 3.1 and price barrier call and put options expiring at time t and
written on a zero-coupon bond with maturity date T > t and with rebates g(x, ti) = Ri ≥ 0 with
some constants Ri. It can be easily verified that f(·), g(·, ti) ∈ L2(R+,m). Hence Assumption 2
holds for any 0 ≤ l < u ≤ ∞. In the following we present results for a double barrier knock-out call
written on the zero-coupon bond with strike K and with a lower barrier L and an upper barrier U .
The single barrier results are obtained by setting L to 0 or U to∞. The put is treated similarly. We
first transform L, U , K into the barrier and strike levels for the (Sub)CIR state variable process
X, which are solutions to the equations P (x, ti, T ) = L, P (x, ti, T ) = U (i = 1, 2, · · · , N) and
P (x, t, T ) = K. The solution to each equation is unique since the bond price is strictly decreasing
in x. Computationally it can be efficiently found by bisection. We denote the solutions by li, ui and

k. The call payoff is f(x) = (P (x, t, T ) − K)+. Define ψ
(ν)
n (s, x) =

∫ x
0 y

νe−syl
(ν)
n (y)dy (ν > −1).

As in the JDCEV case, we write π
(ν)
m,n(l, u) for πm,n(l, u) to indicate ν is the order of Laguerre

polynomials.

Proposition 6. Define l̃ = min{l, k}, ũ = min{u, k}. For n = 0, 1, · · · ,

fn(l, u) =

∞∑
m=0

pme
−λm(T−t)π(b−1)

m,n (l̃, ũ)

−K
√

2

σ

(
σ2

2γ

) b
2

(
ψ(b−1)
n

(
κ+ γ

2γ
,
2γũ

σ2

)
− ψ(b−1)

n

(
κ+ γ

2γ
,
2γl̃

σ2

))
.

24



where λm equals to λdm for the CIR diffusion, and φ(λdm) for the SubCIR case.

gin((l, u)c) = Ri

√
2

σ

(
σ2

2γ

) b
2

(
ψ(b−1)
n

(
κ+ γ

2γ
,
2γl

σ2

)
+

√
Γ(α+ n+ 1)

n!

(κ− γ)n(2γ)α+1

(κ+ γ)n+α+1

−ψ(b−1)
n

(
κ+ γ

2γ
,
2γu

σ2

))
.

ψ
(α)
n (s, x) can be computed recursively as follows for all x > 0.

ψ
(α)
0 (s, x) =

γ(α+ 1, sx)

sα+1
√

Γ(α+ 1)
,

ψ(α)
n (s, x) =

1√
n
e−sxxα+1l

(α+1)
n−1 (x) +

s− 1√
n
ψ

(α+1)
n−1 (s, x), n ≥ 1.

where γ(α+ 1, x) =
∫ x

0 e
−yyαdy is the lower incomplete gamma function.

To calculate π
(ν)
m,n(l, u), we note that π

(ν)
m,n(l, u) = π

(ν)
m,n(0, u)−π(ν)

m,n(0, l). Similar to the JDCEV

process, we can calculate π
(ν)
m,n(0, x) for x > 0 as follows.

π
(ν)
0,0 (0, x) =

γ(ν + 1, 2γx/σ2)

Γ(ν + 1)
,

π(ν)
n,n(0, x) =

1√
n
l(ν)
n (2γx/σ2)l

(ν+1)
n−1 (2γx/σ2)e−2γx/σ2 (

2γx/σ2
)ν+1

+ π
(ν+1)
n−1,n−1(0, x), n ≥ 1,

π(ν)
m,n(0, x) =

(√
ml(ν)

n (2γx/σ2)l
(ν+1)
m−1 (2γx/σ2)−

√
nl(ν)
m (2γx/σ2)l

(ν+1)
n−1 (2γx/σ2)

)
· e
−2γx/σ2

(2γx/σ2)ν+1

m− n
, m 6= n,m ≥ 1, n ≥ 1.

π
(ν)
0,n(0, x) =

e−2γx/σ2
(2γx/σ2)ν+1√

nΓ(ν + 1)
l
(ν+1)
n−1 (2γx/σ2), n ≥ 1.

Our numerical example is the price of a double barrier knock-out zero coupon bond with unit
face value under the CIR short rate model. In this case t = T so that p(x, T, T ) = 1, and also
K = 0. The barriers are specified for the 3-month LIBOR rate. That is, if the 3-month LIBOR rate
is at or above the upper barrier U or below or at the lower barrier lever L on each of the barrier
monitoring dates ti, the contract is knocked out (becomes null and void). If the LIBOR is not
outside of (L,U) on any of the barrier monitoring dates ti, the bond pays its face value (1). This
contract under continuous barrier monitoring is considered in Davydov and Linetsky (2003). We
use the same set of parameters as in this reference. The results are given in Table 4. The row with
“1” in the monitoring column corresponds to a European contract that pays one dollar at time t
if 3-month LIBOR is in the interval (L,U) at maturity, and zero otherwise. The percentages next
to the bond prices give the percentage difference between the continuously monitored contract and
the discretely monitored contract.

5 Conclusions

This paper develops an eigenfunction expansion method to solve discretely monitored first pas-
sage problems. It is applicable to one-dimensional diffusions and subordinate diffusions with jumps
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monitoring t=1 year t=3 years

1 0.9067(5.33%) 0.7183(47.09%)
monthly 0.8872(3.06%) 0.5569(14.06%)
weekly 0.8756(1.72%) 0.5236(7.23%)
daily 0.8651(0.49%) 0.5007(2.54%)
continuously 0.8608 0.4883

Table 4: The price of a double barrier knock-out zero-coupon bond with unit face value under the
CIR short rate model for different monitoring frequencies. Parameters: θ = 0.07, κ = 0.2, σ = 0.1,
x0 = 0.06, L = 0.02, U = 0.11, where L and U are the lower and upper barrier for the 3-month
LIBOR rate.

whose transition or Feynman-Kac semigroups possess eigenfunction expansions in an appropriate
L2 space. Many processes important in finance are in this class, including OU, CIR, (JD)CEV
diffusions and their subordinate versions with jumps. The method essentially represents the solu-
tion to a discretely monitored first passage problem in the form of an eigenfunction expansion with
expansion coefficients satisfying an explicitly given recursion. A range of financial applications is
given, drawn from across equity, credit, commodity, and interest rate markets. Numerical examples
demonstrate that even in the case of frequent barrier monitoring, such as daily, approximating dis-
crete first passage time problems with continuous solutions may result in unacceptably large errors
in financial applications. This highlights the relevance of the method to financial applications.
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A Supplementary Proofs

Proposition 1: After subordination, it is easy to see that Pφt ϕn(x) = e−φ(λdn)tϕn(x). Hence

TrPφt =
∞∑
n=1

(ϕn,Pφt ϕn) =
∞∑
n=1

e−φ(λdn)t.

We also note that

Pφt 1A(x) =

∫
(0,∞)

Pds 1A(x)πt(ds) =

∫
(0,∞)

∫
A
pds(x, y)m(dy)πt(ds)

=

∫
A

∫
(0,∞)

pds(x, y)πt(ds)m(dy).

Define pφt (x, y) :=
∫

(0,∞) p
d
s(x, y)πt(ds). It is clear pφt (x, y) is symmetric. We want to show it is also

jointly continuous in x and y.
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(i) γ > 0: Since φ(λ) = γλ+
∫

(0,∞)(1− e
−λs)ν(ds), we have φ(λdn) ≥ λdnγt. Hence

TrPφt =
∞∑
n=1

e−φ(λdn)t ≤
∞∑
n=1

e−λ
d
nγt = TrPdγt <∞.

Applying Theorem 1 to (Pdt )t≥0, the eigenfunctions satisfy

|ϕn(x)| ≤ eλdnγt/3
√
pd2γt/3(x, x). (16)

(16) implies

∞∑
n=1

e−φ(λdn)t |ϕn(x)ϕn(y)| ≤
√
pd2γt/3(x, x)pd2γt/3(y, y)

∞∑
n=1

e−φ(λdn)te2γtλdn/3. (17)

From the expression of φ,
∑∞

n=1 e
−φ(λdn)te2γtλdn/3 <∞. This shows∫

(0,∞)

∞∑
n=1

e−λ
d
ns|ϕn(x)ϕn(y)|πt(ds) <∞.

So we can apply the dominated convergence theorem and get

pφt (x, y) =

∫
(0,∞)

pds(x, y)πt(ds) =

∫
(0,∞)

∞∑
n=1

e−λ
d
nsϕn(x)ϕn(y)πt(ds) =

∞∑
n=1

e−φ(λdn)tϕn(x)ϕn(y).

(17) also implies
∑∞

n=1 e
−φ(λdn)tϕn(x)ϕn(y) converges u.o.c. to pφt (x, y). Since ϕn(x) is continuous

by applying Theorem 1 to (Pdt )t≥0, pφt (x, y) is jointly continuous in x and y.

(ii) The conditions in (ii) implies Pφt is trace-class, and that for x and y on compacts,
∑∞

n=1 e
−φ(λdn)t

|ϕn(x)ϕn(y)| <∞. This allows us to apply the dominated convergence theorem and the rest of the
proof is similar to γ > 0.

Theorem 2: Denote by ‖f‖∞ the L∞-norm of f . For a given t, from Theorem 1 (8), |ϕn(x)| ≤
eλnt

′/2
√
pt′(x, x) for all t′ such that 0 < t′ < t. Hence

|fn| ≤
∫
I
|f(y)ϕn(y)|m(dy) ≤ ‖f‖∞eλnt

′/2

∫
Sf

√
pt′(y, y)m(dy) <∞. (18)

(18), together with the trace-class condition and our assumption implies that
∫
I |f(y)|

∑∞
n=1 e

−λnt

|ϕn(x)ϕn(y)|m(dy) <∞. So by the dominated convergence theorem,

Ptf(x) =

∫
I
f(y)pt(x, y)m(dy) =

∫
I
f(y)

∞∑
n=1

e−λntϕn(x)ϕn(y)m(dy)

=

∞∑
n=1

e−λntϕn(x)

∫
I
f(y)ϕn(y)m(dy) =

∞∑
n=1

fne
−λntϕn(x).
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We note that∫
I

( ∞∑
n=1

|fn|e−λnt|ϕn(x)|

)2

m(dx) =

∞∑
n=1

f2
ne
−2λnt

≤ ‖f‖2∞

(∫
Sf

√
pt′(y, y)m(dy)

)2 ∞∑
n=1

e−λn(2t−t′)

which is finite by (18) and the trace-class condition. Hence∫
I
(Ptf(x))2m(dx) ≤

∫
I

( ∞∑
n=1

|fn|e−λnt|ϕn(x)|

)2

m(dx) <∞,

i.e. Ptf ∈ L2(I,m). Since

∞∑
n=N

|fn|e−λnt|ϕn(x)| ≤ ‖f‖∞
√
pt′(x, x)

∫
Sf

√
pt′(y, y)m(dy)

∞∑
n=N

e−λn(t−t′) <∞,

and pt′(x, x) is continuous in x, the convergence in (9) is u.o.c. and Ptf(x) is continuous due to the
continuity of ϕn(x). We also note that

∥∥∑∞
n=N+1 fne

−λntϕn(x)
∥∥ =

∑∞
n=N+1 f

2
ne
−2λnt → 0 as N →

∞. Therefore the convergence is also in L2.

Proposition 3: Note that ϕ2
n(x) = Aν |µ + b|x2 n!

Γ(ν+n+1) (Lνn(x))2. From Abramowitz and Stegun

(1972) 22.14.13, we have |Lνn(x)| ≤ Γ(ν+n+1)
n!Γ(ν+1) e

x
2 for x ≥ 0. Hence

ϕ2
n(x) ≤ Aν |µ+ b|x2 Γ(ν + n+ 1)

n!(Γ(ν + 1))2
eAx

−2β
.

Therefore we have

√
pt(x, x) ≤

A
ν
2

√
|µ+ b|

Γ(ν + 1)

√√√√ ∞∑
n=0

e−λnt
Γ(ν + n+ 1)

n!
xeAx

−2β/2.

Since Γ(ν+n+1)
n! ∼ nν as n→∞, condition (14) implies

∑∞
n=0 e

−λnt Γ(ν+n+1)
n! <∞ in the above. To

prove the conclusion, note that when µ + b < 0,
∫∞

0 xeAx
−2β/2m(dx) < ∞. When µ + b > 0, for

any S bounded above,
∫
S xe

−Ax−2β/2m(dx) <∞.

Proposition 4: The calculation is based on the following identities and then simplify:∫ x

0
yγe−ay

δ
L(α)
n (ayδ)dy =

(α+ 1)n
n!(γ + 1)

xγ+1
2F2

(
α+ n+ 1, γ+1

δ

α+ 1, γ+1
δ + 1

;−axδ
)
,∫ x

0
yγL(α)

n (ayδ)dy =
(α+ 1)n
n!(γ + 1)

xγ+1
2F2

(
−n, γ+1

δ

α+ 1, γ+1
δ + 1

; axδ
)
.

They can be obtained from Prudnikov et al. (1986) Eq.(1.14.3.3) and Eq.(1.14.3.7) by change
of variable. In the simplification procedure, we used 2F2 (a1, a; b1, a;x) = 1F1 (a1; b1;x) and

1F1(−n;α+ 1;x) = Γ(n+1)
(α+1)n

L
(α)
n (x).
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Proposition 5: Define S(x, h) = Px[ζ > h]. ThenDh
n(0, u) =

∫ u
0 ϕn(x)m(dx)−

∫ u
0 S(x, h)ϕn(x)m(dx).

The first term is already calculated in Proposition 4. For the second term, we note that when
µ+ b < 0,

S(x, h) =
A
ν
2
− c
|β|Γ( c

|β| + 1)√
|µ+ b|

∞∑
n=0

e−λnh

(
1

2|β|

)
n√

n!Γ(ν + n+ 1)
ϕn(x).

From this we can easily derive the expression for the second term by interchanging integration and
summation using the continuity of inner products. For µ+ b > 0,

S(x, h) = A
1

2|β|
Γ(1 + c

|β|)

Γ(ν + 1)

∞∑
m=0

e−(b+ωm)h

(
1

2|β|

)
m

m!
xe−Ax

−2β

1F1

(
1−m+

c

|β|
; ν + 1;Ax−2β

)
.

Again the second term can be calculated by interchanging integration and summation since the
above series converges uniformly on (0, u). The only thing left to compute is dm,n(0, u). By change
of variable,

dm,n(0, u) = A−ν

√
n!

|µ+ b|Γ(ν + n+ 1)

∫ Au−2β

0
yνe−yL(ν)

n (y) 1F1

(
1−m+

c

|β|
; ν + 1; y

)
dy.

We denote the above integral by I. To calculate I, we use the following identities:

d( 1F1(a, b, y))

dy
=
a

b
1F1(a+ 1; b+ 1; y), (19)

d(yb−1e−y 1F1(a, b, y))

dy
= (b− 1)e−yyb−2

1F1(a− 1; b− 1; y), (20)

dL
(ν)
n (y)

dy
= −L(ν+1)

n−1 (y), n ≥ 1, (21)

d(e−yyνL
(ν)
n (y))

dy
= (n+ 1)e−yyν−1L

(ν−1)
n+1 (y). (22)

For n = 0, by (20),

I =
1

ν + 1

(
Au−2β

)ν+1
e−Au

−2β

1F1

(
2−m+

c

|β|
; ν + 2;Au−2β

)
.

For n ≥ 1, if c
|β| = m− n− 1, 1F1

(
1−m+ c

|β| ; ν + 1; y
)

= n!Γ(ν+1)
Γ(ν+1+n)L

(ν)
n (y). Hence

I =
n!Γ(ν + 1)

Γ(ν + 1 + n)

∫ Au−2β

0
yνe−y

(
L(ν)
n (y)

)2
dy = Γ(ν + 1)πn,n(0, u).

If c
|β| 6= m− n− 1, by (20), integration by parts and (21), we get

I =
1

ν + 1

(
Au−2β

)ν+1
e−Au

−2β
L(ν)
n (Au−2β) 1F1

(
2−m+

c

|β|
; ν + 2;Au−2β

)
+

1

ν + 1

∫ Au−2β

0
yν+1e−yL

(ν+1)
n−1 (y) 1F1

(
2−m+

c

|β|
; ν + 2; y

)
dy. (23)
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By (22), integration by parts and (19), we can also obtain

I =
1

n

(
Au−2β

)ν+1
e−Au

−2β
L

(ν+1)
n−1 (Au−2β) 1F1

(
1−m+

c

|β|
; ν + 1;Au−2β

)
−

1−m+ c
|β|

n(ν + 1)

∫ Au−2β

0
yν+1e−yL

(ν+1)
n−1 (y) 1F1

(
2−m+

c

|β|
; ν + 2; y

)
dy. (24)

Multiply (23) by 1−m+c/|β|
n(ν+1) , add it to (24) and simplify give us the expression for I.

Proposition 6:

fn(l, u) =

∫ ũ

l̃
(P (x, t, T )−K)ϕn(x)m(dx)

=

∫ ũ

l̃

∞∑
m=0

pme
−λm(T−t)ϕm(x)ϕn(x)m(dx)−K

∫ ũ

l̃
ϕn(x)m(dx)

=

∞∑
m=0

pme
−λm(T−t)

∫ ũ

l̃
ϕm(x)ϕn(x)m(dx)

−K σ√
2

(
2γ

σ2

) b
2
∫ ũ

l̃
e(κ−γ)x/σ2

l(b−1)
n

(
2γx

σ2

)
2

σ2
xb−1e−

2κx
σ2 dx

=
∞∑
m=0

pme
−λm(T−t)π(b−1)

m,n (l̃, ũ)−K
√

2

σ

(
σ2

2γ

)b/2 ∫ 2γũ

σ2

2γl̃

σ2

e
−κ+γ

2γ
y
yb−1l(b−1)

n (y)dy

=

∞∑
m=0

pme
−λm(T−t)π(b−1)

m,n (l̃, ũ)−K
√

2

σ

(
σ2

2γ

) b
2

(
ψ(b−1)
n

(
κ+ γ

2γ
,
2γũ

σ2

)
− ψ(b−1)

n

(
κ+ γ

2γ
,
2γl̃

σ2

))
.

The interchange is justified by the continuity of inner products. The formula for gin((l, u)c) is proved

similarly using the identity
∫∞

0 e−syyαL
(α)
n (y)dy = Γ(α+n+1)(s−1)n

n!sα+n+1 . The calculation of ψ
(ν)
n (s, x) can

be done similarly as in Lim et al. (2012).
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