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Abstract

We develop an eigenfunction expansion based value iteration algorithm to solve discrete time infinite
horizon optimal stopping problems for a rich class of Markov processes that are important in
applications. We provide convergence analysis for the value function and the exercise boundary,
and derive easily computable error bounds for value iterations. As an application we develop a fast
and accurate algorithm for pricing callable perpetual bonds under the CIR short rate model.
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1. Introduction

In this paper we consider infinite horizon optimal stopping problems with stopping allowed
at a discrete set of times. Some applications in practice are naturally casted in this framework.
A prominent example in finance is the callable perpetual bonds (a.k.a. callable consol bonds or
consols). Consols are bonds that pay the periodic stated coupon in perpetuity (without stated
maturity) unless they are called by the issuer. The call option embedded in the bond allows the
issuer to call (buy back) the bond from the bond holders at the pre-specified call price, on a discrete
set of dates. This gives the issuer an opportunity to refinance the bond should the interest rates
fall. The first issuance of consols dates back to the middle of the eighteen century by the United
Kingdom, and consols are still issued by various governments and large corporations today.

The class of processes we consider is a rich family of Markov processes, namely symmetric Hunt
processes1 taking values in Borel subsets of the real line, such that the corresponding Feynman-Kac
(FK) semigroup, with the discount rate being a function of the Markov state, is represented by
an eigenfunction expansion when defined on L2(E,m), where E is the state space of the Markov
process, and m is the symmetrizing measure. Examples of Markov processes in this class include a
number of one-dimensional diffusions important in applications, such as Ornstein-Uhlenbeck (OU)
and Cox-Ingersoll-Ross (CIR), birth-and-death (BD) processes, as well as jump-diffusions and pure
jump processes and continuous-time Markov chains obtained by time changing these diffusions and
BD processes with Lévy subordinators. Applications of these processes have been found in a variety
of financial markets and areas outside finance (see Li and Linetsky (2013) for a survey).
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1We refer the readers to Fukushima et al. (1994) for symmetric Markov processes and Hunt processes.
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For the finite horizon optimal stopping problem with stopping at a discrete set of dates, Li
and Linetsky (2013) have recently developed an eigenfunction expansion approach to solve it. The
main idea of Li and Linetsky (2013) is to represent the FK operator (see Eq.(1) for the definition)
by its eigenfunction expansion in L2(E,m), prove that when the payoff is in L2(E,m), the value
function of the optimal stopping problem is also in L2(E,m), and construct an explicit recursion
for the expansion coefficients of the value function. Li and Linetsky (2013) applies the method
to valuing commodity futures options and real options in time-changed OU models. Lim et al.
(2012) applies the method to valuing finite maturity callable bonds in diffusion and time-changed
diffusion interest rate models. Li and Linetsky (2013) and Lim et al. (2012) provide computational
experiments illustrating the superior computational performance of the eigenfunction expansion
method for finite-horizon problems compared to alternative methods.

Infinite horizon optimal stopping problems in a continuous time setting for one-dimensional
Markov processes can often be solved (semi-)analytically. See Dayanik and Karatzas (2003) and
Dayanik (2008) for diffusions, and Christensen et al. (2013) for general Hunt processes. In a
discrete time setting, in general, when solutions to finite-horizon problems are available, infinite-
horizon problems can be solved by value iterations, which is an iterative procedure based on the
convergence from finite horizon problems to the infinite horizon one as the maturity goes to infinity
(see e.g. Bertsekas (1995) and Peskir and Shiryaev (2006)). However, in order to implement value
iterations, issues of convergence, rate of convergence, and error bounds have to be addressed. From
a practical point of view, error bounds are particularly important as they tell us when to stop the
iteration with the error being properly controlled. Peskir and Shiryaev (2006); Shiryaev (1978)
provides conditions for convergence of value iterations in optimal stopping problems for general
Markov processes. However, issues of convergence rates and error bounds are not considered there.
Bertsekas (1995) studies convergence issues in general control problems for Markov chains when
payoffs are either bounded or positive or negative, and provides estimates for convergence rates
and error bounds under bounded payoffs. In contrast, for the class of symmetric Hunt processes
we consider, it is more natural to consider payoffs in L2(E,m), which do not necessarily satisfy
the assumptions in Bertsekas (1995). Furthermore, the previous literature on value iterations has
been primarily restricted to discounting at the constant interest rate. In contrast, in financial
applications with stochastic interest rates one is lead to consider random discounting.

The main methodological contributions of the present paper are Theorems 1 and 2 that establish
the following key results in our symmetric Hunt process framework, subject to appropriate regularity
assumptions. (1) The sequence of value functions of the finite-horizon problems converges to the
value function of the infinite-horizon problem both under the L2(E,m) norm and uniformly on
compacts. This result supplements and strengthens the general pointwise convergence result in
Peskir and Shiryaev (2006). (2) The convergence rate for value functions is Q-linear under the
L2-norm and R-linear pointwise. The convergence rate for optimal stopping boundaries is R-
linear (cf. Nocedal and Wright (2006) for the definition of Q- and R-linear). (3) Theorems 1
and 2 give explicit and easy to compute error bounds when approximating the value function and
optimal stopping boundary of the infinite-horizon problem with those of a finite-horizon problem.
These bounds provide an explicit termination algorithm for value iterations. To the best of our
knowledge, convergence rates and error bounds for optimal stopping boundaries have not been
considered previously in the literature.

We note that in a related work Tsitsiklis and Van Roy (1999) studies value iterations for
ergodic Markov processes under L2 payoffs. However, our setting and assumptions are substantially
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different from theirs. We do not require ergodicity, but merely the symmetry of the Markov process.
The symmetrizing measure m does not have to be a finite measure, thus including symmetric
Markov processes without stationary distributions in our set-up. For ergodic Markov processes,
Tsitsiklis and Van Roy (1999) proves convergence of values iterations under the L2 norm. Under
our assumptions, we obtain stronger results and show that convergence is, in fact, uniform on
compacts. This allows us to easily obtain the continuity of the value function in our set-up. We
also derive easily computable pointwise error bounds for the value function, which are more relevant
for financial applications than error bounds under the L2 norm, since in financial applications we
are typically interested in the value of a security for a given value of the underlying financial
variable. Furthermore, analytically and computationally, our expansion in the eigenfunctions of
the Feynman-Kac operator is entirely different from the regression-based Monte Carlo method of
Tsitsiklis and Van Roy (1999).

To illustrate the computational performance of our method, we apply our theory and develop a
fast and accurate computational algorithm for pricing consols under the popular Cox-Ingersoll-Ross
(CIR) interest rate model and show that under the error tolerance of one basis point for both the
value function and the optimal stopping boundary, the average computation time is 0.037 seconds
per bond, across a wide range of parameters. Consols have been widely studied in the finance
literature (e.g., Brennan and Schwartz (1979), Brennan and Schwartz (1982), Delbaen (1993),
Duffie et al. (1995), Dybvig et al. (1996)), where simplifying assumptions of continuous coupon
payments and calls have often been made. Our method allows us to determine the optimal call
policy and value callable consols in a more realistic setting with discrete periodic coupon payments
and discrete call dates, including the so-called notice periods. Further applications of our method
include infinite-horizon real option problems for mean-reverting assets studied in economics (Dixit
and Pindyck (1994)).

2. The Markovian Set-Up and Assumptions

Let E be a Borel subset of R, B(E) denote the Borel σ-algebra on E, and (Xt)t≥0 an E-valued
conservative time-homogeneous Hunt process defined on a filtered probability space (Ω,F , (Ft)t≥0,
(Px)x∈E) (roughly speaking, a Hunt process is a right-continuous strong Markov process that is
also assumed to be quasi left-continuous; see Li and Linetsky (2013) for definitions and references).
To simplify notation here we assume that the process is conservative to avoid dealing with killing,
which can be done following the discussion in Li and Linetsky (2013). Let r(x) be a nonnegative
B(E)-measurable function. The corresponding Feynman-Kac operator that includes discounting
at the (stochastic) interest rate rt = r(Xt) and taking the expectation is defined by

Prt f(x) := Ex
[
exp

(
−
∫ t

0
r(Xu)du

)
f(Xt)

]
. (1)

Discounting at a constant rate r is a special case where Prt = e−rtPt, where (Pt)t≥0 with Ptf(x) =
Ex [f(Xt)] is the transition semigroup of X. We assume that there is a measure m with full support
on E such that the FK semigroup (Prt )t≥0 defined on L2(E,m) with the inner product (f, g) :=∫
E f(x)g(x)m(dx) and norm ‖f‖ :=

√
(f, f) is a strongly continuous semigroup of symmetric

contractions. The symmetry property means that (f,Prt g) = (Prt f, g) for all f, g ∈ L2(E,m) and
all t. The following assumption ensures the existence of an eigenfunction expansion with desirable
convergence properties for financial applications.
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Assumption 1. The FK semigroup (Prt )t≥0 is trace class. This ensures that Prt admits a symmetric
kernel pt(x, y) = pt(y, x) with respect to m, i.e. Prt f(x) =

∫
E pt(x, y)f(y)m(dy) for any f ∈

L2(E,m). We further assume that pt(x, y) is jointly continuous in x and y.

Under Assumption 1, Proposition 1 and 2 in Li and Linetsky (2013) hold. In particular we have
the eigenfunction expansion for any f ∈ L2(E,m),

Prt f(x) =
∞∑
n=1

e−λntfnϕn(x), fn = (f, ϕn) for any t > 0,

with convergence both in the L2-norm and uniformly on compacts in x. ϕn(x) are eigenfunctions
of the operators Prt with the eigenvalues e−λnt, Prt ϕn(x) = e−λntϕn(x), and are eigenfunctions of
the infinitesimal generator Gr of the FK semigroup with eigenvalues −λn, Grϕn(x) = −λnϕn(x).
Under our assumptions, λn are non-negative and increasing and satisfy

∑∞
n=1 e

−λnt < ∞ for all
t > 0 (the trace-class condition). The eigenfunctions (ϕn)n≥1 form a complete orthonormal basis
in L2(E,m). Moreover, under Assumption 1 each ϕn is continuous, and |ϕn(x)| ≤ eλnt/2

√
pt(x, x)

for all t > 0. The function Prt f(x) is also continuous in x. Assumption 1 is the same as in Li and
Linetsky (2013) for finite-horizon problems.

To ensure convergence of value iterations for infinite-horizon problems in this paper, we impose
an additional assumption that does not appear in Li and Linetsky (2013).

Assumption 2. λ1 > 0.

When the discount rate is constant and positive r > 0, this condition is satisfied automatically
since in this case λ1 ≥ r. This condition is also satisfied in all popular positive stochastic interest
rate models which satisfy Assumption 1, including the CIR model.

3. Optimal Stopping in Infinite Horizon by Value Iterations

The decision maker receives the scheduled payments g(Xih) at each payment date in the discrete
set {0, h, 2h, · · · }, h > 0. If the decision maker stops the game at time kh, he receives the terminal
payoff f(Xkh), along with the final scheduled payment g(Xhk). After the game is stopped, no more
scheduled payments are made. Functions f and g are assumed to be B(E)-measurable. Let Th be
the collection of all (Ft)t≥0-stopping times that take values in the discrete set {0, h, 2h, · · · }. The
decision maker maximizes the present value of his cash flow stream. The value function can then
be written as:

V (x) = sup
τ∈Th

Ex

τ/h∑
i=0

exp

(
−
∫ ih

0
r(Xu)du

)
g(Xih) + exp

(
−
∫ τ

0
r(Xu)du

)
f(Xτ )

 , x ∈ E.

Assumption 3. g, f ∈ L2(E,m).

Li and Linetsky (2013) considers this problem in finite horizon with maturity Nh, terminal
payoff f , and without the intermediate scheduled payments g prior to maturity. To carry out value
iterations, we are interested in computing a sequence of solutions to the finite horizon problems
with N = 1, 2, · · · . Let CN (x) and V N (x) be the continuation value and the value function at time
zero for a problem with finite horizon Nh. Extending the arguments in Li and Linetsky (2013)
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to include g, we can show that the functions CN and V N are in L2(E,m) and that CN (x) has
the eigenfunction expansion CN (x) =

∑∞
n=1 c

N
n e
−λnhϕn(x) with the coefficients cNn satisfying the

following recursion in N for each n ≥ 1:

c1n = gn + fn, c
N
n = gn + fn(SN−1) +

∞∑
m=1

cN−1m e−λmhπm,n
(
CN−1

)
, N ≥ 2,

where CN := {x ∈ E : CN (x) > f(x)} is the continuation region at time zero for the problem
with horizon Nh, SN := {x ∈ E : CN (x) ≤ f(x)} is the stopping region at time zero for the same
problem, and πm,n(A) := (1Aϕm, ϕn), fn(A) := (1Af, ϕn) for m,n ≥ 1 for A ⊆ E (1A(x) is the
indicator of the set A). The computational implementation of this recursion can be accomplished
similarly to the recursion in Li and Linetsky (2013). The next theorem establishes convergence
of value iterations and explicitly gives rates of convergence and error bounds for approximating
the value function of the infinite horizon problem by the value function of the corresponding finite
horizon problem.

Theorem 1. Let V (x) be the value function of the infinite-horizon problem and define C(x) :=

PrhV (x) (interpreted as the continuation value of the infinite-horizon problem), αh := e−λ1h

1−e−λ1h ,

βh := 1
1−e−λ1h and mh(x) := inf0<u<h

(√
p2u(x, x)

∑∞
n=1 e

−λn(h−u)
)

. Under Assumptions 1, 2 and

3, the following results hold (recall that ‖ · ‖ denotes the L2-norm w.r.t. m):

(i) V N → V and CN → C in the L2-norm with the Q-linear convergence rate, and

‖V N − V ‖ ≤ e−λ1h‖V N−1 − V ‖, ‖CN − C‖ ≤ e−λ1h‖CN−1 − C‖, (2)

‖V N − V ‖ ≤ αh‖V N−1 − V N‖, ‖CN − C‖ ≤ αh‖CN−1 − CN‖. (3)

(ii) V N → V and CN → C uniformly on compacts with the R-linear convergence rate, and

|V N (x)− V (x)| ≤ |CN (x)− C(x)| ≤ βh‖CN−1 − CN‖mh(x). (4)

(iii) C(x) =
∑∞

n=1 cne
−λnhϕn(x) with cn = limN→∞ c

N
n uniformly in n.

(iv) C(x) is continuous. V (x) is continuous if g(x) and f(x) are continuous.

To prove Theorem 1, we need the following lemma.

Lemma 1. Under Assumption 1, for any f ∈ L2(E,m), |Prhf(x)| ≤ ‖f‖mh(x), ‖Prhf‖ ≤ e−λ1h‖f‖.

Proof. By Cauchy-Schwartz inequality we have |fn| ≤ ||f || · ||ϕn|| = ||f ||. Assumption 1 implies for
any u ∈ (0, h), |ϕn(x)| ≤ eλnu

√
p2u(x, x). Hence we have for all u ∈ (0, h),

|Prhf(x)| =

∣∣∣∣∣
∞∑
n=1

fne
−λnhϕn(x)

∣∣∣∣∣ ≤
∞∑
n=1

‖f‖e−λnh|ϕn(x)| ≤ ‖f‖
√
p2u(x, x)

∞∑
n=1

e−λn(h−u).

Thus, |Prhf(x)| ≤ ‖f‖mh(x). The trace-class condition guarantees mh(x) is finite. To prove the
second inequality, we note that ‖Prt f‖2 =

∑∞
n=1 e

−2λntf2n ≤ e−2λ1t
∑∞

n=1 f
2
n = e−2λ1t‖f‖2.

5



Proof of Theorem 1. We first verify that under our assumptions the following holds for all x ∈ E

Ex

[ ∞∑
i=1

exp

(
−
∫ ih

0
r(Xu)du

)
(|g(Xih)|+ |f(Xih)|)

]
<∞. (5)

As in the proof of Lemma 1, this expectation is bounded by

∞∑
i=1

(‖g‖+ ‖f‖)
√
ph(x, x)

∞∑
n=1

e−λn(i−1/2)h = (‖g‖+ ‖f‖)
√
ph(x, x)

∞∑
n=1

eλnh/2
∞∑
i=1

e−λnih

= (‖g‖+ ‖f‖)
√
ph(x, x)

∞∑
n=1

e−λnh/2/(1− e−λnh) ≤ (‖g‖+ ‖f‖)
1− e−λ1h

√
ph(x, x)

∞∑
n=1

e−λnh/2 <∞.

Above we used Assumption 2, λn ≤ λn+1, and the trace-class condition. The result (5) allows us to
apply Peskir and Shiryaev (2006) Theorem 1.6 which shows that V (x) = g(x) + max{f(x), C(x)}.
Part (i): We first note the inequality |max{a, b} −max{a, c}| ≤ |b− c|. This gives

|V N (x)− V (x)| = |max{f(x), CN (x)} −max{f(x), C(x)}| ≤ |CN (x)− C(x)|.

Hence ‖V N − V ‖ ≤ ‖CN − C‖. By Lemma 1,

‖V N − V ‖ ≤ ‖CN − C‖ = ‖PrhV N−1 − PrhV ‖ ≤ e−λ1h‖V N−1 − V ‖ ≤ e−λ1h‖CN−1 − C‖. (6)

Repeating this procedure gives ‖V N − V ‖ ≤ ‖CN − C‖ ≤ (e−λ1h)N‖g + f − V ‖. Letting N → ∞
we see that V N → V and CN → C under the L2-norm. To prove (3), we note that for any M > 0,

‖V N − V ‖ = ‖V N − V N+1 +
M∑
k=1

(V N+k − V N+k+1) + V N+M+1 − V ‖

≤ ‖V N − V N+1‖+

M∑
k=1

‖V N+k − V N+k+1‖+ ‖V N+M+1 − V ‖

≤ ‖V N − V N+1‖+
M∑
k=1

(e−λ1h)k‖V N − V N+1‖+ ‖V N+M+1 − V ‖

Letting M → ∞, we have ‖V N − V ‖ ≤ βh‖V N − V N+1‖ ≤ αh‖V N−1 − V N‖. The last inequality
is obtained from (6) by replacing V with V N+1. Similarly we can prove the result for CN and C.
Part (ii): The first inequality is already shown in (i). From Lemma 1 and its proof,

|CN (x)−C(x)| = |PrhV N−1(x)−PrhV (x)| ≤ ‖V N−1−V ‖mh(x) ≤ ‖V N−1−V ‖
√
ph(x, x)

∞∑
n=1

e−λnh/2.

Since ph(x, x) is continuous and ‖V N−1 − V ‖ → 0 as N → ∞, V N → V and CN → C uniformly
on compacts. Since ‖V N−1 − V ‖ ≤ (e−λ1h)N−1‖g + f − V ‖, the convergence rate is R-linear. The
last inequality in (4) follows from ‖V N−1 − V ‖ ≤ βh‖CN−1 − CN‖ shown in (i).
Part (iii): Part (i) shows that V ∈ L2(E,m). Since C(x) = PrhV (x), we can write C(x) =∑∞

n=1 cne
−λnhϕn(x), where cn = (C,ϕn). Since |cNn −cn| = |(CN , ϕn)−(C,ϕn)| = |(CN−C,ϕn)| ≤

‖CN − C‖ and CN → C in L2, we have limN→∞ c
N
n = cn uniformly in n.

Part (iv): Each CN (x) is continuous as shown in Li and Linetsky (2013). The continuity of C(x)
follows from uniform convergence on compacts. When f(x) and g(x) are continuous, the continuity
of V (x) is then immediate from the continuity of C(x).
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Theorem 1 shows that, under our assumptions, the sequence of value functions of finite-horizon
problems with increasing maturities converges both in L2 and uniformly on compacts to the value
function of the infinite-horizon problem. We note that when the discount rate r is constant, the
constant in (2) is e−rh. These types of results have appeared in the literature on infinite-horizon
problems with constant discounting. Since λ1 ≥ r, our result improves the standard result for
constant discounting, and also extends it to stochastic interest rates. Using the error bounds in
(3), we can determine the termination level in the value iteration algorithm to achieve target error
tolerance for the value function.

We next turn to the optimal stopping region. Let S and C denote the stopping and continuation
region of the infinite-horizon problem respectively (S = {x ∈ E : f(x) ≥ C(x)} and C = E\S).
SN is the stopping region for the corresponding finite-horizon problems. Following the arguments
in Bertsekas (1995) section 3.4, it can be shown that SN ⊇ SN+1 and limN→∞ SN = S. A point
x ∈ E is a boundary point of S if f(x) = C(x), and it is isolated if there exists a neighborhood of
x∗ such that there are no other boundary points in that neighborhood. The next theorem shows
convergence rate and error bounds for isolated boundary points. In applications S and SN are
typically finite unions of disjoint intervals and, hence, the boundary points are isolated.

Theorem 2. Suppose E ⊆ R is a finite or infinite interval, and S is nonempty. Let x∗ be an
isolated boundary point of S, and x∗N be the boundary point of SN converging to x∗. Suppose
Assumption 1, 2 and 3 hold, and further assume both f and C are continuously differentiable in a
neighborhood of x∗, and f ′(x∗) 6= 0. For large enough N , if x∗N 6= x∗ then

|x∗N−x∗| = |CN (x∗N )−C(x∗N )|/|f ′(ξN )−C ′(ηN )| ≤ βh‖CN−1−CN‖mh(x∗N )/|f ′(ξN )−C ′(ηN )| (7)

for some ξN and ηN between x∗N and x∗. If f ′(x∗) 6= C ′(x∗), the convergence rate is R-linear.

Proof. Since x∗ is isolated and f ′ is continuous, we can find δ > 0 small enough such that for
any x ∈ (x∗ − δ, x∗ + δ), f ′(x) 6= 0 and f(x) 6= C(x) for x 6= x∗. Since limN→∞ x

∗
N = x∗, for N

sufficiently large, x∗N ∈ (x∗ − δ, x∗ + δ). We will only consider such x∗N below. By the Mean Value
Theorem, we have f(x∗N ) − f(x∗) = f ′(ξN )(x∗N − x∗) for some ξN between x∗N and x∗. Similarly,
C(x∗N )− C(x∗) = C ′(ηN )(x∗N − x∗) for some ηN between x∗N and x∗. Since f ′(ξN ) 6= 0 we have

x∗N − x∗ =
f(x∗N )− f(x∗)

f ′(ξN )
=
CN (x∗N )− C(x∗)

f ′(ξN )
=
CN (x∗N )− C(x∗N ) + C(x∗N )− C(x∗)

f ′(ξN )

=
CN (x∗N )− C(x∗N )

f ′(ξN )
+
C ′(ηN )

f ′(ξN )
(x∗N − x∗) (8)

We note that f ′(ξN ) 6= C ′(ηN ). If this was the case, then (8) implies CN (x∗N ) = C(x∗N ) and
hence f(x∗N ) = C(x∗N ). Since x∗N 6= x∗, this contradicts that x∗ is an isolated boundary point in
(x∗ − δ, x∗ + δ). Rearranging of the terms in (8) and the proof of Theorem 1 part (ii) gives:

|x∗N − x∗| =
|CN (x∗N )− C(x∗N )|
|f ′(ξN )− C ′(ηN )|

≤
(e−λ1h)N−1‖g + f − V ‖

√
ph(x∗N , x

∗
N )
∑∞

n=1 e
−λnh/2

|f ′(ξN )− C ′(ηN )|
.

Finally, if f ′(x∗) 6= C ′(x∗), limN→∞

√
ph(x

∗
N ,x
∗
N )

|f ′(ξN )−C′(ηN )| =

√
ph(x∗,x∗)

|f ′(x∗)−C′(x∗)| < ∞ implies convergence is
R-linear.

7



In many applications, the eigenfunctions are differentiable. Under Assumption 1, if for any
compact interval J ⊆ E,

∑∞
n=1 e

−λnh‖ϕ′n|J‖∞ < ∞ (‖ · ‖∞ is the L∞ norm), then it can be
shown that Prhf(x) is continuously differentiable in E for any f ∈ L2(E,m). This shows the
smoothness of C(x) (also CN (x)) since C(x) = PrhV (x) (CN (x) = PrhV N−1(x)). Furthermore
C ′(x) =

∑∞
n=1 cne

−λntϕ′n(x) and (CN (x))′ =
∑∞

n=1 c
N
n e
−λntϕ′n(x) (we write (CN (x))′ for the deriva-

tive of CN ). See Li and Linetsky (2013) Proposition 5.4 for a result in this form. In practice, when
N is large enough, the term f ′(ξN ) − C ′(ηN ) in the error bound can be well approximated by
f ′(x∗N ) − (CN (x∗N ))′. The condition f ′(x∗) 6= C ′(x∗) is also satisfied in typical financial applica-
tions. We remark that the knowledge of f ′(x∗) 6= C ′(x∗) is not required to apply our result for
the error bound. Furthermore, if one observes the error bound decays as N increases, then we
must have f ′(x∗) 6= C ′(x∗), otherwise the right-hand-side of eq.(7) blows up to infinity. Hence in
practice, f ′(x∗) 6= C ′(x∗) can be verified numerically.

4. A Numerical Experiment: Pricing Callable Perpetual Bonds

We assume the bond issuer can make the decision to call the bond at any one time in the set
{0, h, 2h, · · · }, where h > 0 is some time period. If the decision is made to call the bond at time ih,
the bond is redeemed for the call price K at time ih + δ (δ ≥ 0). The delay δ is called the notice
period (the bond issuer makes the decision to call and issues a call notice to the bond holders at time
ih, and redeems the bond at time ih+ δ after the notice period). The bond pays periodic coupons
of C > 0 dollars at coupon times ih + δ, i = 0, 1, · · · , until the bond is called (or in perpetuity, if
the bond is never called). If the decision to call is made at time ih, then the last coupon is paid at
time ih+ δ, along with the call price K.

We assume that under the risk-neutral probability measure the short rate rt follows a CIR
square-root diffusion (Cox et al. (1985)), drt = κ(θ − rt) + σ

√
rtdBt, r0 > 0, κ, θ, σ > 0, B is a

standard Brownian motion. The speed density of the CIR diffusion is m(x) = (2/σ2)xb−1e−2κx/σ
2
,

where b = 2κθ/σ2. The CIR SDE has a unique strong solution starting from any positive value.
If b ≥ 1, the solution does not hit zero (zero is an inaccessible boundary point for the diffusion
process). If b < 1, the solution can hit zero, but is instantaneously reflected from zero (zero is an
instantaneously reflecting boundary). In the former case E = (0,∞). In the latter case E = [0,∞).
Explicit expressions for the eigenvalues and eigenfunctions of the CIR FK semigroup are found by
Davydov and Linetsky (2003) (see also Gorovoi and Linetsky (2004), Linetsky (2004) and Linetsky
(2008)). In this case Assumptions 1 and 2 can be verified directly, and Prt f(x) is continuously
differentiable in x for all f ∈ L2(E,m) and t > 0.

For callable bonds the decision maker is the bond issuer who pays the coupons at times ih+ δ.
Thus, the payments at the call decision times ih have present values g(x) = −CP (x, δ), where
P (x, δ) is the price of a zero-coupon bond at time 0 with unit face value and maturity δ given r0 = x.
The terminal call payment is f(x) = −KP (x, δ). The negative signs indicate that the decision
maker is making the payments. Hence, the value function is also negative. It is straightforward to
show that g, f ∈ L2(E,m), hence Assumption 3 holds. The issuer calls the bond back when the
short rate declines to a low enough value. Proposition 3.2 in Lim et al. (2012) shows that, for the
finite horizon problem (finite-maturity callable bond), the non-linear equation f(x) = CN (x) has
at most one solution in E. If it exists, we denote it by x∗N . It can be found by a numerical root
finding algorithm, such as bisection. In this case SN = (0, x∗N ] or [0, x∗N ] and CN = (x∗N ,∞). If
f(x) = CN (x) has no solution, which can be shown to be equivalent to |fN (0)| > |CN (0)|, then
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SN ′ = ∅ for all N ′ ≥ N , and hence S = ∅. In this case the exercise boundary converges in
finite number of steps. Closed-form expressions for gn, fn(SN ) and πm,n(CN ), as well as recursive
procedures to calculate them, can be found in Lim et al. (2012), where the algorithm is given to
solve the finite-horizon callable bond problem.

To assess the computational performance of our value iteration algorithm, we consider a callable
perpetual bond with unit face value, h = 1 year and δ = 1/6 year. The CIR process parameters and
the coupon C and call price K are randomly sampled from uniform distributions: θ ∼ U [0.03, 0.07],
κ ∼ U [0.1, 0.5], σ ∼ U [0.1, 0.4], r0 = x0 ∼ U [0.005, 0.05], C ∼ U [θ − 0.02, θ + 0.02] given θ,
K ∼ U [1.02, 1.07]. Here U [a, b] denotes the uniform distribution on [a, b]. We generated a sample
of 1,000 parameter combinations and valued 1,000 perpetual callable bonds with these parameters.
In our valuation algorithm, in each iteration the infinite series were truncated until a given relative
error tolerance level was reached. Bisection was used to solve the non-linear equation for the
boundary. The error tolerance for the series truncation and bisection was set to 1.0E-10 in our
computation. In each iteration we evaluated our error bounds in (4) and (7), with the latter one
approximated as discussed above. To calculate mh(x), the Brent’s method for minimization was
used (see Brent (1973)). We required accuracy to the fourth decimal place for both the bond value
function and the optimal call boundary. (For a unit face value bond, the accuracy to the fourth
decimal corresponds to the relative error on the order of 0.01%, or one basis point. This accuracy
level is sufficient in applications.) We stopped the value iterations algorithm when the error bounds
for both the value function and the optimal call boundary became smaller than the required error
tolerance.

The algorithm was coded in C++ and executed on a laptop computer with Intel Core 2 i5-
2450M CPU (2.50GHz, 4.00GB RAM) under Linux. For this sample of 1,000 bonds, on average
it took 80 iterations to converge to required accuracy with the average computation time of 0.037
seconds. This CPU time includes both the time to perform value iterations, as well as minimization
to find mh(x) to compute our error bound. Our explicit error bounds guarantee that the value
iterations algorithm is terminated only after it attains the required level of accuracy. To illustrate
the optimal call boundary, Figure 1 shows dependence of the boundary x∗ on the call price K for
a particular set of parameters.
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Figure 1: Exercise boundary x∗ vs. call price K. θ = 0.05, κ = 0.2, σ = 0.25, C = 0.05, h = 1, δ = 1/6.
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