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Abstract
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processes, and jump-diffusions and continuous-time Markov chains obtained by time chang-
ing diffusions and BD processes with Lévy subordinators. When the expectation operator
has a purely discrete spectrum in the Hilbert space of square-integrable payoffs, the val-
ue function of a discrete optimal stopping problem has an expansion in the eigenfunctions
of the expectation operator. The Bellman’s dynamic programming for the value function
then reduces to an explicit recursion for the expansion coefficients. The value function of
the continuous optimal stopping problem is then obtained by extrapolating the value func-
tion of the discrete problem to the limit via Richardson extrapolation. To illustrate the
method, the paper develops two applications: American-style commodity futures options
and Bermudan-style abandonment and capacity expansion options in commodity extraction
projects under the subordinate Ornstein-Uhlenbeck model with mean-reverting jumps with
the value function given by an expansion in Hermite polynomials.
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1 Introduction

Optimal stopping problems are ubiquitous in financial engineering: exercise of American-
and Bermudan-style options on stocks, stock indexes, currencies, commodities, and fixed in-
come instruments, issuer’s decision to call a callable bond, bond holder’s decision to convert a
convertible bond, real options in physical investment projects, such as abandonment, capacity
expansion, contraction, extension, and optimal investment and divestment timing in trading
strategies are all examples of timing decisions in finance modeled by optimal stopping of a
stochastic process. In financial applications, the underlying stochastic process modeling state
variables of interest is usually a continuous-time Markov process, while the stopping decision can
be made either continuously in time (American-style exercise) or discretely in time (Bermudan-
style exercise). The mathematical literature on optimal stopping of continuous-time Markov
processes, as well as on financial applications, is very extensive. We do not attempt to survey it
here and refer the reader to the monographs Shiryaev (1978) and Peskir and Shiryaev (2006) for
mathematical foundations and Karatzas and Shreve (1998), Detemple (2006) and Boyarchenko
and Levendorskĭi (2007b) for financial applications. Extensive bibliographies can be found in
these monographs.

In finite horizon, virtually no non-trivial optimal stopping problem is known to admit an an-
alytical solution for the optimal stopping policy and the value function, and numerical methods
have to be used. When the stopping decision is made at discrete times, the optimal stopping
problem can be solved via Bellman’s dynamic programming. At the end of the finite horizon,
the value function is equal to the terminal payoff. At each previous decision time, the value
function is calculated as the maximum of the payoff or reward and the continuation value,
with the latter equal to the conditional expectation of the discounted value function at the
previous step, given the value of the state variables at the current step. The conditional expec-
tation involved is computed numerically via a variety of numerical methods, including Markov
chain approximations of the underlying Markov process (e.g. Kushner and Dupuis (2001)),
binomial and trinomial trees popular in finance (e.g. Nelson and Ramaswamy (1990), Broadie
and Detemple (1996)), solving numerically partial differential equation for diffusions or partial
integro-differential equations for jump-diffusions (e.g. Achdou and Pironneau (2005) for a sur-
vey of numerical PDE methods in finance), fast Fourier and Hilbert transform methods for Lévy
processes (Feng and Lin (2009)), fast Gauss transform methods for processes with transition
functions given by mixtures of Gaussians (Broadie and Yamamoto (2003)), and Monte Carlo
simulation for high-dimensional problems where deterministic numerical schemes suffer from
the curse of dimensionality (e.g. Broadie and Glasserman (2004) and Glasserman (2004)).

This paper proposes a new approach to solve finite-horizon optimal stopping problems for
an important class of Markov processes, m-symmetric Hunt processes taking values in a Borel
subset of the real line. Roughly speaking, Hunt processes are strong Markov processes with
sample paths that are right continuous with left limits and quasi-left-continuous. A Markov
process is said to be m-symmetric if there exists a measure m on its state space E such that
the transition function of the Markov process is symmetric with respect to m (see Eq.(2.1)).
If a Markov process is a Hunt process and m-symmetric, then its transition function defines a
symmetric semigroup in the Hilbert space L2(E,m) of functions square integrable with respect
to its symmetry measure m. Examples of m-symmetric Hunt processes taking values in a
Borel subset of the real line include one-dimensional diffusions, where E is a (finite or infinite)
interval, birth-death (BD) processes, where E is a discrete set of points, and jump-diffusions
and continuous-time Markov chains (CTMC) obtained by stochastically time changing diffusions
and BD processes with Lévy subordinators.

When the transition semigroup operator defined in L2(E,m) by the transition function of
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an m-symmetric Hunt process has a purely discrete spectrum, the value function of a discrete
optimal stopping problem with square-integrable payoffs has the expansion in its eigenfunctions.
Under some additional regularity conditions, this eigenfunction expansion converges not only in
L2, but also uniformly on compacts in the state variable. The Bellman’s dynamic programming
for the value function then reduces to an explicit recursion for the L2 expansion coefficients of
the value function. This result, together with the explicit form of this recursion, constitutes
the main theoretical result of this paper (Theorem 3.2). Furthermore, the value function of
the continuous optimal stopping problem is then obtained as the limit of the sequence of value
functions for discrete optimal stopping problems (Theorem 4.1). Computationally, it can be
evaluated by extrapolating the value function of the discrete problem to the limit via Richardson
extrapolation (we note that Richardson extrapolation has been first introduced to option pricing
by Geske and Johnson (1984) and studied by Broadie and Detemple (1996) in the context of
binomial trees). The present paper can be thought of as the extension of the eigenfunction
expansion approach for diffusions and European options (Davydov and Linetsky (2003); see
also Linetsky (2004), Linetsky (2008) and the bibliography therein) to optimal stopping and
options with early exercise under more general Markov processes.

Examples of symmetric Hunt processes taking values in a Borel subset of the real line that
possess purely discrete spectra and eigenfunctions known in closed form in terms of orthogonal
polynomials include Ornstein-Uhlenbeck (OU) processes with eigenfunctions expressed in terms
of Hermite polynomials, Cox-Ingersoll-Ross (CIR) and constant elasticity of variance (CEV)
diffusions with eigenfunctions expressed in terms of Laguerre polynomials, Jacobi diffusions
with eigenfunctions expressed in terms of Jacobi polynomials, and birth-death processes with
eigenfunctions expressed in terms of families of discrete polynomials (references can be found in
section 2 of this paper). Furthermore, the remarkable fact is that stochastically time changing
(subordinating) a Markov process possessing an eigenfunction expansion with a Lévy subordina-
tor yields another Markov process with generally very different sample path behavior, but with
the same eigenfunctions and new eigenvalues λφn = φ(λn), where φ(λ) is the Laplace exponent
of the Lévy subordinator appearing in the Lévy-Khintchine theorem, and λn are the eigenvalues
of the (negative of) the infinitesimal generator of the original Markov process (this important
observation goes back to Bochner (1949), who originally introduced the concept of time changes
now known as Bochner’s subordination and observed in Eq.(11) that the subordination preserves
the form of the eigenfunction expansion with the old eigenvalues λn replaced with the new eigen-
values φ(λn)). In particular, subordinating diffusions leads to jump-diffusion and pure jump
processes with state-dependent jumps (see Albanese and Kuznetsov (2004), Barndorff-Nielsen
and Levendorskĭi (2001), Boyarchenko and Levendorskĭi (2007a), Mendoza et al. (2010), Li
and Linetsky (2012), Lim et al. (2012), Mendoza and Linetsky (2012a), Mendoza and Linetsky
(2012b) for applications in finance), while subordinating BD processes leads to continuous-
time Markov chains that can generally transition from a given state to any other state. The
eigenfunction expansion approach to optimal stopping problems proposed in this paper can be
efficiently implemented for all these processes with analytically known eigenfunctions in terms
of orthogonal polynomials, by exploiting classical recursions for orthogonal polynomials.

In comparison to purely numerical methods, the eigenfunction expansion approach to opti-
mal stopping proposed in this paper has the following advantages. (1) The method is applicable
to a rich class of Markov processes, including one-dimensional diffusions, jump-diffusion and
pure jump processes with state-dependent jumps obtained from diffusions by time changing
with Lévy subordinators, as well as BD processes and CTMCs obtained from them by subordi-
nation. For one-dimensional problems, as long as the spectrum is discrete, and some technical
conditions to ensure uniform convergence are satisfied, and the eigenfunctions can be expressed
in closed form in terms of special functions for which efficient computational algorithms are
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available, the method can be implemented to yield an efficient computational algorithm. (2)
The value function is given globally on the state space in terms of uniformly convergent eigen-
function expansions, without the need to discretize the state variable. In contrast to numerical
methods such as trees, the entire value function is constructed at once, giving, for example,
option prices for all values of the underlying asset. (3) Under some mild additional regulari-
ty conditions, the derivative of the value function (e.g. the option delta) can be immediately
obtained by term-by-term differentiation of the eigenfunction expansion of the value function.
(4) The early exercise boundary is determined accurately by finding roots of globally defined
non-linear functional equations. This is in contrast to numerical methods that discretize the
state space, where accurate determination of the boundary requires considering exceedingly fine
step sizes in the discretized state variable.

To illustrate our approach and develop some intuition before presenting the full details, here
we informally sketch the pricing of a Bermudan option with two exercise opportunities written
on an OU diffusion process X with volatility σ, long-run level θ, and rate of mean reversion

κ. The stationary distribution of the OU diffusion is Gaussian m(dx) =
√

κ
πσ2 e

−κ(x−θ)
2

σ2 dx, and
the OU diffusion is a symmetric Hunt processes on R with respect to m. The Bermudan option
can be exercised at its maturity t > 0 with the payoff f(Xt), or half way through its life at
time t/2 with payoff f(Xt/2). For simplicity we assume that the discount rate is zero. If the
payoff is square-integrable with the Gaussian measure, i.e. f ∈ L2(R,m), placing ourselves at
time t/2, the expected payoff E[f(Xt)|Xt/2] (continuation value at time t/2) has the following
eigenfunction expansion in L2(R,m):

C1(x) = E[f(Xt)|Xt/2 = x] =

∞∑
n=0

e−κnt/2fnϕn(x),

where ϕn(x) =
(√

2nn!
)−1

Hn(
√
κ(x − θ)/σ) are normalized eigenfunctions of the conditional

expectation operator satisfying:

E[ϕn(Xt)|Xs = x] = e−κn(t−s)ϕn(x).

They form an orthonormal basis in L2(R,m). Here Hn are Hermite polynomials. The expansion
coefficients are inner products of the payoff and the eigenfunction, fn = (f, ϕn), where (f, g) =∫
R f(x)g(x)m(dx) is the inner product. At time t/2, the option holder maximizes her payoff.

Accordingly, the value function is V 1(x) = max(f(x), C1(x)). The early exercise (stopping)
region at time t/2 is S1 = {x ∈ R : f(x) ≥ C1(x)}. Assume that the non-linear equation
f(x)−C1(x) = 0 has a unique root x∗ and, to be specific, the stopping region is S1 = (−∞, x∗].
Our method is able to handle more general structure of the stopping region. We make this
assumption here to simplify discussion. The root x∗ can be found numerically by, say, the
bisection algorithm. The value function V 1(x) = f(x)1(−∞,x∗](x)+C1(x)1(x∗,∞)(x) at time t/2
is clearly in L2(R,m) since both f and C1 are. Thus, the continuation value at time zero also
has an eigenfunction expansion:

C0(x) = E[V 1(Xt/2)|X0 = x] =

∞∑
n=0

e−κnt/2c0nϕn(x),

where the expansion coefficients satisfy

c0n = (f1(−∞,x∗], ϕn) +

∞∑
m=0

e−κnt/2fm(ϕm1(x∗,∞), ϕn).
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Thus, the algorithm reduces to the following steps: calculate the expansion coefficients of the
payoff fn, determine x∗ numerically at time t/2, calculate the inner products (f1(−∞,x∗], ϕn)
and (ϕm1(x∗,∞), ϕn) (by using the properties of Hermite polynomials), calculate c0n and, thus,
obtain the value function at time zero (in the computation, infinite sums are truncated to
a desired tolerance level). This example for an OU process with two exercise dates readily
generalizes to N exercise dates and a rich class of Markov processes. Furthermore, the value
function converges to the value function of the continuous optimal stopping problem as N tends
to infinity, while the Richardson extrapolation is employed to obtain this limit computationally
when applicable.

We remark that, while the point of departure of our method is close to Tsitsiklis and Van Roy
(1999) and Tsitsiklis and Van Roy (2001), who also consider value functions of discrete optimal
stopping problems as elements of a Hilbert space, our method is entirely different. Tsitsiklis
and Van Roy (1999) and Tsitsiklis and Van Roy (2001) (also Longstaff and Schwartz (2001))
propose a least-squares Monte Carlo method (generalized by the stochastic mesh method of
Broadie and Glasserman (2004)). In this method, the continuation value is approximated by a
weighted sum of basis functions, and the weights are determined numerically from a regression.
While in the least-squares Monte Carlo the basis functions are generically chosen basis function-
s in the Hilbert space of square-integrable payoffs, in our eigenfunction expansion method the
basis functions are exact eigenfunctions of the transition semigroup of the underlying Markov
process. Choosing eigenfunctions as basis functions diagonalizes the expectation operator, re-
ducing it to an operator of multiplication with an eigenvalue on each of the eigen-subspaces.
While the least-squares Monte Carlo is a general-purpose numerical method not requiring any
knowledge of eigenfunctions of the expectation operator, when the eigenfunctions are known
explicitly (such as in examples given in this paper), choosing the eigenfunctions as the basis
functions leads to an explicit recursion for the expansion coefficients of the value function in
the eigenfunction basis. The advantage of the least-squares Monte Carlo is in treating problems
with no explicit knowledge of eigenfunctions of the expectation operator and, in particular,
in multi-dimensional problems. In contrast, in problems where the eigenfunctions are explic-
itly known, our eigenfunction expansion method provides an analytical alternative, where the
expansion coefficients satisfy an explicit recursion, and no simulation is required.

The paper is organized as follows. Section 2 defines the class of Markov processes to which
our method applies and gives examples important for applications. Section 3 formulates our
eigenfunction expansion method for solving discrete optimal stopping problems and proves the
key theorem that establishes an eigenfunction expansion of the value function. Section 4 proves
that, under some regularity assumptions, the sequence of value functions of discrete optimal
stopping problems converges in the limit to the value function of the continuous problem. It
also proposes to use Richardson extrapolation to approximate the continuous value function.
To illustrate computational performance of our method, Section 5 develops applications to
American-style commodity futures options and Bermudan-style abandonment and capacity ex-
pansion options in commodity extraction projects under the subordinate Ornstein-Uhlenbeck
model with mean-reverting jumps recently proposed by Li and Linetsky (2012) with the value
function given by the expansion in Hermite polynomials. Section 6 presents detailed numerical
examples. Appendix A contains some definitions from the theory of Markov processes. All
proofs are given in Appendix B.

2 The Markovian Set-Up

We first make precise the class of Markov processes we work with, and then present examples
important for applications. Let E ⊆ R be a Borel subset of the real line. To handle killing,
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we adjoin to E an isolated point ∂ (the cemetery state) and and let E∂ := E ∪ {∂}. The Borel
σ-algebras on E and E∂ will be denoted by B(E) and B(E∂), respectively. Let (Ω,F) be a
measurable space. Let (Xt)t≥0 be a stochastic process on (Ω,F) with state space (E∂ ,B(E∂)),
and let (Px)x∈E∂ be a family of probability measures on (Ω,F) parameterized by the initial
state x, i.e. such that Px(X0 = x) = 1.

Our first assumption is that X is a Hunt process. Roughly speaking, Hunt processes are
strong Markov processes with sample paths that are right-continuous with left limits and have
an additional property of quasi-left-continuity. Hunt processes are a natural class of Markov
processes to study optimal stopping in continuous time due to sufficient regularity to work with
stopping times (cf. Mordecki and Salminen (2007)). The precise definition of Hunt processes is
given in Appendix A.

Our second assumption is that the Hunt processX is m-symmetric. Recall that the transition
function of a Markov process is defined by Pt(x,B) := Px(Xt ∈ B) for t ≥ 0, x ∈ E and
B ∈ B(E). It is not conservative in general because Pt(x,E) = 1 − Pt(x, {∂}) ≤ 1, where
Pt(x, {∂}) = Px(Xt = ∂) is the probability for the process to end up in the cemetery state
by time t (the killing probability). For a measurable real-valued function f on E we write
Ptf(x) :=

∫
E f(y)Px(t, dy) whenever the integral makes sense. We can also write Ptf(x) =

Ex[1{t<ζ}f(Xt)], where Ex denotes the expectation with respect to Px and 1{t<ζ} denotes the
indicator function equal to one if the process survives to time t and equal to zero if the process
is killed prior to or at time t (ζ is the first passage time of X into the cemetery state ∂). If we
extend every function on E to E∂ by setting f(∂) := 0, then 1{t<ζ} inside the expectation can
be omitted.

The transition operators (Pt)t≥0 defined on the Banach space of bounded Borel measurable
functions Bb(E) with the supremum norm form a strongly continuous contraction semigroup on
Bb(E). That is, limt→0 ‖Ptf−f‖ = 0 for all f ∈ Bb(E) (strong continuity), PtPs = PsPt = Pt+s
for all s, t ≥ 0 (semigroup property), and ‖Ptf‖ ≤ ‖f‖ for all f ∈ Bb(E) and t ≥ 0 (contraction
property).

Suppose m is a positive Radon measure on (E,B(E)) with full support. The transition
function is called m-symmetric if for all non-negative measurable functions f and g and for all
t ≥ 0 ∫

E
Ptf(x)g(x)m(dx) =

∫
E
f(x)Ptg(x)m(dx). (2.1)

A Hunt process with an m-symmetric transition function is called an m-symmetric Hunt pro-
cess. The standard references on symmetric Hunt processes are Fukushima et al. (2011) and
Chen and Fukushima (2011). Here we follow the exposition in Appendix A.2 and Chapter 12
of Schilling et al. (2010). The transition operators (Pt)t≥0 of an m-symmetric Hunt process
restricted to Bb(E) ∩ L2(E,m) can be extended uniquely to a strongly continuous semigroup
of symmetric contractions on the Hilbert space L2(E,m) of Borel measurable functions on E
square-integrable with m and endowed with the inner product (f, g) =

∫
E f(x)g(x)m(dx) and

norm ‖f‖2 =
√

(f, f). That is, (Pt)t≥0 are bounded linear operators on L2(E,m) with the fol-
lowing properties: L2− limt→0 Ptf = f (strong continuity), PtPs = PsPt = Pt+s for all s, t ≥ 0
(semigroup property), ‖Ptf‖2 ≤ ‖f‖2 for all f ∈ L2(E,m) and t ≥ 0 (contraction property),
and (Ptf, g) = (f,Ptg) for all f, g ∈ L2(E,m) (symmetry property). We use the same notation
Bb(E) ∩ L2(E,m) for the semigroup acting on Bb(E) and on L2(E,m).

The infinitesimal generator G of the semigroup (Pt)t≥0 on L2(E,m) is defined by Gf :=
limt→0

Ptf−f
t and is a (generally unbounded) linear operator with the domain D(G) = {f ∈

L2(E,m) : Gf exists as a strong limit}. It is a negative semi-definite self-adjoint operator on
L2(E,m) (i.e., (f,Gg) = (Gf, g) for all f, g ∈ D(G) (self-adjointness property) and (f,Gf) ≤ 0
for all f ∈ D(G) (negative semi-definite property). By the spectral theorem for self-adjoint
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operators in Hilbert space, the operators G and Pt have a spectral decomposition with real
spectrum in (−∞, 0] for G and in [0, 1] for Pt.
Remark 2.1. Reversible Markov Processes. For a conservative m-symmetric Markov process X,
i.e. Px(ζ <∞) = 0 for all x ∈ E, with the finite symmetry measure m, i.e. m(E) <∞, taking
f(x) = 1B(x) for B ∈ B(E) and g(x) = 1 in (2.1), we have

∫
E Pt(x,B)m(dx) = m(B). This

implies that X is stationary with stationary distribution π(dx) = m(dx)/m(E). Furthermore,
it is shown in Dobrushin et al. (1988) that in this case (2.1) is equivalent to X being reversible.
Thus, reversible Markov processes form a subclass of symmetric Markov processes.

In some applications the discount rate is a function of the underlying state variable. To
accommodate state-dependent discounting, we consider Feynman-Kac (FK) operators (pricing
operators that include state-dependent discounting of the future payoff, as well as taking the
expectation):

Prt f(x) := Ex
[
exp

(
−
∫ t

0
r(Xu)du

)
f(Xt)1{ζ>t}

]
, (2.2)

where r(x) is a non-negative Borel measurable function on E. These operators define the FK
semigroup (Prt )t≥0 on L2(E,m) (pricing semigroup). It is also a strongly continuous semigroup
of symmetric contractions on L2(E,m) (strong continuity follows as a special case of Theorem
1 in Chen (2005), contraction property follows from non-negativity of r). By the spectral
theorem, the operators Gr (the infinitesimal generator of the FK semigroup) and Prt have
spectral decompositions with real spectrum (lying in (−∞, 0] for Gr and in [0, 1] for Prt ). In
general spectral properties of the transition semigroup P of X and the FK semigroup Pr with
discounting can be quite different and depend on the properties of the discount rate r(x). In
the special case when r is constant, we simply have Prt = e−rtPt.
Remark 2.2. Discounting as Killing. The FK semigroup can be turned into the transition
semigroup of another process X̂ as follows. Let e be a unit-mean exponential random variable
independent of X. Define ζ̂ := inf{t ∈ [0, ζ] :

∫ t
0 r(Xu)du ≥ e} (by convention, ζ̂ = ζ if∫ t

0 r(Xu)du < e for t < ξ). Define a new process X̂ by X̂t := Xt for t < ζ̂ and X̂t := ∂ for

t ≥ ζ̂. The process X̂ is a subprocess of X with sample paths of X up to ζ̂ and with the lifetime
ζ̂ ≤ ζ when the process X̂ is sent to the cemetery state ∂ where it remains for all t ≥ ζ̂. It is
called the process obtained from X by killing with respect to the positive continuous additive
functional (PCAF) At =

∫ t
0 r(Xu)du. If X is an m-symmetric Hunt process, so is X̂. Moreover,

(Prt )t≥0 is the transition semigroup of X̂. See Chen and Fukushima (2011) pp. 477-8 for the
general treatment of killing with respect to a PCAF and Lemma A.3.12 and Theorem A.3.13
for proofs.

Our next assumption is that the Feynman-Kac semigroup is trace-class, i.e. for each t > 0
the FK operator Prt is trace class. Recall that for a positive semi-definite operator A on a
separable Hilbert space H, the trace of A is defined by trA =

∑∞
n=1(ϕn, Aϕn) ∈ [0,∞], where

ϕn is an orthonormal basis in H. The trace is independent of the orthonormal basis chosen (e.g.
Reed and Simon (1980), p.206). A positive semi-definite operator is called trace class if and
only if its trace is finite. Our Prt are positive semi-definite. The trace class condition implies
that the spectra of Gr and Prt are purely discrete, and in the eigenfunction basis, the trace class
condition reads trPrt =

∑∞
n=1 e

−λnt < ∞ for all t > 0. It implies some properties useful both
in the theoretical development and in the computational implementation of the eigenfunction
expansion method. It is not strictly necessary for the future development, but will significantly
simplify it. It is also satisfied in many applications. Under the trace class assumption, we have
the following spectral decomposition of the FK semigroup that follows from Lemma 7.2.1 of
Davies (2007).
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Proposition 2.1. Under the trace class assumption, the FK semigroup (Prt )t≥0 on L2(E,m)
and its infinitesimal generator Gr have purely discrete spectra with eigenvalues (e−λnt)n∈N1 (for
t > 0) and (−λn)n∈N1, respectively, and

trPrt =

∞∑
n=1

e−λnt <∞ (2.3)

for all t > 0. Here 0 ≤ λ1 ≤ λ2 ≤ ... are arranged in increasing order and repeated according to
multiplicity. Prt f(x) has an eigenfunction expansion of the form:

Prt f(x) =
∞∑
n=1

fne
−λntϕn(x), fn = (f, ϕn) for any f ∈ L2(E,m) and all t ≥ 0, (2.4)

where ϕn is the eigenfunction corresponding to λn, i.e.

Prt ϕn = e−λntϕn and Grϕn = −λnϕn, (2.5)

the eigenfunctions (ϕn)n∈N1 form a complete orthonormal basis in L2(E,m), and fn is the
n-th expansion coefficient in this basis. Each Prt with t > 0 admits a symmetric integral k-
ernel pt(x, y) ∈ L2(E × E,m × m) with respect to m (i.e. pt(x, y) = pt(y, x), Prt f(x) =∫
E pt(x, y)f(y)m(dy) for f ∈ L2(E,m), and

∫
E×E p

2
t (x, y)m(dx)m(dy) < ∞), which has the

following bilinear expansion:

pt(x, y) =

∞∑
n=1

e−λntϕn(x)ϕn(y). (2.6)

We note that, by Eq.(2.5), the eigenfunctions diagonalize the pricing (FK) semigroup and
its generator. The convergence of the eigenfunction expansions in (2.4) and (2.6) in general
takes place under the L2(E,m) and L2(E × E,m × m) norms, respectively. However, in many
cases of interest stronger convergence results are available. In particular, we have the following
result useful in applications (which follows from Theorem 7.2.5 of Davies (2007)).

Proposition 2.2. Suppose the FK semigroup is trace class and, in addition, that for each t > 0
the kernel pt(x, y) is jointly continuous in x and y. Then

(1) Each eigenfunction ϕn is continuous, and satisfies |ϕn(x)| ≤ eλnt/2
√
pt(x, x) for all n, x

and t > 0.

(2) For any f ∈ L2(E,m), the expansion (2.4) converges uniformly in x on compacts, and
Prt f(x) is continuous in x.

(3) The bilinear expansion (2.6) converges uniformly on compacts.

This result gives a sufficient condition for uniform convergence of the eigenfunction expan-
sion that is easy to check in applications. In finance applications we are usually interested in
evaluating the value function of a derivative security or of an optimal stopping problem for some
range of values of the underlying state variable. The uniform convergence of the eigenfunction
expansion allows us to approximate the value function by the eigenfunction expansion truncated
to a finite sum with a uniform bound on the truncation error in the domain of interest. Under
Proposition 2.2, an estimate of the uniform bound for the truncation error of approximating
Prt f(x) by the first N terms in a compact domain D is

max
x∈D

√
pt(x, x)‖f‖2

∞∑
n=N+1

e−λnt/2,
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where we used the Cauchy-Schwartz bound |fn| ≤ ‖f‖2 on the coefficients. Tighter bounds
are also often available in specific applications, where sharper bounds on the eigenfunctions are
available.

For future convenience, we now summarize our assumptions.

Assumption 1. In this paper we assume that: (1) X is a Hunt process taking values in E∂ =
E ∪ {∂}, where E ⊆ R is a Borel subset of the real line and ∂ is the cemetery state. (2) It is
symmetric with respect to a non-negative Radon measure m on E with full support. (3) The
discount rate r(x) is a non-negative Borel measurable function on E. (4) The FK semigroup is
trace class, i.e. for each t > 0 the FK operator Prt is trace class (condition (2.3) is satisfied),
and, in addition, for each t > 0 it possesses a jointly continuous in x and y integral kernel
pt(x, y) with respect to m.

Examples of m-symmetric Hunt processes taking values in a Borel subset of the real line
include one-dimensional diffusions (where E is an interval), jump-diffusions and pure jump
processes obtained from one-dimensional diffusions by the procedure of Bochner’s subordination
(time change with a Lévy subordinator), BD processes (where E is a discrete set of points), and
CTMCs obtained by subordination of BD processes. We now briefly survey these examples.

Example 2.1. One-Dimensional Diffusions. Consider a time-homogeneous, regular
diffusion process X on an interval E ⊆ R with left and right-end points l and r satisfying
−∞ ≤ l < r ≤ ∞, with volatility σ(x), drift µ(x) and killing rate k(x). For simplicity assume
that µ(x), σ(x) and k(x) are continuous and σ(x) > 0, k(x) ≥ 0 on (l, r). The infinitesimal
generator G of the transition semigroup (Pt)t≥0 acts on functions f ∈ C2

c (E) (twice continuously
differentiable functions on E with compact support) by the second-order differential operator
(Sturm-Liouville operator) in the formally self-adjoint form:

Gf(x) =
1

2
σ2(x)f ′′(x) + µ(x)f ′(x)− k(x)f(x) =

1

m(x)

(
f ′(x)

s(x)

)′
− k(x)f(x),

where s(x) = exp
(
−
∫ x
x0

2µ(y)
σ2(y)

dy
)

(x0 is an arbitrary point in (l, r)) and m(x) = 2
σ2(x)s(x)

are

the scale and speed densities, respectively. The continuity assumptions on the coefficients are
not necessary, and the theory of one-dimensional diffusions can be formulated in much greater
generality than presented here (cf. Borodin and Salminen (2002) and Schilling et al. (2010)
Chapter 14). We make these assumptions to simplify exposition in view of the fact that they
are often satisfied in financial applications.

Feller’s classification of boundaries can be formulated in terms of the behavior of µ, σ and k
near boundaries l and r (see Borodin and Salminen (2002) for details on 1D diffusions). If any of
the boundaries are regular, we specify it either as a killing boundary by sending the process to
the cemetery point ∂ or as an instantaneously reflecting boundary. Under these assumptions, X
is an m-symmetric Hunt process with respect to the speed measure m(dx) = m(x)dx. For the FK
semigroup (Prt )t≥0 with discounting, the killing rate k(x) in the expression for the infinitesimal
generator is replaced with the sum of the killing rate and the discount rate k(x) + r(x).

The general spectral representation for one-dimensional diffusions has been obtained by
McKean (1956). He has also proved that the symmetric transition kernel for 1D diffusions
with respect to the speed measure is infinitely differentiable and the expansion (2.6) converges
uniformly on compacts. Sufficient conditions for the purely discrete spectrum in terms of the
behavior of µ, σ and k (or k + r when discounting is considered) near the boundaries can
be found in Linetsky (2004), (2007). Many diffusions important in applications satisfy these
conditions, including a Brownian motion on a finite interval with killing and/or reflection at the
boundaries, OU, CIR, CEV with nonzero drift, and Jacobi diffusions. Linetsky (2004), (2007)
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give a survey of diffusions with known analytical solutions for their spectral representations,
as well as discuss applications in finance. For OU, CIR and CEV, and Jacobi diffusions, the
eigenfunctions are expressed in terms of Hermite, generalized Laguerre, and Jacobi polynomials,
respectively, and eigenvalues λn grow linearly in n in all these cases (and, thus, satisfy the trace
class condition (2.4)). In fact, among all the families of orthogonal polynomials, only Hermite,
generalized Laguerre, and Jacobi polynomials can serve as eigenfunctions in the expansion in
(2.4) for one-dimensional diffusion semigroups (see Mazet (1997) for the proof and Schoutens
(2000) for a survey of related topics). Explicit expressions for the eigenvalues and eigenfunctions
of the OU, CIR and Jacobi transition semigroups in terms of Hermite, Laguerre and Jacobi
polynomials can also be found in these references. In section 5 we present the results for
the OU semigroup needed for applications to commodities and real options. Further explicit
expressions for the eigenvalues and eigenfunctions of FK semigroups associated with the OU,
CIR and CEV processes can be found in Davydov and Linetsky (2003), Gorovoi and Linetsky
(2004), Mendoza et al. (2010), Mendoza and Linetsky (2010), Mendoza and Linetsky (2012a),
and Mendoza and Linetsky (2012b). Expressions for a FK semigroup associated with the Jacobi
diffusion can be found in Delbaen and Shirakawa (2002).

Example 2.2. Birth and Death Processes. For a BD process X, E = {0, 1, 2, · · · }.
The birth and death rates at state i are denoted by bi and di respectively. If d0 > 0, then
the process can be killed and is sent to the cemetery state ∂. If d0 = 0, then 0 is a reflecting
state. Define π0 = 1, πi = (b0b1 · · · bi−1)/(d1d2 · · · di), i ≥ 1, and let Pij(t) = P (Xt = j|X0 = i).
Then it can be shown that πiPij(t) = πjPji(t) for all t > 0. Thus, BD processes are symmetric
with respect to the measure π on the discrete set E. BD processes have a wide range of
applications, including queueing, biology, demography, etc. For applications in finance see Kou
and Kou (2003). Eigenfunction expansion for the transition semigroup of a B-D process was
obtained by Karlin and McGregor (1957). Explicit expressions for eigenfunction expansions
for the following BD processes are known: M/M/∞ queue in terms of Charlier polynomials,
the linear BD process in terms of Meixner polynomials, the quadratic model in terms of Hahn
polynomials, and the Ehrenfest model in terms of Krawtchouk polynomials (see Chapter 3 in
Schoutens (2000) for explicit expressions).

Example 2.3. Subordinate symmetric Markov processes. Let (Tt)t≥0 be a Lévy
subordinator, i.e. a Lévy process on [0,∞) starting from the origin and with non-negative drift
and positive jumps. The Laplace transform of a subordinator is given by the Lévy-Khintchine
formula:

E[e−λTt ] = e−φ(λ)t, φ(λ) = γλ+

∫
[0,∞)

(1− e−λs)ν(ds), (2.7)

where φ(λ) is called the Laplace exponent of the subordinator, γ ≥ 0 is the drift and ν is the
Lévy measure satisfying the integrability condition

∫
[0,∞)(s∧1)ν(ds) <∞. Standard references

on subordinators include Bertoin (1996), Sato (1999) and Schilling et al. (2010).
Subordinators are non-decreasing processes that can be used as random time changes. In

particular, let X be a Markov process and define a time changed process Xφ
t = XTt by running

X on the new clock Tt, where T is assumed to be independent of X. This procedure goes back to
Bochner (1949) and is called Bochner’s subordination. The process Xφ is a subordinate process of
X with respect to the subordinator T . The superscript φ signifies that the subordination is with
respect to the subordinator with Laplace exponent φ. An excellent exposition of subordination
can be found in Chapter 12 of Schilling et al. (2010). The key result is that if X is a Markov
process, Xφ is again Markov (cf. Schilling et al. (2010) p.141). The infinitesimal generator Gφ
of the transition semigroup (Pφt )t≥0 of the subordinate process Xφ is given explicitly by the
Phillips theorem (Phillips (1952), Sato (1999) Theorem 32.1, Schilling et al. (2010) Chapter
12). In the special case when X is a one-dimensional diffusion under assumptions in Example
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2.1, the subordinate diffusion Xφ has the infinitesimal generator explicitly given as an integro-
differential operator when acting on C2

c (E) functions:

Gφf(x) =
γ

2
σ2(x)f ′′(x) + µφ(x)f ′(x)− kφ(x)f(x)

+

∫
E

(
f(x+ y)− f(x)− 1{|y|≤1}yf

′(x)
)
π(x, y)m(dy)

with

µφ(x) = γµ(x) +

∫
(0,∞)

(∫
{|y|≤1}

yps(x, x+ y)m(dy)

)
ν(ds),

the killing rate given by

kφ(x) = γk(x) +

∫
(0,∞)

Ps(x, {∂})ν(ds),

where Ps(x, {∂}) = 1−
∫
E ps(x, y)m(dy) is the killing probability (the probability of X ending up

in the cemetery state by time t if started at x at time zero), and the state-dependent symmetric
Lévy density

π(x, y) = π(y, x) =

∫
(0,∞)

ps(x, x+ y)ν(ds)

with respect to the speed measure m(dy) of the diffusion X, where ps(x, y) = ps(y, x) is the
continuous symmetric transition density of X with respect to the speed measure m (such a
density always exists for one-dimensional diffusions due to the result proved by McKean (1956)).
By examining the infinitesimal generator Gφ we see that the subordinate process Xφ is either a
jump-diffusion (γ > 0) or a pure jump process (γ = 0). When the diffusion X is not a Brownian
motion with drift on R, the Lévy density π(x, y) is state dependent in the sense that it depends
both on the jump size y, as well as on the pre-jump state x. Subordinate diffusions are thus better
candidates than Lévy processes which have state-homogeneous jumps for modeling phenomena
where jumps depend on the state, such as mean-reverting jumps (see Li and Linetsky (2012)
and Mendoza and Linetsky (2012b) for details).

If X is an m-symmetric Hunt process with the transition semigroup (Pt)t≥0 on L2(E,m),

then Xφ is an m-symmetric Hunt process with the transition semigroup (Pφt )t≥0 on L2(E,m)

with the spectral representation of Pφt determined in terms of the spectral representation of Pt
and the Laplace exponent φ of the subordinator (subordination of symmetric Markov processes
is studied in Albeverio and Rüdiger (2003), Albeverio and Rüdiger (2005), Okura (2002), Chen
and Song (2005) and Chen and Song (2006) (see also Chapters 12 and 13 in Schilling et al.
(2010)). In particular, when the spectrum of Pt is purely discrete with the eigenfunction ex-

pansion of the form (2.4), Pφt also has the eigenfunction expansion of the form (2.4) with the

same eigenfunctions ϕn of Pt and with the eigenvalues e−λ
φ
nt with λφn = φ(λn), where φ(λ) is

the Laplace exponent. This remarkable fact makes the subordinate process Xφ as analytically
tractable as the original process X. The only modification is the replacement of the eigenval-
ues λn of the negative of the infinitesimal generator G of the original process X with the the
eigenvalues λφn = φ(λn) of the negative of the infinitesimal generator of the subordinate process
Xφ. It is remarkable in view of the fact that sample path behavior of the subordinate process
Xφ can drastically differ from the behavior of the original process X. In particular, subordi-
nate diffusions are pure jump or jump-diffusion processes, while subordinate BD processes are
CTMCs that can transit into any state, rather than just the nearest neighbors.

From the applied point of view, starting from a diffusion (or a BD process) with the known
eigenfunction expansion (2.4), one can construct rich families of processes with state-dependent
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jumps (or CTCM) by time changing with a subordinator with the known Laplace exponen-
t and enjoy immediate analytical tractability with the eigenfunction expansion in the same
eigenfunctions by simply replacing λn with φ(λn). This idea has been applied in Albanese and
Kuznetsov (2004) for equity modeling, in Mendoza and Linetsky (2012b) for credit modeling,
in Mendoza et al. (2010) and Mendoza and Linetsky (2012a) for unified credit-equity modeling,
in Boyarchenko and Levendorskĭi (2007a) and Lim et al. (2012) for interest rate modeling, and
in Li and Linetsky (2012) for commodity modeling.

3 Discrete Time Optimal Stopping Problems

Consider a discrete optimal stopping problem for a Hunt process X with a finite horizon
T > 0 where the stopping is allowed at discrete times 0 = t0 < t1 < · · · < tN = T . Without loss
of generality and to simplify notation we assume that the time points are equally spaced with
the interval h, i.e. ti = ih. If the stopping occurs at time ti, the payoff f(Xti , ti) is received. We
assume that f i(x) ≡ f(x, ti) are real-valued Borel measurable functions on E∂ . If the process
is killed prior to or at T , i.e. ζ ≤ T , then the game is automatically terminated with zero
payoff at the next time ti such that ti−1 < ζ ≤ ti. That is, we assume that f i(∂) = 0 for all
i = 0, 1, ..., N . To simplify exposition and notation, in this paper we restrict our attention to
zero payoff in the cemetery state. It is possible to extend the formulation to include a non-zero
payoff in the cemetery state (such as a rebate payment in the context of barrier options or a
recovery payment in the event of default in the credit risk context).

Let Th be the collection of all stopping times with respect to the minimal completed ad-
missible filtration (Ft)t≥0 that take values in {t0, t1, · · · , tN}. Let ζ ′ be the discretely observed
lifetime over [0, T ], i.e. ζ ′ = ti+1 if ti < ζ ≤ ti+1 for i = 0, 1, · · · , N − 1, and ζ ′ = ζ if ζ = 0 or
ζ > T . It is easy to see that ζ ′ is a stopping time. Define T ′h := {τ ∧ ζ ′ : τ ∈ Th}. We wish to
find the value function

V (x) = sup
τ∈T ′h

Ex
[
exp

(
−
∫ τ

0
r(Xu)du

)
f(Xτ , τ)

]
, x ∈ E. (3.1)

We have the following dynamic programming formulation (cf. Shiryaev (1978), Section 2.2 or
Peskir and Shiryaev (2006), Theorem 1.7).

Theorem 3.1. (Backward Induction) Suppose for each k = 0, 1, · · · , N − 1,

Ex

[
sup

0≤i≤N−k

∣∣∣∣exp

(
−
∫ ih

0
r(Xu)du

)
fk+i(Xih)

∣∣∣∣
]
<∞ (3.2)

for all x ∈ E. Let Prh be the FK operator in (2.2) with t = h. Define two sequences of functions
(V i(x))0≤i≤N and (Ci(x))0≤i≤N−1 on E∂ recursively:

(1) V N (x) := fN (x), x ∈ E∂.

(2) For i = N − 1, · · · , 0, Ci(x) := PrhV i+1(x) for x ∈ E and Ci(∂) := 0 and V i(x) :=
max

(
f i(x), Ci(x)

)
for x ∈ E∂.

Then V (x) = V 0(x) and τ∗ = inf{0 ≤ ti ≤ T : V i(Xti) = f i(Xti)} is an optimal stopping time
in T ′h.

The functions Ci(x) and V i(x) are interpreted as the continuation value function and the
value function of the optimal stopping problem at time ti (maximum of the payoff and the
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continuation value), respectively. We extend the definition of Ci to the cemetery state by
setting Ci(∂) := 0 by convention. Then V i(∂) = 0 due to the assumed zero payoff in the
cemetery state. We also define for all i = 0, 1, · · · , N − 1 the following Borel subsets of E:

Si := {x ∈ E : f i(x) ≥ Ci(x)} = {x ∈ E : f i(x) = V i(x)}, (3.3)

Ci := {x ∈ E : f i(x) < Ci(x)} = {x ∈ E : f i(x) < V i(x)}, (3.4)

so that Ci ∪ Si = E for all i = 0, 1, ..., N − 1. Then the Ci and Si are the continuation and
stopping regions in E at time ti, respectively. It is possible that Ci or Si is an empty set for
some i.

We are now ready to formulate our main result for discrete time optimal stopping problems.

Theorem 3.2. (Backward Induction in L2(E,m)) Suppose Assumption 1 is in force, so that
Propositions 2.1 and 2.2 hold. Suppose further that f i ∈ L2(E,m) for every i = 0, 1, · · · , N .
For every Borel subset A ⊆ E define

πm,n(A) := (1Aϕm, ϕn), m, n = 1, 2, · · · ,

where ϕn are the eigenfunctions of the FK semigroup (Prt )t≥0 in L2(E,m) and 1A(x) is the
indicator function of the set A. For every f ∈ L2(E,m) and every Borel set A ⊆ E define

fn(A) := (1Af, ϕn) =

∞∑
m=1

fmπm,n(A) = fn −
∞∑
m=1

fmπm,n(E\A), n = 1, 2, · · · . (3.5)

Then the following results hold:
(i) Ci ∈ L2(E,m) for all i = 0, 1, · · · , N − 1 and V i ∈ L2(E,m) for all i = 0, 1, · · · , N .
(ii) Ci have the L2(E,m) eigenfunction expansions for all i = 0, 1, · · · , N − 1:

Ci(x) =
∞∑
n=1

cine
−λnhϕn(x) (3.6)

with the expansion coefficients satisfying the following recursion:

cN−1n = fNn , cin = f i+1
n

(
Si+1

)
+

∞∑
m=1

ci+1
m e−λmhπm,n

(
Ci+1

)
for i = N − 2, · · · , 0. (3.7)

(iii) For i = 0, 1, · · · , N − 1, the expansion in (3.6) converges in x uniformly on compacts, and
Ci is a continuous function.

Theorem 3.2 reduces the backward induction for the value function to the backward in-
duction for its L2(E,m) coefficients in the complete orthonormal basis of eigenfunctions of the
FK semigroup (Pr)t≥0. It starts with the coefficients cN−1n = fNn of the continuation value
function at time tN−1 equal to the coefficients of the payoff at time tN . The next step is to
determine the stopping region (3.3) at time tN−1 by comparing the payoff fN−1(x) and the
continuation value function CN−1(x) given by the expansion (3.6) that converges uniformly
on compacts. Given CN−1, the coefficients cN−2n are then determined by (3.7), and the recur-
sion is continued until time zero is reached. The value function V (x) is then computed via
V (x) = V 0(x) = max(f0(x), C0(x)). Under the assumption in Proposition 2.2, the infinite
eigenfunction expansion can be truncated and the truncation error can be estimated uniformly
on compacts.
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We now discuss computational implementation of the recursion in Theorem 3.2 in the case
when E ⊆ R is an interval on the real line with the end-points −∞ ≤ l and r ≤ ∞ with the
symmetry measure m absolutely continuous with respect to the Lebesgue measure, as in the
case of diffusions in Example 2.1 or subordinate diffusions in Example 2.3. Computing the
(truncated) sums in the recursion given by Eq.(3.7) requires computing the quantities πm,n(A)
and f in(A). In many financial applications the stopping region (and hence the continuation
region) is one-sided, i.e. one continues when the process is above or below some threshold level
and stops otherwise. In this case, A is an interval. However, problems where A is a union
of disjoint intervals also appear in applications (cf. Guo and Shepp (2001) and Dayanik and
Karatzas (2003)). It is one of the strengths of our approach that we can handle the multiple-
sided case as easily as the one-sided case by the linearity of integrals. To illustrate, suppose
A =

⋃J
j=1Bj where Bj are disjoint intervals. Then we have

πm,n(A) =
J∑
j=1

πm,n(Bj), f in(A) =
J∑
j=1

f in(Bj).

Therefore it is sufficient to do the calculation for the case where A = (a, b). We simply write
f in(a, b) for f in ((a, b)) and πm,n(a, b) for πm,n((a, b)) due to the absolute continuity of m. By the
linearity of integrals, πm,n(a, b) = πm,n(l, b)−πm,n(l, a), thus we only need to consider πm,n(l, x)
for x ∈ (l, r). Alternatively we can calculate πm,n(x, r), since πm,n(l, x) = δm,n−πm,n(x, r) (δm,n
is the Kronecker delta) due to the orthonormality of eigenfunctions. When the eigenfunctions
are known in closed form, the integral

∫ x
l ϕm(y)ϕn(y)m(y)dy can often be calculated in closed

form as well. Furthermore, for eigenfunctions expressed in terms of orthogonal polynomials
(as is the case for OU, CIR, CEV, and Jacobi diffusions and the corresponding processes with
jumps obtained by subordination), using the backward shift property of orthogonal polynomial-
s, integration by parts, and the forward shift property, one can obtain computationally efficient
recursive algorithms for evaluating πm,n(l, x). For a detailed treatment of orthogonal polyno-
mials see Koekoek et al. (2010). In section 5 we consider applications to commodity options
and real options that involve Hermite polynomials.

The coefficients f in(a, b) can also often be explicitly computed in applications either by
first evaluating the expansion coefficients f in of the payoffs f i(x) in the eigenfunction basis
ϕn(x) and then computing f in(a, b) via the expansion as in (3.5), or by directly calculating the

integral
∫ b
a f

i(x)ϕn(x)m(x)dx in closed form. When no closed form solutions are available for
the integrals in πm,n(l, x) and f in(a, b), they can be computed via numerical integration.

The previous discussion focuses on computing the quantities πm,n(A) and f in(A) given A.
At the step i of the recursion in (3.7) the knowledge of the continuation region Ci+1 is required.
It can be computed by solving the equation

f i+1(x)− Ci+1(x) = 0 (3.8)

for the boundary between the continuation and the stopping regions. By Proposition 2.1, the
continuous function Ci+1(x) is approximated by the truncated eigenfunction expansion with
the coefficients computed at the previous step, with the truncation error uniformly controlled
on compacts. In applications, the structure of the continuation and stopping regions can often
be determined from the structure of the payoff function, with the precise location of the roots
of (3.8) determined by a numerical root finding algorithm, such as the bisection method. In
particular the root is unique for problems with one-sided continuation regions.

The discussion above is specific to the implementation when E is an interval on the real line.
When E is a discrete set, such as for BD processes and CTMC obtained by their subordination,
the implementation is generally similar, with the sums replacing the integrals in expressions

13



for πm,n(A) and f in(A). The decomposition of E into the continuation and stopping regions is
accomplished by considering the function f i+1(x)− Ci+1(x) for x taking values in the discrete
set E.

4 Continuous Time Optimal Stopping Problems

We now allow the decision maker to stop at any time in the interval [0, T ]. The game is
automatically terminated when the process is killed. We again assume that the payoff in the
cemetery state is zero, f(∂, t) = 0 for all t ∈ [0, T ]. Let T be the collection of all (Ft)t≥0-
stopping times taking values in [0, T ], and define T ′ := {τ ∧ ζ : τ ∈ T }. We are interested in
determining the value function of the continuous time optimal stopping problem

V (x) = sup
τ∈T ′

Ex
[
exp

(
−
∫ τ

0
r(Xu)du

)
f(Xτ , τ)

]
. (4.1)

Here we consider convergence of the sequence of value functions of the discrete time optimal
stopping problems to the continuous time optimal stopping value function as the number of
exercise opportunities goes to infinity. Consider a sequence of sets {DN}N≥1, where DN =
{tN0 , tN1 , · · · , tNN} ⊂ [0, T ], tNN = T , tNn1

< tNn2
for n1 < n2. Define hN := max0≤n≤N−1(t

N
n+1− tNn ),

and suppose limN→∞ hN = 0. Let VN be the value function of the discrete time optimal stopping
problem with stopping allowed at times in the set DN . We have the following results.

Theorem 4.1. Suppose X is a Hunt process, r(x) is a non-negative Borel-measurable function
on E, the payoff f(x, t) is a continuous function on E × [0, T ], and

Ex

[
sup
t∈[0,T ]

∣∣∣∣exp

(
−
∫ t

0
r(Xu)du

)
f(Xt, t)

∣∣∣∣
]
<∞ (4.2)

for all x ∈ E. Assume there exists an optimal stopping time τ∗ in T ′ for the continuous optimal
stopping problem, so that

V (x) = Ex

[
exp

(
−
∫ τ∗

0
r(Xu)du

)
f(Xτ∗ , τ

∗)

]
for all x ∈ E.

Then
lim
N→∞

VN (x) = V (x) for all x ∈ E∂ .

Theorem 4.1 suggests an approximation for the value function V (x) of the continuous time
optimal stopping problem with the value function VN (x) of the corresponding discrete time
optimal stopping problem for sufficiently large N . For payoffs f(·, t) ∈ L2(E,m) for every
t ∈ [0, T ], we can then compute VN (x) by Theorem 3.2. To a priori understand how many
discrete stopping points N suffice to produce an acceptable approximation, some information on
the rate of convergence of VN (x) to V (x) as N →∞ is helpful. Dupuis and Wang (2005) proved
the linear convergence rate for infinite horizon optimal stopping problems for one-dimensional
diffusions under a restrictive set of sufficient conditions both on the payoff and on the drift and
volatility functions of the diffusion:

V (x) = VN (x) +
c(x)

N
+ o

(
1

N

)
. (4.3)

To the best of our knowledge, Dupuis and Wang (2005) is the best result so far in the literature,
with their proof already highly non-trivial even under their set of restrictive sufficient conditions.
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The method of the present paper is for finite, rather than infinite, horizon problems and for a
much wider class of Markov processes, as well as a wider class of payoff functions. Nevertheless,
we have conducted extensive numerical experiments and verified computationally that linear
convergence holds in many of the examples we have considered. In particular, it holds for
finite horizon problems for OU and SubOU processes in section 5. When linear convergence
is verified, Richardson extrapolation (RE) can be applied to accelerate convergence as follows
(see Sidi (2003) for a detailed account of RE and the general procedure when 1/N is replaced
by (1/N)k in (4.5) with some k > 0). To simplify presentation, set tNi = ih, where h := T/N ,
so the discrete stopping dates in DN are equally spaced. Let {VN}N≥1 be the sequence of the
value functions of the corresponding discrete time optimal stopping problems. Here we consider
the simplest version of RE. Consider a sequence {V RE

N }N≥1 constructed according to:

V RE
N (x) = (N + 1)VN+1(x)−NVN (x). (4.4)

It is easy to see from (4.3) that

V (x) = V RE
N (x) + o

(
1

N

)
, (4.5)

where the linear term with 1/N is cancelled out. Thus, the series V RE
N (x) constructed by the RE

procedure (4.4) converges to V (x) faster than the original series VN (x). In practice, convergence
of the extrapolated series is often orders of magnitude faster. It may thus be sufficient to
compute V RE

n (x) with n � N to approximate V (x) by V RE
n (x) to the same accuracy as the

approximation of V (x) by VN (x).

Remark 4.1. Reverse Extrapolation. Suppose we are interested in computing the value function
of the discrete optimal stopping problem with large but finite N . We can also approximate the
value function VN (x) with large N as follows. Suppose (4.5) holds. Take some n � N and
compute [(N − n)(n+ 1)Vn+1(x)− n(N − n− 1)Vn(x)] /N . The error of the approximation of
VN (x) with this linear combination of Vn(x) and Vn+1(x) is of the order o(1/n).

5 Applications to Commodity Options and Real Options

5.1 The Commodity Model

We now give an application of our method to American-style commodity futures options and
commodity extraction projects with abandonment or expansion options under the commodity
model with mean-reverting jumps introduced in Li and Linetsky (2012) based on the subordinate
OU process (SubOU). Under the risk-neutral measure Q chosen by the market, Li and Linetsky
(2012) model the spot commodity price by:

St = F (0, t)eX
φ
t −G(t), (5.1)

where {F (0, t) : t ≥ 0} is the initial futures curve at time zero, Xφ
t = XTt is an OU diffusion

Xt with constant volatility σ > 0, rate of mean reversion κ > 0 and the long-run level θ ∈ R
(so that the OU drift is µ(x) = κ(θ−x)) time changed with an independent Lévy subordinator
Tt with drift γ ≥ 0, Lévy measure ν and the Laplace exponent φ(λ) given by (2.7). G(t) is a

deterministic function of time which satisfies G(t) = lnE[eX
φ
t ] in order to ensure that the model

is consistent with the initial futures curve, i.e. E[St] = F (0, t) under Q.
Li and Linetsky (2012) give a detailed treatment of SubOU processes, including their

semimartingale sample path decomposition and equivalent measure transformations. Sub-
OU processes are ergodic processes on E = R with the stationary Gaussian density m(x) =√

κ
πσ2 e

−κ(x−θ)
2

σ2 and are m-symmetric Hunt processes with respect to this Gaussian measure.
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The OU transition semigroup (Pt)t≥0 on L2(R,m) with the inner product defined by the
Gaussian measure m given above has the eigenfunction expansion (2.4) with λn = κn and
eigenfunctions expressed in terms of Hermite polynomials (c.f. Lebedev (1972)):

ϕn(x) =
(√

2nn!
)−1

Hn(
√
κ(x− θ)/σ), n = 0, 1, · · · . (5.2)

The OU semigroup eigenvalues and eigenfunctions are usually indexed starting from n = 0 in
the literature. We follow this convention in section 5 and 6. This is different from the indexing
we did in the theoretical part, which starts from 1, also the convention in the literature for
theoretical derivations. Since

∑∞
n=0 e

−κnt < ∞ for all t > 0, the OU semigroup is trace class.
Its symmetric transition kernel pt(x, y) with respect to the Gaussian stationary measure m is
jointly continuous in x and y (p(t, x, y) = pt(x, y)m(y) is the well-known transition density of the
OU diffusion). Hence, Proposition 2.2 applies and the eigenfunction expansion (2.4) converges
uniformly in x on compacts for all t > 0 and all f ∈ L2(R,m).

The SubOU semigroup (Pφt )t≥0 on L2(R,m) has the same eigenfunctions ϕn and λφn = φ(κn).
When the Laplace exponent of the subordinator satisfies

∞∑
n=0

e−φ(κn)t <∞, (5.3)

the SubOU semigroup is trace class, its symmetric transition kernel pφt (x, y) is jointly continuous
in x and y, and Proposition 2.2 applies and the eigenfunction expansion converges uniformly in
x for all t > 0 and all f ∈ L2(R,m). The continuity of the SubOU kernel is verified as follows.
On any compact interval I, there exists a constant CI independent of n such that

|ϕn(x)| ≤ CIn−
1
4

for all n ≥ 1 (Nikiforov and Uvarov (1988) p.54). (5.3) also implies
∑∞

n=1 e
−φ(κn)tn−1/2 < ∞.

Since pφt (x, y) =
∫
(0,∞) ps(x, y)πt(ds), with πt the transition function of the subordinator, this

condition allows us to calculate the symmetric kernel as pφt (x, y) =
∑∞

n=0 e
−φ(κn)tϕn(x)ϕn(y)

with the bilinear expansion convergent uniformly on compacts. The kernel pφt (x, y) is then
continuous due to the continuity of the eigenfunctions.

From now on we will assume that the Laplace exponent of the subordinator satisfies the
trace class condition (5.3). It is clear that (5.3) is satisfied in the jump-diffusion case with non-
zero subordinator drift γ > 0. If γ = 0, so that Xφ is a pure jump process, this condition may
or may not hold, depending on the behavior of the Lévy measure. In particular, it holds for all
tempered stable subordinators with Lévy measures of the form ν(ds) = Cs−1−pe−ηsds, where
C > 0, 0 < p < 1, η ≥ 0, and φ(λ) = −CΓ(−p)[(λ + η)p − ηp] (Γ(·) is the Gamma function).
p = 1

2 corresponds to the Inverse Gaussian subordinator popular in the finance literature (cf.
Barndorff-Nielsen (1998)). Eigenfunction expansion truncation error estimates for the OU and
SubOU semigroups are given in Li and Linetsky (2012) Remark 2.9.

The futures price process in the spot price model (5.1) is obtained in Li and Linetsky (2012).

Let F (x, s, t) denote the t-maturity futures price as seen at time s ∈ [0, t] if Xφ
s = x. Then

F (x, s, t) = F (0, t)e−G(t)
∞∑
n=0

e−φ(κn)(t−s)Fnϕn(x), s ∈ [0, t], (5.4)

Fn = eθ+
σ2

4κ
1√
n!

(
σ√
2κ

)n
, eG(t) = E[eX

φ
t ] =

∞∑
n=0

e−φ(κn)tFnϕn(x0). (5.5)
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Then the futures price process {F (s, t) = F (Xφ
s , s, t), s ∈ [0, t]} is a martingale under Q starting

with F (Xφ
0 , 0, t) = F (0, t) (the initial futures price at time zero).

When Tt = t (i.e. no time change), so that φ(λ) = λ and Xφ
t = Xt is an OU diffusion, the

model (5.1) reduces to the standard exponential OU model:

St = F (0, t) exp

{
Xt − x0e−κt − θ(1− e−κt)−

σ2

4κ
(1− e−2κt)

}
. (5.6)

For an OU diffusion Xt solving the SDE dXt = κ(θ −Xt)dt+ σdBt, applying Itô’s formula we
obtain the spot price SDE:

dSt = κ(Θ(t)− lnSt)Stdt+ σStdBt, (5.7)

where Θ(t) = 1
κ

(
d
dt lnF (0, t) + σ2

4κ (1− e−2κt)
)

+ lnF (0, t). This is essentially the same SDE

as the Model 1 in Schwartz (1997) with the long run level Θ(t) taken to be a deterministic
function of time completely determined by the initial futures curve. This is a popular model in
commodity markets (e.g. Clelow and Strickland (1999) and Hull (2011)). In this case, applying
the well known formula for the generating function of Hermite polynomials (e.g. Lebedev (1972)
p.60), the eigenfunction expansion for the futures price (5.4) collapses to

F (s, t) = F (0, t) exp

{
Xse

−κ(t−s) − x0e−κt − θ(e−κ(t−s) − e−κt)−
σ2

4κ
(e−2κ(t−s) − e−2κt)

}
.

(5.8)
Applying Itô’s formula, we obtain that dF (s, t) = σe−κ(t−s)F (s, t)dBs, s ∈ [0, t].

5.2 Commodity Futures Options

While Li and Linetsky (2012) give closed-form solutions for European-style futures options,
commodity futures options listed on futures exchanges are American-style and allow early exer-
cise at any time prior to option expiration. Following our approach in sections 3 and 4, we first
consider Bermudan-style options with expiration t written on t∗-maturity futures with t∗ > t.
The American-style option can then be approximated by Richardson extrapolation.

Suppose the option holder can exercise at times 0 = t0 < t1 < · · · < tN = t. Then the call
(put) option payoff is f i(x) = (F (x, ti, t

∗) − K)+ (f i(x) = (K − F (x, ti, t
∗))+). We have the

following results.

Proposition 5.1. (i) The put and the call payoffs are in L2(R,m). (ii) If r > 0, the early
exercise region is one-sided for both futures calls and puts. If r = 0, the early exercise region is
empty, i.e. early exercise is never optimal.

When r = 0, it is also easy to prove by arbitrage arguments that it is never optimal to
exercise American futures options early (see also Kim (1994)). Our result provides an alternative
verification. In order to implement the recursion in Theorem 3.2 in the (Sub)OU model, we
need to efficiently compute πm,n, f in and eigenfunctions ϕn. We start by recalling that Hermite
polynomials can be efficiently computed using the following classical recursion (cf. Lebedev
(1972) p.61):

H0(x) = 1, H1(x) = 2x, Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x), n ≥ 2.

Based on this recursion, we can drive the recursion for ϕn(x):

ϕ0(x) = 1, ϕ1(x) =

√
2κ

σ
(x− θ), ϕn(x) =

√
2

n

√
κ

σ
(x− θ)ϕn−1(x)−

√
n− 1

n
ϕn−2(x), n > 2.
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πm,n(x,∞) can be calculated as in the following proposition. For πm,n(−∞, x), we note that
πm,n(−∞, x) = 1− πm,n(x,∞) for m = n and πm,n(−∞, x) = −πm,n(x,∞) for m 6= n.

Proposition 5.2.

π0,0(x,∞) = Φ

(
−
√

2κ(x− θ)
σ

)
, πn,n(x,∞) = πn−1,n−1(x,∞) +

1√
2πn

ϕn−1(x)ϕn(x)e−
κ
σ2

(x−θ)2 , n ≥ 1,

πm,n(x,∞) =

√
n+ 1ϕm(x)ϕn+1(x)−

√
m+ 1ϕn(x)ϕm+1(x)√

2π(m− n)
e−

κ
σ2

(x−θ)2 , m 6= n,m ≥ 0, n ≥ 0.

where Φ(x) is the standard normal CDF.

Next we show how to compute f in for the call and put payoffs. Assume r > 0. Define
F := F (0, t∗) and α := σ√

2κ
. For calls, when r > 0 it is optimal to exercise at time ti if

Xφ
ti
≥ x∗i , where x∗i is the unique root of the equation f i(x)−Ci(x) = 0. Hence to value calls we

need to compute f in(x∗i ,∞). From the results for European futures options in Li and Linetsky
(2012), for the call payoff we have:

f in(x,∞) = Feθ+
σ2

4κ
−G(t∗)

∞∑
m=0

e−φ(κm)(t∗−ti) α
m

√
m!
πm,n(y,∞)−Kπ0,n(y,∞),

for n = 0, 1, · · · and generic x (y :=
√
κ(x− θ)/σ). For puts, it is optimal to exercise at time ti

if Xφ
ti
≤ x∗i . Hence, to value the puts we need to compute f in(−∞, x∗i ). The following gives the

expression for generic x (δm,n is the Kronecker delta).

f in(−∞, x) = K(δ0,n − π0,n(y,∞))− Feθ+
σ2

4κ
−G(t∗)

∞∑
m=0

e−φ(κm)(t∗−ti) α
m

√
m!

(δm,n − πm,n(y,∞)).

American-style futures options permit exercise at any time during the option’s life. The
call and put payoffs are continuous in the futures price, which is, in turn, continuous in x. We
further have the following result.

Proposition 5.3. Let V (x, t) be the American-style call or put price at time t ≤ T given

Xφ
t = x (T is the expiration date). Then, under the SubOU model, τ∗ := inf{t ≥ 0 : V (Xφ

t , t) =

f(Xφ
t , t)} is an optimal stopping time.

Thus, by Theorem 4.1, the Bermudan option value converges to the American option value.
We also note that under an additional technical condition on the Laplace exponent φ of

the subordinator, the Bermudan option delta can be computed analytically by term-by-term
differentiation of the eigenfunction expansion.

Proposition 5.4. Suppose the Laplace exponent of the subordinator satisfies

∞∑
n=1

e−φ(κ(n+1))tn
1
4 <∞ (5.9)

for all t > 0. Then

d

dx
Pφt f(x) =

√
2κ

σ

∞∑
n=0

√
n+ 1fn+1e

−φ(κ(n+1))tϕn(x) (5.10)

converges in x uniformly on compacts for all t > 0 and f ∈ L2(R,m).
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The condition (5.9) on the Laplace exponent is automatically satisfied if γ > 0. If γ = 0, it
is satisfied for all tempered stable subordinators with p > 0.

Now consider the calculation of the delta at time s ≥ 0 for a Bermudan option that expires
at time t > s with the underlying futures contract maturing at time t∗ > t. Suppose this option
has N remaining exercise dates after time s (and, without loss of generality, s is not an exercise

date). Let VN (x, s, t) be the value function as a function of the state Xφ
s = x of the SubOU

process driving the model. Then we have VN (x, s, t) =
∑∞

n=0 c
0
ne
−φ(κn)(t−s)/Nϕn(x). Denote its

delta with respect to the futures price F (s, t) at time s by ∆N (x, s, t). Assuming the Laplace
exponent of the subordinator satisfies the assumption in Proposition 5.4, we can calculate the
Bermudan option delta by the chain rule and the term-by-term differentiation of eigenfunction
expansions:

∆N (x, s, t) =

√
2κ

σ

∑∞
n=0

√
n+ 1c0n+1e

−φ(κ(n+1))(t−s)/Nϕn(x)

F (0, t∗)e−G(t∗)
∑∞

n=0 Fne
−φ(κ(n+1))(t∗−s)ϕn(x)

, (5.11)

where Fn is given in (5.5). The expression in the denominator is obtained by term-by-term
differentiation of the eigenfunction expansion (5.4) for the futures price. It is a significant
advantage of the eigenfunction expansion approach over purely numerical approaches, such as
Monte Carlo, that the value function is given analytically, allowing to obtain hedges by analytical
differentiation.

5.3 Real Options

Many physical investment projects involve options that can add substantial value to the
project, such as options to abandon, to expand, to contract, to defer, to extend, etc. (see Dixit
and Pindyck (1994), Trigeorgis (1996), Boyarchenko and Levendorskĭi (2007b) and Hull (2011)
Chapter 34 for surveys of real options).

In this section we follow the setting in Hull (2011) Section 34.5 and consider a firm that has
to decide whether to invest an amount I (in millions of dollars) to extract QN million units of
a commodity from a certain source at the rate of Q million units per accounting period (such
as a year) for the next N periods. Assume all cash flows except the initial investment I occur
at the end of each period. Let h denote the length of the time period, T = Nh the project
horizon, and ti = ih, i = 0, 1, ..., N, accounting dates when the cash flows are recorded. Since
the commodity source has limited reserves, a finite time horizon of T periods is considered.
Let cv and cf denote variable costs (in dollars) per unit of the commodity extracted and fixed
costs per period (in millions of dollars), respectively. Our analysis will focus on the valuation
of projects with abandonment or expansion. Other types of real options can be treated in a
similarly way.

The abandonment option allows the firm to sell or close down a project and mitigates the
impact of very poor investment outcomes and increases the initial valuation of a project. Let Ka

(in millions of dollars) denote the liquidation value of the project net of costs. The abandonment
option can be valued as a Bermudan put on the residual value of the project with strike price
Ka and exercise dates ti, i = 1, 2, ..., N − 1. The residual value of the project at time t is the
present value of all cash flows generated by the project after t.

The expansion option allows the manager to make further investments in the project to
increase the project’s output, if market conditions are favorable. Let Ke (in millions of dollars)
denote the costs incurred to create additional capacity at the time the decision to expand
is made. Then the expansion option can be valued as a Bermudan call on the value of the
additional capacity with strike price Ke and exercise dates ti with i = 0, 1, ..., N − 1. We
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assume the additional capacity is a fraction s of the base project. Then the value of addition
capacity at time t is equal to s times the residual value of the project at time t.

We shall assume the commodity spot price St follows the model (5.1). The analysis in Hull
(2011) Section 34.5 uses the pure diffusion exponential OU model, that is a special case of
our flexible exponential SubOU jump-diffusion model. Let Pti be the residual value at time ti,
1 ≤ i ≤ N − 1, of the project. Then

Pti =
N−i∑
k=1

e−rkh
[
Q(E[Sti+k |Fti ]− cv)− cf

]
= Q

N−i∑
k=1

e−rkhF (Xφ
ti
, ti, ti+k)− (Qcv + cf )

N−i∑
k=1

e−rkh, (5.12)

where F (Xφ
ti
, ti, ti+k) = E[Sti+k |Fti ] is the ti+k-maturity futures price of the commodity as seen

at time ti. Using similar arguments to section 5.2, we can show the following result.

Proposition 5.5. (i) Both the abandonment payoff (Ka − Pti)+ (i = 1, 2, · · · , N − 1) and the
expansion payoff (sPti −Ke)

+ (i = 0, 1, · · · , N − 1) are in L2(R,m).
(ii) For both options, the early exercise region is one-sided.

In contrast to futures options in section 5.2, early exercise of abandonment or expan-

sion options may be optimal even when r = 0. Define α := σ√
2κ

, y :=
√
κ(x−θ)
σ , Ki

a :=

Ka + (Qcv + cf )
∑N−i

k=1 e
−rkh, Ki

e := Ke + s(Qcv + cf )
∑N−i

k=1 e
−rkh and bim :=

∑N−i
k=1 F (0, (i +

k)h)eθ+
σ2

4κ
−G((i+k)h)e−(r+φ(κm))kh, where F (0, t) is the initial futures curve. For the abandon-

ment option, the exercise region at time ti = ih is (−∞, x∗i ], and we need to compute f in(−∞, x∗i ).
Similar to the futures put in section 5.2, for generic x and n = 0, 1, · · · we have

f in(−∞, x) = Ki
a(δ0,n − π0,n(y,∞))−Q

∞∑
m=0

αm√
m!
bim(δm,n − πm,n(y,∞)).

For the expansion option, the exercise region at time ti = ih is [x∗i ,∞), and we need to compute
f in(x∗i ,∞). Similar to the futures call, for generic x and n = 0, 1, · · · ,

f in(x,∞) = sQ
∞∑
m=0

αm√
m!
bimπm,n(y,∞)−Ki

eπ0,n(y,∞).

Now we can calculate the option value through the backward induction of Theorem 3.2. Then
the initial project valuation with the option taken into account is equal to the the base project
value P0 =

∑N
k=1 e

−rkh [Q(F (0, kh)− cv)− cf ] − I plus the option value determined by the
backward induction.

6 Numerical Illustrations

All computations in this section were performed on a laptop computer with Intel Core 2
i5-2450M CPU at 2.50GHz with 4.00GB RAM under Linux. All codes were written in C++
and compiled with g++ 4.3.6. The infinite sums in eigenfunction expansions were truncated
when the given relative error tolerance e1 was reached. The bisection algorithm was used to
find the root of (3.8) with the given absolute error tolerance e2.

Our first example considers the pure diffusion OU commodity model (5.1) with no time
change and evaluates abandonment and capacity expansion options of section 5.3. We take the
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same model parameters as in Hull (2011) section 34.5. The duration of the project is three
years and the decisions to exercise real options are made once per year at the end of each
year, i.e. N = 3 years and h = 1 year in this example of Bermudan-style real options. The
initial commodity price is S0 = 20, the initial future curve is F (0, 1) = 22, F (0, 2) = 23, and
F (0, 3) = 24, and the OU process parameters are κ = 0.1, σ = 0.2, θ = 0, and x0 = 0. When the
initial futures curve is specified, θ and x0 do not affect the dynamics of St in the pure diffusion
case by (5.7) and are, thus, set to zero. The parameters of the real options in section 5.3 are
taken as in Hull: I = 15, Q = 2, cv = 17, cf = 6 and r = 10%. For the abandonment option,
Ka = 0. For the expansion option, s = 0.2 and Ke = 2.

We first compute accurate benchmarks for the values of abandonment and expansion options
using our eigenfunction expansion algorithm by setting e1 = 10−15 and e2 = 10−15. The CPU
times for these exceedingly tight error tolerances are around 0.02 seconds. The results are
displayed in Table 1.

Type Value (in millions) EEB at year 1 EEB at year 2

Abandonment 1.385613 17.537 18.744
Expansion 1.189545 24.544 21.847

Table 1: Value and Early Exercise Boundary (EEB) for the Abandonment and Expansion
Option.

To show convergence of the algorithm as the error tolerance in truncating the infinite sums
is decreased, we fix e2 = 10−6 and run the algorithm with e1 = 10−5, 10−6, · · · , 10−12. Figure
1 presents the computational performance of the eigenfunction expansion algorithm for the
abandonment option. Similar results are also observed for the expansion option. The figure
plots the absolute pricing error (in millions of dollars) in evaluating the abandonment option
value vs. the CPU time, as the error tolerance parameter e1 is decreased from 10−5 to 10−12.
The CPU time ranges from 0.001 seconds for e1 = 10−5 to 0.007 seconds for e1 = 10−12. The
absolute pricing error is around 10−4 at e1 = 10−5 and rapidly decreases to 10−11 at e1 = 10−12.
Figure 1 also presents the computational performance of the trinomial tree algorithm for this
problem. Hull (2011) uses an alternative approach to evaluate these real options by the trinomial
tree algorithm. We implemented the trinomial tree algorithm for the OU process X with M
time steps in each year (see Hull and White (1993) and Hull (2011)). The options are then
evaluated by going backwards through the tree. At the exercise times, we evaluate the project’s
residual value for each node using (5.8) and (5.12). We also find the node where it first becomes
optimal to exercise. The spot price for this node is calculated by (5.6), and this value is used
as an approximation for the early exercise boundary. We ran the trinomial tree algorithm for
M = 250, 500, 1000 time steps and then increased the number of time steps by 1000 each time
until 10, 000. The computation time for the trinomial tree algorithm ranges from 0.04 seconds
to 42 seconds. We observe from the plot that the eigenfunction expansion algorithm converges
orders of magnitude faster due to the fact that no discretizations of the state variable and time
(inside the time step h between the Bermudan-style option exercise dates) are required.

For the early exercise boundary, when the error tolerance in determining the root of the
equation (3.8) is e2 = 10−6 in the OU state variable and the error tolerance in evaluating the
expansions is e1 = 10−7, the eigenfunction expansion algorithm computes the values of the
boundary (the critical commodity spot price) at the end of year one and at the end of year
two with the accuracy of five decimal places. For e1 = 10−5, the result is accurate to the 3rd
and 4th decimal place for the boundary at year one and year two, respectively. In contrast, for
the trinomial tree, no time step M considered computes the boundaries at both year one and
year two accurate to even the 2nd decimal place, as the spacing between two adjacent nodes
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in the tree for the OU state variable is only 1.1 × 10−3 in the value of the OU state variable
even when the number of time steps is M = 10, 000. When it is transformed into the spot
commodity price, the spacing becomes even coarser. We also note that while the trinomial
tree algorithm is limited to pure diffusions, the eigenfunction expansion algorithm is equally
applicable to processes with state-dependent jumps obtained by subordination.
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Figure 1: Eigenfunction Expansion vs. the Trinomial Tree for the Abandonment Option (on
log-log scale)

We next value American-style commodity futures options by applying Richardson extrapo-
lation to Bermudan-style futures options. We present convergence results for an in-the-money
futures put option under pure diffusion, jump-diffusion and pure jump model specifications for
the SubOU commodity model. Similar results hold for puts with different parameters, as well
as for calls. The time change used in this example is the Inverse Gaussian (IG) subordinator

Tt with the added drift γ and with the Lévy measure ν(ds) = µ
√

µ
2πvs

− 3
2 exp

(
− µ

2vs
)
ds, where

µ = E[T1] and v = Var[T1]. In the example, we price at time zero a put option with expiration
t = 1 year and the underlying futures contract maturity t∗ = 1.04 (which corresponds to futures
maturing approximately two weeks after the option expires, a typical example for commodity
futures). The initial futures price is F (0, t∗) = 100, the strike is K = 120 (the option is in-
the-money), and r = 0.05. The OU process parameters are κ = 0.2, σ = 0.4, θ = −0.3, and
x0 = 0. For the IG subordinator, the parameters of the Lévy measure are chosen µ = 1 and
ν = 2. We consider two cases of the drift: γ = 0.2 for the jump-diffusion case and γ = 0 for the
pure jump case. This is a representative set of parameters from our calibration experience to
different commodities in Li and Linetsky (2012).

We compute the Bermudan put price for N from 2 to 10 with the increment of 1 and from 10
to 50 with the increment of 10. Figure 2 plots the put option value vs. the step size parameter
1/N . It is clear that the convergence rate is linear in all cases. The linear regression fits have
the R-square ≥ 99.9% in all three cases.

To demonstrate the effectiveness of the Richardson extrapolation, we consider the pure
diffusion case, where an independent benchmark can be obtained by an alternative method. We
price the American-style futures options in the pure diffusion OU model (5.8) with a 15, 000-step
trinomial tree to provide the benchmark. In our numerical experiments we follow the approach
of Broadie and Detemple (1996) and consider a sample of options with randomly sampled
parameters. Our sample size is 500 options as in Broadie et al. (1999). The parameters are
sampled from the following distributions: K ∼ U [70, 130], r ∼ U [0.01, 0.1], κ ∼ U [0.1, 1], θ ∼

22



26.65

26.75

B
e

rm
u

d
a

n
 P

u
t 

P
ri

ce

OU Diffusion

26.45

26.55

0.0 0.1 0.2 0.3 0.4 0.5

B
e

rm
u

d
a

n
 P

u
t 

P
ri

ce

Time Step (1/N)

25.85

25.90

B
e

rm
u

d
a

n
 P

u
t 

P
ri

ce

IG-SubOU Jump Diffusion

25.75

25.80

0.0 0.1 0.2 0.3 0.4 0.5

B
e

rm
u

d
a

n
 P

u
t 

P
ri

ce

Time Step (1/N)

24.55

24.60

B
e

rm
u

d
a

n
 P

u
t 

P
ri

ce

IG-SubOU Pure Jump

24.45

24.50

0.0 0.1 0.2 0.3 0.4 0.5

B
e

rm
u

d
a

n
 P

u
t 

P
ri

ce

Time Step (1/N)

Figure 2: Bermudan put price vs. step size

U [−0.5, 0.5], σ ∼ U [0.1, 0.6], where U [a, b] refers to uniform distribution on [a, b]. These intervals
cover wide parameter ranges of practical interest. We set t = 1, t∗ = 1.04, F (0, t∗) = 100, x0 = 0
and set error tolerances to e1 = e2 = 10−6. Under each set of parameters, we compute V RE

N with
N = 2, 3, which correspond to 2,3-point RE and 3,4-point RE, and then calculate their relative
pricing error. We measure the overall performance by RMS (root mean squared) relative error.
Following Broadie and Detemple (1996) we exclude lower priced options with prices less than
0.5 from our calculation of the relative pricing error. After applying this filter, there are 472
options in our sample. Table 2 presents the results for the option price and the average CPU
time.

2,3-RE 3,4-RE

RMS relative error 0.174% 0.097%
Time (in seconds) 0.0017 0.0039

Table 2: RMS and computation time for 2,3-point and 3,4-point Richardson extrapolation

The data suggest that the value V RE
3 computed from the prices of two Bermudan options

with 3 and 4 early exercise opportunities already approximates American option prices with
relative pricing error of less than 0.1%, which is sufficient for practical applications (see e.g.
Broadie and Detemple (1996) for a discussion of desirable accuracy levels in option pricing).
The CPU time is about 4 milliseconds per option at this level of accuracy. This computational
speed would allow practitioners essentially real time pricing, as around 250 options can be priced
in one second using (3,4)-extrapolation. Using (2,3)-extrapolation increases the pricing error
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to 0.174%, while cutting CPU time down to 1.7 milliseconds per option, or allowing one to
price about 600 options per one second. In practice CPU time can be further reduced by using
faster computers (all the experiments in this paper have been conducted on a personal laptop
computer). The RE procedure can also be easily implemented via parallel computing. For
(3,4)-extrapolation, one can calculate Bermudan prices with 3 and 4 exercise opportunities in
parallel. The CPU time then decreases to the time needed to price one Bermudan option with
4 exercise opportunities, rather than two options — one with 4 and one with 3 opportunities.

Remark 6.1. When programming the method, care must be taken to deal with possible over-
flow and underflow issues. In our simulation experiment, which covers many cases of practical
interests, all quantities in our computation stay in the range of double precision. However, in
parameter scenarios when κ

σ2 is extremely large (due to κ being sufficiently large and/or σ suffi-
ciently small) and the option is very deep out of money, when computing πm,n(x,∞), the prod-
ucts ϕm(x)ϕn+1(x) and ϕn(x)ϕm+1(x) may overflow, while the exponential exp

(
− κ
σ2 (x− θ)2

)
may underflow. A direct implementation of the formulas in Proposition 5.2 produces nan (not
a number) in C++. This can be avoided by taking the logarithms as follows. To be specific,
consider the expression ϕm(x)ϕn+1(x) exp

(
− κ
σ2 (x− θ)2

)
. It can be written as

sgn(ϕm(x))sgn(ϕn+1(x)) exp
(

ln (|ϕm(x)|) ln (|ϕn+1(x)|)− κ

σ2
(x− θ)2

)
,

where sgn(·) is the sign function. This avoids the overflow/underflow issues in many cases. If
the computations of eigenfunctions ϕn(x) also overflow, we use the GNU Multiple Precision
Arithmetic Library (GMP). In our implementation, we start with the direct computation with
double precision. If overflow or underflow occurs, we switch to the implementation with the
logarithm. If the overflow or underflow still occurs, we switch to the GMP library. One can also
simplify the implementation and always use the GMP library, rather than start with double
precision. However this is less computationally efficient as the GMP library requires additional
CPU time than double precision. For commodities, these extreme scenarios are not interesting
and barely encountered in practice, so double precision seems to be sufficient for practical needs.

7 Conclusions

This paper proposes a new approach to solve finite-horizon optimal stopping problems for a
rich class of Markov processes that includes one-dimensional diffusions, birth-death processes,
and jump-diffusions and continuous-time Markov chains obtained by time changing diffusions
and BD processes with Lévy subordinators. The method is directly applicable when the expec-
tation operator (or the pricing operator in case of state-dependent discounting) is a trace class
operator on the Hilbert space of square-integrable payoffs, ensuring purely discrete spectrum
and the finiteness of the sum of all eigenvalues. This leads to the eigenfunction expansion of
the value function for the optimal stopping problem with the discrete set of decision dates, with
the expansion coefficients satisfying a backward recursion. The value function of the continuous
optimal stopping problem is then obtained in the limit of the time step between decision points
shrinking to zero, and can be efficiently computed via Richardson extrapolation. This paper
illustrates the method with two applications to commodity futures options and real options in
commodity extraction in the (subordinate) Ornstein-Uhlenbeck model. The method proves to
be fast and accurate in these applications. In future research, we plan to apply the method to a
wide range of further applications in financial engineering with optimal stopping and early ex-
ercise, as well as extend the computational implementation of the method to multi-dimensional
processes and processes with continuous spectra.
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A Hunt Processes

While in the main body of this paper the state space E is a Borel subset of the real line, here
E is a locally compact separable metric space and E∂ := E∪{∂} its one-point compactification.
If E is already compact, then ∂ is added as an isolated point. The family ((Xt)t≥0, (Px)x∈E∂ )
is called a (time homogeneous) Markov process if: (1) x→ Px(Xt ∈ B) is Borel measurable for
every B ∈ B(E). (2) There exists a filtration (Gt)t≥0 on (Ω,F) such that X is adapted to it
and Px(Xt+s ∈ B|Gt) = PXt(Xs ∈ B), Px almost surely for every x ∈ E, s ≥ 0 and B ∈ B(E).
(3) P∂(Xt = ∂) = 1 for all t ≥ 0. (4) Px(X0 = x) = 1 for all x ∈ E. Condition (4) says that X
starts at x under Px. Condition (3) says that the cemetery state ∂ is an absorbing state for X.
Condition (2) is the Markov property of X with respect to (Gt)t≥0.

A Markov process with respect to a filtration (Gt)t≥0 is called a strong Markov process if
the filtration is right-continuous and Pµ(XT+s ∈ B|GT ) = PXT (Xs ∈ B), Pµ-almost surely for
every (Gt)t≥0-stopping time T such that Pµ(T < ∞) = 1, and for all initial distributions µ on
E∂ , B ∈ B(E∂) and s ≥ 0.

A Markov process X with respect to a filtration (Gt)t≥0 is said to be quasi left-continuous
if for any sequence (Tn)n≥1 of (Gt)t≥0-stopping times increasing to a stopping time T it holds
that Pµ(limn→∞XTn = XT , T <∞) = Pµ(T <∞) for all initial distributions µ. Here Pµ(Λ) :=∫
E∂

Px(Λ)µ(dx) is the probability measure on (Ω,F) corresponding to starting the process with
the initial distribution µ on E∂ .

A strong Markov process on (E,B(E)) with respect to a filtration (Gt)t≥0 is called a Hunt
process if it is quasi left-continuous and satisfies the following conditions: (1) Xt(ω) = ∂ for
every t ≥ ζ(ω), where ζ(ω) = inf{t ≥ 0 : Xt = ∂} is the lifetime of X (the first time the process
reaches the cemetery state). (2) For each t ≥ 0, there exists a map (called the shift operator)
θt : Ω→ Ω such that Xt ◦ θs = Xt+s, s ≥ 0. (3) For each ω ∈ Ω, the sample path t→ Xt(ω) is
right continuous on [0,∞) and has left limits on (0,∞).

Let (F0
t := σ(Xs : 0 ≤ s ≤ t))t≥0 denote the filtration generated by X and let (Ft)t≥0 denote

its completion with respect to Pµ for all initial distributions µ (here Pµ(Λ) :=
∫
E∂

Px(Λ)µ(dx)
is the probability measure on (Ω,F) corresponding to starting the process with the initial
distribution µ on E∂). (Ft)t≥0 is called the minimal completed admissible filtration.

The process X is a Hunt process if, and only if, it is a strong Markov process and quasi
left-continuous with respect to the minimal completed admissible filtration (cf. Theorem A.2.1
in Fukushima et al. (2011) or Theorem A.1.24 in Chen and Fukushima (2011) or Schilling et al.
(2010) p.285).

B Proofs

Proposition 2.2. Part (1) and (3) come from Davies (2007) Theorem 7.2.5. Part (2) is shown
by the following calculation using (2.6):

Prt f(x) =

∫
E
f(y)pt(x, y)m(dy) =

∫
E
f(y)m(dy)

∞∑
n=1

e−λntϕn(x)ϕn(y)

=

∞∑
n=1

e−λntϕn(x)

∫
E
f(y)ϕn(y)m(dy) =

∞∑
n=1

fne
−λntϕn(x).

The interchange of integration and summation is justified by: that∣∣∣∣∣
∫
E
f(y)m(dy)

∞∑
n=1

e−λntϕn(x)ϕn(y)

∣∣∣∣∣ ≤
∞∑
n=1

e−λnt |ϕn(x)|
∫
E
|f(y)ϕn(y)|m(dy)
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≤
∞∑
n=1

e−λnt |ϕn(x)| ||f ||2 · ||ϕn||2 = ||f ||2
∞∑
n=1

e−λnt |ϕn(x)| ≤ ||f ||2
√
pt(x, x)

∞∑
n=1

e−λnt/2 <∞.

In the second step, we used the Cauchy-Schwartz inequality. In the third step, we used the
bound on eigenfunctions in part (1). Finally the trace class assumption implies the bound is
finite. This implies that |Ptf(x)| <∞ for each x and t > 0. Second, we can apply the Dominat-
ed Convergence Theorem with the dominating function

∑∞
n=1 e

−λnt |ϕn(x)| |f(y)ϕn(y)|m(dy) to
justify the interchange, so pointwise convergence holds. The uniform convergence on compacts
easily follows from part (1) and the trace class assumption. The continuity of Prt f(x) follows
from the continuity of the eigenfunctions and the uniform convergence on compacts.

Theorem 3.1. The assumption implies that for all τ ∈ T ′h, Ex[f(Xτ , τ)] as well as all other
expectations used in the proof are well defined. Since for the time-dependent payoff the time
variable can be added to the state space as an extra state variable, it is sufficient to consider
time-independent payoffs in the proof. Define the operator Q by Qg(x) = max {g(x),Prhg(x)}
for x ∈ E∂ . Then Q has all properties of the operator Q defined in Shiryaev (1978) Section 2.2.
The rest of the proof can be carried out using Q in the same manner as Shiryaev (1978) Section
2.2 Theorem 1.

Theorem 3.2. We first show that condition (3.2) in Theorem 3.1 is satisfied. It suffices to
show that for any Borel measurable functions f1 and f2 such that f1, f2 ∈ L2(E,m), and each
t1, t2 > 0 and x ∈ E,

Ex
[
max

{
exp

(
−
∫ t1

0
r(Xu)du

)
|f1(Xt1)|, exp

(
−
∫ t2

0
r(Xu)du

)
|f2(Xt2)|

}]
<∞.

This quantity is bounded by Prt1 |f
1|(x) + Prt2 |f

2|(x). This is a continuous function of x by
Proposition 2.2 and, hence, finite for each x ∈ E.

Part (i) follows from the definition of Ci and V i in Theorem 3.1 and the facts that Prh :
L2(E,m) 7→ L2(E,m) and max(f, g) ∈ L2(E,m) for two Borel measurable functions f and g on
E that satisfy f, g ∈ L2(E,m).

To prove part (ii), from the definitions in Theorem 3.1, (3.3) and (3.4), we have for i =
0, 1, ..., N − 2, Ci(x) = Prh max(f i+1, Ci+1)(x) = Prh(1Si+1f i+1 + 1Ci+1Ci+1)(x). From (2.4), Ci

has the eigenfunction expansion (3.6) with

cin = (ϕn,1Si+1f i+1 + 1Ci+1Ci+1) = f i+1
n (Si+1) + (ϕn,1Ci+1Ci+1)

= f i+1
n (Si+1) + (ϕn,1Ci+1

∞∑
m=1

ci+1
m e−λmhϕm) = f i+1

n (Si+1) +

∞∑
m=1

ci+1
m e−λmhπm,n

(
Ci+1

)
,

where in the last equality we used the continuity of the inner product, i.e. if gn → g in L2(E,m),
then limn→∞(gn, h) = (g, h) for any h ∈ L2(E,m). The second and third equalities in (3.5) for
fn(A) can be shown similarly using the continuity of the inner product and the orthonormality
of the eigenfunctions. Part (iii) follows from Proposition 2.2.

Theorem 4.1. Consider the sequence of random times {τN} defined by τN := tNn+1 if tNn ≤ τ∗ <
tNn+1 for some n ≤ N − 1, otherwise τN := T . Then τN ≥ τ∗, and because hN → 0, τN → τ∗.
Let us verify that τN is a stopping time. Define γN (t) := max{tNn : tNn ≤ t, n = 0, 1, · · · , N},
then for t < T , {τN ≤ t} = {τN ≤ γN (t)} = {τ∗ < γN (t)} ∈ FγN (t) ⊆ Ft. Obviously,
{τN ≤ T} = {τ∗ ≤ T} ⊆ FT . Hence τN is a stopping time. Since X is a Hunt process, we have
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limN→∞XτN = Xτ∗ due to the right continuity of sample paths. On one hand,

lim
N→∞

VN (x) ≥ lim
N→∞

Ex
[
exp

(
−
∫ τN

0
r(Xu)du

)
f(XτN , τN )1{τN<ζ′}

]
= Ex

[
lim
N→∞

exp

(
−
∫ τN

0
r(Xu)du

)
f(XτN , τN )1{τN<ζ′}

]
= Ex

[
exp

(
−
∫ τ∗

0
r(Xu)du

)
f(Xτ∗ , τ

∗)1{τ∗<ζ}

]
= V (x).

In the first step, we used the definition of VN (x). In the second step, we apply the dominated
convergence theorem according to condition (4.2). In the third step, we used the continu-
ity of the payoff on E × [0, T ], and limN→∞ 1{τN<ζ′} = 1{τ∗<ζ}. In the final step, we used
f(Xζ , ζ) = 0. On the other hand, it is obvious that limN→∞ VN (x) ≤ V (x). This shows
limN→∞ VN (x) = V (x).

Proposition 5.1. The put payoff is bounded by K, and m is Gaussian, so it is in L2(E,m).
We now consider the call payoff. For any s ∈ [0, t], note that (F (x, s, t∗) −K)+ ≤ F (x, s, t∗),

and F (x, s, t∗) = F (0, t∗)e−G(t∗)Ex[eX
φ
t∗−s ]. Since ex ∈ L2(E,m), Ex[eX

φ
t∗−s ] ∈ L2(E,m), and

the assertion for the call payoff follows.
Now we consider the shape of the stopping region. For notational simplicity, we assume the

exercise dates are equally spaced with increment h. Our proof consists of two steps.
Step 1: We first show that the SubOU model satisfies the following property:

(i) The futures price is an increasing function of the SubOU state variable.

(ii) For a Bermudan put (call), the continuation value at ti is a decreasing (increasing) function
of the futures price at ti (i = 0, 1, · · · , N − 1).

We consider a complete probability space (Ω,F ,P) with the filtration (Ft)t≥0 satisfying the
usual hypothesis. Bt is a standard Brownian motion and Tt is a Lévy subordinator defined
on this space. Let X1

t and X2
t be two OU diffusions driven by Bt with the same κ, θ and

σ, X1
0 = x1, X

2
0 = x2. If x1 ≤ x2, then by Theorem 1.1 of Ikeda and Watanabe (1977),

P[X1
t (ω) ≤ X2

t (ω) for all t ≥ 0] = 1. Define Xφ,1
t = X1

Tt
, Xφ,2

t = X2
Tt

. Then it is easy to see
that we have the following comparison result

P[Xφ,1
t (ω) ≤ Xφ,2

t (ω) for all t ≥ 0] = 1. (B.1)

This shows that for a SubOU process Xφ, the function g(x) := Ex[f(Xφ
t )] (t > 0) is increas-

ing (decreasing), if f is increasing (decreasing). Property (i) then follows from F (x, s, t∗) =

F (0, t∗)e−G(t∗)Ex[eX
φ
t∗−s ] and that ex is increasing. (i) implies that the futures process satisfies

similar comparison result as in (B.1):

P[F 1(ω, s, t∗) ≤ F 2(ω, s, t∗) for all u ≤ s ≤ t∗] = 1 if F 1(u, t∗) ≤ F 2(u, t∗), u ≥ 0, (B.2)

where F i(ω, s, t∗) = F i(Xφ,i
s (ω), s, t∗) with the RHS given by (5.4). From now on to simplify

notation we shall write Fs for F (s, t∗) and bear in mind that the maturity for the futures
contract is t∗. (B.2) implies that g(y) := E[f(Fs)|Fu = y] (0 ≤ u < s ≤ t∗) is increasing
(decreasing) if f is increasing (decreasing).

Next we prove property (ii) for the put option. The proof for the call option is similar.
Since CN−1(y) = E

[
(K − Ft)+|FtN−1 = y

]
and (K − y)+ is decreasing, CN−1(y) is decreasing
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by the results above. The rest of the proof is by induction. Suppose (ii) holds for Ci+1(y).
We have Ci(y) = E

[
max{(K − Fti+1)+, Ci+1(Fti+1)}|Fti = y

]
, and max{(K − y)+, Ci+1(y)} is

decreasing, hence Ci(y) is decreasing.
Step 2: By (i) we can consider the futures price as the underlying state variable instead of the
SubOU variable. The option matures at t (t < t∗). The put payoff f(y) = (K − y)+ and the
call payoff f(y) = (y−K)+. In step 2 we show the solution to Ci(y) = f(y) exists and is unique
for i = N − 1, · · · , 1, 0 when r > 0. The one-sided structure of the exercise region then follows
because both Ci and f are continuous functions. We only prove for the put. The proof for the
call can be carried out in a similar way.
(1) At time tN−1, the equation is e−rhE

[
(K − Ft)+ | FtN−1 = y

]
= (K − y)+ . It is easy to

see that equivalently we can solve e−rhE
[
(K − Ft)+ | FtN−1 = y

]
= K − y. Define AN−1(y) =

E
[(
K−Ft

)+∣∣FtN−1 = y
]
, and g(y) = K−CN−1(y) = K−e−rhAN−1(y). The function AN−1(·) is

the continuation value at time tN−1 without discounting. Then the equation becomes g(y) = y.
Now we wish to show that g(·) is a contraction. Let y1 ≤ y2 then AN−1(y1) ≥ AN−1(y2). Hence∣∣g(y2)− g(y1)

∣∣ = e−rh
∣∣AN−1(y1)−AN−1(y2)∣∣ = e−rh

(
AN−1(y1)−AN−1(y2)

)
We consider the probability setting in step 1 again. Since y1 ≤ y2, we have F 1

t (ω) ≤ F 2
t (ω).

Hence

(
K − F 1

t (ω)
)+ − (K − F 2

t (ω)
)+

=

{
F 2
t (ω)− F 1

t (ω), F 1
t (ω) ≤ F 2

t (ω) ≤ K
K − F 1

t (ω), F 1
t (ω) ≤ K < F 2

t (ω)

≤ F 2
t (ω)− F 1

t (ω).

This implies that

AN−1(y1)−AN−1(y2) = E
[(
K − F 2

t (ω)
)+ − (K − F 1

t (ω)
)+|Ft]

6 E
[
F 2
t (ω)− F 1

t (ω)|Ft
]

= y2 − y1,

where in the last equality we have used the fact that futures process is a martingale.
Therefore for g(·) we have∣∣g(y2)− g(y1)

∣∣ =
∣∣CN−1(y1)− CN−1(y2)∣∣ = e−rh

(
AN−1(y1)−AN−1(y2)

)
≤ e−rh(y2 − y1).

Since r > 0, 0 < e−rh < 1, therefore g(·) is a contraction. By the Banach Fixed Point Theorem,
the solution to g(y) = y exists and is unique.
(2) The rest of the proof is by induction. Note that at time tN−1, we have proved that the
continuation value satisfies

∣∣CN−1(y2) − CN−1(y1)∣∣ 6 e−rh
∣∣y2 − y1∣∣. At time ti+1 (i <= N −

2), assume the equation Ci+1(y) = f(y) has a unique solution, and |Ci+1(y2) − Ci+1(y1)| 6
e−rh

∣∣y2−y1∣∣. We wish to show that Ci(y) = f(y) has a unique solution and |Ci(y2)−Ci(y1)| 6
e−rh

∣∣y2−y1∣∣. Similar to the arguments at tN−1, equivalently we can solve Ci(y) = K−y. Define
g(y) = K − Ci(y) = K − e−rhAi(y), where Ai(y) is the continuation value at time ti without
discounting. Suppose y1 ≤ y2, then Ai(y1) ≥ Ai(y2) and∣∣g(y2)− g(y1)

∣∣ = e−rh
∣∣Ai(y1)−Ai(y2)∣∣ = e−rh

(
Ai(y1)−Ai(y2)

)
.

We have F 1
ti+1

(ω) ≤ F 2
ti+1

(ω), and Ci+1(F 1
ti+1

(ω)) ≤ Ci+1(F 2
ti+1

(ω)).

max
{
K − F 1

ti+1
(ω), Ci+1

(
F 1
ti+1

(ω)
)}
−max

{
K − F 2

ti+1
(ω), Ci+1

(
F 2
ti+1

(ω)
)}

≤ max
{
F 2
ti+1

(ω)− F 1
ti+1

(ω),K − F 1
ti+1

(ω)− Ci+1
(
F 2
ti+1

(ω)
)
,
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Ci+1
(
F 1
ti+1

(ω)
)
− Ci+1

(
F 2
ti+1

(ω)
)
, Ci+1

(
F 1
ti+1

(ω)
)
−
(
K − F 2

ti+1
(ω)
)}

≤ max
{
F 2
ti+1

(ω)− F 1
ti+1

(ω), Ci+1
(
F 1
ti+1

(ω)
)
− Ci+1

(
F 2
ti+1

(ω)
)}

≤ max{F 2
ti+1

(ω)− F 1
ti+1

(ω), e−rh(F 2
ti+1

(ω)− F 1
ti+1

(ω))}
≤ F 2

ti+1
(ω)− F 1

ti+1
(ω),

where the second to the last inequality is from the induction assumption. Hence

Ai(y1)−Ai(y2) = E
[

max{K − F 1
ti+1

(ω), Ci+1
(
F 1
ti+1

(ω)
)
}|Fti

]
− E

[
max{K − F 2

ti+1
(ω), Ci+1

(
F 2
ti+1

(ω)
)
}|Fti

]
6 E

[
F 2
ti+1

(ω)− F 1
ti+1

(ω)|Fti
]

= y2 − y1.

Again we have used the martingale property of the futures price process. Finally∣∣g(y2)− g(y1)
∣∣ =

∣∣Ci(y1)− Ci(y2)∣∣ = e−rh
(
Ai(y1)−Ai(y2)

)
≤ e−rh

(
y2 − y1

)
.

So g(·) is a contraction, and the existence and uniqueness follows from the Banach Fixed Point
Theorem.
Step 3: Finally we consider the case r = 0. From Jensen’s inequality,

Ci(y) = E
[(
K − Fti+1

)+ |Fti = y
]
>
(
K − E[Fti+1 |Fti = y]

)+
= (K − y)+ = f(y).

The inequality is strict because K − Fti+1 is not almost surely equal to a constant. Therefore
the early exercise region is empty.

Proposition 5.2. We define am,n(x) =
∫∞
x Hm(u)Hn(u)e−u

2
du. Since H0(x) = 1, it is easy

to see that a0,0(x) =
√
πΦ(−

√
2x). For Hermite polynomials, the forward shift property reads

d
dxHn(x) = 2nHn−1(x) (n ≥ 1), and the backward shift property reads d

dx

[
e−x

2
Hn(x)

]
=

−e−x2Hn+1(x). We first apply the backward shift, integrate by parts and then apply the
forward shift.

am+1,n+1(x) =

∫ ∞
x

Hm+1(u)Hn+1(u)e−u
2
du = −

∫ ∞
x

Hm+1(u)d(e−u
2
Hn(u))

= −Hm+1(u)Hn(u)e−u
2 |∞x +

∫ ∞
x

e−u
2
Hn(u)d(Hm+1(u))

= Hm+1(x)Hn(x)e−x
2

+

∫ ∞
x

e−u
2
Hn(u)2(m+ 1)Hm(u)du

= Hm+1(x)Hn(x)e−x
2

+ 2(m+ 1)am,n(x) (B.3)

Exchanging the role of m and n, we have

am+1,n+1(x) = Hn+1(x)Hm(x)e−x
2

+ 2(n+ 1)am,n(x). (B.4)

If m 6= n, then subtracting (B.4) from (B.3) and rearranging leads to

am,n(x) =
Hm(x)Hn+1(x)−Hn(x)Hm+1(x)

2(m− n)
e−x

2
, m 6= n,m ≥ 0, n ≥ 0. (B.5)

Setting m = n in (B.4) we obtain the recursion for an,n(y), which is

an,n(x) = 2nan−1,n−1(x) +Hn−1(x)Hn(x)e−x
2
, n ≥ 1. (B.6)
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By change of variable it is easy to see that

πm,n(x,∞) =
1√

π2mm!2nn!
am,n

(√
κ(x− θ)/σ

)
. (B.7)

Eqs.(B.5), (B.6), (B.7) and (5.2) together give the results in Proposition 5.2.

Proposition 5.3. We first verify the following two conditions.

(1) Ex
[
sup0≤s≤t (K − F (Xs, s, t

∗))+
]
<∞, and Ex

[
sup0≤s≤t (F (Xs, s, t

∗)−K)+
]
<∞.

(2) The continuous time value function V is lower semi-continuous.

To verify (1), observe that Ex
[
sup0≤s≤t (K − F (Xs, s, t

∗))+
]
≤ K for the put. To verify for the

call, we have

Ex
[

sup
0≤s≤t

(F (Xs, s, t
∗)−K)+

]
≤ Ex

[
sup
0≤s≤t

F (Xs, s, t
∗)

]
≤ e

e− 1

(
1 + Ex

[
F (Xt, t, t

∗) (lnF (Xt, t, t
∗))+

])
≤ e

e− 1

(
1 + Ex

[
F 2(Xt, t, t

∗)
])

≤ e

e− 1

(
1 + F 2(0, t)e−2G(t)Ex

[(
Ex[eX

φ
t∗ |Xφ

t ]
)2])

≤ e

e− 1

(
1 + F 2(0, t)e−2G(t)Ex

[
e2X

φ
t∗
])
,

which is finite since Ex
[
e2X

φ
t∗
]
<∞. We used Doob’s inequality for nonnegative submartingale

with p = 1 in the second step, and Jensen’s inequality in the fifth step.
To verify (2), note that Cb(E) ⊂ L2(E,m), so from Proposition 2.2, Pφt maps Cb(E) into

Cb(E). Hence both put and call payoff are continuous, so from Peskir and Shiryaev (2006)
(2.2.80) V is lower-semi-continuous.

Conditions (1) and (2) together allow us to apply Peskir and Shiryaev (2006) Chapter I
Corollary 2.9, which proves the claim in the proposition.

Proposition 5.4. By Cauchy-Schwartz inequality, we have |fn| ≤ ||f ||L2 for all n. Since

H ′n(x) = 2nHn−1(x) (n ≥ 1), we have ϕ′n(x) = ϕn−1(x)
√
2κn
σ (n ≥ 1). On any compact interval

I, there exists a constant C such that |ϕn(x)| ≤ C/n
1
4 for n ≥ 1. From these results we have

for any x ∈ I, ∣∣∣∣∣
∞∑
n=1

fne
−φ(κn)tϕ′n(x)

∣∣∣∣∣ =

√
2κ

σ

∣∣∣∣∣
∞∑
n=0

√
n+ 1fn+1e

−φ(κ(n+1))tϕn(x)

∣∣∣∣∣
≤ C1 + C2

∞∑
n=1

e−φ(κ(n+1))t

√
n+ 1

n
1
4

,

for some constants C1 and C2. Hence the assumption implies
∑∞

n=1 fne
−φ(κn)tϕ′n(x) converges

uniformly on any compacts. This allows us to interchange summation and differentiation, which
results in (5.10).

Proposition 5.5. The abandonment payoff is bounded by K, so it is in L2(R,m). For the
expansion payoff, (sPti−Ke)

+ ≤ sPti . Pti is in L2(R,m) by (5.12) and the fact that the futures
price is in L2(R,m), as shown in Proposition 5.1.

Next we consider the shape of the stopping region. For notational simplicity, we assume the
exercise dates are equally spaced with increment h. We use the same probabilistic setting as in
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Proposition 5.1. It is easy to see from (5.12) and property (i) in the proof of Proposition 5.1
that Pti is an increasing function of the SubOU variable at ti. The discrete time residual value
process {Pti : i = 0, 1, · · · , N − 1} satisfies the following comparison result

P[P 1
tj (ω) ≤ P 2

tj (ω) for all i ≤ j ≤ N − 1] = 1 if P 1
ti ≤ P

2
ti , i ≥ 0. (B.8)

(B.8) implies that g(z) := E[f(Ps)|Pu = z] (0 ≤ u < s ≤ tN−1) is increasing (decreasing) if f
is increasing (decreasing). Similar to Proposition 5.1, this allows us to conclude that each Ci is
a decreasing (increasing) function of the residual value at ti for the abandonment (expansion)
option.

To show the one-sided structure of the stopping region, we consider the residual value as
the underlying state variable instead of the SubOU variable. The abandonment payoff f(z) =
(Ka − z)+ and the expansion payoff f(z) = (sz −Ke)

+. We show the solution to Ci(z) = f(z)
exists and is unique for i = N − 2, · · · , 1, 0. The one-side structure of the exercise region then
follows because both Ci and f are continuous functions. We only prove for the abandonment
option. The proof for the expansion option can be carried out in a similar way.
(1) At time tN−2, the equation is

e−rhE
[(
Ka − PtN−1

)+ | PtN−2 = z
]

= (Ka − z)+ .

To show the existence of the solution, we first note that CN−2(z) > 0 while (Ka − z)+ = 0 for
z > Ka. As z → 0,

CN−2(z) ∼ e−rhE
[
Ka − PtN−1 |PtN−2 = z

]
= e−rhKa −

{
z − e−rh(QF (tN−2, tN−1)− (cf +Qcv))

}
Hence limz→0C

N−2(z) = e−rh(Ka − cf − Qcv) < Ka since cf , cv > 0. Therefore by the inter-
mediate value theorem for continuous functions, a solution to the equation exists.

To show the uniqueness, let z1 < z2. Then similar to the derivation in Proposition 5.1, we
can show that∣∣CN−2(z2)− CN−2(z1)∣∣ ≤ e−rhE [P 2

tN−1
(ω)− P 1

tN−1
(ω)|FtN−2

]
= z2 − z1 − e−rhQ(F 2(tN−2, tN−1)− F 1(tN−2, tN−1))

< |z2 − z1|.

For the last step, we used F 2(tN−2, tN−1) > F 1(tN−2, tN−1) since z2 > z1. Now suppose there
are two different solutions z∗1 and z∗2 to the equation. Then they are both less than Ka. From
the above

|(Ka − z∗2)− (Ka − z∗1)| = |z∗2 − z∗1 | < |z∗2 − z∗1 |,

which is a contradiction. This implies the solution must be unique.
(2) The rest of the proof is by induction. At time ti+1 (i <= N−3), assume the stopping region
is one-sided and |Ci+1(z2)−Ci+1(z1)| < |z2− z1| (z2 6= z1). We wish to show that Ci(z) = f(z)
has a unique solution and |Ci(z2)− Ci(z1)| < |z2 − z1|.

Ci(z) = E
[
max{(Ka − Pti+1)+, Ci+1(Pti+1)}|Pti = z

]
. First, we have Ci(z) > 0 while (Ka−

z)+ = 0 for z > Ka. By the induction hypothesis, the stopping region at ti+1 is one-sided, and
exercise occurs for z sufficiently small. Hence for small z

Ci(z) ∼ e−rhE
[
Ka − PtN−1 |PtN−2 = z

]
= e−rhKa −

{
z − e−rh(QF (tN−2, tN−1)− (cf +Qcv))

}
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Thus limz→0C
N−2(z) = e−rh(Ka−cf −Qcv) < Ka. The solution exists due to the intermediate

value theorem for continuous functions.
Suppose z1 < z2. Similar to the proof in Proposition 5.1, we can show

max
{
Ka−P 1

ti+1
(ω), Ci+1

(
P 1
ti+1

(ω)
)}
−max

{
K−P 2

ti+1
(ω), Ci+1

(
P 2
ti+1

(ω)
)}
≤ P 2

ti+1
(ω)−P 1

ti+1
(ω).

Hence following the calculation in (1) we must have
∣∣Ci(z1)− Ci(z2)∣∣ < |z2 − z1|. This shows

the uniqueness of the solution.
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Fukushima, M., Y. Oshima, and M. Takeda (2011). Dirichlet forms and symmetric Markov

processes (2nd ed.). Berlin, Germany: De Gruyter.
Geske, R. and H. Johnson (1984). The American put valued analytically. Journal of Fi-

nance 39 (5), 1511–1524.
Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. New York: Springer-

Verlag.
Gorovoi, V. and V. Linetsky (2004). Black’s model of interest rates as options, eigenfunction

expansion and Japanese interest rates. Mathematical Finance 14, 49–78.
Guo, X. and L. Shepp (2001). Some optimal stopping problems with non-trivial boundaries for

pricing exotic options. Journal of Applied Probability 38, 647–658.
Hull, J. (2011). Options, Futures and Other Derivatives (8th ed.). Upper Saddle River, NJ:

Prentice Hall.
Hull, J. and A. White (1993). One factor interest rate models and the valuation of interest rate

derivative securities. Journal of Financial and Quantitative Analysis 28 (3), 235–254.
Ikeda, N. and S. Watanabe (1977). A comparison theorem for solutions of stochastic differential

equations and its applications. Osaka Journal of Mathematics 14, 619–633.
Karatzas, I. and S. Shreve (1998). Methods of Mathematical Finance. New York: Springer-

Verlag.
Karlin, S. and J. L. McGregor (1957). The differential equations of birth-and-death processes,

and the Stieltjes moment problem. Transactions of the American Mathematical Society 85 (2),
489–546.

Kim, I. J. (1994). Analytical approximation of the optimal exercise boundaries for American
futures options. The Journal of Futures Markets 44 (3), 1–24.

Koekoek, R., P. A. Lesky, and R. F. Swarttouw (2010). Hypergeometric Orthogonal Polynomials
and Their q-Analogues. Berlin, Germany: Springer-Verlag.

Kou, S. C. and S. G. Kou (2003). Modeling growth stocks via birth-death processes. Advances
in Applied Probability 35 (3), 641–664.

Kushner, H. J. and P. Dupuis (2001). Numerical Methods for Stochastic Control Problems in
Continuous Time. New York: Springer-Verlag.

Lebedev, N. N. (1972). Special Functions and Their Applications. Mineola, NY: Dover Publi-

33



cations Inc.
Li, L. (2012). Stochastic Modeling of Commodity Markets and Optimal Stopping of Symmetric

Markov Processes. Ph. D. thesis, Northwestern University.
Li, L. and V. Linetsky (2012). Time-changed Ornstein-Uhlenbeck processes and their applica-

tions in commodity derivative models. To appear in Mathematical Finance.
Lim, D., L. Li, and V. Linetsky (2012). Evaluating callable and putable bonds: an eigenfunction

expansion approach. To appear in Journal of Economic Dynamics and Control.
Linetsky, V. (2004). The spectral decomposition of the option value. International Journal of

Theoretical and Applied Finance 7 (3), 337–384.
Linetsky, V. (2008). Spectral methods in derivatives pricing. In J. R. Birge and V. Linetsky (Ed-

s.), Handbook of Financial Engineering, Handbooks in Operations Research and Management
Sciences, Chapter 6. Elsevier.

Longstaff, F. and E. Schwartz (2001). Valuing American options by simulation: A simple least
squares aproach. Review of Financial Studies 14 (1), 113–147.

Mazet, O. (1997). Classification des semi-groupes de diffusion sur R associés à une famille de
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