
An Efficient Algorithm Based on Eigenfunction Expansions for Some
Optimal Timing Problems in Finance

Lingfei Lia,∗, Xianjun Qub, Gongqiu Zhanga

aDepartment of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
bHantak Investment Co., Beijing, China

Abstract

This paper considers the optimal switching problem and the optimal multiple stopping problem
for one-dimensional Markov processes in a finite horizon discrete time framework. We develop
a dynamic programming procedure to solve these problems and provide easy-to-verify condi-
tions to characterize connectedness of switching and exercise regions. When the transition or
Feynman-Kac semigroup of the Markov process has discrete spectrum, we develop an efficient
algorithm based on eigenfunction expansions that explicitly solves the dynamic programming
problem. We also prove that the algorithm converges exponentially in the series truncation
level. Our method is applicable to a rich family of Markov processes which are widely used
in financial applications, including many diffusions as well as jump-diffusions and pure jump
processes that are constructed from diffusion through time change. In particular, many of these
processes are often used to model mean-reversion. We illustrate the versatility of our method by
considering three applications: valuation of combination shipping carriers, interest-rate chooser
flexible caps and commodity swing options. Numerical examples show that our method is highly
efficient and has significant computational advantages over standard numerical PDE methods
that are typically used to solve such problems.

Keywords: optimal switching and optimal multiple stopping; diffusions and subordinate
diffusions; eigenfunction expansions; interest-rate chooser flexible caps/floors; commodity
swing options; real options.

1. Introduction

Problems in finance often involve timing decisions, and many of them can be formulated
as the optimal switching problem or the optimal multiple stopping problem. In the former
problem, there are several regimes and the decision maker decides when and where to switch
to maximize expected payoffs from each regime, minus any costs incurred for switching. In the
latter problem, the decision maker holds multiple exercise rights and her goal is to maximize
the expected payoffs from all exercises. This problem is an extension of the classical optimal
stopping problem with only one exercise right (see e.g., Boyarchenko and Levendorskĭi [1] for the
classical optimal stopping problem with applications). Applications of the optimal switching
problem include but are not limited to, Brennan and Schwartz [2] and Dixit and Pindyck [3] for
the valuation of natural resource mines, Dixit [4] for the production decision of a company, and
Sødal et al. [5] for the valuation of combination shipping carriers which can carry different types
of cargo. For the multiple stopping problem, two well-known examples are interest-rate chooser
flexible caps and floors, and commodity swing options. These derivatives are important tools
for managing interest rate risk (e.g., Pedersen and Sidenius [6] and Ohnishi and Tamba [7]) and
commodity volume risk (e.g., Jaillet et al. [8] and Eydeland and Wolyniec [9]), respectively.

∗Corresponding author.
Email addresses: lfli@se.cuhk.edu (Lingfei Li), gqzhang@se.cuhk.edu.hk (Gongqiu Zhang)

Preprint submitted to Journal of Computational and Applied Mathematics May 4, 2015



In this paper, we assume the underlying uncertainty is modeled by a one-dimensional Markov
process, and consider finite horizon optimal switching and optimal multiple stopping problems
with decisions made in discrete time. This setting is appropriate in many real-world applications.
For example, in reality, mining rights expire in finite time and shipping carries have finite useful
life. Exercise in discrete time is often a contractual requirement, as in the case of interest-rate
chooser flexible caps/floors and some commodity swing options. In the case of combination
shipping carriers, it is impossible to realize decisions in continuous time since the ship cannot
be switched to carry another type of cargo until it finishes its current trip.

We treat both problems in a unified way as the optimal multiple stopping problem can be
formulated as an optimal switching problem with constraints. Under some minimal integra-
bility conditions, we derive a dynamic programming procedure to solve these problems and
characterize the optimal strategy.

In general, the dynamic programming problem must be solved numerically. When the
underlying uncertainty is modeled by a one-dimensional Markov process, a popular choice in
practice is the lattice method due to its intuitiveness and flexibility in incorporating dynamic
programming. For example, binomial or trinomial trees are used by Pedersen and Sidenius [6]
and Ito et al. [10] for pricing chooser flexible caps and by Thompson [11], Lari-Lavassani et al.
[12] and Jaillet et al. [8] for valuation of swing options. More generally, implicit schemes for
PDE/PIDE can be used, which are more efficient than the lattice method that corresponds to
explicit finite difference schemes.

While numerical PDE/PIDE schemes are general-purpose algorithms, many stochastic mod-
els in finance have special features, based on which more efficient computational methods can
be developed. An important case is when the characteristic function of the underlying Markov
process is known, which is true for Lévy processes in particular. In this case, the method
of Fourier-cosine series expansions and fast Hilbert transform are both highly efficient (see
De Innocentis and Levendorskĭi [13] for another efficient method). For the development and
applications of the Fourier-cosine expansion method, see Fang and Oosterlee [14] for European
options, Fang and Oosterlee [15] for Bermudan and discretely monitored barrier options, and
Zhang and Oosterlee [16]) for swing options. The fast Hilbert transform method has been de-
veloped and applied by Feng and Linetsky [17, 18] for discretely monitored barrier and lookback
options, and by Feng and Lin [19]) for Bermudan options.

This paper considers another important case in finance where the transition semigroup or
Feynman-Kac semigroup of the underlying Markov process defined on the Hilbert space of
square-integrable payoffs can be represented by an eigenfunction expansion (see Assumption
1; we consider Feynman-Kac semigroup to accommodate interest rate applications where the
short rate is stochastic). Many diffusion processes that are commonly used in financial modeling
possess discrete spectrum with explicit eigenvalues and eigenfunctions. Well-known examples
include the CEV process (Cox [20]), the Ornstein-Uhlenbeck (OU) process (Vasicek [21]), the
CIR process (Cox et al. [22]), the 3/2 process (Ahn and Gao [23]) and the Jacobi process (Larsen
and Sørensen [24]). The last four processes are frequently used to model mean-reversion, which
is a key feature in the dynamics of many quantities of interests, such as the short rate, com-
modity spot prices, exchange rates in a target zone and the price difference between two assets.
Moreover, this setting includes a rich class of jump-diffusions and pure jump processes that
are constructed from diffusions with discrete spectrum through Bochner’s subordination and
additive subordination (i.e., time changing diffusions with independent Lévy or additive subor-
dinators). We refer readers to Li and Linetsky [25] and Li et al. [26] for detailed discussions of
these processes, which feature state-dependent jumps in general and if additive subordination
is used, jumps are also time-dependent. For example, applying Bochner’s/additive subordina-
tion to a mean-reverting diffusion results in a process with state-dependent jumps which also
contribute to mean-reversion. It is shown that these processes improve the realism of diffu-
sion processes while retaining analytical tractability. In particular, models based on Bochner’s
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subordination are able to calibrate volatility smiles of a single maturity while those based on
additive subordination can calibrate the entire implied volatility surface. For applications in
financial modeling, see Barndorff-Nielsen and Levendorskĭi [27] for equity, Li and Linetsky [25],
Li and Mendoza-Arriaga [28] and Li et al. [26] for commodities, Boyarchenko and Levendorskĭi
[29] and Lim et al. [30] for interest rates, Mendoza-Arriaga et al. [31] for credit-equity derivatives
and Mendoza-Arriaga and Linetsky [32] for credit derivatives.

The eigenfunction expansion method is applied by for example, Lewis [33], Davydov and
Linetsky [34], Gorovoi and Linetsky [35] and Boyarchenko and Levendorskĭi [29] for pricing
European options, and it is extended by Li and Linetsky [25, 36, 37] and Lim et al. [30] to
solve optimal stopping problems and first passage problems. In many cases, the eigenfunctions
are orthogonal polynomials, allowing the method to be efficiently implemented based on the
recursion for orthogonal polynomials (see Schoutens [38] for general discussions on Markov
processes and orthogonal polynomials). The present paper applies the eigenfunction expansion
method to solve more general and complex optimal timing problems in finance, which are
usually solved by numerical PDE/PIDE methods in the literature. We will prove that, under
some mild conditions, the eigenfunction expansion algorithm converges exponentially in the
series truncation level. To our best knowledge, analysis of the computational property of the
eigenfunction expansion method in a dynamic programming setting has not been given in the
existing literature. Through numerical examples we will show that our method is highly efficient
for finding not only the value function but also the boundary points of the switching/exercise
regions, and it has significant computational advantages over numerical PDE/PIDE schemes.

The eigenfunction expansion method is analytical in nature. Assuming the payoff functions
and the switching cost functions are square-integrable, we are able to obtain analytical solutions
to the value function of the optimal switching problem and the optimal multiple stopping prob-
lem through eigenfunction expansions, subject to knowing the switching/exercise regions. The
knowledge of these regions are also required in methods based on Fourier-cosine expansions and
fast Hilbert transform to solve the dynamic programming problem. In many financial applica-
tions, these regions are connected. To find them one just needs to locate the boundary points,
which can be done by numerically solving globally defined equations. Although connectedness
of switching/exercise regions can often be figured out from intuitions, rigorous justification can
be difficult due to the complicated nature of these problems. For Bermudan options, Feng and
Lin [19] and Li and Linetsky [25] have provided justifications for specific problems considered
there using ad-hoc arguments. In this paper, we develop easy-to-verify sufficient conditions for
general one-dimensional Markov processes under which the switching regions in the optimal
switching problem and the exercise regions in the multiple stopping problem are connected.
These conditions allow us to make rigorous justification in a variety of classical examples.

The rest of this paper is organized as follows. Section 2 and 3 studies respectively the
optimal switching problem and the optimal multiple stopping problem. In each section, we will
first develop the dynamic programming procedure, then present sufficient conditions for the
connectedness of switching/exercise regions and finally solve the dynamic programming problem
by eigenfunction expansions under Assumption 1. Section 4 develops three applications, namely,
valuation of combination shipping carriers, interest-rate chooser-flexible caps and commodity
swing options. Section 5 presents numerical examples and compares the eigenfunction expansion
algorithm to the lattice method and the Crank-Nicolson scheme. The computational advantages
of the eigenfunction expansion method are also summarized there. Section 6 concludes and all
proofs are collected in the appendix.

2. The Optimal Switching Problem

2.1. The Markovian Setup and Problem Formulation

Let X := (Xt)t≥0 be a conservative time-homogeneous Markov process taking values in an
interval E ⊆ R with left end-point e1 and right end-point e2 (−∞ ≤ e1 < x < e2 ≤ +∞).
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Our method can be extended to deal with killing, however to simplify the exposition, we do
not pursue such extension here. Let r(x) be a real-valued Borel measurable function. The
Feynman-Kac (FK) operator, associated with X, denoted by Prt is defined as

Prt f(x) = Ex
[
e−

∫ t
0 r(Xu)duf(Xt)

]
,

for Borel measurable functions f where the above expectation is finite. In financial terms,
Prt f(x) computes the expectation of a time t-payoff f , discounted at the interest rate r(Xu) to
time zero given X0 = x. When r(x) ≡ 0, P0

t is the transition operator (in the following when we
need to use the transition operator, we will simply write it as Pt). If the discount rate is a con-
stant, i.e., r(x) ≡ r, then Prt = e−rtPt. Thus, the FK framework includes constant discounting
as a special case. In this paper we present our results under the general FK framework.

We consider a finite horizon T > 0. The set of regimes is denoted by D := {0, 1, 2, · · · , d−1}
with d > 1. Switching is allowed at a discrete set of times 0 = t0 < t1 < · · · < tN = T ,
including time 0, and at each tl, it can be done at most once. We assume switching takes
effect immediately. Without loss of generality, we assume these time points are equally spaced
with distance h, i.e., tl = lh. At time tl, if the system is switched from regime i to j, a cost
of C(Xtl , i, j) is incurred, and a payoff of f(Xtl , j) is received. If the system stays in regime
i at time tl, a cost C(Xtl , i, i) is incurred and a payoff of f(Xtl , i) is received. Both the cost
and payoff functions take finite real value. In general these functions can also depend on time.
To simplify the notation, we assume they are time-independent. Generalization to the time-
dependent case is straightforward. Denote by Th the set of stopping times that take values in
{t0, t1, · · · , tN}. A strategy α is represented by a sequence of pairs (τ1, ξ1), · · · (τn, ξn), · · · , where
each τn ∈ Th, ξn ∈ D, τn < τn+1 and ξn 6= ξn+1. In a finite horizon problem this sequence is
finite. Under α, the regime value process Iαt = I0−1[0,τ1)1{τ1>0}+

∑
n≥1 ξn1[τn,τn+1), where I0− is

the regime before any switching at time 0. It is clear that Iαt is a càdlàg process, being constant
on each [τn, τn+1). I

α
t− and Iαt give the index of the regime before and after the switching. If

switching occurs at t, Iαt− 6= Iαt , otherwise Iαt− = Iαt . Given Xtl = x and I0− = i, the expected
tl-value of profits received at and after tl under a strategy α with τ1 ≥ tl is given by (note that
under α, Iαtl− = i)

J l(x, i, α) := Ex

[
N∑
n=l

e
−

∫ tn
tl

r(Xu)du (f(Xtn , I
α
tn)− C(Xtn , I

α
tn−, I

α
tn)
)]
.

Let Al denote the set of all α with τ1 ≥ tl (l = 0, 1, · · · , N). We wish to find the value function
defined as,

J l(x, i) := sup
α∈Al

J l(x, i, α),

as well as an optimal strategy. We assume for all n = 1, 2, · · · , N , i, j ∈ D,

Ex
[
e−

∫ tn
0 r(Xu)du|f(Xtn , i)|

]
<∞, Ex

[
e−

∫ tn
0 r(Xu)du|C(Xtn , i, j)|

]
<∞. (1)

This implies for each α, J l(x, i, α) has finite value so it is well-defined.

2.2. Dynamic Programming

The next theorem shows J l(x, i) can be found by dynamic programming and characterizes
the optimal strategy.

Theorem 1. Iteratively define

WN (x, i, j) := f(x, j)− C(x, i, j), V N (x, i) := max
j∈D
{WN (x, i, j)}, i ∈ D (2)

W l(x, i, j) := f(x, j)− C(x, i, j) + PrhV l+1(x, j), V l(x, i) := max
j∈D
{W l(x, i, j)},
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l = N − 1, N − 2, · · · , 0, i ∈ D. (3)

Then J l(x, i) = V l(x, i). To characterize the optimal policy, we introduce the following sets: for
i ∈ D, define

Rl(i, j) := {x ∈ E : W l(x, i, j) > max
k 6=j

W l(x, i, k)}

∪ {x : min{p : W l(x, i, p) = max
k 6=j
{W l(x, i, k)}} = j}. (4)

Then
⋃
j∈DRl(i, j) = E, and Rl(i, j)

⋂
Rl(i, k) = ∅ for j 6= k. An optimal strategy in Al is

given by (suppose Itl− = i)

τ∗1 = min{tm : tm ≥ tl, Xtm ∈ ∪j 6=iRm(i, j)}, ξ∗1 = {j : j 6= i,Xτ∗1
∈ Rτ∗1 (i, j)} (5)

τ∗n = min{tm : tm > τ∗n−1, Xtm ∈ ∪j 6=ξ∗n−1
Rm(ξ∗n−1, j)}, ξ∗n = {j : j 6= ξ∗n−1, Xτ∗n ∈ R

τ∗n(ξ∗n−1, j)}

for n = 2, · · · . The sequence continues until some n′ for which τ∗n′ = ∞ (recall the convention
min ∅ =∞).

Theorem 1 shows W l(x, i, j) gives the value at time tl, after switching from regime i to
j, while V l(x, i) gives the value at time tl if the pre-switching regime is i. The dynamic
programming procedure can be explained as follows. On the terminal date T , the value after
switching from i to j, is obviously equal to the received payoff minus the switching cost (the
first part in Eq.(2)). At an earlier date tl, the value after switching from i to j, is equal to the
immediate payoff minus the switching cost, plus the expected discounted pre-switch value at
time tl+1 (the first part in Eq.(3)). At any time, the decision maker chooses the regime with
the maximum post-switch value (the second part in Eq.(2) and (3)).

Intuitively, Rl(i, j) is the region at time tl the decision maker would switch from i to j. The
second part in (4) requires some explanation. For x such that W l(x, i, j) = maxk 6=j{W l(x, i, k)},
it is possible that for some p 6= j, W l(x, i, j) = W l(x, i, p). We only include x in Rl(i, j) if j is
the regime that has the smallest index compared to all such p. We remark that this is just a
particular tie-breaking rule which is used to split E into non-overlapping regions. Other rules
can also be used, which changes the optimal strategy but does not affect the value function.
Note that the notation Rτ∗n(i, j) refers to Rl(i, j) if τ∗n = tl.

2.3. The Structure of Switching Regions

It is typical in financial applications that each Rl(i, j) is an interval (which may be empty).
This can often be determined from economic intuitions. In the following, we provide sufficient
conditions that offer rigorous justification. For convenience, we assume E = (e1, e2).

Theorem 2. Suppose the following hold.

(i) Prhg(x) is nondecreasing if g(x) is nondecreasing.

(ii) f(x, j), C(x, i, j), W l(x, i, j) are continuous in x for all i, j ∈ D and 0 ≤ l ≤ N .

(iii) f(x, j + 1) − C(x, i, j + 1) − f(x, j) + C(x, i, j) is nondecreasing in x for all i ∈ D and
0 ≤ j ≤ d− 2.

(iv) C(x, i, j + 1)− C(x, i, j) ≥ C(x, i+ 1, j + 1)− C(x, i+ 1, j) for x ∈ E, 0 ≤ i, j ≤ d− 2.

(v) C(x, i, j)− C(x, i+ 1, j) is nondecreasing in x for 0 ≤ i ≤ d− 2 and j ∈ D.
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Then for l = 0, 1, · · · , N , W l(x, i, j)−W l(x, i, q) is continuous and nondecreasing in x for q < j,
and Rl(i, j) has the following form (some regions may be empty)

Rl(i, j) = (xli,j , x
l
i,j+1], j = 0, 1, · · · , d− 2, Rl(i, d− 1) = (xli,d−1, x

l
i,d), (6)

with xli,0 = e1 and xli,d = e2. The other points are defined as follows: first define

x̃li(q, j) := inf{x ∈ E : W l(x, i, q) < W l(x, i, j)}, q < j, q, j ∈ D.

Here we use the convention inf E = e1 and inf ∅ = e2. For j = d− 1, · · · , 1, iteratively define

x̃li,j := max
q=0,1,··· ,j−1

{x̃li(q, j)}, xli,j := min{xli,j+1, x̃
l
i,j}.

We have xli,0 ≤ xli,1 ≤ · · · < xli,d−1 ≤ xli,d, and xli+1,j ≤ xli,j for 0 ≤ i ≤ d− 2 and 1 ≤ j ≤ d− 1.

Theorem 2 shows the structure of switching regions and also presents a way to find the
boundary points. Given j, x̃li(q, j) can be found by some numerical root-finding algorithm such
as bisection for q = 0, 1, · · · , j − 1. Intuitively, (x̃li(q, j), e2) is the region where regime j is
preferred over regime q with q < j. Then (x̃li,j , e2) gives the region where j is better than all

the regimes with index below it, and for any x < x̃li,j one can always find a regime with index
below j that is better than regime j. Therefore the region where it is optimal to switch to j
must be contained in (x̃li,j , e2). We already have that for x > xli,j+1, regime j + 1 is preferred

over j, and for x < xli,j+1, j+ 1, j+ 2, · · · , d− 1 are inferior than j or regimes with index below

j. Therefore, if xli,j+1 > x̃li,j , it is optimal to go into j for x ∈ (x̃li,j , x
l
i,j+1) and we set xli,j = x̃li,j .

However if xli,j+1 <= x̃li,j , it is never optimal to switch from i to j and we set xli,j = xli,j+1.
These situations are illustrated in Figure 1.

,

l

i jxɶ , 1
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, , 1( )l l
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Figure 1: Illustration of the switching region into regime j at time tl when the current regime is i for the case
x̃li,j < xli,j+1 and the case x̃li,j > xli,j+1.

Condition (i) is a natural property in many stochastic models when the discount rate is
constant. (ii) assumes continuity on f(x, j), C(x, i, j) and W l(x, i, j) (hence by the dynam-
ic programming procedure in Theorem 1, V l(x, i) is also continuous). This is true in many
applications, in particular when X satisfies Assumption 1 and the payoff and cost functions
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are continuous and square-integrable (see Theorem 3 below). (iii) states that regime j + 1 is
“better” than j when x is large enough in the sense that the difference between the profit of
switching to j + 1 and to j is nondecreasing. We will apply Theorem 2 to study switching
regions in the combination shipping carrier application in Section 4.1. Below we consider the
classical three-regime copper mining problem in Dixit and Pindyck [3].

Example 1 (Operation of a copper mine): There are three regimes of a copper mine:
idle, mothballed (temporary suspension) and active (in operation). They are labeled as 0, 1,
2 respectively. In practice, mothballing might be attractive as the cost of reactivating a mine
is cheaper than building a new one from scratch (R < I below). However, mothballing incurs
maintenance costs. Intuitively one would expect that when the price is high enough, the mine
is in operation, and when the price is in some middle range, it is mothballed to enjoy the benefit
of cheap reactivation as the price is likely to rise in the future. When the price is low enough,
it is closed to stop losses from operation or save maintenance costs.

Let Xt denote the copper spot price at time t. Mean-reversion is well-documented in the
copper price. So for Xt, we consider the classical geometric OU diffusion model in Schwartz [39])
and its subordination extension in Li and Linetsky [40]. For the payoffs, f(x, 0) = f(x, 1) = 0

and f(x, 2) = Ex[
∫ h
0 e
−rhXtdt] (assume continuous flow of revenues). It can be shown that

condition (i), (ii) and (iii) in Theorem 2 are satisfied. We omit the detailed derivation here.
Following Dixit and Pindyck [3], the switching costs are constant, which are given by

C(0, 0) = 0, C(0, 1) = J +Mh, C(0, 2) = I + Ch,

C(1, 0) = ES , C(1, 1) = Mh, C(1, 2) = R+ Ch,

C(2, 0) = E, C(2, 1) = EM +Mh, C(2, 2) = Ch.

Here I and J are respectively the investment cost to turn the mine from idle into active and
mothballed. E is the shut-down cost. EM is the cost to suspend the mine. ES is the cost of
closing the mine from suspension. We set E = EM + ES as in Dixit and Pindyck [3]. R is
the cost of reactivating the mine. Ch is the operating cost when the mine is active, and Mh

is the maintenance cost when the mine is mothballed. Since both operating and maintenance
costs are paid out in flows, we put h as a subscript to show the dependence on h, and they are
understood as the present value of these cost flows at the beginning of a period. ES and EM
might be negative. We assume J +ES ≥ 0 and R+EM ≥ 0, which are reasonable assumptions
in practice. Clearly condition (v) holds. Condition (iv) holds for i = j = 0 and i = 1, j = 0 and
1. The discount rate is a constant denoted by r.

The mining right expires after N periods. At tN the mine must be closed, i.e., the regime
must be switched to 0. Theorem 2 does not consider such constraints. To fit its setting, we add
e−rhC(i, 0) to the switching cost at tN−1, where i is the regime before closing the mine. The
switching costs at other times remain unchanged. The time-dependence of costs do not affect
the applicability of Theorem 2 as long as conditions (iii) to (v) are satisfied at each time. If
I ≥ J + R, one can verify that condition (iv) holds for i = 0, j = 1. Theorem 2 can now be
applied which implies the switching regions have the form in (6). For I < J + R, Theorem 2
cannot be directly applied. However, when I ≤ J +R, it is never optimal to switch from 0 to 1.
Staying in regime 1 has no payoff but incurs maintenance cost, and the cost for turning 0→ 2
is always cheaper than the indirect route 0→ 1→ 2. Since J only affects the cost of switching
from 0 to 1, which is always suboptimal, the original problem is equivalent to another problem
with J ′ such that J ′ + R = I (J ′ > J). For this new problem Theorem 2 can be applied.
Therefore for I ≤ J +R, the switching regions are still in the form of (6), but with Rl(0, 1) = ∅.

2.4. The Eigenfunction Expansion Algorithm

Many Markov processes used in financial applications satisfy the following assumption, which
allows us to solve the dynamic programming problem through eigenfunction expansions.
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Assumption 1. The FK semigroup (Prt )t≥0 under consideration can be defined on L2(E,m) :=
{f is Borel-measurable :

∫
E f

2(x)m(dx) < ∞} for some nonnegative measure m on E with full
support. For each t > 0, Prt is trace-class, and its symmetric kernel pt(x, y) (its existence is
implied by the trace-class condition) is jointly continuous in x and y.

Under Assumption 1, we have (see Li and Linetsky [25] for the proof)

Prt f(x) =
∞∑
n=1

fne
−λntϕn(x), for any f ∈ L2(E,m), t > 0,

which converges uniformly on compacts in x. Here fn =
∫
E f(x)ϕn(x)m(dx) is the n-th ex-

pansion coefficient. (ϕn(x))n≥1 form a complete orthonormal basis of L2(E,m), and ϕn(x) is
the n-th eigenfunction of Prt , with eigenvalue e−λnt, i.e., Prt ϕn(x) = e−λntϕn(x). Each ϕn(x) is
continuous, λ1 ≤ λ2 ≤ · · · <∞, limn→∞ λn =∞, and

∞∑
n=1

e−λnt <∞ for all t > 0.

The continuity of ϕn(x) together with the uniform convergence on compacts of the expansion
imply that Prt f(x) is continuous in x.

Remark 1. Non-contractive semigroups: In most financial applications, r(x) ≥ 0 and hence
each Prt is a contraction. This is the setting considered in Li and Linetsky [25]. However for non-
contractive semigroups, if they satisfy Assumption 1, the above results regarding eigenfunction
expansion also hold. An example is given by the Vasicek short model (Vasicek [21]) where
X is assumed to be an OU diffusion and r(x) = x. In this case, the short rate can become
negative and hence (Prt )t≥0 is not a contraction semigroup (see Gorovoi and Linetsky [35] for
the eigenfunction expansion for the FK semigroup of the Vasicek model).

The transition or FK semigroup of many diffusion processes satisfies Assumption 1. To
find out the eigenvalues and eigenfunctions, one needs to solve the associated Sturm-Liouville
problem. The procedure to solve such problem is presented in details in Linetsky [41, 42], where
explicit expressions for the eigenvalues and eigenfunctions for many diffusions can also be found.

To model jumps which are often needed in financial applications, a particularly useful ap-
proach is to apply subordination to diffusion processes. Let X be a time-homogeneous diffusion
and T be a Lévy subordinator (a nondecreasing Lévy process taking values in R+). The Laplace
transform of T is given by

E[e−λTt ] = e−φ(λ)t (λ > 0), φ(λ) = γλ+

∫
(0,∞)

(1− e−λs)ν(ds),

where γ ≥ 0 is the drift and ν is the Lévy measure satisfying the integrability condition
∫
(0,∞)(s∧

1)ν(ds) < ∞. One can construct a new Markov process by Bochner’s subordination, i.e.,

Xφ
t := XTt , which is a time-homogeneous jump-diffusion if γ > 0 and a pure-jump process

if γ = 0. Suppose the transition semigroup of X, (Pt)t≥0 admits the following eigenfunction
expansion for f ∈ L2(E,m):

Ptf(x) =

∞∑
n=1

fne
−λntϕn(x), fn = (f, ϕn).

Then for the transition semigroup of Xφ, we have

Pφt f(x) =
∞∑
n=1

fne
−φ(λn)tϕn(x), fn = (f, ϕn), (7)

where the eigenfunctions remain the same and only the eigenvalues are changed using the
Laplace transform of the subordinator. Sufficient conditions for the subordinate semigroup
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(Pφt )t≥0 to satisfy Assumption 1 can be found in Li and Linetsky [37] Proposition 1. If T is
an additive subordinator (a nondecreasing additive process taking values in R+), then Xφ is a
time-inhomogeneous jump-diffusion or pure-jump process, and in (7) the Laplace transform of
the additive subordinator is used (see Li et al. [26]). Short rate models with jumps can also
be developed by applying subordination to a diffusion FK semigroup and we refer readers to
Boyarchenko and Levendorskĭi [29], Lim et al. [30] for details.

To apply the eigenfunction expansion method to solve the dynamic programming problem,
we first introduce some notations. For every Borel subset A ⊆ E define

πm,n(A) := (1Aϕm, ϕn), m, n = 1, 2, · · ·

where 1A(x) is the indicator function of the set A. For f(x) and A, define

fn(A) := (1Af, ϕn), n = 1, 2, · · · (8)

if it is finite. Under Assumption 1, by assuming square-integrable payoffs and switching costs,
we are able to develop explicit solutions to the dynamic programming problem.

Theorem 3. Suppose that Assumption 1 holds and f(x, j) and C(x, i, j) are in L2(E,m) for
any i, j ∈ D. Then we have
(i) W l(x, i, j), V l(x, i) ∈ L2(E,m) for all i, j ∈ D, l = 0, 1, · · · , N .
(ii) Each W l can be represented in the following form:

W l(x, i, j) = f(x, j)− C(x, i, j) +
∞∑
n=1

wln(j)e−λnhϕn(x), l = N,N − 1, · · · , 0 (9)

The expansion converges uniformly on compacts in x, and it is continuous in x. The expansion
coefficients satisfy:

wNn (j) = 0, (10)

wln(j) =
∑
k∈D

{
fkn(Rl+1(j, k))− Cj,kn (Rl+1(j, k)) +

∞∑
m=1

wl+1
m (k)e−λmhπm,n(Rl+1(j, k))

}
(11)

for l = N − 1, · · · , 0. fkn(A) and Cj,kn (A) are defined as in (8) using f(x, k) and C(x, j, k).

Theorem 3 reduces the backward induction for a sequence of functions in Theorem 1 to the
backward recursion for its expansion coefficients in the complete orthonormal basis of eigen-
functions of the FK semigroup (Prt )t≥0. It starts with (10) for the coefficients at time tN . The
next step is to determine the switching region RN (j, k) for each pair of j, k at time tN . Given
j, to find RN (j, k) for all k ∈ D, we compare among WN (x, j, k). Each WN (x, j, k) is given by
(9) with wNn (k) = 0. Given RN (j, k) for all j, k ∈ D, the coefficients wN−1n (j) are then deter-
mined by (11) for each j ∈ D, and then RN−1(j, k) for all j, k ∈ D are found. The procedure is
continued until time 0 is reached. Finally set the value function J0(x, i) = maxj∈D{W 0(x, i, j)}.

We next discuss the computational implementation of Theorem 3. In computing the infinite
expansion in (9) and (11) we truncate the expansion to a given tolerance level. Computing

(11) requires computing the quantities fkn(R), Cj,kn (R) and πm,n(R) (R is a generic notation
for switching regions). In many financial applications the switching region R is an interval
(which may be empty). Suppose the interval is given by (a, b) and recall that e1 and e2 are the
left and right end point of the state space E. To calculate πm,n(a, b), due to the linearity of
integrals, πm,n(a, b) = πm,n(e1, b) − πm,n(e1, a). Thus we only need to calculate πm,n(e1, x) for
x ∈ E. Alternatively we can calculate πm,n(x, e2), since πm,n(e1, x) = δm,n − πm,n(x, e2) (δm,n
is the Kronecker delta) due to the orthonormality of eigenfunctions. When the eigenfunctions
are known in closed form, the integral

∫ x
e1
ϕm(y)ϕn(y)m(y)dy can often be calculated in closed
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form as well. Furthermore, for eigenfunctions expressed in terms of orthogonal polynomials,
one can obtain computationally efficient recursive algorithms for evaluating πm,n(e1, x).

The coefficients fkn(a, b) (and Cj,kn (a, b) alike) can also often be explicitly computed in ap-
plications either by first evaluating the expansion coefficients fkn of the payoff f(x, k) and then
computing fkn(a, b) via

fkn(a, b) =

∫
(a,b)

∞∑
m=1

fkmϕm(x)ϕn(x)m(dx) =
∞∑
m=1

fkmπm,n(a, b),

or by directly calculating the integral
∫ b
a f(x, k)ϕn(x)m(x)dx in closed form. When no closed

form solutions are available for the integrals in πm,n(a, b) and fkn(a, b), they can be computed
via numerical integration.

Although in many applications, the switching region is connected as in Theorem 2, in general
it can be a union of disjoint of intervals. Our method can handle this case easily. To illustrate,
suppose R = ∪Jj=1Ij where Ij are disjoint intervals. Then we have

πm,n(R) =
J∑
j=1

πm,n(Ij), fn(R) =
J∑
j=1

fn(Ij),

which reduces the calculation to single intervals.

3. The Optimal Multiple Stopping Problem

We consider the same finite horizon discrete time setting as in Section 2. In a multiple
stopping problem, the decision maker has K (1 ≤ K ≤ N + 1) number of rights to exercise and
on each date only one right can be exercised. When a right is exercised, a payoff is received. We
denote the exercise payoff function by p(x). The multiple stopping problem can be formulated
as a switching problem with constraints. Let D = {0, 1, · · · ,K}, where regime k ∈ D refers to
the state of having k rights remaining. For all k ∈ D, set f(x, k) = 0. We impose the following
constraints. When the state is k (k = 1, 2, · · · ,K), it can only remain in k (i.e., no exercise) or
be switched to k − 1 (i.e., one right exercised). Set C(x, k, k) = 0 and C(x, k, k − 1) = −p(x).
When k = 0, it can only remain in 0 (since no rights left) and we set C(x, 0, 0) = 0. We assume
for all n = 1, 2, · · · , N ,

Ex
[
e−

∫ tn
0 r(Xu)du|p(Xtn)|

]
<∞.

This implies for each α, J l(x, k, α) has finite value so it is well-defined.

Remark 2. In this paper we distinguish between exercise payoff of an option and its payoff. For
example, for a call option with strike K on an asset whose price at time t is denoted by St, the
exercise payoff (which is the payoff if the option is exercised) at time t is St −K. The payoff,
however, considers the possibility of no exercise if exercise is not optimal and thus it is given
by (St −K)+. We will use the exercise payoff in deriving conditions for the exercise regions to
be connected.

3.1. Dynamic Programming

As a corollary of Theorem 1, we have the following dynamic programming procedure to
solve the optimal multiple stopping problem.

Corollary 1. Iteratively define

C l(x, 0) := 0, Sl(x, 0) := 0, V l(x, 0) := 0, 0 ≤ l ≤ N,
CN (x, k) := 0, SN (x, k) := p(x), V N (x, k) := max{CN (x, k), SN (x, k)}, 1 ≤ k ≤ K, (12)

10



C l(x, k) := PrhV l+1(x, k), Sl(x, k) := p(x) + C l(x, k − 1), V l(x, k) := max{C l(x, k), Sl(x, k)},
l = N − 1, N − 2, · · · , 0, 1 ≤ k ≤ K. (13)

Then J l(x, k) = V l(x, k). To characterize the optimal strategy, introduce the following sets: for
l = 0, 1, · · · , N , k = 1, 2, · · · ,K, define

S l,k := {x ∈ E : Sl(x, k) > C l(x, k)}, Cl,k := {x ∈ E : Sl(x, k) ≤ C l(x, k)}. (14)

An optimal strategy in Al is given by (assume at tl there are k remaining rights)

τ∗1 = min{tm : tm ≥ tl, Xtm ∈ Sm,k}, τ∗n = min{tm : tm > τ∗n−1, Xtm ∈ Sm,k−n+1}, n = 2, · · · , k.

Corollary 1 shows the following: (1) V l(x, k) is the value at time tl of having k number of
rights remaining; (2) C l(x, k) is the value at time tl of having k number of rights to continue
(i.e., no exercise at tl); (3) Sl(x, k) is the value at time tl of exercising one right and having
k − 1 number of rights to continue. When the decision maker has a total of k rights at time tl,
S l,k is the region she would stop to exercise one right and Cl,k is the region she would continue
without exercise.

Remark 3. One could also define S l,k as {x ∈ E : Sl(x, k) ≥ C l(x, k)}, which changes the
optimal strategy but does not affect the value function. We prefer the definition in (14) as we
want to interpret S l,k as the region where one would actually exercise.

Based on the dynamic programming equations, we observe the following.

Proposition 1. For l+k > N and k ≤ K, V l(x, k) = V l(x,N−l+1), and S l,k = {x : p(x) > 0}.

The implication of Proposition 1 is clear. At time tl, we have a total of N − l + 1 dates to
exercise the rights on hand. If k, the number of rights we have at tl, is greater than or equal
to the number of remaining time points N − l+ 1 (equivalent to l+ k > N), since we can only
exercise N− l+1 of them from tl to tN , we must have V l(x, k) = V l(x,N− l+1). Furthermore,
one right will be exercised immediately at tl if p(x) > 0.

3.2. The Structure of Exercise Regions

Our first result considers the inclusion of exercise regions. Intuitively, one becomes more
conservative to exercise an option if she has fewer number of options at hand.

Proposition 2. For l = 1, · · · , N − 1, k = 1, · · · ,min{N − l,K}, S l,k ⊆ S l,k+1, and C l(x, k +
1) + C l(x, k − 1)− 2C l(x, k) ≤ 0 for all x ∈ E.

It is typical in applications that each S l,k is an interval, which can often be determined from
economic intuitions. In the following, we provide sufficient conditions that offer rigorous justi-
fication. Our discussion focuses on the call-type payoff (i.e., p(x) is a nondecreasing function).
The put-type payoff can be considered similarly. For convenience, we assume E = (e1, e2).

Theorem 4. Suppose the following conditions hold.

(i) Prhg(x) is nondecreasing if g(x) is nondecreasing.

(ii) p(x) and C l(x, k) are continuous for 1 ≤ k ≤ K and 0 ≤ l ≤ N .

(iii) p(x) is nondecreasing and xb := sup{x ∈ E : p(x) = 0} ∈ E.

(iv) p(x)− Prhp(x) is nondecreasing in x.
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Then for l = 0, 1, · · · , N, k = 1, 2, · · · ,K, S l,k and Cl,k has the following form

Cl,k = (e1, x
l,k], S l,k = (xl,k, e2), (15)

where for l+ k > N , xl,k = xb and for l+ k ≤ N , xl,k = inf{x ∈ E : Sl(x, k) > C l(x, k)} where
Sl(x, k)−C l(x, k) is continuous and nondecreasing in x, and xb ≤ xl,k+1 ≤ xl,k (1 ≤ k ≤ K−1).

Remark 4. (1) The relation xb ≤ xl,k+1 ≤ xl,k shows [xb, x
l,k] is a natural search interval to

start with when using bisection to find xl,k+1. (2) For put-type payoffs, the conditions become
the following: (i) Prhg(x) is nonincreasing if g(x) is nonincreasing; (ii) p(x) and C l(x, k) are
continuous for 1 ≤ k ≤ K and 0 ≤ l ≤ N ; (iii) p(x) is nonincreasing and xb := inf{x ∈ E :
p(x) = 0} ∈ E; (iv) p(x)−Prhp(x) is nonincreasing in x. Under these conditions, S l,k = (e1, x

l,k),
Cl,k = [xl,k, e2), where for l+ k > N , xl,k = xb and for l+ k ≤ N , xl,k = sup{x ∈ E : Sl(x, k) >
C l(x, k)} where Sl(x, k)−C l(x, k) is continuous and nonincreasing in x, and xl,k ≤ xl,k+1 ≤ xb.

, 1l k
x

+ ,l k
x

Exercise one right out 

of k+1 rights 
Continue with k+1 rights

b
x

Continue with k rights Exercise one right out of 

k rights 

Figure 2: Illustration of the exercise regions at time tl for a call-type payoff

Theorem 4 is illustrated in Figure 2. Condition (i) is a natural property of many stochastic
models when the discount rate is constant. (ii) assumes continuity on p(x) and C l(x, k) (hence by
the dynamic programming procedure in Corollary 1, Sl(x, k) and V l(x, k) are also continuous).
This is also true in many stochastic models, in particular in the setting of Corollary 2 below.
In the following, we present some examples where Theorem 4 can be applied.

Example 2 (Bermudan options with multiple exercise rights for stocks and futures):
Consider a call option on a dividend paying stock with multiple exercise rights. r denotes the
risk-free rate and q ≥ 0 is the dividend yield. Xt is the stock price process and the exercise
payoff is given by p(x) = x−G, where G is the strike price. Condition (i) and (ii) are naturally
satisfied in almost all stock models, including in particular exponential Lévy models. Then
p(x)−Prhp(x) = (1−e−qt)x−(1−e−rt)G, where we used Ex[e−(r−q)hXh] = x under the equivalent
martingale measure. Hence condition (iv) is satisfied, and by Theorem 4, the exercise regions
have the form in (15). When the stock is replaced by a futures contract, Ex[Xh] = x under
the equivalent martingale measure. Hence condition (iv) still holds and Theorem 4 applies. As
special cases, the Bermudan-style stock option with only one right in exponential Lévy models
considered in Fang and Oosterlee [15] and Feng and Lin [19], as well as the Bermudan-style
commodity futures option with only one right in the subordinate OU model of Li and Linetsky
[40] all have one-sided structure. In those papers, proof is given using ad-hoc arguments. Here
Theorem 4 can be applied to all of these cases.

Example 3 (Commodity swing options in arithmetic mean-reverting models): Con-
sider a call-type commodity swing option with local volume constraints, that is, upon each
exercise, the volume taken cannot exceed b units. It is easy to see that when a right is exer-
cised, the optimal unit to take is the upper bound b. Therefore the problem reduces to the
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optimal multiple stopping problem with exercise payoff p(x) = b(x−G), where G is the strike
price and Xt is the spot price process. For many commodities, Xt is mean-reverting. Suppose
Xt is modeled as a CIR diffusion (Fusai et al. [43]) or subordinate CIR process (Li et al. [26])
or an OU-type process driven by subordinators. Since these processes themselves are positive,
one can directly use them to model the spot price and such models are often called arithmetic
models in the literature (as opposed to the exponential OU model). Then it can be shown
that Ex[Xh] = xe−a(h)+ other terms that do not depend on x, where a(h) > 0 (a(h) = κh for
the CIR where κ is the mean-reversion speed). It is easy to see that condition (iv) holds, so
Theorem 4 can be applied.

3.3. The Eigenfunction Expansion Algorithm

When X satisfies Assumption 1 and max{p(x), 0} ∈ L2(E,m), we have the following eigen-
function expansion algorithm to solve the multiple stopping problem, as a corollary of Theorem
3 and Proposition 1.

Corollary 2. Suppose Assumption 1 holds, and max{p(x), 0} ∈ L2(E,m). Then we have
(i) C l(x, k), Sl(x, k), V l(x, k) ∈ L2(E,m) for all l = 0, 1, · · · , N , k = 0, 1, · · · ,K.
(ii) Each C l(x, k) can be represented by an eigenfunction expansion

C l(x, k) =

∞∑
n=1

cl,kn e
−λnhϕn(x), l = N − 1, · · · , 0, k = 0, 1, · · · ,K.

with the expansion converges uniformly on compacts in x and C l,k(x) is continuous in x. The
expansion coefficients satisfy

cl,0n = 0, l = N − 1, · · · , 0,
cN−1,kn = pn(SN,k), k = 1, · · · ,K,

For l = N − 2, · · · , 0, k = 1, 2, · · · ,K,

cl,kn = pn(S l+1,k) +
∞∑
m=1

(cl+1,k−1
m − cl+1,k

m )e−λmhπm,n(S l+1,k) + cl+1,k
n e−λnh, if k ≤ min{N − l,K},

cl,kn = cl,N−ln , if N − l < k ≤ K.

Implementation of the algorithm in Corollary 2 is similar to Theorem 3, so detailed discus-
sions are omitted.

4. Error Analysis

Since the eigenfunction expansion and the recursion for the coefficients are infinite series, to
compute them numerically one must truncate. We assume all the infinite series are truncated
using M terms. For ease of discussion, in this section we only consider the optimal switching
problem and assume conditions in Theorem 2 hold so that the switching regions are connected.
Results for the optimal multiple stopping problem can be obtained similarly, and extensions
can be developed for the case where the regions are disconnected. For the optimal switching
problem, the dynamic programming procedure in Theorem 3 is implemented as follows. We use
hat to denote approximate values, which depend on the truncation level M . However to lighten
notations, we do not write out M .

(1) ŵNn = 0 for all n ∈ N, find R̂N (j, k) for all j, k ∈ D as in Theorem 2 using ŴN (x, j, k) =
f(x, k)− C(x, j, k).
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(2) For l = N − 1, · · · , 0, j ∈ D, n = 1, 2, · · · ,M ,

ŵln(j) =
∑
k∈D

{
fkn(R̂l+1(j, k))− Cj,kn (R̂l+1(j, k)) +

M∑
m=1

ŵl+1
m (k)e−λmhπm,n(R̂l+1(j, k))

}
(16)

Then find R̂l(i, j) as in Theorem 2 using the following approximation of W l(x, i, j) for all
i, j ∈ D,

Ŵ l(x, i, j) = f(x, j)− C(x, i, j) +
M∑
n=1

ŵln(j)e−λnhϕn(x).

In (2), to evaluate ŵln(j) for n = 1, 2, · · · ,M , l = N − 1, · · · , 0 and j ∈ D requires O(dNM2)
operations. For each i ∈ D and l = N−1, · · · , 0, to find the region R̂l(i, j) for all j ∈ D, one first
needs to find x̃li(q, j) for each pair of (q, j) with q < j. To do this, bisection can be used which
takes O(M) operations as in each iteration Ŵ l(x, i, j) is evaluated in M operations for given x
and bisection terminates in a finite number of steps for a given tolerance level. Since there are
d(d− 1)/2 pairs to consider for each i and l, the total complexity for finding switching regions
is O(d2(d − 1)NM/2). Together the complexity for the eigenfunction expansion algorithm is
O(dNM2+d2(d−1)NM/2). Since in financial applications, d is often small, the most expensive
part lies in computing the expansion coefficients at each time step.

Next we analyze the convergence rate for the value function as M increases to infinity. Under
Assumption 1, given x, for all n, we have (see Li and Linetsky [25] Proposition 2)

|ϕn(x)| ≤ eλnt/2
√
pt(x, x) for all t > 0. (17)

Hence the truncation error for computing the expansion Prhf(x) =
∑∞

n=1 fne
−λnhϕn(x) for

f ∈ L2(E,m) using the first M terms is bounded by∣∣∣∣∣
∞∑

n=M+1

fne
−λnhϕn(x)

∣∣∣∣∣ ≤ ‖f‖√ph(x, x)

∞∑
n=M+1

e−λnh/2,

where ‖f‖ is the L2-norm of the payoff function f , and |fn| ≤ ‖f‖ by Cauchy-Schwartz inequal-
ity. Therefore, the convergence rate for the expansion for Prhf(x) depends on the growth rate
of λn. Below we provide some examples for λn.

(1) If the Sturm-Liouville problem for the diffusion process is regular, then as shown in Fulton
and Pruess [44], λn ∼ O(n2). Examples include but are not limited to the transition semigroup
of the Jacobi diffusion and the Geometric Brownian motion with two reflecting barriers (it is
used by Dixit and Pindyck [3] as a model for the price in competitive industries with entry and
exit).

(2) If the Sturm-Liouville problem for the diffusion is singular, in many cases, λn ∼ O(n).
Examples include but are not limited to the transition semigroup of the CEV process, the
transition and FK semigroup of the OU process, the CIR process, and the 3/2 process.

(3) Subordination: Suppose for the background diffusion process, λn ∼ O(n) or O(n2). If the
Lévy subordinator has drift γ, then φ(λn) goes to infinity at least as fast as γλn. For Lévy
subordinators without drift, consider the tempered stable subordinators which are commonly
used in finance. Its Lévy measure is given by ν(ds) = Cs−p−1e−ηsds with C, η > 0 and
0 < p < 1. The Laplace exponent φ(λ) = −CΓ(−p)[(λ+ η)p − ηp].

In all of the above examples, λn ∼ O(np) for some p > 0, hence the series
∑∞

n=1 e
−λnt con-

verges exponentially for all t > 0. In general, a series
∑∞

n=1 an is said to converge exponentially
if limn→∞ n

βan = 0 for any β > 0 (see Boyd [45] Section 2.3 or Fang and Oosterlee [14] p.836).
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This condition is clearly verified in the examples as λn = np. Furthermore, we have for every t
there exists some constant C > 0 and α > 0 such that

∞∑
n=M+1

e−λnt ≤ Ce−αλM for all M ≥M0 for some M0 > 0. (18)

In view of the above discussions, we make the following assumption on the semigroup (Prt )t≥0
under consideration.

Assumption 2. Suppose Assumption 1 hold. We assume
∑∞

n=1 e
−λnt converges exponentially

for any t > 0 and the inequality (18) holds.

In the following analysis, to simplify the discussion, we also assume that in solving an
equation using bisection, the error results from finite termination of the procedure due to error
tolerance is negligible. This part of the error can be easily controlled and made arbitrarily small
in actual computations. At time tN there is no error as infinite series are not involved. The
error starts to emerge at tN−1 and propagates in the backward induction procedure. At time
tl, the error for ŵln(j) not only comes from truncation of the series, but also from error of the
switching regions and the coefficients at tl+1 (see (16)). Our next theorem shows that under
some mild conditions, the error after backward induction still converges exponentially in the
truncation level M (recall that we have assumed we are in the setting of Theorem 2).

Theorem 5. Suppose Assumption 2 hold and the measure m is continuous on E. For l =
0, 1, · · · , N − 1 and all i, j ∈ D, we assume W l(x, i, j) ∈ C1(E). We also assume when M is
sufficiently large, W l(x, i, j) −W l(x, i, k) = 0 and Ŵ l(x, i, j) − Ŵ l(x, i, k) = 0 have the same
number of solutions (at most 1) in E for all i, j, k ∈ D. Furthermore, for every xli,j which is

not equal to xli,j+1 (i.e., Rl(i, j) is not empty), we assume ∂xW
l(x, i, j)− ∂xW l(x, i, k) 6= 0 for

x between xli,j and x̂li,j, where at xli,j, W
l(xli,j , i, j) = W l(xli,j , i, k) for some k < j.

For each l = N − 1, · · · , 0, let elw(M) := max1≤n≤M,j∈D |ŵl(j) − wl(j)| and elW (M) :=

maxx∈C,i,j∈D |Ŵ l(x, i, j)−W l(x, i, j)| where C is a given compact subset of E. Then there exists
constants C lw, C

l
W > 0 and αlw, α

l
W > 0 (αlW ≤ αlw ≤ α, where α is given in Assumption 2),

independent of M , such that for sufficiently large M ,

elw(M) ≤ C lwe−α
l
wλM , elW (M) ≤ C lW e−α

l
WλM .

Hence the error converges exponentially in the truncation level M .

Remark 5. (1) Eigenfunctions are continuously differentiable in many applications. Under
Assumption 1, if for any compact interval J ⊆ E,

∑∞
n=1 e

−λnh‖ϕ′n|J‖∞ <∞ (‖ · ‖∞ is the L∞

norm), then it can be shown that Prhf(x) is continuously differentiable in E for any f ∈ L2(E,m),
and

d

dx
Prhf(x) =

∞∑
n=1

fne
−λnhϕ′n(x). (19)

Thus W l(x, i, j) ∈ C1(E).
(2) Bounds tighter than (17) for eigenfunctions are often available. For regular Sturm-Liouville
problem, it is shown in Fulton and Pruess [44] that for any given compact set C, |ϕn(x)| ≤ C for
all n and all x ∈ C. For normalized Hermite and generalized Laguerre polynomials, |ϕn(x)| ≤
C/n

1
4 for all n and all x ∈ C (see Li and Linetsky [40, 37]). In these cases, in Theorem 5 we

can choose αlw = αlW = α for all l, which are tighter than the original estimates.
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5. Applications

In this section we apply our algorithm to three important applications. We index eigenfunc-
tions starting from zero, rather than from one as in previous sections. This is more convenient
when working with orthogonal polynomials. Starting from one is the standard notation used in
theoretical discussions.

5.1. Valuation of Combination Shipping Carriers

The world bulk shipping markets consist of two main sectors: the tanker (wet bulk) sector
which carries oil and the dry bulk sector which carries dry bulk cargo(e.g., grain, iron ore and
coal). Usually ships are designed to operate in only one of the two sectors, but one ship type,
the combination carrier (or combo), is designed to carry both wet and dry cargo. Switching
from carrying one type of cargo to the other type incurs a cost, mainly due to cleaning the
carrier. Clearly combo carriers are more costly than single cargo carriers due to the benefit it
provides to switch freely between two sectors to take advantage of the freight rate difference.

A natural question in the shipping business is whether it is worthwhile to spend more money
to order combo carriers. To address this question, Sødal et al. [5] developed a real option model
for the valuation of combo carriers. The additional value of combo carriers compared to an
equal-sized oil tanker (dry cargo carrier) comes from the option to switch to the dry (wet) bulk
market and back. By taking the value of an equal-sized oil tanker or dry cargo carrier as given,
the valuation problem reduces to a relative one to determine the value of the option to switch
between wet and dry bulk markets. Investment decision can then be made by comparing this
option value to the actual market price difference between a combo carrier and a single cargo
carrier of equal size.

Valuation of the switching option embedded in a combo carrier can be formulated as an
optimal switching problem, where the owner of a combo chooses the switching policy optimally
based on the freight rate difference. Let Xt denote the freight rate differential defined as the
dry bulk rate minus the tanker rate. In Sødal et al. [5], Xt is modeled as an OU diffusion,
i.e., dXt = κ(θ − Xt)dt + σdBt, which is shown to capture the movement of the spread. The
freight rate is quoted in terms of dollars per unit of time. For tractability purpose, Sødal et al.
[5] considered this problem in an infinite horizon continuous time framework. In this paper we
determine the switching option value in the more realistic finite horizon discrete time framework.

We follow the setting in Section 2 with d = 2. 0 denotes the tanker sector and 1 denotes the
dry bulk sector. f(x, i) denotes the additional freight rate earned by carrying cargo in the i-th
sector for a period of length h compared to carrying oil. Thus f(x, 0) = 0, f(x, 1) = xh. As in
Sødal et al. [5], we assume the switching costs do not depend on the freight rate difference, and
C(0, 0) = 0, C(0, 1) = F+, C(1, 0) = F−, C(1, 1) = 0. A constant rate r is used for discounting.
The value of the embedded switching option in a combo carrier compared to a tanker carrier is
given by J0(x, 0).

For the OU diffusion X, E = R and the speed density m(x) =
√

κ
πσ2 e

−κ(x−θ)
2

σ2 . The eigen-
function expansion for the OU transition semigroup on L2(R,m) is well-known (see for example
Karlin and Taylor [46]), and it satisfies Assumption 1. For n = 0, 1, · · · ,

λn = κn, ϕn(x) =
1√

2nn!
Hn(

√
κ

σ
(x− θ)), (20)

where Hn(x) is the n-th order Hermite polynomial. ϕn(x) can be computed efficiently through
the following recursion:

ϕ0(x) = 1, ϕ1(x) =

√
2κ

σ
(x− θ), ϕn(x) =

√
2

n

√
κ

σ
(x− θ)ϕn−1(x)−

√
n− 1

n
ϕn−2(x), n ≥ 2.

It is straightforward to check that f(x, j) and C(i, j) are in L2(R,m), hence Theorem 3 applies.
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Intuitively, it is clear that switching from the tanker oil sector to the dry bulk sector only
occurs if the freight rate difference X is positive enough, while switching in the other direction
only occurs if X is negative enough. This claim can be rigorously justified by Theorem 2. The
results are summarized in the following proposition with an illustration given in Figure 3.

Proposition 3. The switching region Rl(i, j) has the following form with −∞ < xlL < xlH <∞:

Rl(0, 0) = (−∞, xlH ], Rl(0, 1) = (xlH ,∞), Rl(1, 0) = (−∞, xlL], Rl(1, 1) = (xlL,∞). (21)

xlH is found by solving W l(x, 0, 0) = W l(x, 0, 1), and xlL is found by solving W l(x, 1, 0) =
W l(x, 1, 1).

Keep DrySwitch from Dry to Wet

l

L
x

l

H
x

Keep Wet Switch from Wet to Dry

Figure 3: Illustration of the switching regions for the combo carrier at time tl

We next calculate πm,n(Rl(i, j)), f jn(Rl(i, j)) and Ci,jn (Rl(i, j)) for i, j ∈ {0, 1}. From (21),
we calculate πm,n(−∞, x) and πm,n(x,∞) for generic x. Since πm,n(−∞, x) = δmn−πm,n(x,∞),
only one of them needs to be computed. From Li and Linetsky [25], we have

πm,n(x,∞) =

√
n+ 1ϕm(x)ϕn+1(x)−

√
m+ 1ϕn(x)ϕm+1(x)√

2π(m− n)
e−

κ(x−θ)2

σ2 ,m 6= n,m ≥ 0, n ≥ 0,

π0,0(x,∞) = Φ

(
−
√

2κ(x− θ)
σ

)
, πn,n(x,∞) = πn−1,n−1(x,∞) +

1√
2πn

ϕn−1(x)ϕn(x)e−
κ(x−θ)2

σ2 , n ≥ 1,

where Φ(x) is the standard normal CDF. The formulas for f jn(Rl(i, j)) and Ci,jn (Rl(i, j)) are
summarized in the following proposition (note that Rl(i, 1) has the form (x,∞) for i ∈ {0, 1}.)

Proposition 4.

f0n(Rl(i, 0)) = 0, n ≥ 0, i ∈ {0, 1}.

f10 (x,∞) =
1

2

σh√
πκ
e−

κ(x−θ)2

σ2 + θhΦ(−
√

2x),

f1n(x,∞) =
1

2

σh√
πκ
e−

κ(x−θ)2

σ2 ϕn(x) + σh

√
n

2κ
π0,n−1(x,∞) + θhπ0,n(x,∞), n ≥ 1,

Ci,jn (Rl(i, j)) = C(i, j)π0,n(Rl(i, j)), n ≥ 0, i, j ∈ {0, 1}.

5.2. Chooser Flexible Caps

Caps and floors are major derivatives traded in the interest rate markets (Brigo and Mercurio
[47]). We focus our discussion on caps and floors can be considered similarly. Consider a set
of times 0 = t0 < t1 < · · · < tN < tN+1. Let L(t, t′) be the LIBOR rate observed at t for the
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maturity t′, and the notional amount is assumed to be one. The discounted payoff at time t0
to the holder of a cap spanning from t0 to tN , with strike G is given by

N∑
i=0

D(0, ti+1)τi(L(ti, ti+1)−G)+, (22)

where D(0, t) is the stochastic factor to discount the cash flow at time t to time 0, and τi :=
ti+1−ti. Note that the payoff is paid out at time t1 to tN+1, with the time ti+1-payoff determined
by L(ti, ti+1), the LIBOR rate observed at ti with maturity ti+1. From (22), the cap holder is
holding N + 1 European call/put options on the LIBOR. Each option is called a caplet.

The chooser flexible cap is a variant of the standard cap, in which the total number of
exercise rights, denoted by K, is less than N+1. These rights can be exercised from t0 to tN . If
a right is exercised at ti, the payoff is paid out at ti+1 as in the standard cap contract. Compared
to the standard cap, the chooser flexible cap offers investors more flexibility in hedging interest
rate risk at a lower cost. In practice, typically ti = ih and h is often a quarter.

Our method is applicable to many diffusion short rate models, including the Vasicek model
(Vasicek [21]), the CIR model (Cox et al. [22]), the 3/2 model (Ahn and Gao [23]), Black’s model
of interest rates as options (Gorovoi and Linetsky [35]) and the quadratic model (Leippold and
Wu [48]), as well as their subordinate versions with jumps (Lim et al. [30]). Furthermore, it is
applicable to time-inhomogeneous extensions of time-homogeneous short rate models by adding
a deterministic function of time to r(Xt) to match the initial yield curve. In particular it can be
applied to the popular Hull-White model (Hull and White [49]) and the CIR++ model (Brigo
and Mercurio [50]).

To illustrate our method, we consider the Vasicek model. Under this model, Xt is an OU
diffusion, i.e., dXt = κ(θ − Xt)dt + σdBt, with κ, θ, σ > 0, and r(x) = x. The eigenfunction
expansion for the OU FK semigroup on L2(R,m) (recall m is the speed measure of the OU
diffusion) is obtained in Gorovoi and Linetsky [35], which satisfies Assumption 1. For n =
0, 1, · · ·

λn = θ − σ2

2κ2
+ nκ, ϕn(x) =

e−aξ−a
2/2

√
2nn!

Hn(ξ + a),

where Hn(x) is the n-th order Hermite polynomial and ξ =
√
κ
σ (x − θ), a = σ

κ3/2
. Based on

the classical recursion for Hermite polynomials, it is easy to derive the following recursion for
ϕn(x), which can be used to compute ϕn(x) efficiently:

ϕ0(x) = e−aξ−a
2/2, ϕ1(x) = e−aξ−a

2/2(ξ + a), ϕn(x) =

√
2

n
(ξ + a)ϕn−1(x)−

√
n− 1

n
ϕn−2(x).

Denote by Z(x, h) the price of a zero-coupon bond with maturity h given the current short
rate is x, and L(x, h) the current LIBOR with maturity h given the current short rate is x.
Under the Vasicek model, Z(x, h) and hence L(x, h) are given by

Z(x, h) = A(h)e−B(h)x,

B(h) =
1

κ
(1− e−κh), A(h) = exp

{
1

κ2
(B(h)− h)(κ2θ − σ2

2
)− σ2B(h)2

4κ

}
.

L(x, h) =
1

h

(
1

Z(x, h)
− 1

)
=

1

h

(
A−1(h)eB(h)x − 1

)
.

We note that L(x, h) is also the LIBOR with maturity t+h observed at any time t, given Xt = x,
since the Vasicek model is time-homogeneous. For the chooser flexible cap, the exercise payoff
p(x) = Z(x, h)h(L(x, h)−G) = 1− (1 + hG)A(h)e−B(h)x. It is easy to see that max{p(x), 0} ∈
L2(E,m), since it is bounded, and m is a probability measure. Hence Corollary 2 can be applied.
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Note that p(x) is increasing in x. Thus intuitively one would exercise one right if x is large
enough, i.e., S l,k = (xl,k,+∞), where for l + k > N , xl,k = xb := [ln (1 + hG) + lnA(h)]/B(h)
and for l + k ≤ N , xl,k = inf{x ∈ E : Sl,k > C l,k}, and xb ≤ xl,k+1 ≤ xl,k (1 ≤ k ≤ K − 1). To
our regret, we do not have rigorous justification for this result. Theorem 4 cannot be applied
because condition (i) and (iv) do not hold. However, in our examples, we do not detect any
violation numerically.

Next we calculate pn(x,∞) and πm,n(x,∞) for generic x such that x ≥ xb. Define

ρn(s, x) :=

∫ ∞
x

esyϕn(y)m(dy), s ∈ R, n = 0, 1, · · · .

Then pn(x,∞) can be calculated as follows:

Proposition 5. pn(x,∞) = ρn(0, x)− (1 + hG)A(h)ρn(−B(h), x) for x ≥ xb, with

ρ0(s, x) = e−a
2/2+sθ+(a+sσ/

√
κ)2/4Φ

(
− 1√

2
(2ξ + a− s σ√

κ
)

)
,

ρn(s, x) =
1√
2πn

esx−ξ
2
ϕn−1(x) + (a+ s

σ√
κ

)
1√
2n
ρn−1(s, x), (23)

where Φ(·) is the standard normal CDF.

Using similar derivation as in Li and Linetsky [25], πm,n(x,∞) can be computed efficiently
as follows:

πm,n(x,∞) =

√
(n+ 1)ϕm(x)ϕn+1(x)−

√
(m+ 1)ϕn(x)ϕm+1(x)√

2π(m− n)
e−

κ(x−θ)2

σ2 ,m 6= n,m ≥ 0, n ≥ 0.

π0,0(x,∞) = Φ(−
√

2(ξ + a)), πn,n(x,∞) = πn−1,n−1(x,∞) +
1√
πn

e−ξ
2
ϕn(x)ϕn−1(x), n ≥ 1.

5.3. Commodity Swing Options

Swing options are widely used for managing volume risk in commodity markets. Let St
denote the commodity spot price at time t. We consider the classical Schwartz model (Schwartz
[39]), i.e., under the pricing measure, St = S0e

Xt where Xt is an OU diffusion with long-
run level θ, mean-reversion speed κ and volatility σ. Recently Li and Linetsky [40] and Li
and Mendoza-Arriaga [28] improved the Schwartz model by introducing mean-reverting jumps
through Lévy and additive subordination. It is shown that the Lévy subordinate model is able
to calibrate a variety of volatility smile/skew patterns in commodity markets while the additive
subordinate model is able to calibrate the entire implied volatility surface. These models also
admit eigenfunction expansions with the diffusion eigenvalue e−λnt replaced by the Laplace
transform of the Lévy/additive subordinator evaluated at λn, which are known in closed-form
(see the previously cited two papers for details). Hence the algorithm developed in this paper
can also deal with these more complicated models. Below we only consider the Schwartz model.

In practice there are many variants of swing options, and papers in the literature consider
different settings (see e.g., Dahlgren [51], Wilhelm and Winter [52], Zhang and Oosterlee [16]).
In this paper we closely follow the setting in Jaillet et al. [8], however the eigenfunction expansion
algorithm can potentially be applied to other settings. We assume exercise can be done on a
discrete set of dates 0 = t0 < t1 < · · · < tN = T and on each date only one right can be
exercised. There are K rights in total with 1 ≤ K ≤ N + 1. We limit our discussion to a
call-type swing option (the put-type can be considered similarly). The exercise payoff depends
on both the spot price at the exercise time and the volume taken (denoted by q), and is given
by p(x, q) = q(S0e

x −G), where G is the strike price and q is an integer multiple of some basic
unit. We assume a constant risk-free rate r.

19



Compared to the standard multiple stopping problem in Section 3, the problem of valuation
swing options is more complicated, since one must also decide how much volume to take in
addition to timing the exercise. In practice there are two types of constraints on the volume,
which leads to different treatment of the problem.

Local Volume Constraints: The local constraints state that when a right is exercised, q ≤ b,
where q is the volume taken on the exercise day and b is a positive integer. It has been shown (see
for example Jaillet et al. [8]), in the optimal strategy the volume will be taken in a bang-bang
fashion, i.e., q = b. Therefore, when only local volume constraints are present, the problem of
valuation swing options reduces to the standard multiple stopping problem with exercise payoff
p(x) = b(S0e

x−G). Since p(x) is increasing in x, intuitively one would stop to exercise one right
if x is sufficiently large, i.e., S l,k = (xl,k,+∞), where for l + k > N , xl,k = xb = ln(G/S0) and
for l + k ≤ N , xl,k = inf{x ∈ E : Sl,k > C l,k}, and xb ≤ xl,k+1 ≤ xl,k (1 ≤ k ≤ K − 1). We do
not have rigorous justification for this result. Theorem 4 cannot be applied because condition
(iv) does not hold (Eh[eXh ] = exp[xe−κh + θ(1− e−κh) + σ2

4κ (1− e−2κh)]). However numerically
we do not see any violation in the examples we consider. Although rigorous justification cannot
be provided for the geometric mean-reverting models, as shown in Example 3, Theorem 4 can
be applied to justify connectedness for arithmetic models.

It is easy to verify that max{p(x), 0} ∈ L2(R,m). To calculate pn(x,∞), define

ρn(s, x) :=

∫ ∞
x

esyϕn(y)m(dy), s ∈ R.

where ϕn(y) is given by (20). Then

pn(x,∞) = bS0ρ(1, x)− bGπ0,n(x,∞), x ≥ ln(G/S0).

Similar to (23), ρn(s, x) can be calculated as

ρ0(s, x) = esθ+
s2σ2

4κ Φ

(
−
√

2ξ +
sσ√
2κ

)
, ρn(s, x) =

esx−ξ
2

√
2nπ

ϕn−1(x) +
sσ√
2nκ

ρn−1(s, x),

where Φ(·) is the standard normal CDF, ξ =
√
κ
σ (x− θ).

Global Volume Constraints: In addition to impose the local constraint q ≤ b for each
exercise, the global constraint imposes restrictions on the total volume taken. Let Q be the
total volume, and B be the upper bound on the total volume, i.e., Q ≤ B, where B is a positive
integer. If Kb ≤ B, the global constraint becomes redundant and the problem reduces to the
case only with local constraints. Below we consider the more interesting case Kb > B. In this
case, the problem is more difficult than a standard optimal multiple stopping problem as the
decision maker not only has to consider the number of rights she has but also the remaining
volume she can take. To solve the problem, in addition to x and k (remaining number of rights),
we add the remaining usage level (equal to B minus the volume already taken), denoted by u,
to the state variable. The value function can now be found by dynamic programming (x ∧ y
denotes min {x, y}). Let p(x) = S0e

x −G. Iteratively define

V l(x, 0, u) := 0, 0 ≤ l ≤ N, 0 ≤ u ≤ B,
V l(x, k, 0) := 0, 0 ≤ l ≤ N, 0 ≤ k ≤ K,
CN (x, k, u) := 0, SN (x, k, u) := max

1≤q≤u∧b
{qp(x)},

V N (x, k, u) := max{SN (x, k, u), CN (x, k, u)}, 1 ≤ k ≤ K, 0 ≤ u ≤ B.
C l(x, k, u) := PrhV l+1(x, k, u), Sl(x, k, u) := max

1≤q≤u∧b
{qp(x) + C l(x, k − 1, u− q)},

V l(x, k, u) := max{Sl(x, k, u), C l(x, k, u)}, l = N − 1, · · · , 0, 1 ≤ k ≤ K, 0 ≤ u ≤ B.
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Then the value function J l(x, k, u) = V l(x, k, u). For l = N − 1, · · · , 0, k = 1, · · · ,K, u =
1, · · · , B and q = 0, 1, · · · , u ∧ b, define

Rl,k,u(q) := {x ∈ E : qp(x) + C l(x, k − 1{q>0}, u− q) > max
j 6=q,0≤j≤u∧b

{jp(x) + C l(x, k − 1{j>0}, u− j)}}

∪ {x : min{i : ip(x) + C l(x, k − 1{i>0}, u− i) = max
j 6=q,0≤j≤u∧b

{jp(x) + C l(x, k − 1{j>0}, u− j)}} = q}.

Rl,k,u(q) is the region at time tl that the owner of the option should exercise and take q units
for q > 0 or no exercise for q = 0 if he has k number of exercise rights and the remaining usage
level is u. The second part has the same interpretation as a tie-breaking rule as in Section 2.
Intuitively Rl,k,u(q) should have the following form (some of these regions may be empty):

Rl,k,u(0) = (−∞, xl,k,u(0)],Rl,k,u(1) = (xl,k,u(0), xl,k,u(1)], · · · ,Rl,k,u(u∧b) = (xl,k,u(u∧b−1),+∞).

This is verified numerically in our examples.
Since max{p(x), 0} ∈ L2(R,m), we can solve the dynamic programming problem by eigen-

function expansions. We have C l(x, k, u), Sl(x, k, u), V l(x, k, u) ∈ L2(R,m) for 0 ≤ k ≤ K,
0 ≤ u ≤ B, 0 ≤ l ≤ N . Each C l(x, k, u) can be represented in the following form:

C l(x, k, u) =
∞∑
n=0

cl,k,un e−λnhϕn(x), l = N − 1, · · · , 0, k = 0, · · · ,K.

The expansion converges uniformly on compacts in x and C l(x, k, u) is continuous in x. The
coefficients satisfy the following, which can be obtained in a way similar to Theorem 3.

cl,0,un = 0, cl,k,0n = 0, 0 ≤ l ≤ N, 0 ≤ k ≤ K, 0 ≤ u ≤ B.
cN−1,k,un = (u ∧ b)pn(ln(G/S0),∞), 1 ≤ k ≤ K,

cl,k,un =
u∧b∑
j=1

{
jfn(Rl+1,k,u(j)) +

∞∑
m=0

cl+1,k−1,u−j
m e−λmhπm,n(Rl+1,k,u(j))

}

+

∞∑
m=0

cl+1,k,u
m e−λmhπm,n(Rl+1,k,u(0)), 1 ≤ k ≤ min{N − l,K}, 0 ≤ l ≤ N − 2.

cl,k,un = cl,N−l,un , N − l < k ≤ K, 0 ≤ l ≤ N − 2.

Remark 6. Extension to refraction period. Some swing contracts impose a minimum period,
called refraction period, between two consecutive exercise. Let hR denote the refraction period.
If hR ≤ h, then the refraction period constraint becomes redundant. For hR > h, the previous
dynamic programming procedure can be extended by adding time left to the next exercisable
date to the state variable. Suppose hR = Mh, and let τ be the number of periods until the
next exercisable date. Iteratively define

V l(x, 0, u, τ) := 0, 0 ≤ l ≤ N, 0 ≤ u ≤ B, 0 ≤ τ ≤M,

V l(x, k, 0, τ) := 0, 0 ≤ l ≤ N, 0 ≤ k ≤ K, 0 ≤ τ ≤M,

CN (x, k, u, τ) := 0, SN (x, k, u, τ) := max
1≤q≤u∧b

{qp(x)}1{τ=0},

V N (x, k, u, τ) := max{SN (x, k, u, τ), CN (x, k, u, τ)}, 1 ≤ k ≤ K, 0 ≤ u ≤ B, 0 ≤ τ ≤M.

C l(x, k, u, τ) := PrhV l+1(x, k, u, τ − 1{τ>0}),

Sl(x, k, u, τ) := 1{τ=0} max
1≤q≤u∧b

{qp(x) + C l(x, k − 1, u− q,M)},

V l(x, k, u) := max{Sl(x, k, u), C l(x, k, u)}, 0 ≤ l ≤ N − 1, 1 ≤ k ≤ K, 0 ≤ u ≤ B, 0 ≤ τ ≤M.

Then the value function J l(x, k, u, τ) = V l(x, k, u, τ). The problem can then be solved using
eigenfunction expansions, similar to the case without refraction period.
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6. Numerical Examples

In this section, we first discuss how to implement the eigenfunction expansion algorithm and
then compare it to several other popular numerical methods.

Since infinite series appear in the eigenfunction expansion algorithm, truncation is needed
to implement it. There are two truncation strategies. One is to truncate every infinite series
using the same number of terms. The other is an adaptive approach which we employ in the
actual implementation. In this approach, we specify a relative error tolerance (denoted by e1)
for computing every infinite series, and let the computer decide how many terms to use for each
expansion. The adaptive strategy is more efficient than the one using a fixed number of terms
everywhere as some expansions converge faster than the others. To find the boundary points
for the switching/exercise regions, we solve the equations defining the boundary points using
the bisection method with a given absolute error tolerance e2. Alternatively Newton’s method
can be used with the implementation of the first order derivative of the value functions.

In the following, we compare the eigenfunction function algorithm to some popular methods
used in practice. All computations were performed on a Dell workstation with Intel Xeon E5-
2687W CPU at 3.10GHz with 64GB RAM under Linux Red Hat 4.4.7-3. Codes were written
in C++ and compiled with G++ 4.4.7. All infinite sums were truncated when a given relative
error tolerance e1 was reached. The bisection algorithm was used to find the root with a given
absolute error tolerance e2.

We first compare the computational performance of the eigenfunction expansion method to
the lattice method for the applications developed in Section 5. For the OU diffusion, we use
the Hull-White trinomial tree (Hull and White [53]), which is perhaps the most commonly used
lattice for this process. We will also consider the binomial tree for the OU process which can
be built using the method in Nelson and Ramaswamy [54]. In constructing the trinomial and
binomial tree, both the state space and the time between any two exercise dates are discretized.
We use the first node on the tree where it becomes optimal to switch/exercise to approximate
the boundary. The performance is evaluated by looking at the error of the value function at
time 0 for the given starting point as well as the switching/exercise boundaries. Since the
boundary is a vector, we measure its accuracy by the root mean squared (RMS) error (if

(e1, · · · , eN ) is the error vector, the RMS error is defined as
√∑N

i=1 e
2
i /N). In all examples, the

benchmark is computed by running the eigenfunction expansion algorithm with e1 = 10−15 and
e2 = 10−15. To analyze the convergence pattern, we ran the eigenfunction expansion algorithm
with e1 = 10−5, 10−7, 10−9, 10−11, 10−13 while fixing e2 at a small level. For the trinomial and
binomial tree, we ran the algorithm for M = 250, 500, 750, 1000, 2500, 5000, 7500, 10000 where
M is the number of time steps between two exercise dates. We next provide details for each
numerical example (please refer to Section 5 for more detailed discussions on the model and
setting in each example).

(1) Combo Carriers: The useful life of the carrier is twenty years. The discount rate r = 10%.
We assume decisions are made every month, i.e., h = 1/12 year (hence there are 240 periods in
total). For convenience we denominate money in millions of dollars. Freight rates in the shipping
markets are quoted as dollars per day, thus in computing f(x, 1) = xh, h is converted from years
to days (recall that f(x, 1) is the payoff for shipping dry cargo). Sødal et al. [5] estimated the
parameters of the OU diffusion from the freight rate data. We use the same parameters with
mean-reversion speed κ = 2.4, long-run level θ = −0.0054, volatility σ = 0.0226, and switching
cost F+ = F− = 0.04 (in million). We evaluate the option value at x0 = 0. The relative value
of combo shipping carrier to an equal-sized oil tanker is given by V (x0, 0) = 5.55599103 million,
rounded to the eighth decimal place. We fix e2 = 10−10.

(2) Chooser Flexible Caps Under the Vasicek Short Rate Model: We consider a five
year chooser flexible cap with one million notional amount. Decisions are made every quarter,
i.e., h = 0.25 year, and the number of exercise rights K = 10. For the Vasicek model, mean-
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reversion speed κ = 0.3, volatility σ = 0.01, long-run level θ = 0.05, and the initial short rate
x0 = 0.045. The strike price G = 0.04. We use the same value for κ and σ as Ohnishi and
Tamba [7]. The value of this cap, V 0,10(x0) = 0.02503149 million, rounded to the eighth decimal
place. We fix e2 = 10−8.

(3) Commodity Swing Options: We consider a two year swing option which can be exercised
monthly (24 periods in total), with both local and global volume constraints. The owner of the
option is entitled with 10 exercise rights, i.e., K = 10. In each exercise, the volume taken cannot
exceed 2, i.e., b = 2 and the total volume taken from all exercises cannot exceed 14, i.e., B = 14.
The initial spot price S0 = 2.5 and the strike price G = 2.4. The discount rate r = 0.1. We
use the same parameters for the OU diffusion as in Jaillet et al. [8]. Here mean-reversion speed
κ = 3.4, long-run level θ = −0.114, volatility σ = 0.59, and starting point x0 = 0.0. The value
of the swing option is given by V (x0) = 5.23191411, rounded to the eighth decimal place. We
fix e2 = 10−8.

Figure 4, 5 and 6 show the comparison between the eigenfunction expansion algorithm
and the trinomial tree for valuation of combo carriers, chooser flexible caps and commodity
swing options, respectively. Figure 7 gives the comparison between the eigenfunction expansion
algorithm and the binomial tree for valuation of combo carriers. In the boundary graphs, the
RMS error for the boundary eventually stabilizes in the eigenfunction expansion algorithm as
we fix e2. It is clear that in all cases, for a given accuracy level, the eigenfunction expansion
algorithm is orders of magnitude faster than the trinomial/binomial tree algorithm for both the
value function and the boundary. For example, in the swing case, the CPU time ranges from
21.95 seconds for e1 = 10−5 to 47.44 seconds for e1 = 10−13. The absolute error for the option
price is 6.62×10−5 (relative error 1.27×10−5) at e1 = 10−5 and rapidly decreases to 1.55×10−12

(relative error 2.96× 10−13) at e1 = 10−13. The RMS error for the exercise boundary is around
5× 10−6 at e1 = 10−5 and rapidly decreases to 2× 10−9 at e1 = 10−9. It then stays at almost
the same level as we fix e2 = 10−8 for the bisection. In the trinomial tree algorithm, when M
varies from 250 to 10000, the computation time ranges from 44.31 seconds to 17336.60 seconds
and errors for the price and the boundary decrease only slightly.

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

A
b

so
lu

te
 E

rr
o

r 

Computational Time (in seconds) 

Eigenfunction Expansion

Trinomial Tree

(a) value function

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04

R
M

S 
Er

ro
r 

Computational Time (in seconds) 

Eigenfunction Expansion

Trinomial Tree

(b) boundary

Figure 4: Eigenfunction Expansion vs. Trinomial Tree for the combo carrier (on log-log scale)

Next we compare the computational performance of the eigenfunction expansion method
to the Crank-Nicolson scheme which is a popular numerical PDE scheme in practice and it
is more efficient than the lattice method, which corresponds to explicit finite differences. To
do this, we revisit the combo shipping carrier problem. To apply the Crank-Nicolson scheme
to solve the optimal switching problem, we notice that for the OU diffusion, the continua-
tion value solves a PDE using the pre-switch value function at the next decision date as the
payoff function. We use the same model parameters as before, and localize the state space
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Figure 5: Eigenfunction Expansion vs. Trinomial Tree for the chooser flexible cap (on log-log scale)
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Figure 6: Eigenfunction Expansion vs. Trinomial Tree for the swing option (on log-log scale)
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Figure 7: Eigenfunction Expansion vs. Binomial Tree for the combo carrier (on log-log scale)
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Figure 8: Eigenfunction Expansion vs. Crank-Nicolson for the combo carrier (on log-log scale)

R to a finite interval (L,U) with L = −0.2 and U = 0.2. We ran the algorithm for (M,S) =
(250, 560), (500, 792), (750, 970), (1000, 1120), (2500, 1770), (5000, 2504), (7500, 3066), (10000, 3540),
where M is the number of time steps between two exercise dates and S is the number of state
steps on [L,U ] (a uniform grid is used). Figure 8 displays the comparison. Again we see the
eigenfunction expansion algorithm is orders of magnitude faster.

The rapid convergence we observe for the eigenfunction expansion algorithm can be ex-
plained by the exponential convergence rate, as for all these examples the conditions in Theorem
5 are satisfied. The high level of accuracy in the boundary is due to the fact that in the eigen-
function expansion algorithm, the boundary is determined by finding roots of globally defined
equations. In contrast, in the lattice or Crank-Nicolson method, the state space is discretized
and the error in the boundary is controlled by the grid size. To achieve high precision in the
boundary requires exceedingly fine grid.

There are several other notable advantages of the eigenfunction expansion algorithm. (1)
Running the algorithm once gives us the expansion coefficients, which allows us to determine
the value function on the entire state space with high level of accuracy. In comparison, nu-
merical methods that require discretization can only find the value function on the grid, and
interpolation must be used to find the value at non-grid points, which cannot be highly accu-
rate. (2) Delta and gamma of the value function can be obtained analytically by differentiating
the eigenfunction expansion term-by-term under some mild conditions (see (19) and Li and
Linetsky [25] Proposition 6 for results of this type). The analytical formula allows us to achieve
high precision in delta and gamma. (3) The eigenfunction expansion algorithm is generally
applicable to Markov processes with discrete spectrum, including not only diffusions, but also
jump-diffusions and pure jump processes obtained from diffusions via subordination. Existing
numerical PIDE schemes cannot be efficiently applied to subordinate diffusions, as its jump
measure is not known in closed-form (see Li and Linetsky [25] p.631; the jump density is given
by the integral of the diffusion transition probability density integrated with the Lévy measure
of the subordinator). To apply them, one has to first compute the jump measure numerically.

Remark 7. The characteristics function of an OU diffusion is known in closed-form, hence the
method of Fourier-cosine expansions and fast Hilbert transform can also be applied to evaluate
combo shipping carriers under the OU freight difference model and commodity swing options
under the Schwartz model. We expect these methods to be highly efficient as well and their
computational complexity is similar to the eigenfunction expansion method. We noted that
Zhang et al. [55] shows that by approximating the OU characteristic function properly, the
Fourier-cosine expansion method can be implemented with the help of FFT, so for certain
parameter values and some target accuracy (say 1 basis point), the Fourier-cosine method
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can be more efficient than the eigenfunction expansion algorithm, as the latter does not allow
FFT to be used. The strength of the eigenfunction expansion algorithm is that it is generally
applicable and computationally efficient for Markov proceses with discrete spectrum, for which
the characteristic function may be unavailable.

7. Conclusions

This paper develops an efficient algorithm based on eigenfunction expansions to solve op-
timal switching and multiple stopping problems in a finite horizon discrete time setting for
a rich class of one-dimensional Markov processes that are important in financial application-
s. This class includes diffusions with purely discrete spectrum, and jump-diffusions and pure
jump processes obtained from these diffusions through subordination. We develop a dynam-
ic programming procedure for these problems, and by assuming square-integrable payoffs and
switching costs, we show that the dynamic programming problem can be solved explicitly using
eigenfunction expansions. We prove that under some mild conditions, our algorithm converges
exponentially in the series truncation level. Easy-to-verify conditions are also provided to char-
acterize connectedness of switching/exercise regions. We illustrate the versatility of our method
with three applications: valuation of combination carriers, interest-rate chooser flexible caps
and commodity swing options. Numerical examples demonstrate the superior computational
performance of the eigenfunction expansion algorithm.
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Appendix A. Proofs

Theorem 1: For l = N , from the definition it is easy to verify that V N (x, i) = JN (x, i). We
next consider l < N . First we shall show V l(x, i) ≥ J l(x, i). Consider an arbitrary strategy
α ∈ Al. Using the definition of V l(x, i),

V l(x, i) = max
j∈D

{
f(x, j)− C(x, i, j) + PrhV l+1(x, j)

}
≥ f(x, Iαtl )− C(x, i, Iαtl ) + PrhV l+1(x, Iαtl )

= f(x, Iαtl )− C(x, i, Iαtl ) + Prh max
j∈D

{
f(x, j)− C(x, Iαtl+1−, j) + PrhV l+2(x, j)

}
(since Iαtl = Iαtl+1−)

≥ f(x, Iαtl )− C(x, i, Iαtl ) + Prh{f(x, Iαtl+1
)− C(x, Iαtl+1−, I

α
tl+1

)}+ PrhPrhV l+2(x, Iαtl+1
)

= f(x, Iαtl )− C(x, i, Iαtl ) + Prh{f(x, Iαtl+1
)− C(x, Iαtl+1−, I

α
tl+1

)}+ Pr2hV l+2(x, Iαtl+1
) (since Pr2h = PrhPrh)

...

≥ Ex

[
N−1∑
n=l

e
−

∫ tn
tl

r(Xu)du (f(Xtn , I
α
tn)− C(Xtn , I

α
tn−, I

α
tn)
)

+ e
−

∫ tN
tl

r(Xu)duV N (XtN , I
α
tN−)

]

≥ Ex

[
N∑
n=l

e
−

∫ tn
tl

r(Xu)du (f(Xtn , I
α
tn)− C(Xtn , I

α
tn−, I

α
tn)
)]

= J l(x, i, α).

In the above, we used the definition of V l to V N . Since α is arbitrary, V l(x, i) ≥ J l(x, i). To
show the reverse inequality, note that if we use the strategy α∗ = ((τ∗1 , ξ

∗
1), (τ∗2 , ξ

∗
2), · · · ) defined
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in (5), V l(x, i) = J l(x, i, α∗). This shows V l(x, i) ≤ J l(x, i). Together we have V l(x, i) = J l(x, i)
and α∗ is an optimal strategy.

Theorem 2: We will use induction to prove the claim of the theorem with another claim that
V l(x, i+ 1)− V l(x, i) is nondecreasing.
Step 1: We verify these claims are true when l = N . WN (x, i, j+1)−WN (x, i, j) = f(x, j+1)−
C(x, i, j + 1)− f(x, j) +C(x, i, j) is nondecreasing by condition (iii). From this it is easy to see
that WN (x, i, j) −WN (x, i, q) is nondecreasing for any q < j. Define R̃N (i, j) := (xNi,j , x

N
i,j+1]

for j = 0, 1, d − 2, R̃N (i, d − 1) = (xNi,d−1, x
N
i,d). We next show that R̃N (i, j) = RN (i, j) for

0 ≤ j ≤ d− 1.
First from the definition of x̃Ni (q, j) and that WN (x, i, j) − WN (x, i, q) is nondecreasing,

we have for x > x̃Ni (q, j), WN (x, i, q) < WN (x, i, j), and for x ≤ x̃Ni (q, j), WN (x, i, q) ≥
WN (x, i, j). (1) For d−1, we can find k ≤ d−2, such that x̃Ni (k, d−1) = maxq=0,1,··· ,d−2{x̃Ni (q, d−
1)}. Then for any x ∈ (e1, x

N
i,d−1], x ≤ x̃Ni (k, d− 1), thus WN (x, i, k) ≥ WN (x, i, d− 1), which

implies (e1, x
N
i,d−1] ⊆ E\RN (i, d − 1). So we have RN (i, d − 1) ⊆ R̃N (i, d − 1). Now for any

x ∈ R̃N (i, d− 1), x > x̃Ni (q, d− 1) for 0 ≤ q ≤ d− 2, thus WN (x, i, q) < WN (x, i, d− 1). This
implies x ∈ RN (i, d− 1) from the definition of RN (i, d− 1). Hence R̃N (i, d− 1) ⊆ RN (i, d− 1).
Together we have R̃N (i, d− 1) = RN (i, d− 1). (2) For d− 2, similar to (1), we can show that
RN (i, d − 2) ⊆

⋃d−1
j=d−2 R̃N (i, j) and R̃N (i, d − 2) ⊆

⋃d−1
j=d−2RN (i, j). Since we already have

R̃N (i, d−1) = RN (i, d−1), RN (i, d−2)
⋂
RN (i, d−1) = ∅ and R̃N (i, d−2)

⋂
R̃N (i, d−1) = ∅,

we can conclude RN (i, d − 2) = R̃N (i, d − 2). For j = d − 3, · · · , 0, we can similarly prove
R̃N (i, j) = RN (i, j).

Next we show that V N (x, i+1)−V N (x, i) is nondecreasing, for i = 0, 1, · · · , d−2. Note that
E =

⋃
q,j=0,1,··· ,d−1(RN (i, q)

⋂
RN (i+ 1, j)). Below we first show that V N (x, i+ 1)− V N (x, i)

is nondecreasing for every interval RN (i, q)
⋂
RN (i+ 1, j). Note that for q < j (1 ≤ j ≤ d− 1),

x̃Ni+1(q, j) = inf{x ∈ E : WN (x, i+ 1, j)−WN (x, i+ 1, q) > 0},
x̃Ni (q, j) = inf{x ∈ E : WN (x, i, j)−WN (x, i, q) > 0}
= inf{x : WN (x, i+ 1, j)−WN (x, i+ 1, q) > −C(x, i+ 1, j) + C(x, i+ 1, q) + C(x, i, j)− C(x, i, q)}.

The last equality above is obtained by noting that

WN (x, i, j)−WN (x, i, q) = f(x, j)− C(x, i, j)− (f(x, q)− C(x, i, q))

= WN (x, i+ 1, j) + C(x, i+ 1, j)− C(x, i, j)− (WN (x, i+ 1, q) + C(x, i+ 1, q)) + C(x, i, q)

= WN (x, i+ 1, j)−WN (x, i+ 1, q) + C(x, i+ 1, j)− C(x, i+ 1, q)− C(x, i, j) + C(x, i, q).

Since WN (x, i+ 1, j)−WN (x, i+ 1, q) is nondecreasing and −C(x, i+ 1, j) +C(x, i+ 1, q) +
C(x, i, j) − C(x, i, q) ≥ 0 by condition (iv), we must have x̃Ni+1(q, j) ≤ x̃Ni (q, j), which implies

xNi+1,j ≤ xNi,j . Since
⋃d−1
q=j RN (i, q) = (xNi,j , e2) and

⋃d−1
q=j RN (i + 1, q) = (xNi+1,j , e2), we have⋃d−1

q=j RN (i, q) ⊆
⋃d−1
q=j RN (i+ 1, q). For every interval RN (i, q)

⋂
RN (i+ 1, j):

(1) If q > j, (
⋃d−1
k=j+1RN (i+ 1, k))

⋂
RN (i+ 1, j) = ∅,

⋃d−1
k=j+1RN (i, k) ⊆

⋃d−1
k=j+1RN (i+ 1, k),

so we have

(

d−1⋃
k=j+1

RN (i, k))
⋂
RN (i+ 1, j) = ∅.

Combined with RN (i, q) ⊆
⋃d−1
k=j+1RN (i, k), we get RN (i, q)

⋂
RN (i+ 1, j) = ∅.

(2) If q = j, then V N (x, i + 1) − V N (x, i) = WN (x, i + 1, j) −WN (x, i, j) = −C(x, i + 1, j) +
C(x, i, j) is nondecreasing by condition (v).
(3) If q < j, then V N (x, i+ 1)− V N (x, i) = WN (x, i+ 1, j)−WN (x, i, q) = (WN (x, i+ 1, j)−
WN (x, i, j))+(WN (x, i, j)−WN (x, i, q)) is nondecreasing because the first part is nondecreasing
by (2) and the second part is also nondecreasing.
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Thus V N (x, i+1)−V N (x, i) is nondecreasing on eachRN (i, q)
⋂
RN (i+1, j). Since V N (x, i+

1) − V N (x, i) is continuous, it is nondecreasing on E. We now have verified all claims hold at
l = N .
Step 2: Suppose at tl+1, the claim in Theorem 2 is true and V l+1(x, i + 1) − V l+1(x, i) is
nondecreasing. We verify the claims for tl.

W l(x, i, j + 1)−W l(x, i, j)

= (f(x, j + 1)− C(x, i, j + 1) + PrhV l+1(x, j + 1))− (f(x, j)− C(x, i, j) + PrhV l+1(x, j))

= (f(x, j + 1)− C(x, i, j + 1)− f(x, j) + C(x, i, j)) + Prh(V l+1(x, j + 1)− V l+1(x, j))

By the induction condition, V l+1(x, j + 1) − V l+1(x, j) is nondecreasing, thus Prh(V l+1(x, j +
1)−V l+1(x, j)) is nondecreasing by condition (i). f(x, j+1)−C(x, i, j+1)−f(x, j)+C(x, i, j)
is nondecreasing by condition (iii). Therefore W l(x, i, j+1)−W l(x, i, j) is nondecreasing. Then
it is easy to see that W l(x, i, j)−W l(x, i, q) is nondecreasing for any q < j.

Similar to step 1, we define R̃l(i, j). We can then show R̃l(i, j) = Rl(i, j), and verify
V l(x, i + 1) − V l(x, i) is nondecreasing using the same arguments as in step 1 (replacing WN

in step 1 by W l and using the definition of W l in Theorem 1). The details are omitted. By
induction, Theorem 2 is proved.

Theorem 3: First, note that Assumption 1 implies (1). Since |f(x, j)| and |C(x, i, j)| are
square-integrable, Assumption 1 implies Prh|f(x, j)| and Prh|C(x, i, j)| are continuous function
of x and hence has finite value.

Part (i) follows from (2), (3), and the facts that P: L2(E,m) 7→ L2(E,m) and f +
g,max(f, g) ∈ L2(E,m) for two Borel measurable functions f and g on E that satisfy f, g ∈
L2(E,m).

Now we consider part (ii). Comparing the terminal condition WN (x, i, j) = f(x, j) −
C(x, i, j) to (9), we have wNn (i, j) = 0. We assume (9) holds for time tl+1, and prove (11)
for time tl. By definition, W l(x, i, j) = f(x, j)− C(x, i, j) + PrhV l+1(x, j), then

wln(j) =

∫
E

max
k∈D
{W l+1(x, j, k)}ϕn(x)m(dx)

=
∑
k∈D

∫
Rl+1(j,k)

W l+1(x, j, k)ϕn(x)m(dx)

=
∑
k∈D

∫
Rl+1(j,k)

{
f(x, k)− C(x, j, k) +

∞∑
m=1

wl+1
m (k)e−λmhϕm(x)

}
ϕn(x)m(dx)

=
∑
k∈D

fkn(Rl+1(j, k))− Cj,kn (Rl+1(j, k)) +

∫
Rl+1(j,k)

∞∑
m=1

wl+1
m (k)e−λmhϕm(x)ϕn(x)m(dx)

=
∑
k∈D

{
fkn(Rl+1(j, k))− Cj,kn (Rl+1(j, k)) +

∞∑
m=1

wl+1
m (k)e−λmhπm,n(Rl+1(j, k))

}
,

where in the last equality we interchanged the order of integration and summation using the
continuity of the inner product, i.e., if gn → g in L2(E,m), then limn→∞(gn, h) = (g, h) for any
h ∈ L2(E,m).

Proposition 1: When l = N , from (12), it is obvious that the claim is true. Now we assume
the result holds at time tl+1 for all k > N − l − 1. At time tl, if k satisfies k > N − l, we
also have k − 1 > N − l − 1. Therefore V l+1(x, k − 1) = V l+1(x, k) = V l+1(x,N − l) by the
induction hypothesis. From (13) this implies C l(x, k− 1) = C l(x, k) = C l(x,N − l). From (13),
we also have for k > N − l, (i) Sl(x, k) = p(x) + C l(x, k − 1) = p(x) + C l(x, k) ≥ C l(x, k)
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since p(x) ≥ 0; (ii) Sl(x, k) = p(x) + C l(x, k − 1) = p(x) + C l(x,N − l) = Sl(x,N − l + 1). (i)
and (ii) imply V l(x, k) = V l(x,N − l + 1). If p(x) > 0, the inequality in (i) is strict. Hence
S l,k = {x : p(x) > 0}.

Proposition 2: We shall prove the claims by induction. For l = N − 1, from Proposition
1, V N (x, 2) = V N (x, 1), hence CN−1(x, 2) = CN−1(x, 1). Thus CN−1(x, 2) + CN−1(x, 0) −
2CN−1(x, 1) = −CN−1(x, 1) ≤ 0, where CN−1,1(x) ≥ 0 is implied by Corollary 1. SN−1,1 =
{x ∈ E : p(x) > CN−1,1(x)} and from Proposition 1, SN−1,2 = {x ∈ E : p(x) > 0}. Since
CN−1,1(x) ≥ 0, we have SN−1,1 ⊆ SN−1,2. Now assume the claims are true at l + 1. We verify
them for l.

C l(x, k + 1) + C l(x, k − 1)− 2C l(x, k) = Prh(V l+1(x, k + 1) + V l+1(x, k − 1)− 2V l+1(x, k))

V l+1(x, k + 1) + V l+1(x, k − 1)− 2V l+1(x, k)

=


Sl+1(x, k + 1) + Sl+1(x, k − 1)− 2Sl+1(x, k), x ∈ S l+1,k−1

Sl+1(x, k + 1) + C l+1(x, k − 1)− 2Sl+1(x, k), x ∈ S l+1,k/S l+1,k−1

Sl+1(x, k + 1) + C l+1(x, k − 1)− 2C l+1(x, k), x ∈ S l+1,k+1/S l+1,k

C l+1(x, k + 1) + C l+1(x, k − 1)− 2C l+1(x, k), x ∈ Cl+1,k+1

=


C l+1(x, k) + C l+1(x, k − 2)− 2C l+1(x, k − 1), x ∈ S l+1,k−1

C l+1(x, k)− Sl+1(x, k), x ∈ S l+1,k/S l+1,k−1

Sl+1(x, k)− C l+1(x, k), x ∈ S l+1,k+1/S l+1,k

C l+1(x, k + 1) + C l+1(x, k − 1)− 2C l+1(x, k), x ∈ Cl+1,k+1

For the last equality, we used Corollary 1 to simplify the expression. In the first and the last
region, the target is nonpositive by the induction assumption. In the second and third region, the
target is nonpositive due to the definition of S l+1,k. Hence C l(x, k+1)+C l(x, k−1)−2C l(x, k) ≤
0. Note that

S l,k = {x ∈ E : Sl(x, k)− C l(x, k) > 0},
S l,k+1 = {x ∈ E : Sl(x, k + 1)− C l(x, k + 1) > 0}

= {x ∈ E : Sl(x, k)− C l(x, k) > C l(x, k + 1) + C l(x, k − 1)− 2C l(x, k)}.

The third equality is obtained by noting that

Sl(x, k + 1)− C l(x, k + 1) = p(x) + C l(x, k)− C l(x, k + 1)

= Sl(x, k)− C l(x, k − 1) + C l(x, k)− C l(x, k + 1).

Since C l(x, k + 1) + C l(x, k − 1) − 2C l(x, k) ≤ 0, we have S l,k ⊆ S l,k+1. By induction the
proposition is proved.

Theorem 4: First we notice that condition (iii) together with Corollary 1 imply that Sl(x, k)
and V l(x, k) are also continuous in x for all l and k. We prove (15) with another claim that
Sl(x, k) − C l(x, k) is nondecreasing using induction. At tN , these claims are clearly true. We
assume they hold at tl+1 and verify them at tl. By definition,

Sl(x, k)− C l(x, k) = p(x) + PrhV l+1(x, k − 1)− PrhV l+1(x, k)

= (p(x)− Prhp(x)) + Prh(p(x) + V l+1(x, k − 1)− V l+1(x, k)).

The first part is already nondecreasing by assumption (iv). We also have Cl+1,k−1 = (−∞, xl+1,k−1],
S l+1,k−1 = (xl+1,k−1,∞), Cl+1,k = (−∞, xl+1,k], S l+1,k = (xl+1,k,∞), and xl+1,k ≤ xl+1,k−1.
Then

p(x) + V l+1(x, k − 1)− V l+1(x, k) =


p(x) + Sl+1(x, k − 1)− Sl+1(x, k), x ∈ (xl+1,k−1, e2)
p(x) + C l+1(x, k − 1)− Sl+1(x, k), x ∈ (xl+1,k, xl+1,k−1]
p(x) + C l+1(x, k − 1)− C l+1(x, k), x ∈ (e1, x

l+1,k]
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=


Sl+1(x, k − 1)− C l+1(x, k − 1), x ∈ (xl+1,k−1, e2)
0, x ∈ (xl+1,k, xl+1,k−1]
Sl+1(x, k)− C l+1(x, k), x ∈ (e1, x

l+1,k]

is nondecreasing by the induction assumption. Thus the second part of Sl(x, k) − C l(x, k) is
nondecreasing by condition (i). Together Sl(x, k) − C l(x, k) is nondecreasing. This, combined
with the continuity of Sl(x, k) − C l(x, k), the definition of xl,k and S l,k = {x ∈ E : Sl(x, k) −
C l(x, k) > 0}, implies that S l,k = (xl,k, e2). Since Sl(xb, k)−C l(xb, k) = p(xb) +C l(xb, k− 1)−
C l(xb, k) = C l(xb, k − 1)− C l(xb, k) ≤ 0, we have xl,k ≥ xb. From Proposition 2, S l,k ⊆ S l,k+1,
hence we also have xl,k+1 ≤ xl,k. To prove for l+ k > N , xl,k = xb, note that from Proposition
1, S l,k = {x ∈ E : p(x) > 0} = (xb, e2) due to condition (iii).

Theorem 5: Obviously, the claim is true at time tN as there is no error. We assume the claim
holds at time tl+1 and prove the claim for time tl. We have∣∣∣ŵln(j)− wln(j)

∣∣∣ ≤∑
k∈D

{∣∣∣fkn(R̂l+1(j, k))− fkn(Rl+1(j, k))
∣∣∣+
∣∣∣Cj,kn (R̂l+1(j, k))− Cj,kn (Rl+1(j, k))

∣∣∣}

+
∑
k∈D

{
M∑
m=1

∣∣∣wl+1
m (k)

∣∣∣ e−λmh ∣∣∣πm,n(R̂l+1(j, k))− πm,n(Rl+1(j, k))
∣∣∣}

+
∑
k∈D

{
M∑
m=1

∣∣∣ŵl+1
m (k)− wl+1

m (k)
∣∣∣ e−λmhπm,n(Rl+1(j, k))

}

+
∑
k∈D

{
M∑
m=1

∣∣∣ŵl+1
m (k)− wl+1

m (k)
∣∣∣ e−λmh ∣∣∣πm,n(R̂l+1(j, k))− πm,n(Rl+1(j, k))

∣∣∣}

+
∑
k∈D

{ ∞∑
m=M+1

∣∣∣wl+1
m (k)

∣∣∣ e−λmh ∣∣∣πm,n(Rl+1(j, k))
∣∣∣}

In the following we analyze each part. For the first part, we have for any t > 0

max
1≤n≤M

∑
k∈D

{∣∣∣fkn(R̂l+1(j, k))− fkn(Rl+1(j, k))
∣∣∣+
∣∣∣Cj,kn (R̂l+1(j, k))− Cj,kn (Rl+1(j, k))

∣∣∣}
≤ dmax

k∈D
f̄ l+1
t (j, k)eλM t/2Leb(R̂l+1(j, k) M Rl+1(j, k)).

where Leb(A) is the Lebesgue measure of a set A and A M B := (A
⋃
B)\(A

⋂
B). f̄ l+1

t (j, k) =
maxx∈R̂l+1(j,k)MRl+1(j,k)(|f(x, k)|+ |C(x, j, k)|)

√
pt(x, x)m(x) if R̂l+1(j, k) M Rl+1(j, k) 6= ∅ and

f̄ l+1
t (j, k) = 0 if R̂l+1(j, k) M Rl+1(j, k) = ∅. The inequality follows that for all 1 ≤ n ≤ M ,
|ϕn(x)| ≤ eλnt/2

√
pt(x, x) ≤ eλM t/2

√
pt(x, x) for any t > 0. We specify the choice of t later.

Now consider Leb(R̂l+1(j, k) M Rl+1(j, k)) where Rl+1(j, k), R̂l+1(j, k) are determined by
the intersection points of value functions as in Theorem 2. By our assumption on identical num-
ber of solutions, we have either (a) Rl+1(j, k) = R̂l+1(j, k) = ∅ or Rl+1(j, k) = R̂l+1(j, k) = E or
(b) Rl+1(j, k) = (xl, xr], R̂

l+1(j, k) = (x̂l, x̂r], which are both non-empty subset of E with finite
end-points, or Rl+1(j, k) = (xl, e2), R̂

l+1(j, k) = (x̂l, e2) or Rl+1(j, k) = (e1, xr], R̂
l+1(j, k) =

(e1, x̂r]. For case (a) there is no error. For case (b), Leb(R̂l+1(j, k) M Rl+1(j, k)) = |x̂l − xl|+
|x̂r − xr| or |x̂l − xl| or |x̂r − xr|. Next we estimate |x̂l − xl| assuming the left-end points are
not e1. The other part can be done in the same way.

Suppose xl is the intersection point of W l+1(x, j, p) and W l+1(x, j, q). It is not difficult to
see that, when M is large enough, x̂l is the intersection point of Ŵ l+1(x, j, p) and Ŵ l+1(x, j, q).
There exists some ξ between xl and x̂l such that,

0 = Ŵ l+1(x̂l, j, p)− Ŵ l+1(x̂l, j, q)
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= W l+1(xl, j, p)−W l+1(xl, j, q)

= W l+1(x̂l, j, p)−W l+1(x̂l, j, q) + (∂xW
l+1(ξ, j, p)− ∂xW l+1(ξ, j, q))(xl − x̂l).

Recall that by assumption (2) in Theorem 5, (∂xW
l+1(ξ, j, p)− ∂xW l+1(ξ, j, q)) 6= 0. Hence

|x̂l − xl| ≤
|Ŵ l+1(x̂l, j, p)−W l+1(x̂l, j, p)|+ |Ŵ l+1(x̂l, j, q)−W l+1(x̂l, j, q)|

|∂xW l+1(ξ, j, p)− ∂xW l+1(ξ, j, q)|
.

For M sufficiently large,
⋃
j,k∈D R̂l+1(j, k) M Rl+1(j, k) is a compact subset of E. Hence we can

bound 1/|∂xW l+1(ξ, j, p)−∂xW l+1(ξ, j, q)|. This together with our induction hypothesis on the
error for the value function, implies that there exists C > 0 independent of M such that for all

j, k ∈ D, Leb(R̂l+1(j, k) M Rl+1(j, k)) ≤ Ce−α
l+1
W λM . Now choosing t such that 0 < t < 2αl+1

W ,

we come to the conclusion that, there exists C1, α1 > 0 (α1 = αl+1
W − t/2) independent of M

such that,

max
1≤n≤M

∑
k∈D

{∣∣∣fkn(R̂l+1(j, k))− fkn(Rl+1(j, k))
∣∣∣+
∣∣∣Cj,kn (R̂l+1(j, k))− Cj,kn (Rl+1(j, k))

∣∣∣} ≤ C1e
−α1λM .

Next we consider the second part of the error. For any t > 0,

max
1≤n≤M

∑
k∈D

{
M∑
m=1

∣∣∣wl+1
m (k)

∣∣∣ e−λmh ∣∣∣πm,n(R̂l+1(j, k))− πm,n(Rl+1(j, k))
∣∣∣}

≤
∑
k∈D

eλM t/2eλM t/2ϕ̄l+1
t (j, k)Leb(R̂l+1(j, k) M Rl+1(j, k))

( ∞∑
m=1

∣∣∣wl+1
m (k)

∣∣∣ e−λmh)

≤ dmax
k∈D

[
eλM tϕ̄l+1

t (j, k)Leb(R̂l+1(j, k) M Rl+1(j, k))
]

max
k∈D

∞∑
m=1

∣∣∣wl+1
m (k)

∣∣∣ e−λmh,
where ϕ̄l+1

t (j, k) = maxx∈R̂l+1(j,k)MRl+1(j,k) pt(x, x)m(x) if R̂l+1(j, k) M Rl+1(j, k) 6= ∅ and

ϕ̄l+1
t (j, k) = 0 if R̂l+1(j, k) M Rl+1(j, k) = ∅ . As shown just before, there exists C > 0 indepen-

dent of M such that Leb(R̂l+1(j, k) M Rl+1(j, k) ≤ Ce−α
l+1
W λM . Notice that by Cauchy-Schwartz

inequality, maxn≥1,0≤l≤N,k∈D |wl+1
n (k)| is bounded by a constant C, so

∑∞
m=1

∣∣wl+1
m (k)

∣∣ e−λmh ≤
C
∑∞

m=1 e
−λmh < ∞. Now choosing t such that 0 < t < αl+1

W , there exists C2, α2 > 0

(α2 = αl+1
W − t) independent of M such that,

max
1≤n≤M

∑
k∈D

{
M∑
m=1

∣∣∣wl+1
m (k)

∣∣∣ e−λmh ∣∣∣πm,n(R̂l+1(j, k))− πm,n(Rl+1(j, k))
∣∣∣} ≤ C2e

−α2λM .

Next we look at the third part of the error. By Cauchy-Schwartz inequality, |πm,n(A)| ≤ 1
for all A. Hence we have

max
1≤n≤M

∑
k∈D

{
M∑
m=1

∣∣∣ŵl+1
m (k)− wl+1

m (k)
∣∣∣ e−λmh ∣∣∣πm,n(Rl+1(j, k))

∣∣∣}

≤ d max
1≤p≤M,k∈D

|ŵl+1
p (k)− wl+1

p (k)|
∞∑
m=1

e−λmh

≤ C3e
−αl+1

w λM ,

for some constant C3 > 0 independent of M , by the induction hypothesis for the error at tl+1.
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For the fourth part of the error, we have for any t > 0,

max
1≤n≤M

∑
k∈D

{
M∑
m=1

∣∣∣ŵl+1
m (k)− wl+1

m (k)
∣∣∣ e−λmh ∣∣∣πm,nR̂l+1(j, k))− πm,n(Rl+1(j, k))

∣∣∣}

≤ 2d max
1≤m≤M,k∈D

∣∣∣ŵl+1
m (k)− wl+1

m (k)
∣∣∣ ∞∑
m=1

e−λmh,

≤ C4e
−αl+1

w λM ,

for some constant C4 > 0 independent of M , again by the induction hypothesis.
For the fifth part of the error,

max
1≤n≤M

∑
k∈D

{ ∞∑
m=M+1

∣∣∣wl+1
m (k)

∣∣∣ e−λmh ∣∣∣πm,n(Rl+1(j, k))
∣∣∣} ≤ Cdmax

k∈D

∞∑
m=M+1

e−λmh

≤ C5e
−αλM ,

for some C,C5 > 0 independent of M . The last inequality follows from Assumption 2.
Putting the five parts together, there exists C lw > 0 and 0 < αlw ≤ α which are independent

of M such that

max
1≤n≤M,j∈D

∣∣∣ŵln(j)− wln(j)
∣∣∣ ≤ C lwe−αlwλM .

Finally consider the error in the value functions. Given a compact subset C of E, for any
0 < t < 2h,

max
x∈C,i,j∈D

∣∣∣Ŵ l(x, i, j)−W l(x, i, j)
∣∣∣

≤ max
x∈C,i,j∈D

[
M∑
n=1

∣∣∣ŵln(j)− wln(j)
∣∣∣ e−λnh|ϕn(x)|+

∞∑
n=M+1

∣∣∣wln(j)
∣∣∣ e−λnh|ϕn(x)|

]

≤ max
1≤n≤M,j∈D

∣∣∣ŵln(j)− wln(j)
∣∣∣ ∞∑
m=1

e−λm(h−t/2) max
x∈C

√
pt(x, x) + C max

x∈C

√
pt(x, x)

∞∑
n=M+1

e−λn(h−t/2)

≤ C ′e−αlwλM + C ′′e−αλM (by the error for coefficients and Assumption 2)

≤ C lW e−α
l
WλM ,

for some C,C ′, C ′′, C lW , α
l
W > 0 (αlW ≤ αlw ≤ α) independent of M . This concludes the proof

of the theorem.

Proposition 3: The OU transition semigroup satisfies condition (i) (see proof of Proposition
3 in Li and Linetsky [25]). Since f(x, j) ∈ L2(R,m) for all j, from Theorem 3, condition
(ii) is also satisfied. Condition (iii) to (v) clearly hold. Hence Theorem 2 implies (21) with
xlH ≥ xlL. Note that xlL = inf{x : W l(x, 1, 1) −W l(x, 1, 0) > 0}, xlH = inf{x : W l(x, 0, 1) −
W l(x, 0, 0) > 0} = inf{x : W l(x, 1, 1) −W l(x, 1, 0) > −C(1, 1) + C(1, 0) + C(0, 1) − C(0, 0)}.
W l(x, i, 1) −W l(x, i, 0) (i = 0, 1) is increasing and tend to ∞ (−∞) as x → ∞ (−∞) because
f(x, 1) − C(i, 1) − f(x, 0) + C(i, 0) has such property. Hence xlL and xlH are finite. We have
xlH > xlL because −C(1, 1) + C(1, 0) + C(0, 1)− C(0, 0) > 0.

Proposition 4: Since f(x, 0) = 0, we have f0n(Rl(i, 0)) = 0 for i ∈ {0, 1}.

f1n(Rl(i, 1)) =

∫
Rl(i,1)

xhϕn(x)m(dx) =

∫
Rl(i,1)

(x− θ)hϕn(x)m(dx) +

∫
Rl(i,1)

θhϕn(x)m(dx).
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In the first part,∫
Rl(i,1)

θhϕn(x)m(dx) = θh

∫
Rl(i,1)

ϕ0(x)ϕn(x)m(dx) = θhπ0,n(Rl(i, 1))

In the second part, since Rl(0, 1) = (xlH ,∞), Rl(1, 1) = (xlL,∞), we just need to consider∫∞
x (y− θ)hϕn(y)m(dy). We first recall for Hermite polynomials, d

dxHn(x) = 2nHn−1(x)(n ≥ 1)

and d
dxH0(x) = 0. Using the expression for ϕn(x), we obtain d

dxϕn(x) =
√
2nκ
σ ϕn−1(x)(n ≥ 1)

and d
dxϕ0(x) = 0. We also have d

dxm(x) = −2κ(x−θ)
σ2 m(x). Thus∫ ∞

x
(y − θ)hϕn(y)m(dy) =

∫ ∞
x
−hσ

2

2κ
ϕn(y)dm(y) =

hσ2

2κ
ϕn(x)m(x) +

∫ ∞
x

hσ2

2κ
m(y)dϕn(y).

For n = 0,
∫∞
x (y − θ)hϕ0(y)m(dy) = hσ2

2κ ϕ0(y)m(y). For n ≥ 1:∫ ∞
x

(y − θ)hϕn(y)m(dy) =
hσ2

2κ
ϕn(x)m(x) +

∫ ∞
x

hσ2

2κ

√
2nκ

σ
ϕn−1(y)m(dy)

=
hσ2

2κ
ϕn(x)m(x) + σh

√
n

2κ
π0,n−1(x,∞)

Combining the result for the first and second part we get the formula for fn(1,Rl(i, 1)). For
Ci,jn (Rl(i, j)):

Ci,jn (Rl(i, j)) =

∫
Rl(i,j)

C(i, j)ϕn(x)m(dx) = C(i, j)

∫
Rl(i,j)

ϕ0(x)ϕn(x)m(dx) = C(i, j)π0,n(Rl(i, j)).

Proposition 5: Since x > x0,

pn(x,∞) =

∫ ∞
x

(1− (1 + hG)A(h)e−B(h)y)ϕn(y)m(dy)

=

∫ ∞
x

ϕn(y)m(dy)− (1 + hG)A(h)

∫ ∞
x

e−B(h)yϕn(y)m(dy)

= ρn(0, x)− (1 + hG)A(h)ρn(−B(h), x).

The formula for ρ0(s, x) can be directly obtained by integrating with the Gaussian density. For
n ≥ 1, by change of variable, we obtain

ρn(s, x) =
e
s(θ− σa√

κ
)−a

2

2

√
π2nn!

bn

(
s
σ√
κ

+ a,

√
κ

σ
(x− θ) + a

)
, bn(s, x) :=

∫ ∞
x

esy−y
2
Hn(y)dy.

(A.1)

Using d
dx

(
e−x

2
Hn(x)

)
= −e−x2Hn+1(x), we have

bn(s, x) =

∫ ∞
x

esyd(−e−y2Hn−1(y)) = esx−x
2
Hn−1(x) + sbn−1(s, x).

Using (A.1), we obtain the recursion for ρn(s, x) which is (23).
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