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Abstract. This paper considers pricing European options in a large class of one-dimensional
Markovian jump processes known as subordinate diffusions, which are obtained by time changing a
diffusion process with an independent Lévy or additive random clock. These jump processes are non-
Lévy in general, and they can be viewed as natural generalization of many popular Lévy processes
used in finance. Subordinate diffusions offer richer jump behavior than Lévy processes and they
have found a variety of applications in financial modelling. The pricing problem for these processes
presents unique challenges as existing numerical PIDE schemes fail to be efficient and the applicability
of transform methods to many subordinate diffusions is unclear. We develop a novel method based
on finite difference approximation of spatial derivatives and matrix eigendecomposition, and it can
deal with diffusions that exhibit various types of boundary behavior. Since financial payoffs are
typically not smooth, we apply a smoothing technique and use extrapolation to speed up convergence.
We provide convergence and error analysis and perform various numerical experiments to show
the proposed method is fast and accurate. Extension to pricing path-dependent options will be
investigated in a follow-up paper.
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1. Introduction. Jump processes are an essential modelling tool in finance and
popular financial models with jumps are often based on Lévy processes. There is an
extensive literature on the study of Lévy processes and their applications in finance
(see the monograph [6] and [13]). To price options in Lévy-driven models, numerical
methods based on transforms (e.g., [11], [43], [20, 21], [22, 24], [7]) and numerical
schemes for partial integro-differential equations (PIDEs) (e.g., [1], [16], [14], [23]) are
developed. However, jumps of Lévy processes are independent of the state, which can
be quite unrealistic in some applications.

This paper develops a fast and accurate numerical method for pricing options in
models based on one-dimensional (1D) subordinate diffusions. The problem presents
unique challenges as existing numerical PIDE schemes fail to be efficient and the ap-
plicability of transform methods to many subordinate diffusions is unclear. A 1D sub-
ordinate diffusion is obtained by time changing a 1D diffusion process (it will be called
background diffusion hereafter) with an independent Lévy or additive random clock
(i.e., a nonnegative Lévy/additive process; also called Lévy/additive subordinator in
the literature). We shall add “Lévy” or “additive” before “subordinate diffusion” to
indicate which type of subordinator is used if needed. Subordinate diffusions form a
large class of Markovian jump processes whose jumps are generally state-dependent,
hence they offer richer jump behavior than Lévy processes. Their jumps can exhibit a
variety of interesting behavior. For example, jumps can have finite or infinite activity,
and have finite or infinite variation (recent high-frequency statistical analysis favors
infinite activity pure jump processes with infinite variation in some applications; see
[56]). Jumps of subordinate diffusion are mean-reverting if the background diffusion
is so, and this fact has been exploited by [36] for commodity modelling. Applying
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subordination to diffusions on a bounded interval is also a natural approach to con-
struct jump processes with bounds, which are useful for modelling financial variables
that move in bounded zones (e.g., asset prices in a highly competitive market and
exchange rates in a target zone). A series of papers have already established the use-
fulness of subordinate diffusions in financial applications, and in our opinion they can
be viewed as nice additions to Lévy processes for modelling jumps. See [3], [46], [36],
[5], [41] and [48] for applications of Lévy subordinate diffusions in a variety of markets
and [38], [32], [33] for applications of additive subordinate diffusions. Many popular
Lévy processes in finance can be represented as a Brownian motion time changed
by an independent Lévy subordinator, including VG, NIG, CGMY, hyperbolic and
Meixner processes ([44]). Therefore subordinate diffusions can be viewed as a natural
generalization of many Lévy processes by time changing more general diffusions.

Existing applications of subordinate diffusions in finance focus on analytically
tractable specifications whose transition operator admits an eigenfunction expansion
with known eigenvalues and eigenfunctions. European options can be priced analyti-
cally using eigenfunction expansions in these models. This approach has been further
extended in several works ([34, 35, 37, 40]) to price Bermudan, American, barrier,
swing and real options in these models.

Restricting to analytically tractable specifications of subordinate diffusions for
modelling limits the choice of the background diffusion, and such models may fail to
capture important features. The analytical approach using eigenfunction expansions
is not applicable to general subordinate diffusions, which motivates us to develop a
fast and accurate numerical method that is generally applicable.

The rest of the paper is organized as follows. In Section 2, we introduce subordi-
nate diffusions and explain why existing numerical methods are not applicable or do
not solve our problem efficiently. Section 3 presents our numerical method for pric-
ing European options and provide convergence and error analysis. Section 4 presents
various numerical examples which confirm the computational efficiency and accuracy
of our method, and comparison to a popular existing PIDE scheme is given. Section
5 concludes the paper and the appendix contains the proof for lemmas.

2. Subordinate Diffusions. Let X be a one-dimensional time-homogeneous
diffusion living in an interval I with end-points l and r (−∞ ≤ l < r ≤ ∞), and
for f ∈ C2

c ((l, r)) (twice-continuously differentiable functions on (l, r) with compact
support), its infinitesimal generator G takes the form

Gf(x) =
1

2
σ2(x)f ′′(x) + µ(x)f ′(x)− k(x)f(x) for f ∈ C2

c ((l, r)),

where µ(x), σ2(x), k(x) are known as the drift, diffusion coefficient and killing rate,
respectively. We assume that for x ∈ (l, r), µ(x), σ(x) and k(x) are continuous, and
σ(x) > 0, k(x) ≥ 0. We also assume that X is regular, i.e., for any x, y ∈ (l, r), X
can reach y starting from x in finite time with positive probability.

Whether an end-point is included in I depends on the boundary behavior. If it is
infinite, we assume it is inaccessible, i.e., starting from any point in (l, r), X cannot
reach the boundary in finite time with positive probability. If it is finite, the boundary
behavior can be either natural, exit, entrance, regular specified as killing or reflecting.
We refer readers to e.g., [4, Chapter II.6] for Feller’s classification of boundaries and
conditions to determine the boundary behavior. Upon hitting the exit and killing
boundary, X is sent immediately to the cemetery state ∆. Alternatively X can be
killed by the additive functional

∫ t
0
k(Xu)du, where k is the killing rate, i.e., X is sent
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to ∆ at time τk := inf
{
t ≥ 0 :

∫ t
0
k(Xu)du ≥ e

}
, where e is an exponential random

variable with unit mean and independent of X. The lifetime of X, denoted by ζ, is
equal to the first time X is killed at the boundary or τk, whichever is smaller. Note
that killing is a natural way to model bankruptcy risk (see e.g., [10]). This framework
encompasses many diffusions used in finance.

A Lévy subordinator is a stochastically continuous process with independent and
stationary increments that starts at zero and is non-negative (see [13, Definition 3.1]).
Non-negativity implies that it is non-decreasing ([13, Proposition 3.10]). Consider a
Lévy subordinator T and let qt(·) be the probability distribution of Tt, which is
unknown in general. However the Laplace transform of T is known and given by the
Lévy-Khintchine formula ([13, Proposition 3.10])

E[e−λTt ] =

∫
[0,∞)

e−λsqt(ds) = e−φ(λ)t, φ(λ) = γλ+

∫
(0,∞)

(1− e−λs)ν(ds),

Here γ ≥ 0 is the drift of the subordinator and ν is the Lévy measure satisfying∫
(0,∞)

(s∧1)ν(ds) <∞. For typical Lévy subordinators used in finance, the integral in

φ(λ) can be further reduced to a closed-form expression. Popular choices are tempered
stable Lévy subordinators, whose Lévy measures are given by ν(ds) = Cs−p−1e−ηs

with C > 0, 0 < p < 1, η > 0. For them, φ(λ) = γλ − CΓ(−p)[(λ + η)p − λp] where
Γ(·) is the gamma function.

We assume X and T are independent and define Xφ
t := XTt . This time change

technique is called Bochner’s subordination and has been extensively studied in the
mathematics literature (see [54]). Xφ is called Lévy subordinate diffusion, and the
superscript φ indicates the Laplace exponent of T . It is a time-homogenous Markov
process with lifetime given by ζφ = inf{t ≥ 0 : Tt ≥ ζ}. The infinitesimal generator
of Xφ is given in [34, p.631], which is an integro-differential operator. In particular
its jump density is state-dependent in general and is given by

πφ(x, y) =

∫
(0,∞)

p(s, x, y)ν(ds), (2.1)

where p(s, x, y) is the transition probability density of X.
[32] proposes to construct time dependent jump processes by time changing a

diffusion X with an independent additive subordinator T (an additive subordinator
is basically a Lévy subordinator without stationary increments). The resulting pro-
cesses, called additive subordinate diffusions, generalize Lévy subordinate diffusions
by having time dependence and they provide good fit to the implied volatility surface
while Lévy subordinate diffusions typically only fit volatility smiles/skews of a single
maturity well. We refer readers to [32] for detailed discussion. Like Lévy subordina-
tors, the Laplace transform of additive subordinators is known analytically. In the
rest of the paper, we focus on Lévy subordinate diffusions. Our method extends di-
rectly to additive subordinate diffusions and the only change is to replace the Laplace
transform of the Lévy subordinator by that of the additive subordinator.

To obtain the price of an European option with payoff function f , we need to
compute e−rtEx[f(Xφ

t )] under the risk-neutral measure (the risk-free interest rate r
is assumed to be constant). This expectation can be decomposed into two parts:

Ex[f(Xφ
t )] = Ex[f(Xφ

t )1{ζφ>t}] + f(∆)Ex[1{ζφ≤t}]

= Ex[f(Xφ
t )1{ζφ>t}] + f(∆)− f(∆)Ex[1{ζφ>t}].
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Therefore to price European options, we only need to compute

uφ(t, x) := Ex[f(Xφ
t )1{ζφ>t}]. (2.2)

To illustrate the inefficiency of existing numerical PIDE schemes in obtaining the
European option price uφ(t, x), let’s for the moment, assume that uφ(t, x) is a classical
solution to a PIDE (in general the European option price is not a classical solution to
a PIDE; sufficient conditions for it to hold can be found in e.g., [15, Proposition 2] for
Lévy processes and [52, Theorem 7] for general SDEs with jumps). There already exist
many numerical schemes for solving PIDEs. See, for example, [1], [14], [16] and [23].
To apply these schemes requires the value of the jump density πφ(x, y) for different
x and y on a grid. In our case, πφ(x, y) =

∫
(0,∞)

p(τ, x, y)ν(dτ) (see (2.1)), which

cannot be obtained in closed form in general. One can certainly compute πφ(x, y)
by numerical integration, which requires the value of the diffusion transition density
p(τ, x, y) for different τ in a large region to obtain high accuracy (here ν(·) is known).
But p(τ, x, y) is in general unknown, and has to be computed by numerically solving
the PDE it satisfies. If the forward PDE is used, for fixed x, we need to solve the
PDE numerically over a long time horizon, and this has to be repeated for different
x on the grid. Apparently, this procedure is inefficient as it requires very intensive
computations. The above discussion was based on the assumption that uφ(t, x) is a
classical solution to a PIDE. More generally, uφ(t, x) may not even be differentiable in
x for typical payoffs in finance, let alone being a classical solution. An example is given
by the pure jump VG process, which is obtained by time changing a BM with a driftless
Gamma subordinator ([15, p.307]). In general, uφ(t, x) can only be interpreted as a
viscosity solution to the PIDE. See [15, Proposition 8] for results in exponential Lévy
models and a convergent scheme is developed in [14] to find the viscosity solution in
these models. For some existing PIDE schemes, since it is not clear whether they are
convergent for finding the viscosity solution, their applicability to pricing European
options for general subordinate diffusions is even called into question. As for transform
methods, they can be applied to subordinate diffusions with an explicit expression for
the characteristic function. This is true in e.g., many subordinate Brownian motion
models. However, for many other subordinate diffusions, it is not clear how to compute
the characteristic function, so the applicability of transform methods remains to be
a question (see Remark 1). In this paper, we will develop an efficient method which
does not require the smoothness of uφ(t, x) (in particular our method applies to the
VG model) and the value of the jump density πφ(x, y).

Remark 1 (characteristic function for subordinate diffusions). When X is a

Brownian motion with drift µ and volatility σ, the characteristic function E[eiuX
φ
t ] =

E[E[eiuXTt |Tt]] = E[eiuµTt−(1/2)u2σ2Tt ] = e−φ(1/2u2σ2−iuµ), which has a closed-form
expression if φ does. When X is an affine diffusion, its characteristic function can be
computed by solving the associated Riccati equations and if qt, the distribution of Tt is

known, one can use numerical quadrature to compute E[eiuX
φ
t ] =

∫
[0,∞)

E[eiuXs ]qt(ds)

(this idea has been used in [39] where the Gamma subordinator is used; in this case qt
is a Gamma distribution and Gauss-Laguerre quadrature can be applied to efficiently
compute the integral). For these cases, one can apply various transform methods to
compute option prices efficiently and the method developed in this paper can be viewed
as an alternative. However, there are also many financial applications where the
diffusion is non-affine (see e.g., [12], [46]) and the distribution of the subordinator
is unknown (this is the case for tempered stable subordinators with p 6= 1/2). So for
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these cases, it is unclear how the characteristic function of Xφ
t can be computed and

hence the applicability of transform methods is unclear.

3. European Option Pricing in Subordinate Diffusion Models. We want
to compute uφ(t, x) defined in (2.2) for a general Lévy subordinate diffusion Xφ.
Define u(s, x) = Ex[f(Xs)1{ζ>s}], where ζ is the lifetime of the background diffusion

X. Since Xφ = XTt with X,T independent, we have

uφ(t, x) =

∫
[0,∞)

u(s, x)qt(ds).

For the class of diffusions we consider (see Section 2), u(s, x) is the solution to the
following PDE for a large class of payoff functions (for instance when f is continuous
and bounded on (l, r); see [45]):

∂tu(t, x) = µ(x)∂xu(t, x) +
1

2
σ2(x)∂xxu(t, x)− k(x)u(t, x), t > 0, x ∈ (l, r), (3.1)

u(0, x) = f(x), x ∈ (l, r).

We will specify boundary conditions for the PDE to correctly capture the boundary
behavior in Section 3.2. The key idea of our numerical method is to develop an
approximation for the value function of the diffusion PDE that is easy to generalize
after subordination. To do that, we first localize the problem when infinite boundary
points are present. We then consider the diffusion PDE problem on a finite interval.
We approximate the spatial derivatives by finite difference which leads us to an ODE
system in time, for which we find the solution using matrix eigendecomposition. For
an n × n matrix, eigendecomposition typically requires O(n3) works. We show how
to do it in O(n2) in our case. Since time enters the approximate solution for the
diffusion PDE in an exponential form, using the analytical knowledge of the Laplace
transform of the subordinator, we immediately obtain an approximation for the value
function of the subordinate diffusion. The proposed method will be termed as the
finite difference-eigendecomposition (FDEIG) algorithm.

3.1. Localization of infinite boundaries. We start by considering the case
l = −∞ and r = ∞ (the case where only one of them is infinite can be dealt with
similarly). By our assumption, they are inaccessible. We consider a new diffusion XA

with lower boundary −A and upper boundary A, where A is sufficiently large. XA

has the same drift, diffusion coefficient and killing rate as X in (−A,A), and −A and
A are regular boundaries which can be either specified as killing or reflecting. Let
ζA, ζφ,A be the lifetime of process XA

t and Xφ,A
t := XA

Tt
, respectively. Define

uA(t, x) := Ex[f(XA
t )1{ζA>t}], u

φ
A(t, x) := Ex[f(Xφ,A

t )1{ζφ,A>t}].

We introduce the pre-default process of X, denoted by X̂, which has the same drift
and diffusion coefficient as X but zero killing rate, hence its lifetime is infinite. We
assume that −∞,∞ are inaccessible boundaries of X̂. Similarly, X̂A is the pre-default
process of XA. However, unlike X̂, X̂A can have finite lifetime because it is killed on
the boundary if A and −A are specified as killing. Let Ms,x = sup0≤u≤s |X̂u|. We
first provide an estimate for |uA(s, x) − u(s, x)| in Lemma 3.1, based on which we

show the convergence of uφA(t, x).
Lemma 3.1. Assume that f is nonnegative and monotone on R. Then for any

(s, x) ∈ (0,∞)× (−A,A),

|uA(s, x)− u(s, x)| ≤ Ex[(f(X̂s) + f(Ms,x) + f(−Ms,x))1{Ms,x≥A}].
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When A and −A are killing boundaries, f(Ms,x)+f(−Ms,x) on the RHS is not needed.
Alternatively, assume that f is bounded on R and we denote its L∞-norm by ‖f‖∞.
Then for any (s, x) ∈ (0,∞)× (−A,A),

|uA(s, x)− u(s, x)| ≤ 2 ‖f‖∞ Px (Ms,x ≥ A) . (3.2)

Proposition 3.2. Assume either f is nonnegative and monotone on R and for
any (s, x) ∈ [0,∞) × R, Ex[f(X̂s)], Ex[f(−Ms,x)], Ex[f(Ms,x)] are finite or assume

that f is bounded on R. Then for any (t, x) ∈ [0,∞) × R, uφA(t, x) → uφ(t, x) when
A→∞.

Proof. We first prove the claim under the second assumption. Since −∞,∞
are inaccessible for X̂, Px(Ms,x ≥ A) → 0 as A → ∞. From (3.2), this implies
uA(s, x)→ u(s, x). From the time-change construction, we have

|uφA(t, x)− uφ(t, x)| ≤
∫

[0,∞)

|uA(s, x)− u(s, x)|qt(ds). (3.3)

Since f is bounded, u and uA are bounded. Hence by dominated convergence theorem,
uφA(t, x)→ uφ(t, x). Under the first assumption, by dominated convergence theorem,

Ex[f(X̂s)1{Ms,x≥A}]→ 0, Ex[f(Ms,x)1{Ms,x≥A}]→ 0, Ex[f(−Ms,x)1{Ms,x≥A}]→ 0

when A→∞. Then from Lemma 3.1 and monotone convergence theorem,

|uφA(t, x)− uφ(t, x)| ≤
∫

[0,∞)

Ex[f(X̂s)1{Ms,x≥A}]qt(ds)

+

∫
[0,∞)

Ex[f(Ms,x)1{Ms,x≥A}]qt(ds) +

∫
[0,∞)

Ex[f(−Ms,x)1{Ms,x≥A}]qt(ds)

which goes to 0 when A→∞.
We call |uφA(t, x) − uφ(t, x)| as the localization error. Under further conditions

on µ and σ, we show that the localization error decays exponentially based on an
estimate of Px(Ms,x ≥ A).

Proposition 3.3. Suppose X̂ is the unique weak solution in law to the SDE
dX̂t = µ(X̂t)dt + σ(X̂t)dWt with X̂0 = x. Assume that f is bounded on R and that
there exists β > 0 such that

∫
(1,∞)

eβsν(ds) <∞. Further assume that µ(x) and σ(x)

are bounded on R. Then for any x ∈ (−A,A), there exist α,C > 0 independent of
x,A such that

|uφA(t, x)− uφ(t, x)| ≤ Ce−α(A−|x|). (3.4)

Proof. Let µ̄ := ‖µ‖∞, σ̄ := ‖σ‖∞. From (3.2) and (3.3), we have

|uφA(t, x)− uφ(t, x)| ≤ 2 ‖f‖∞
∫

[0,∞)

Px [Ms,x ≥ A] qt(ds)

≤ 2 ‖f‖∞ e−αA
∫

[0,∞)

Ex [exp(αMs,x)] qt(ds). (3.5)
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for α > 0. In the second step, we used the Chebyshev inequality. The choice of α will
be specified later. Below we estimate Ex [exp(αMs,x)]. Notice that for any s ≥ 0,

sup
0≤u≤s

|X̂u| = sup
0≤s≤u

∣∣∣∣x+

∫ s

0

µ(X̂u)du+

∫ s

0

σ(X̂u)dWu

∣∣∣∣
≤ |x|+ sup

0≤u≤s

∣∣∣∣∫ s

0

σ(X̂u)dWu

∣∣∣∣+ µ̄s,

which implies Px(Ms,x ≥ z) ≤ Px
(

sup0≤u≤s

∣∣∣∫ s0 σ(X̂u)dWu

∣∣∣ ≥ z − µ̄s− |x|). Hence,

Ex[exp(αMs,x)] =

∫ ∞
0

Px(exp(αMs,x) ≥ z) dz

≤
∫ ∞

0

Px

(
sup

0≤u≤s

∣∣∣∣∫ s

0

σ(X̂u)dWu

∣∣∣∣ ≥ ln z/α− µ̄s− |x|
)
dz

≤
∫ ∞

0

min

(
1, 2 exp

(
− (ln z/α− µ̄s− |x|)2

2σ̄2s

))
dz.

In the last step, we used Corollary 9.29 in [50]. Now let z∗ = exp(α(|x| + µ̄s +√
2σ̄2s ln 2)).

Ex[exp(αMs,x)] ≤ z∗ +

∫ ∞
z∗

2 exp

(
− (ln z/α− µ̄s− |x|)2

2σ̄2s

)
dz.

Let y = ln z/α− µ̄s− |x| and y∗ = 2σ̄
√
s ln 2. Then,

Ex[exp(αMs,x)] ≤ exp(α(|x|+ µ̄s+
√

2σ̄2s ln 2)) +

∫ ∞
y∗

2α exp

(
− y2

2σ̄2s

)
exp (α(µ̄s+ |x|+ y)) dy

≤ exp(α(|x|+ µ̄s+
√

2σ̄2s ln 2)) + 2α exp (α(µ̄s+ |x|))
∫ ∞
−∞

exp

(
− y2

2σ̄2s
+ αy

)
dy

= exp(α(|x|+ µ̄s+
√

2σ̄2s ln 2)) + 2α exp
(
α(µ̄s+ |x|) + σ̄2α2s/2

) ∫ ∞
−∞

exp

(
− (y − ασ2s)2

2σ̄2s

)
dy

= exp(α(|x|+ µ̄s+
√

2σ̄2s ln 2)) + 2α exp
(
α(µ̄s+ |x|) + σ̄2α2s/2

)√
2πσ̄2s.

Now we choose an α > 0 such that µ̄α + σ̄2α2/2 < β. It is easy to see that there
exists a constant C0 > 0 such that

exp(α(|x|+ µ̄s+
√

2σ̄2s ln 2))+2α exp
(
α(µ̄s+ |x|) + σ̄2α2s/2

)√
2πσ̄2s ≤ C0e

α|x|+βs.

By [53, Theorem 25.3], the condition
∫

(1,∞)
eβsν(ds) < ∞ is equivalent to E[eβTt ] =∫

[0,∞)
eβsqt(ds) < ∞ for all t ≥ 0. Hence

∫
[0,∞)

qt(ds)Ex[exp(αMs,x)] ≤ C1e
α|x| for

some C1 > 0. Substituting this into (3.5), we arrive at (3.4) for some C > 0.
Remark 2. The existence of

∫
(1,∞)

eβsν(ds) < ∞ for some β > 0 is satisfied

if ν(ds) has an exponentially decaying tail, which is true in e.g., tempered stable
subordinators.

Remark 3. Let X̂ be a diffusion with linear mean-reverting drift with bounded
σ(x), i.e., dX̂t = κ(θ− X̂t)dt+ σ(X̂t)dWt (κ > 0). An important example in finance
is given by the Ornstein-Uhlenbeck process for which σ(x) is a constant. For these
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processes, µ(x) is not bounded. Hence Proposition 3.3 cannot be directly applied.
However, in this case

X̂t = x0e
−κt + θ(1− e−κt) +

∫ t

0

σ(X̂s)e
−κ(t−s)dWs.

Therefore we can proceed in a way similar to the proof of Proposition 3.3 and show
that for such process, the localization error still decays exponentially as in (3.4).

In Section 4, we will see that even if the diffusion under consideration does not
satisfy the bounded coefficient condition in Proposition 3.3, the localization error can
still converge exponentially.

3.2. Boundary conditions for the diffusion PDE at finite boundaries.
From now on, we consider a diffusion X living on a finite interval with end-point l
and r (if infinite boundaries are present in the problem, we localize them and consider
the localized diffusion XA). In general, the boundary behavior can be either natural,
entrance, exit, killing or reflecting. We impose the following assumption from Section
3.2 to 3.5. In Section 3.6, we will discuss how to extend our method when Assumption
1 is violated.

Assumption 1. σ(x) ∈ C4([l, r]), µ(x) ∈ C3([l, r]), k(x) ∈ C2([l, r]), σ(x) > 0
for all x ∈ [l, r].

Here Cn([l, r]) is the space of functions that are n times continuously differentiable
on (l, r) and the function and its derivatives up to the n-th order have continuous
extensions to l and r. The smoothness assumptions on the diffusion characteristics
are naturally satisfied in many financial models. From the conditions that determine
the boundary behavior in [4, Chapter II.6], it is easy to see that l and r can only be
killing or reflecting boundaries under Assumption 1.

We discuss what boundary conditions should be imposed for the diffusion PDE
(3.1) so that the boundary behavior is correctly captured. In fact under Assump-
tion 1, the PDE (3.1) holds on (l, r) for any f ∈ L2(I,m) := {f is measurable :∫
I
f2(x)m(dx) <∞}, where m is the speed measure of X ([42, Eq.(3.3)]) and I is the

state-space (we prove it in Proposition 3.5). Below we only specify results for the left
boundary l. Results for r are entirely similar.

When l is an killing boundary, it is easy to see that

u(t, l) = 0 for all t ≥ 0,

because if the process is already at l, it is sent to the cemetery state and 1{ζ>t} = 0.
We next derive the boundary condition for the reflecting case which is less obvious.

For the class of diffusion process we introduce in Section 2 (not necessarily satisfy-
ing Assumption 1), its infinitesimal generator G can be extended uniquely to L2(I,m).
If there are no natural boundaries, the spectrum of G is purely discrete and simple
([42, Theorem 3.2]), and for payoff function f ∈ L2(I,m),

u(t, x) =

∞∑
n=1

fne
λntϕn(x), fn =

∫
I

f(x)ϕn(x)m(dx). (3.6)

Here λn and ϕn are the n-th eigenvalue and eigenfunction for G, respectively, with
λn ≤ 0 and

∫
I
ϕ2
n(x)m(dx) = 1 (i.e., ϕn is normalized). They are solutions to the

Sturm-Liouville (S-L) eigenvalue problem

1

2
σ2(x)ϕ′′(x) + µ(x)ϕ′(x)− k(x)ϕ(x) = λϕ(x)
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with appropriate boundary conditions at l and r (see e.g., [42] Section 3.3):
• l is killing: ϕ(l) = 0.

• l is reflecting: limx→l
ϕ′(x)
s(x) = 0, where s(x) is the scale density of X.

In general, the eigenvalues and eigenfunctions cannot be found out explicitly, but
one can obtain estimates for them. To derive the boundary condition for u(t, x) at
reflecting boundaries, we make use of (3.6) and these estimates. Under Assumption
1, the S-L problem becomes a regular one that can be converted into Liouville normal
form ([25, Eq. (2.1i) to (2.9)]), and the condition limx→l ϕ

′(x)/s(x) = 0 is equivalent
to ϕ′(l) = 0 (as limx→l s(x) 6= 0). The next lemma obtains estimates for λn, ϕn
and its derivatives based on results from regular S-L theory, which are crucial for
deriving the PDE boundary condition. We will also need them later when analyzing
the convergence rate of the discretization scheme.

Lemma 3.4. Suppose Assumption 1 hold. Consider the regular S-L problem
1
2σ

2(x)ϕ′′(x) + µ(x)ϕ′(x)− k(x)ϕ(x) = −λϕ(x), x ∈ [l, r],

ϕ(x0) = 0, if x0 is killing, x0 ∈ {l, r},
ϕ′(x0) = 0, if x0 is reflecting, x0 ∈ {l, r}.

Its eigenvalues satisfy 0 ≥ λ1 > λ2 > · · · , and λn = O(−n2). For the corresponding
normalized eigenfunctions (ϕn)n≥1, there exists a constant C > 0 such that for all

n ≥ 1, ‖ϕ(k)
n ‖∞ ≤ Cnk (k = 0, 1, 2, 3, 4). Here ϕ(k) is the k-th order derivative of ϕ

for k ≥ 1 and ϕ(0) is ϕ itself.
Using Lemma 3.4, we now prove the following.
Proposition 3.5. Under Assumption 1, the PDE (3.1) is valid on [l, r] for any

f ∈ L2(I,m). If l is reflecting, for any t > 0, ∂xu(t, l) = 0 and the PDE at l reduces
to ∂tu(t, l) = 1

2σ
2(l)∂xxu(t, l)− k(l)u(t, l).

Proof. For f ∈ L2(I,m), u(t, x) is represented by (3.6) for all x ∈ [l, r]. By
Cauchy-Schwartz inequality, |fn| ≤ ‖f‖2 (the L2-norm of f). From the estimates of
λn and ϕn in Lemma 3.4, the series

∞∑
n=1

fne
λntϕ′n(x),

∞∑
n=1

fne
λntϕ′′n(x),

n∑
n=1

fnλne
λntϕn(x)

converge absolutely and uniformly in x. Hence we can interchange summation and
differentiation and for x ∈ [l, r],

∂xu(t, x) =

∞∑
n=1

fne
λntϕ′n(x), ∂xxu(t, x) =

∞∑
n=1

fne
λntϕ′′n(x), ∂tu(t, x) =

n∑
n=1

fnλne
λntϕn(x).

Using the S-L equation for ϕn shows that the PDE holds on [l, r]. If l is reflect-
ing, since ϕ′n(l) = 0, we have ∂xu(t, l) = 0 and the PDE at l becomes ∂tu(t, l) =
1
2σ

2(l)∂xxu(t, l)− k(l)u(t, l).
Remark 4. When l is a reflecting boundary, the condition ∂xu(t, l) = 0 alone

suffices to characterize the boundary behavior. This condition can also be found in
[28, p.330], but no proof is given there. The fact that the PDE holds at l is not given
in [28] and we do not see any proof for this fact in the literature. From the numerical
perspective, it is important to know the PDE is valid at l, which will be used in our
discretization scheme.

To summarize, the following boundary conditions are imposed for the diffusion
PDE:
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• l is killing: u(t, l) = 0 for t ≥ 0.
• l is reflecting: ∂tu(t, l) = 1

2σ
2(l)∂xxu(t, l)−k(l)u(t, l) for t > 0, u(0, l) = f(l).

Note that when l is killing, in general u(0, l) 6= f(l) as u(0, l) = 0 while f(l) is
not necessarily zero.

3.3. Discretization by finite difference. We continue our discussions under
Assumption 1. To obtain a numerical approximation for u(t, x), we discretize the space
variable x in the diffusion PDE. To simplify the exposition, we consider a uniform
grid on [l, r], with h = (r − l)/N and xi = l + ih for i = 0, 1, · · · , N . However, non-
uniform grids can also be used in our method and the extension is straightforward.
We approximate the partial derivatives w.r.t. x by central differences, i.e. for 1 ≤ i ≤
N − 1, t > 0,

µ(xi)∂xu(t, xi) +
1

2
σ2(xi)∂xxu(t, xi)− k(xi)u(xi)

≈ µ(xi)
u(t, xi+1)− u(t, xi−1)

2h
+

1

2
σ2(xi)

u(t, xi+1)− 2u(t, xi) + u(t, xi−1)

h2
− k(xi)u(t, xi).

To complete the discretization, we need to deal with boundary conditions. When l
is killing boundary, we simply set u(t, x0) = 0. When l is reflecting, we approximate
1
2σ

2(l)∂xxu(t, l)− k(l)u(t, l) as follows:

1

2
σ2(x0)∂xxu(t, x0)− k(x0)u(t, x0) ≈ σ2(x0)

u(t, x1)− u(t, x0)

h2
− k(x0)u(t, x0),

where to approximate ∂xxu(t, x0), we expand u(t, x1) at x = x0 and use ∂xu(t, x0) = 0.
The discretization scheme yields a semi-discrete system in RN+1:

d

dt
uh(t) = Guh(t), uh(0) = fh. (3.7)

Here G is an (N + 1)× (N + 1) tridiagonal matrix and it has the following entries: for
1 ≤ i ≤ N − 1, Gi,i±1 = [±µ(xi)/h+ σ2(xi)/h

2]/2, Gi,i = −σ2(xi)/h
2 − k(xi). If x0

is killing, then G0,i = 0 for 0 ≤ i ≤ N . If x0 is reflecting, G0,0 = −σ2(x0)/h2− k(x0),
G0,1 = σ2(x0)/h2. In both cases, G0,i = 0 for 2 ≤ i ≤ N . The formulae for entries at
xN are entirely similar and hence they are omitted here. fh is a (N + 1)× 1 vector,
with fh,i = f(xi) for 1 ≤ i ≤ N − 1. When l, r are killing, fh,0 = fh,N = 0, and when
l, r are reflecting, fh,0 = f(l) and fh,N = f(r).

3.4. Eigendecomposition. The solution to the semi-discrete system (3.7) is
given by uh(t) = eGtfh, where eGt is the matrix exponential defined by

eGt =

∞∑
n=0

tn

n!
Gn. (3.8)

In the following, we derive another representation for uh(t), using which we can com-
pute

∫
[0,∞)

uh(s)qt(ds) analytically using the Laplace transform of the subordinator.

Before proceeding, we observe that when x0 is a killing boundary, the value for
the entries of eGtij with 1 ≤ i, j ≤ N (the (i, j)-th entry of eGt) does not depend

on the 0-th column and the 0-th row of G. Furthermore, f0
h = 0 (the 0-th entry of

fh). Therefore, to compute the i-th entry of uh(t) for 1 ≤ i ≤ N , the row and the
column in G that correspond to x0 are not needed. The same reasoning applies to
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xN when it is killing. Hence in the following, we can eliminate killing boundaries
from consideration. We let H be the matrix constructed from G by eliminating rows
and columns which correspond to killing boundaries, i.e., H is an n× n matrix with
n = N + 1 − # of killing boundaries. In all cases, we start the index of H from 1
(whereas in G indexing starts from 0), and we have

for 1 ≤ i, j ≤ n, Hi,j =

{
Gi,j , l, r are killing,

Gi−1,j−1, l, r are reflecting.

Note that H is also tridiagonal. For simplicity, we abuse the notation and still use
uh(t) and fh to denote the solution and payoff vector without entries for the killing
boundaries. Then uh(t) = eHtfh. Our next result characterizes H.

Proposition 3.6. Suppose the off-diagonal entries of H are all positive (Under
Assumption 1, this is true when h is small enough). Then H has n simple and real
eigenvalues with 0 ≥ Λ1 > Λ2 > · · · > Λn, where Λi is the i-th eigenvalue.

Proof. H is a tridiagonal matrix with Hi,i+1Hi+1,i > 0 for all i = 1, 2, · · · , n− 1,
so it has n simple real eigenvalues by [57, Theorem 1]. In addition, H is diagonally
dominant because its off-diagonal entries are positive, its diagonal entries are negative
and the sum of each row is nonpositive. Thus by Gershgorin Circle Theorem, all its
eigenvalues lies at the left half of the complex plane. Since they are real, they are
nonpositive.

Let D = diag(Λ1, · · · ,Λn) and V = (Φ1, · · · ,Φn), where Φi is the eigenvector
corresponding to Λi. Then H = V DV −1. Using (3.8), it is easy to see that uh(t) =
V eDtV −1fh. Since D is a diagonal matrix, we have∫

[0,∞)

eDsqt(ds) =

∫
[0,∞)

diag(eΛ1s, · · · , eΛns)qt(ds) = e−φ(−D)t,

where the matrix function −φ(−D) = diag(−φ(−Λ1), · · · ,−φ(−Λn)). Hence

uφh(t) :=

∫
[0,∞)

uh(s)qt(ds) = V e−φ(−D)tV −1fh,

approximates uφ(t, x) on the grid.
Now we need to find out all the eigenvalues and eigenvectors of H. For a general

n×n matrix, this requires O(n3) operations which is expensive when n is large. Below
we show that in our problem, this can actually be done in O(n2) operations!

Define recursively

j1 = 1, jk = jk−1Hk−1,k/Hk,k−1, 2 ≤ k ≤ n,

and put J = diag(j1, · · · , jn). Direct calculation shows that JH is symmetric and

tridiagonal and H is similar to H := J−
1
2 JHJ−

1
2 , which is again symmetric and tridi-

agonal (note that these hold also for non-uniform grids). H has the same eigenvalues

as H and its k-th eigenvector, denoted by Ψk is related to Φk by Φk = J−
1
2 Ψk. For an

n×n symmetric and tridiagonal matrix, its eigenvalues and eigenvectors can be found
out efficiently by the MR3 algorithm which is stable and has worst case complexity
O(n2) ([17]). We can now apply this algorithm to find out the eigendecomposition of

H. Let W = (Ψ1, · · · ,Ψn). Now uφh(t) becomes

uφh(t) = J−1/2We−φ(−D)tWTJ1/2fh, (3.9)
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where the superscript T denotes transpose. We derive an alternative expression for
(3.9). We consider the normalized Ψk, i.e.,

∑n
j=1 Ψ2

k,j = 1, and since H is symmetric,

Ψk and Ψl are orthogonal for k 6= l. As Φk = J−
1
2 Ψk, it is easy to see that ΦTk JΦl =

δk,l (the Kronecker delta), i.e., {Φ1, · · · ,Φn} are orthonormal w.r.t. J . Some algebra
shows that

uφh(t) =

n∑
k=1

e−φ(−Λk)tfh,kΦk, fh,k = ΦTk Jfh. (3.10)

This expression can be thought as the discrete analogue of the exact eigenfunction
expansion

uφ(t, x) =

∞∑
k=1

e−φ(−λk)tfkϕk(x), fk =

∫
I

f(x)ϕk(x)m(dx).

Recall that λk is the k-th eigenvalue of the diffusion generator and ϕk is the corre-
sponding normalized eigenfunction (

∫
I
ϕ2
k(x)m(dx) = 1). In the discrete case, the

diagonal of J plays the role of the speed measure m in the continuous case.
To evaluate (3.9), we go from right to left. Note that J1/2, e−φ(−D)t and J−1/2

are diagonal, so multiplying them by a vector only requires O(n) operations. Since
W is dense, its multiplication with a vector requires O(n2) operations. So the overall
time complexity to calculate (3.9) is O(n2). Further adding up the complexity of the
MR3 algorithm for eigendecomposition, the total time complexity of the proposed
scheme is O(n2), where n is the number of grid points excluding killing boundaries.
Since both the MR3 algorithm and matrix-vector multiplication can be parallelized
(see [31] for how to parallelize the MR3 algorithm), further reduction in computation
time can be expected.

Remark 5 (Subordinate Brownian Motion Models). Consider the subordinate
Brownian motion models discussed in Section 3, where the background diffusion X
is a BM with drift µ and volatility σ. Suppose we specify −A and A to be killing
boundaries. In this case, we can obtain analytical formulas for the eigenvalues and

eigenvectors of H. Let a =
√

σ4

4h4 − µ2

4h2 , b = −σ
2

h2 . Then Hi,i = b, Hi,i−1 = a and

Hi,i+1 = a. Applying the result in [58, Eq.(11)], its eigenvalues and eigenvectors are
given by (recall that W is the eigenvector matrix for H)

Λk = b+ 2a cos
kπ

n+ 1
,Wj,k =

2√
n+ 1

sin
jkπ

n+ 1
, j, k = 1, 2, · · · , n.

Let i =
√
−1 be the imaginary unit. We can rewrite Wj,k as

Wj,k = Pj,k−Qj,k, Pj,k =
−i√
n+ 1

exp

(
i
jkπ

n+ 1

)
, Qj,k =

−i√
n+ 1

exp

(
−i jkπ
n+ 1

)
.

Now uφ(t) can be written as

uφh(t) = J−1/2Pe−φ(−D)tPTJ1/2fh − J−1/2Pe−φ(−D)tQTJ1/2fh

− J−1/2Qe−φ(−D)tPTJ1/2fh + J−1/2Qe−φ(−D)tQTJ1/2fh.

To evaluate the above formula, we go from right to left for each term. Note that
multiplying a diagonal matrix with a vector has time complexity O(n), and multiplying
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P,Q with a vector can be accomplished by the Fractional Discrete Fourier transform
with time complexity O(n log2 n). Thus, in this special case, the overall complexity of
our algorithm is only O(n log2 n).

Remark 6 (Comparison to existing numerical schemes for PIDEs). We have
already discussed that in general existing numerical schemes for PIDEs do not apply
to general subordinate diffusions as their jump density is given by an unknown integral.
There are cases that this integral can be obtained in closed form and hence existing
PIDE schems can be applied without resorting to expensive numerical approximation
of the integral. These schemes typically have time complexity O(mn2) when jumps
are state-dependent and O(mn log2 n) when jumps are state-independent (this is true
when X is a BM), where m is the number of time steps and n is the number of grid
points for the space variable. They require more computations when the time horizon
increases as more time steps are needed. In contrast, our method does not discretize
time and hence there is no time discretization error and option prices for all time
horizons are calculated at the same cost. The time complexity is O(n2) for the case of
state-dependent jumps and O(n log2 n) when jumps are state-independent. Thus one
would expect our method is more efficient than standard PIDE schemes when they
are applicable for not-too-small maturities. Another feature of our method is that it
does not have any approximation error from truncating large and small jumps, which is
done in standard numerical methods for PIDEs. In Section 5, we compare our method
to an existing PIDE scheme for the NIG equity model for different maturities.

3.5. Analysis of Discretization Error. Consider the discretization error vec-
tor

εh(t) := (uh,i(t)− u(t, xi))
T
0≤i≤N , ε

φ
h(t) := (uφh,i(t)− u

φ(t, xi))
T
0≤i≤N ,

where uh,i(t) is the entry of the vector uh(t) that approximates u(t, xi) and the mean-

ing of uφh,i(t) is similar. When l and r are killing boundaries, we define εh(t) and εφh(t)
to be the vector containing errors at x1 to xN−1, as the error at the boundary point
is zero. Our goal is to show the maximum discretization error ‖εφh(t)‖∞ converges to
0 as h → 0 and find out its convergence rate. Throughout this section, we impose
Assumption 1. We will first analyze the convergence rate for ‖εφh(t)‖∞ when the pay-
off function is smooth enough, based on which we can then prove the convergence for
more general payoffs.

It is easy to see that

‖εφh(t)‖∞ ≤
∫

[0,∞)

‖εh(s)‖∞ qt(ds). (3.11)

Hence we need to estimate ‖εh(s)‖∞ for all s ≥ 0, to do which estimates for the
partial derivatives of the diffusion value function u(t, x) are crucial. We summarize
such estimates in the following two lemmas. Hn+ε([l, r]) denotes the set of functions
g : [l, r]→ R that are n times continuously differentiable with the n-th order derivative
ε-Hölder continuous.

Lemma 3.7. Suppose that Assumption 1 holds and l, r are killing. Assume that
for some ε ∈ (0, 1), k(x) ∈ H2+ε([l, r]), f(x) ∈ H4+ε([l, r]) and f(x) = 0 for x = l, r.
Then ∂xxxu(t, x) and ∂xxxxu(t, x) are uniformly bounded on [0,∞)× [l, r].

Lemma 3.8. Suppose that Assumption 1 holds and l, r are reflecting. Assume
that for some ε ∈ (0, 1), µ(x), k(x) ∈ H3+ε([l, r]), f(x) ∈ H5+ε([l, r]) and f ′(x) = 0
for x = l, r. Then ∂xxxu(t, x), ∂xxxxu(t, x) and ∂t∂xxxu(t, x) are uniformly bounded
on [0,∞)× [l, r].
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Based on Lemma 3.7 and 3.8, we show that the discretization error is second
order in h. The result is not surprising when both l and r are killing boundaries,
where central difference is used everywhere on the grid to approximate the derivatives
(except at the killing boundaries where no approximation of derivatives is needed) and
it is second-order accurate. In the case where l and r are reflecting, the discretization
error is still second order despite that the accuracy for derivative approximation is
only first order at the boundary points.

Proposition 3.9. Suppose that either the assumptions of Lemma 3.7 or those
of Lemma 3.8 hold, and

∫
(1,∞)

sν(ds) <∞. Then for some constant C > 0,

‖εh(s)‖∞ ≤

{
Csh2, l, r are killing,

C(s+ 1)h2, l, r are reflecting.

For any t > 0, there exists a constant Ct > 0 (which only depends on t) such that

‖εφh(t)‖∞ ≤ Cth2.
Proof. Let σh,i(s) be the local truncation error at xi, i.e., the difference between

the finite difference approximation and the PDE at xi, and σh(s) := (σh,i(s))
T
0≤i≤N .

When l, r are killing boundaries, we only consider σh(s) := (σh,i(s))
T
1≤i≤N−1 as no

finite difference approximation is used at the boundary. In the following, we treat the
case of killing boundaries and the case of reflecting boundaries separately.
(i) Both l and r are killing: For 1 ≤ i ≤ N − 1,

σh,i(s) = µ(xi)
u(s, xi + h)− u(s, xi − h)

2h
− µ(xi)∂xu(s, xi)

+
1

2
σ2(xi)

u(s, xi + h)− 2u(s, xi) + u(s, xi − h)

h2
− 1

2
σ2(xi)∂xxu(s, xi)

=
1

12
µ(xi)h

2(∂xxxu(s, ξ1) + ∂xxxu(s, ξ2))

+
1

48
σ2(xi)h

2(∂xxxxu(s, η1) + ∂xxxxu(s, η2)) (3.12)

for some ξ1, ξ2, η1, η2 ∈ [xi − h, xi + h]. Hence by Lemma 3.7, there exists C0 > 0
independent of s such that ‖σh(s)‖∞ ≤ Ch2. From the diffusion PDE (3.1) and
central difference approximation, we have

ε′h(s) = Hεh(s) + σh(s), εh(0) = 0. (3.13)

Here ε′h(s) means taking derivative of εh(s) w.r.t. s elementwise. The solution to
(3.13) is given by εh(s) =

∫ s
0
eH(s−v)σh(v)dv, therefore

‖εh(s)‖∞ ≤
∫ s

0

‖eH(s−v)σh(v)‖∞dv ≤
∫ s

0

‖σh(v)‖∞ dv ≤ Csh2. (3.14)

In the second inequality, we used the fact that for any t > 0, eHt is a sub-probability
matrix (i.e., all its entries are nonnegative and the sum of each row is ≤ 1) as H is
a tridiagonal matrix with positive off-diagonal entries and negative diagonal entries.
This implies ‖eHtv‖∞ ≤ ‖v‖∞ for any vector v.

By [53, Theorem 25.3], the condition
∫

(1,∞)
sν(ds) <∞ is equivalent to

∫
[0,∞)

sqt(ds)

for any t > 0. Hence let Ct = C
∫

[0,∞)
sqt(ds), from (3.11) and (3.14) we have

‖εφh(t)‖∞ ≤ Cth2.
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(ii) Both l and r are reflecting: For i = 1, · · · , N − 1, σh,i(s) is given by (3.12). For
i = 0, for some ξ ∈ [x0, x0 + h],

σh,0(s) = σ2(x0)
u(s, x0 + h)− u(s, x0)

h2
− 1

2
σ2(x0)∂xxu(s, x0) =

1

6
σ2(x0)h∂xxxu(s, ξ).

For i = N , for some η ∈ [xN − h, xN ],

σh,N (s) = σ2(xN )
u(s, xN − h)− u(s, xN )

h2
−1

2
σ2(xN )∂xxu(s, xN ) = −1

6
σ2(xN )h∂xxxu(s, η).

Let ηh(s) = (0, σh,1(s), · · · , σh,N−1(s), 0)T and ξh(s) be the solution to the linear
system Gξh(s) = σh(s)− ηh(s), which is given recursively by

ξh,0(s) = 1
3h

3∂xxxu(s, ξ), ξh,1(s) = 1
2h

3∂xxxu(s, ξ),

ξh,i(s) = − 1
Gi−1,i

(Gi−1,i−2ξh,i−2(s) +Gi−1,i−1ξh,i−1(s)) , 2 ≤ i ≤ N − 1,

ξh,N (s) = 1
GN,N

(
− 1

6σ
2(xN )h∂xxxu(s, η)−GN,N−1ξh,N−1(s)

)
.

Taking differentiation w.r.t. time gives us
ξ′h,0(s) = 1

3h
3∂s∂xxxu(s, ξ), ξ′h,1(s) = 1

2h
3∂s∂xxxu(s, ξ),

ξ′h,i(s) = − 1
Gi−1,i

(
Gi−1,i−2ξ

′
h,i−2(s) +Gi−1,i−1ξ

′
h,i−1(s)

)
, 2 ≤ i ≤ N − 1,

ξ′h,N (s) = 1
GN,N

(
− 1

6σ
2(xN )h∂s∂xxxu(s, η)−GN,N−1ξ

′
h,N−1(s)

)
.

Recall thatGi−1,i−1 = −σ
2(xi−1)
h2 −k(xi−1), Gi−1,i = σ2(xi−1)

2h2 +µ(xi−1)
2h , Gi−1,i−2 =

σ2(xi−1)
2h2 − µ(xi−1)

2h , hence
Gi−1,i−2

Gi−1,i
,
Gi−1,i−1

Gi−1,i
are bounded when h→ 0. By Lemma 3.8,

there is a constant C1 > 0 such that |ξh,0(s)| ≤ C1h
3, |ξh,1(s)| ≤ C1h

3, |ξ′h,0(s)| ≤
C1h

3, |ξ′h,1(s)| ≤ C1h
3. From the recursive relation, there is also a constant C2 > 0

such that |ξh,i(s)| ≤ C2h
3, |ξ′h,i(s)| ≤ C2h

3 for 2 ≤ i ≤ N − 1. Notice that σ2(xN )h
GN,N

=

σ2(xN )h
−σ2(xN )/h2−k(xN ) and

GN,N−1

GN,N
= σ2(xN )/h2

−σ2(xN )/h2−k(xN ) are bounded when h→ 0, so there

is a constant C3 > 0 such that |ξ′h,N (s)| ≤ C3h
3, |ξh,N (s)| ≤ C3h

3. Together, there is

a constant C0 independent of s such that ‖ξh(s)‖∞ ≤ C0h
3, ‖ξ′h(s)‖∞ ≤ C0h

3.
Let ε̃h(s) = εh(s) + ξh(s) and recall that ε′h(s) = Gεh(s) + σh(s), then,

ε̃′h(s) = ε′h(s) + ξ′h(s) = Gεh(s) + σh(s) + ξ′h(s)

= Gεh(s) +Gξh(s) + ηh(s) + ξ′h(s) = Gε̃h(s) + ηh(s) + ξ′h(s),

with ε̃h(0) = ξh(0). Then,

‖εh(s)‖∞ ≤ ‖ξh(s)‖∞ + ‖ε̃h(s)‖∞

≤ ‖ξh(s)‖∞ + ‖ξh(0)‖∞ +

∫ s

0

‖eG(s−v)(ξ′h(v) + ηh(v))‖∞dv,

≤ 2C(s+ 1)h2 (note that ‖ηh(v)‖∞ ≤ C̃h2 for some C̃ > 0)

for some C > 0. Let Ct = 2C
∫

[0,∞)
(s + 1)qt(ds). Then we have ‖εφh(t)‖∞ ≤ Cth

2.

Remark 7. The condition
∫

(1,∞)
sν(ds) < ∞ is equivalent to E[Tt] < ∞ for all

t > 0, which is satisfied for all Lévy subordinators used in finance.
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Our scheme converges for more general payoffs and we will prove this based on
Proposition 3.9. We define the diffusion transition operator Ptf(x) := Ex[f(Xt)1{ζ>t}].
Pt is a contraction on the space of measurable and bounded functions, i.e., ‖Ptf‖∞ ≤
‖f‖∞. We also introduce Ptv := eHtv for any vector v ∈ Rn. Pt is also a contraction,
i.e., ‖Ptv‖∞ ≤ ‖v‖∞, where ‖ · ‖∞ is now the maximum norm for a vector. For
simplicity, we use ‖ · ‖∞ for both the maximum norm for a function and that for a
vector. The exact meaning can be determined from the context.

Proposition 3.10. Suppose that Assumption 1 holds. For any measurable and
bounded payoff f on [l, r], ‖εφh(t)‖∞ → 0 when h→ 0 if

lim
δ→0
‖Pδf − f‖∞ = 0. (3.15)

Proof. Let πh be the operator that maps a function on [l, r] to the grids excluding
the killing boundaries, i.e., (πhg)i = g(xi). For any δ > 0.

‖εh(s)‖∞ = ‖Psπhf − πhPsf‖∞
≤ ‖Psπhf − PsπhPδf‖∞ + ‖PsπhPδf − πhPsPδf‖∞ + ‖πhPsPδf − πhPsf‖∞
≤ ‖πhf − πhPδf‖∞ + ‖PsπhPδf − πhPsPδf‖∞ + ‖PsPδf − Psf‖∞
≤ 2 ‖Pδf − f‖∞ + ‖PsπhPδf − πhPsPδf‖∞.

For the second term, Pδf is the payoff function, which can be represented by the
eigenfunction expansion

Pδf(x) =

∞∑
n=1

fne
λnδϕn(x).

From Lemma 3.4, we can show that Pδf ∈ C∞([l, r]) (We only give bounds for
up to the fourth order derivative of the eigenfunctions in Lemma 3.4, but following

the arguments used there one can show that ‖ϕ(k)
n ‖∞ ≤ Cnk for all integer k ≥

0). Furthermore, when l is killing, we have Pδf(l) = 0 and when l is reflecting,
(Pδf)′(l) = 0 by Proposition 3.5. The same applies to r. Hence the conditions on
the payoff function required in Proposition 3.9 are satisfied, applying which shows the
second term ≤ Cδsh

2 in the killing boundary case and Cδ(s + 1)h2 in the reflecting
boundary case for some positive constant Cδ, which depends on δ. Therefore,

lim
h→0
‖εh(s)‖∞ ≤ 2 ‖Pδf − f‖∞ ,

for any δ > 0. Letting δ → 0, (3.15) implies that limh→0 ‖εh(s)‖∞ = 0. From (3.11),

by dominated convergence theorem, ‖εφh(t)‖∞ → 0.

[29, Theorem 7.4.2] shows that the strong continuity condition (3.15) is satisfied
for any continuous f on [l, r] when l and r are reflecting (f is also bounded as [l, r] is
compact). When l and r are killing, the same theorem shows that for any continuous
f such that limx↓l f(x) = 0 and limx↑r f(x) = 0, (3.15) is valid. However, for general
continuous f , (3.15) fails to hold as for boundary point x, Ptf(x) = 0 for any t > 0
while f(x) is not necessarily zero. Furthermore, in finance, sometimes the payoff is
even discontinuous (consider digital options). For such payoffs, in general one cannot
expect the strong continuity condition to hold. Below we refine our analysis and prove
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that our scheme actually converges for piecewise continuous and bounded payoffs on
[l, r] when the end-points are killing or reflecting. We need the following lemma.

Lemma 3.11. Suppose Assumption 1 holds and both l, r are killing boundaries or
both are reflecting boundaries. Then for any s > 0, there is a constant C independent
of h such that

max
i,j

Ps,i,j ≤ Ch, sup
(x,y)∈(l,r)×(l,r)

p(s, x, y) ≤ C.

Here Ps = eHs and Ps,i,j is the (i, j)-th element of Ps. p(s, x, y) is the transition
density of the background diffusion X.

Proposition 3.12. Suppose that Assumption 1 holds and both l, r are killing
boundaries or both are reflecting boundaries. For any piecewise continuous and bound-
ed payoff f on [l, r] (i.e., it has a finite number of discontinuities on (l, r)), ‖εφh(t)‖∞ →
0 when h→ 0.

Proof. Suppose the discontinuities on (l, r) are y1, y2, · · · , yk. Define function
f ε(x) as follows (1 ≤ i ≤ k):

f ε(x) =


f(l+ε)
ε (x− l) if x ∈ [l, l + ε),

f(yi − ε/2) + f(yi+ε/2)−f(yi−ε/2)
ε (x− yi + ε/2) if x ∈ [yi − ε/2, yi + ε/2),

f(r−ε)
ε (r − x) if x ∈ [r − ε, r],
f(x) otherwise.

where ε > 0 is small enough such that the intervals above are disjoint. f ε is a
continuous function which vanishes at l and r. Let D = [l, l+ ε)∪ [y1− ε/2, y1 + ε/2)∪
· · · ∪ [yk − ε/2, yk + ε/2) ∪ [r − ε, r]. Its Lebesgue measure |D| = (k + 2)ε. For any
s > 0,

‖εh(s)‖∞ = ‖Psπhf − πhPsf‖∞
≤ ‖Psπhf − Psπhf ε‖∞ + ‖Psπhf ε − πhPsf ε‖∞ + ‖Psf − Psf ε‖∞.

For the first term, by Lemma 3.11, there is a constant C independent of h and
i, j such that Ps,i,j ≤ Ch. Hence (recall that n = N + 1−# of killing boundaries)

|(Psπhf − Psπhf ε)i| ≤
n∑
j=1

Ps,i,j |f(xj)− f ε(xj)|

≤ Ch
n∑
j=1

|f(xj)− f ε(xj)|1D(xj) ≤ Ch× 2 ‖f‖∞ ×
|D|
h

= 2(k + 2)C ‖f‖∞ ε.

Since the bound is independent of i, ‖Psπhf − πhPsf‖∞ ≤ 2(k + 2)C ‖f‖∞ ε.
For the third term, by Lemma 3.11, there is a constant C independent of x, y

such that p(s, x, y) ≤ C. Hence

|Psf(x)− Psf ε(x)| ≤
∫ r

l

p(s, x, y) |f(y)− f ε(y)| dy

≤ C
∫
D

|f(y)− f ε(y)| dy ≤ C × 2 ‖f‖∞ × |D| = 2(k + 2)C ‖f‖∞ ε.

Since the bound is independent of x, ‖Psf − Psf ε‖∞ ≤ 2(k + 2)C ‖f‖∞ ε. Together

lim
h→0
‖εh(s)‖∞ ≤ 4(k + 2)C ‖f‖∞ ε+ lim

h→0
‖Psπhf ε − πhPsf ε‖∞ = 4(k + 2)C ‖f‖∞ ε
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for any ε > 0. The vanish of the second term follows from limδ→0 ‖Psf ε − f ε‖∞ = 0
(f ε is a continuous and bounded function on [l, r] that vanishes at the end-points,
so strong continuity holds when l, r are both killing or reflecting boundaries) and
Proposition 3.10. Taking ε to 0, we have limh→0 ‖εh(s)‖∞ = 0. By dominated

convergence theorem, limh→0 ‖εφh(t)‖∞ = 0.

In general, when the payoff function f is not smooth enough, to estimate the
error order theoretically is a challenging task under finite difference. In fact, even
for PDEs, such results are scarce. Under special cases, sharp estimates are available.
See [27] for results under the Black-Scholes model which utilizes the Black-Scholes
formula for the option price to derive error estimates and [55] for results under the
heat equation on the whole real line. We anticipate that in our setting, error estimates
can be developed under some special cases. However, we do not pursue such question
here. Typical financial payoffs are not smooth enough. For example, the put payoff is
not differentiable at the strike price. In Section 5, for financial payoffs, we will show
how the discretization error converges through various numerical examples, and one
can observe that the convergence is oscillatory but the order is still roughly two. We
will apply a smoothing technique in Section 5 so that convergence becomes smooth
with order equal to two.

3.6. The Case When Assumption 1 is Violated. We discuss how to extend
our method to the setting when Assumption 1 is violated. This is true for some
diffusions used in finance. An example is given by the CIR process, dXt = κ(θ −
Xt)dt + σ

√
XtdWt with X0 = x > 0, κ, θ, σ > 0. l = 0 is an entrance boundary if

2κθ ≥ σ2 and reflecting otherwise. After localizing the infinite boundary, at x = 0,
σ(x) vanishes, violating Assumption 1. Another example is given by the JDCEV
process, whose drift µ(x) = (θ+ b+ ca2x2β)x, diffusion coefficient σ(x) = axβ+1, and
killing rate k(x) = b + ca2x2β where β < 0, a > 0, b ≥ 0 and c ≥ 0. The boundary
behavior at l = 0 can be found in [42, p.263], where it could be inaccessible, exit and
killing, depending on the value of c and β. After localizing the infinite boundary, k(x)
tends to ∞ near x = 0, and this is also true for µ(x) and σ(x) when β < −1/2 and
β < −1, respectively. Hence Assumption 1 does not hold in this case.

Now let’s assume that the diffusion X under consideration lives on a finite interval
with end-point l and r (if there is any infinite boundary we localize it first), and
conditions in Assumption 1 hold at r but fail at l. We can pick an ε > 0 and consider
a new diffusion Xε living on [l+ε, r] which has the same infinitesimal characteristics as
X. At the boundary l+ε, Xε is either killed or reflected if l is a natural and entrance.
If l is exit or killing, Xε is killed at l+ε, and if l is reflecting, Xε is reflected at l+ε. If
µ(x), σ(x), k(x) are smooth enough on [l+ ε, r], then Assumption 1 holds on [l+ ε, r].
It is not difficult to see that uφε (t, x) (the value function for the subordinate process
obtained from Xε) converges to uφ(t, x) as ε→ 0, which can be proved along the lines
in the proof of Lemma 3.1. We can apply the previously developed scheme under
Assumption 1 to compute uφε (t, x). By choosing a very small ε, the error of using
uφε (t, x) to approximate uφ(t, x) is negligible compared to the discretization error.

Alternatively, one can try to deal with X directly and we need to specify the
boundary condition at l so that the boundary behavior is correctly captured. In
general, the term “boundary condition” is quite inappropriate. In some cases, for
instance when l is an entrance boundary, an equation is not needed at the boundary
to single out the solution that correctly represents the behavior of the diffusion on the
boundary. Nevertheless, a boundary equation is needed from a numerical perspective.
Here for simplicity, we will call such boundary equation simply as boundary condition.
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When l is exit or killing, it is easy to see that the boundary condition is u(t, l) = 0 for
t ≥ 0. However, when l is entrance or reflecting, we do not have results in general. In
many cases, one can still expect the PDE to be valid at l. For example, for the CIR
process (which has no killing rate, i.e., k(x) = 0), we have

∂tu(t, l) = µ(l)∂xu(t, l)− k(l)u(t, l), t > 0, (3.16)

which can be verified directly from the eigenfunction expansion for u(t, x) where the
eigenvalues and eigenfunctions are explicitly known (see [42, p.258] for the expres-
sion). For diffusions with σ(l) = 0 and µ(l) > 0, [19, Theorem 2.3] provides sufficient
conditions under which (3.16) is valid (also see [49] for other types of sufficient con-
ditions).

If l is exit or killing, one can use the same discretization scheme developed
in Section 4.3. When l is entrance or reflecting, in the following we consider the
case where σ(l) = 0, µ(l) > 0, and we assume (3.16) is valid. We approximate
µ(l)∂xu(t, l)− k(l)u(t, l) as follows (the grid is the same as the one in Section 4.3):

µ(x0)∂xu(t, x0)− k(x0)u(t, x0) ≈ µ(x0)
u(t, x1)− u(t, x0)

h
− k(x0)u(t, x0),

At points inside (l, r), we approximate the derivatives by central difference. Now in
the matrix G, G0,0 = −µ(x0)/h − k(x0), G0,1 = µ(x0)/h. We want the off-diagonal
entries of G to be positive (see Proposition 3.6). However, if central difference is used,
in some cases it is possible that some off-diagonal entries is negative no matter how
small h is for some choice of µ(x). So, instead we use the up-wind scheme for the
convection term µ(xi)∂xu(t, xi) for points where Gi,i±1 < 0 under central difference.
If µ(xi) > 0, we approximate it by µ(xi)(u(t, xi+1) − u(t, xi))/h and if µ(xi) < 0,
we approximate it by µ(xi)(u(t, xi) − u(t, xi−1))/h. This guarantees all off-diagonal
entries are positive for all h > 0.

Once G is obtained, the remaining steps are the same as those in Section 4.4.

4. Numerical Examples. All computations in this section were performed on
a laptop computer with Intel Core i5 at 2.5 GHz with 4 GB RAM and all codes were
written in C++. We consider five representative models based on Lévy subordinate
diffusions in our numerical examples. In all these models, we set the Lévy subordi-
nator Tt to be the Inverse Gaussian process, which is a popular choice in finance (it
corresponds to setting p = 1/2 in the tempered stable family). Its drift is denoted as
γ and its Lévy measure and Laplace exponent are given by

ν(ds) = m

√
m

2πv
s−

3
2 e−

m
2v sds, φ(λ) =

m2

v

[√
1 + 2

v

m
λ− 1

]
.

Here m is the mean rate for the jump part (i.e., m = E[T1]− γ) and v is the variance
rate (i.e., v = V ar[T1]). The five models we consider are listed below. We choose
them because they are representative of the various cases we have discussed and in
these models, we can calculate a very accurate benchmark using alternative methods.
Here rf and q are the risk-free rate and the stock’s dividend yield, respectively.
(1) Normal Inverse Gaussian (NIG) model for equity prices ([2]): X is a Brownian
motion with drift, i.e., µ(x) = θ, σ(x) = σ. The risk neutral stock price is modelled as

St = S0e
ρt+Xφt , where ρ = rf − q + φ(−θ− σ2/2). We assume 1− (2θ + σ2)v/m ≥ 0,

which is equivalent to E [St] < ∞ for t ≥ 0. We set θ = 0.1, σ = 0.3, γ = 0, m = 1,
v = 1, rf = 0.05 and q = 0.
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(2) Subordinate reflected Brownian motion (SubRBM) model for real asset prices in
a highly competitive market: X is a drifted Brownian motion in [l, r] with two finite
reflecting boundaries l and r, µ(x) = θ, σ(x) = σ. The risk-neutral asset price is

modelled as St = S0 exp(Xφ
t ). A model based on geometric reflected Brownian motion

is considered in [18] for real asset prices in highly competitive markets. Applying
subordination introduces jumps into the model, making it more realistic, and the
jump model also moves between l and r. We set θ = 0.1, σ = 0.2, l = −0.2, r = 0.2,
γ = 0, m = 1, v = 1 and rf = 0.05.
(3) Subordinate OU (SubOU) model for commodity spot prices ([36]): X is an
Ornstein-Uhlenbeck process with µ(x) = κ(θ − x) and σ(x) = σ. The risk-neutral

commodity spot price is modelled as St = S0e
Xφt . To be simple, here we do not

introduce time-dependent but deterministic compensator to match the initial futures
curve, which is done in [36]. However, it can be easily incorporated in our numerical
scheme. We set κ = 0.5, θ = 1.0, σ = 0.3, γ = 0, m = 1, v = 1 and rf = 0.05.
(4) Subordinate CIR (SubCIR) model for commodity spot prices ([32]): X is a CIR
process with µ(x) = κ(θ − x) and σ(x) = σ

√
x. The risk-neutral commodity spot

price is modelled as St = S0X
φ
t . As in the SubOU model, we do not introduce time-

dependent but deterministic compensator to match the initial futures curve here to
be simple. We set κ = 0.3, θ = 0.8, σ = 0.3, γ = 0, m = 1, v = 1 and rf = 0.05. Here
x = 0 is a reflecting boundary.
(5) Subordinate JDCEV (SubJDCEV) model for equity prices with bankruptcy risk
([46]): X is a JDCEV process with µ(x) = (θ + b + ca2x2β)x, σ(x) = axβ+1, and
k(x) = b+ ca2x2β where β < 0, a > 0, b ≥ 0, c ≥ 0, θ + b > 0. Denote the lifetime of

SubJDCEV by τ . The risk neutral equity price is modelled as St = 1{τ>t}e
ρtXφ

t with
ρ = r − q + φ(−θ). We set a = 10, b = 0.01, c = 0.1, θ = 0, β = −1, γ = 0, m = 1,
v = 1/16, rf = 0.05 and q = 0. Here x = 0 is a killing boundary.

In our examples we consider two types of options: European put and digital call
(which pays out 1 dollar if the asset price is above the strike and otherwise nothing).
In all cases, the strike price K = 100 and the the time to maturity t = 1. The
benchmark price is calculated by the FFT method in [11] for the NIG model and by
eigenfunction expansion for the other models, as the eigenvalues and eigenfunctions
are explicitly known in these cases (see e.g., [42]). To apply our method, we adopt
the uniform grid in all cases. For the SubCIR and SubJDCEV model, we directly
apply our discretization scheme on [0, A] (A is the localized boundary) as discussed
in Section 3.6.

4.1. Convergence of Localization Error. Proposition 3.3 and Remark 3 show
that the localization error converges exponentially in the NIG model and the SubOU
model, which is confirmed in our numerical experiment. In Figure 1, we plot the
convergence of localization error in these two models for a European put. For each A,
we calculate the option price under the localized problem using a large number of grid
points so that the discretization error is negligible compared to the localization error,
and we can regard the difference between the approximate price and the benchmark
price as the localization error. As discussed in Section 4.1, the finite boundaries −A
and A can be specified as either killing or reflecting. It is observed in Figure 1 that in
both specifications, the error converges exponentially, consistent with our theoretical
result. Comparing the two specifications, using reflecting boundaries produces much
more accurate results. This is expected, as for the original diffusion X, it is possible for
it to go back to (−A,A), which is impossible when −A and A are killing boundaries.
We also plot the convergence of localization error for a European put under the
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Fig. 1: Convergence of localization error for a European put under the NIG and
SubOU model. We plot the maximum localization error of the option price for S0

over [80, 120] in log scale.

A
1.5 2 2.5 3

m
ax

im
um

 e
rr

or

10-6

10-5

10-4

10-3

10-2

10-1

100

SubCIR: Reflecting

Fig. 2: Convergence of localization error for a European put under the SubCIR model.
We plot the maximum localization error of the option price for S0 over [80, 120] in log
scale.

SubCIR model in Figure 2. Here A is specified as reflecting. Although the SubCIR
model does not satisfy the conditions in Proposition 3.3, the localization error still
converges exponentially.

4.2. Smoothing the Payoff and Convergence of Discretization Error. In
view of the result in Section 5.1, we specify the localized boundaries as reflecting in
all models that require localization except for the NIG model, in which using killing
boundaries allow us to apply fractional FFT which reduces the time complexity (see
Remark 5). We set A to be large enough so that the localization error is negligible
compared to the discretization error, and we can regard the difference between the
approximate price and the benchmark price as the discretization error. In Figure 3,
we plot the convergence of discretiztion error in various models for European put and
digital call option. As the payoff of these options are not smooth enough, convergence
of discretization error displays an oscillatory pattern, and hence we can not apply
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Richardson extrapolation to speed up convergence. We propose to use the projection
method in [51] to smooth the payoff (see their paper for detailed account of this ap-
proach). Figure 3 shows convergence of discretization error now becomes smooth and
extrapolation becomes applicable. Furthermore, the slope of the smooth line indicates
the convergence order is two. It is interesting to note that although projection in-
troduces error to the initial data, it does not necessarily make the numerical solution
less accurate. As Figure 3 shows, using projection leads to more accurate numerical
solution for pricing European put options under the subordinate reflected Brownian
motion and digital call options under the NIG model. In other cases, for a given grid,
projection results in slightly larger error and in the worse case the error is three times
of the error using the original payoff. The advantage of projection is that it makes
extrapolation possible so that we can obtain highly accurate solution with small grid
size, despite that for each grid, the solution under projection might be less accurate.

We next apply extrapolation to the price sequence for the projected payoff for
various models and results for the ATM case (S0 = K) are displayed in Table 1.
Extrapolation works very well in all models. By extrapolating the price in the first two
rows, we already achieve a relative error around 0.01% or 0.001% in a few milliseconds
in all cases! This suffices for financial applications where typically a relative error of
order 0.1% is good enough (see [8]). We have also tested the accuracy in the OTM
(S0 > K) and ITM (S0 < K) case, and results are similar to the ATM case. We do
not display such results here to save space.

4.3. Comparison to a PIDE Scheme for the NIG Model. For popular
Lévy subordinate Brownian motion models, there already exist several PIDE schemes.
Here we compare our method to a very efficient PIDE scheme developed in [16] (here-
after we call it DFV) for the NIG model. The DFV scheme is developed for jump
processes with finite activity. To apply it, we approximate the small jump part by a
Brownian motion as in [14] and large jumps are also truncated. As mentioned in Re-
mark 6, the DFV schemes has time complexity O(mn log2 n), where m is the number
of time steps and n is the number of grid points for the space variable. In contrast, our
method does not discretize time and the time complexity is O(n log2 n). Furthermore,
our method does not have approximation error for small and large jumps. Figure 4
compares the DFV scheme and our FDEIG method for European put option for two
maturities. We plot the maximum error and the corresponding computation time. It
is clear that for all maturities considered, the FDEIG method is faster for given levels
of accuracy. Moreover, as expected, the difference becomes more pronounced as the
maturity increases.

4.4. The Option Delta. The delta of an option is important for hedging. For
a point xi in the interior of the grid, we approximate uφx(t, xi) as

uφx(t, xi) ≈
uφh,i+1(t)− uφh,i−1(t)

2h
,

where uφh,i±1(t) approximates uφ(t, xi±h). To calculate uφh(t), we can use the original
payoff or the projected payoff. Figure 5 plots the convergence of delta for both payoffs
under three models. To obtain the benchmark, we use the transform approach under
the NIG model and for the SubCIR and SubJDCEV model, we use an analytical
expression for the delta derived from the eigenfunction expansion for the price via
term-by-term differentiation (see [40, Eq.(19)]). Like the case for option price, the
convergence is oscillatory under the original payoff but smooth under the projected
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Fig. 3: Convergence of discretization error for various models (log-log scale). We
plot the maximum error of the option price for S0 over [80, 120] for the original and
projected payoff.

payoff. Furthermore, the convergence order is two in the projected payoff case. We
apply extrapolation to speed up convergence and Table 2 shows the extrapolation
results. We are able to achieve high level of accuracy for the delta in a few milliseconds.

5. Conclusions. This paper develops a novel and efficient method named as
FDEIG for pricing European options in models based on one-dimensional subordi-
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methods. We plot the maximum error for S0 ∈ [80, 120] with the corresponding
computation time.
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SubJDCEV models (log-log scale). We plot the maximum error for the delta for
S0 ∈ [80, 120].



L. Li and G. Zhang 25

NIG: Put
N Projected Error Order Time/ms Extrapolated Error

128 9.528940 -3.37E-02 0.6
256 9.554093 -8.54E-03 1.98 1.8 9.562478 -1.54E-04
512 9.560486 -2.15E-03 1.99 2.4 9.562617 -1.49E-05

SubRBM: Put
N Projected Error Order Time/ms Extrapolated Error

16 2.436106 -9.77E-03 0.2
32 2.443634 -2.24E-03 2.13 0.3 2.446143 2.70E-04
64 2.445333 -5.39E-04 2.05 0.8 2.445899 2.70E-05

SubCIR: Put
N Projected Error Order Time/ms Extrapolated Error

128 11.053394 -3.37E-02 2.2
256 11.078793 -8.29E-03 2.02 6.6 11.087259 1.78E-04
512 11.085021 -2.06E-03 2.01 26.5 11.087097 1.54E-05

SubJDCEV: Put
N Projected Error Order Time/ms Extrapolated Error

128 1.655903 -9.71E-03 1.9
256 1.663168 -2.44E-03 1.99 6.1 1.665590 -2.19E-05
512 1.664999 -6.13E-04 1.99 28.5 1.665609 -2.96E-06

NIG: Digital Call
N Projected Error Order Time/ms Extrapolated Error

128 0.412030 -4.97E-03 0.6
256 0.415784 -1.21E-03 2.03 1.3 0.417035 3.85E-05
512 0.416701 -2.96E-04 2.03 2.5 0.417006 9.41E-06

Table 1: Extrapolation results for the option price when S0 = 100. The “Projected”
column shows the option price with projected payoff for various grid size N while
the “Extrapolated” column shows the extrapolated value using the price from the
“Projected” column in previous and current row. The first error column shows the
error for unextrapolated price, while the second error column shows the error for the
extrapolated price. The order is defined as − log2(eN/eN/2) where eN is the error for
a grid with size N . “ms” stands for milliseconds.

nate diffusions, which are obtained by time changing a one-dimensional diffusion with
an independent Lévy or additive subordinator. The diffusion process under consider-
ation is a regular one with drift µ(x), diffusion coefficient σ(x) and killing rate k(x)
and it lives on an interval with end-point l and r (−∞ ≤ l < r ≤ ∞). The bound-
ary behavior can be either natural, exit, entrance or regular specified as killing and
reflecting. Our method is applicable if on any compact sub-interval [a, b] ⊂ (l, r),
σ(x) > 0, σ(x) ∈ C4([a, b]), µ(x) ∈ C3([a, b]), k(x) ∈ C2([a, b]) and the proposed nu-
merical scheme converges if the payoff function is bounded and piecewise continuous
(see Proposition 3.2 for the convergence of localization and Proposition 3.12 for the
convergence of spatial discretization; the condition for the payoff can be weakened for
the convergence of localization). Subject to further regularity conditions, we prove
that the localization error converges exponentially (Proposition 3.3) and for smooth
payoffs, the discretezation error converges in second order (Proposition 3.9). Since
financial payoffs are typically not smooth, we apply a smoothing technique and use
extrapolation to speed up convergence. The computation complexity of our method
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NIG: Put Delta
N Projected Error Order Time/ms Extrapolated Error

128 -0.43645502 2.15E-03 0.7
256 -0.43806513 5.39E-04 2.00 1.5 -0.43860184 1.97E-06
512 -0.43847061 1.33E-04 2.02 2.5 -0.43860577 -1.96E-06

SubCIR: Put Delta
N Projected Error Order Time/ms Extrapolated Error

128 -0.39393376 -7.52E-05 2.2
256 -0.39387687 -1.83E-05 2.04 7.0 -0.39385790 7.10E-07
512 -0.39386314 -4.53E-06 2.01 24.1 -0.39385856 4.84E-08

SubJDCEV: Put Delta
N Projected Error Order Time/ms Extrapolated Error

128 -0.27181061 2.99E-05 1.8
256 -0.27183261 7.87E-06 1.92 6.2 -0.27183994 5.37E-07
512 -0.27183848 2.00E-06 1.98 28.8 -0.27184044 3.93E-08

Table 2: Extrapolation results for the option delta when S0 = 100.

is O(n2) where n is the number of grid points (excluding killing boundaries) and the
complexity can be reduced to O(n log2 n) for subordinate Brownian motions. Com-
pared to existing numerical PIDE schemes, the FDEIG method does not discretize
time and hence there is no time discretization error. Furthermore, it does not truncate
large and small jumps, which is done in existing PIDE schemes. Various numerical ex-
periments confirm the computational efficiency and accuracy of the FDEIG method.
We also compare it to a popular PIDE scheme for subordinate Brownian motions and
show that it can have significant computational advantages over the existing PIDE
scheme for these processes.

While we use finite difference to discretize the diffusion PDE, we remark that finite
element can also be used, which leads us to solve some generalized matrix eigenvalue
problem in the form Hx = λMx. Compared to the finite difference case, this problem
cannot be solved in O(n2) in general, thus one would expect that using the same
number of grid points, the finite difference discretization is faster than the finite
element method. This is the primary reason why we choose to use finite difference in
this paper. However, the finite element approach can be advantageous in that there
is no need to smooth the payoff in order to apply extrapolation and error order can
be found quite easily for general payoffs.

The current paper focuses on pricing European options. For path-dependent
options, we expect that our method can be extended to price discretely monitored
ones with backward induction, and for American options, we will extend our scheme
to solve the corresponding variational inequality. In future research, we also plan to
consider how to price multivariate options in asset price models based on multivariate
subordinate diffusions that are constructed via multivariate subordination in [47].

Appendix A. Proof for Lemmas.

Proof. [Lemma 3.1] (i) A and −A are killing: Let ζ ′ := inf {t ≥ 0 : Mt,x ≥ A}.
Then the lifetime of XA, ζA = min(ζ, ζ ′), where ζ is the lifetime of X (XA can be
killed either by hitting A or −A, or by the killing rate, whichever occurs first). We
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also have XA
s = X̂s1{ζA>s} + ∆1{ζA≤s}.

uA(s, x)− u(s, x) = Ex[f(XA
s )1{ζA>s}]− Ex[f(Xs)1{ζ>s}]

= Ex[f(X̂s)1{ζ>s}1{ζ′>s}]− Ex[f(X̂s)1{ζ>s}] = −Ex[f(X̂s)1{ζ>s}1{ζ′≤s}].

Therefore |uA(s, x) − u(s, x)| ≤ Ex[f(X̂s)1{Ms,x≥A}]. Under the second assumption

on f , we have |uA(s, x)− u(s, x)| ≤ ‖f‖∞ Px(Ms,x ≥ A).

(ii) A and −A are reflecting: X̂A
s = X̂A

s 1{Ms,x≥A} + X̂s1{Ms,x<A} for s ≥ 0 and

uA(s, x) = Ex[f(XA
s )1{ζA>s}1{Ms,x<A}] + Ex[f(XA

s )1{ζA>s}1{Ms,x≥A}]

= Ex[f(X̂A
s )1{ζA>s}1{Ms,x<A}] + Ex[f(XA

s )1{ζA>s}1{Ms,x≥A}]

= Ex[f(X̂s)1{ζ>s}1{Ms,x<A}] + Ex[f(XA
s )1{ζA>s}1{Ms,x≥A}].

Hence under the first assumption, we have

|uA(s, x)− u(s, x)| = | − Ex[f(X̂s)1{ζ>s}1{Ms,x≥A}] + Ex[f(XA
s )1{ζA>s}1{Ms,x≥A}]|

≤ Ex[f(X̂s)1{Ms,x≥A}] + Ex[f(Ms,x)1{Ms,x≥A}] + Ex[f(−Ms,x)1{Ms,x≥A}],

where we used monotonicity of f to conclude that f(XA
s ) is bounded by f(Ms,x) +

f(−Ms,x). Under the second assumption, |uA(s, x)−u(s, x)| ≤ 2 ‖f‖∞ Px (Ms,x ≥ A).

Proof. [Lemma 3.4] [25] proves the claim for λn and ϕ
(k)
n for k = 0, 1 based on

Volterra’s integral equation. We can follow this idea by taking successive differenti-

ation of the integral equation to prove the result for ϕ
(k)
n (k = 2, 3, 4). The detailed

proof is omitted here.
Proof. [Lemma 3.7] Our assumption implies that the conditions in Theorem 5.2

of [30] are satisfied, applying which shows that for any T > 0, u ∈ H 4+ε
2 ,4+ε([0, T ] ×

[l, r]). This implies that ∂xxxu(t, x), ∂xxxxu(t, x) are bounded on [0, T ]× [l, r] for any
T > 0. By the Cauchy-Schwartz inequality, |fn| ≤ ‖f‖2 for all n, where ‖f‖2 :=
(
∫

[l,r]
f2(x)m(dx))1/2 is the L2-norm of f . This fact together with Lemma 3.4 imply

that there exists a constant C > 0 such that,

|∂xxxu(t, x)| ≤
∞∑
n=1

|fn| eλnt |ϕ′′′n (x)| ≤ C
∞∑
n=1

n3eλnt,

|∂xxxxu(t, x)| ≤
∞∑
n=1

|fn| eλnt |ϕ′′′′n (x)| ≤ C
∞∑
n=1

n4eλnt.

As t → ∞, both infinite series on the RHS tend to zero. Therefore ∂xxxu(t, x),
∂xxxxu(t, x) are uniformly bounded on [0,∞)× [l, r].

Proof. [Lemma 3.7] Under our assumption, the conditions in Theorem 5.3 of [30]

are satisfied, applying which shows that for any T > 0, u ∈ H 5+ε
2 ,5+ε([0, T ] × [l, r]).

Hence ∂xxxu(t, x), ∂xxxxu(t, x) and ∂t∂xxxu(t, x) are bounded on [0, T ] × [l, r]. The
uniform boundedness of ∂xxxu(t, x), ∂xxxxu(t, x) on [0,∞) × [l, r] can be derived in
the same way as Lemma 3.7. Now consider ∂t∂xxxu(t, x). Applying Cauchy-Schwartz
inequality to fn and Lemma 3.4, there exists C > 0 such that

|∂t∂xxxu(t, x)| ≤
∞∑
n=1

|fnλn| eλnt |ϕ′′′n (x)| ≤ C
∞∑
n=1

n3|λn|eλnt,
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As t → ∞, the infinite series on the RHS of the inequality tend to zero. Hence
∂t∂xxxu(t, x) is uniformly bounded in [0,∞)× [l, r].

Proof. [Lemma 3.8] Under our assumption, the conditions in Theorem 5.3 of [30]

are satisfied, applying which shows that for any T > 0, u ∈ H 5+ε
2 ,5+ε([0, T ] × [l, r]).

Hence ∂xxxu(t, x), ∂xxxxu(t, x) and ∂t∂xxxu(t, x) are bounded on [0, T ] × [l, r]. The
uniform boundedness of ∂xxxu(t, x), ∂xxxxu(t, x) on [0,∞) × [l, r] can be derived in
the same way as Lemma 3.7. Now consider ∂t∂xxxu(t, x). Applying Cauchy-Schwartz
inequality to fn and Lemma 3.4, there exists C > 0 such that

|∂t∂xxxu(t, x)| ≤
∞∑
n=1

|fnλn| eλnt |ϕ′′′n (x)| ≤ C
∞∑
n=1

n3|λn|eλnt,

As t → ∞, the infinite series on the RHS of the inequality tend to zero. Hence
∂t∂xxxu(t, x) is uniformly bounded in [0,∞)× [l, r].

Proof. [Lemma 3.11] We first note that there exists positive constant Cl < Cu
which are independent of h such that

Cl ≤ ‖J‖∞ ≤ Cu. (A.1)

This can be proved following the argument in the proof of Lemma 1 in [26]. Recall
that Λk is the k-th eigenvalue of H and let Φk be the k-th normalized eigenvector
(ΦTk JΦk = 1). We obtain an expression for Ps,i,j . In (3.10), setting the function
φ(λ) = λ (which corresponds to the no time change case) and fh to be a vector whose
j-th element is one and all others zero, we obtain Ps,i,j = Jj,j

∑n
k=1 e

ΛksΦk,iΦk,j
(recall that n = N + 1−# of killing boundaries).

We will apply results from [26] and [9]. The boundary conditions for the differ-
ential equation in their set-up are homogeneous Dirichlet conditions (corresponding
to killing boundaries) and the finite-difference scheme they analyze is a little bit d-
ifferent from ours. Nevertheless one can prove that their results still hold in our
finite-difference scheme for both killing and reflecting boundaries by modifying the
arguments in these references (we omit such lengthy discussions here). From the
theorem in [26], there is a constant C1 independent of h and k such that

‖Φk/dk‖∞ ≤ C1

√
h, where dk =

√√√√ n∑
i=1

Φ2
k,i.

Since
∑n
i=1 Φ2

k,iJi,i = 1, applying (A.1), we obtain dk ≤ 1/
√
Cl. Therefore ‖Φk‖∞ ≤

(C1/
√
Cl)
√
h. By [9, Lemma 3], there is a positive integer k0, independent of n and

constants K1,K2, independent of h such that for k0 ≤ k ≤ n, K1k
2π2 ≤ Λk ≤

K2k
2π2 which implies that

∑n
k=1 e

Λks ≤ (k0 − 1) +
∑∞
k=0 e

−K1k
2π2s ≤ C2 where C2

is independent of h. Therefore

Ps,i,j ≤ max
j
|Jj,j |max

k,i,j
|Φk,iΦk,j |

n∑
k=1

eΛks ≤ Cu(C2
1/Cl)C2h.

By Lemma 3.4, for all k, ‖ϕk‖∞ is bounded by a constant. We also have λk ∼
O(−k2), so

∑∞
k=1 e

λks is also bounded by some constant. From [45], p(s, x, y) =

m(y)
∑∞
k=1 e

λksϕk(x)ϕk(y). Hence sup(x,y)∈(l,r)×(l,r) p(s, x, y) ≤ ‖m‖∞ ‖ϕk‖2∞
∑∞
k=1 e

λks,
which is bounded by some constant (the speed density m is continuous on [l, r] and
hence bounded).
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