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Abstract

This paper studies subordinate Ornstein-Uhlenbeck (OU) processes, i.e., OU diffusions
time changed by Lévy subordinators. We construct their sample path decomposition, show
that they possess mean-reverting jumps, study their equivalent measure transformations,
and the spectral representation of their transition semigroups in terms of Hermite expan-
sions. As an application, we propose a new class of commodity models with mean-reverting
jumps based on subordinate OU process. Further time changing by the integral of a CIR
process plus a deterministic function of time, we induce stochastic volatility and time inho-
mogeneity, such as seasonality, in the models. We obtain analytical solutions for commodity
futures options in terms of Hermite expansions. The models are consistent with the ini-
tial futures curve, exhibit Samuelson’s maturity effect, and are flexible enough to capture a
variety of implied volatility smile patterns observed in commodities futures options.
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1 Introduction

The contribution of this paper is two-fold. The first part studies subordinate Ornstein-
Uhlenbeck (SubOU) processes. A SubOU process can be constructed by time changing an OU
diffusion by a Lévy subordinator. SubOU processes are Markov semimartingales with mean-
reverting jumps. SubOU transition semigroups possess spectral representations in terms of
Hermite expansions. As an application, the second part of the paper develops a new class
of analytically tractable commodity models with mean-reverting jumps by modeling the com-
modity spot price as the (scaled and compensated) exponential of a SubOU process. To model
stochastic volatility and time inhomogeneity, such as seasonality, we further time change SubOU
processes by the integral of the sum of an independent CIR diffusion and a deterministic func-
tion of time. The resulting models have the following features: (1) mean-reverting jumps, (2)
stochastic volatility, (3) time inhomogeneity, (4) analytical solutions for futures options in terms
of Hermite expansions, (5) consistency with the initial futures curve, (6) Samuelson’s maturity
effect, and (6) flexibility to capture a variety of implied volatility smile patterns observed in
commodity futures options.

The mathematical part of the paper contains a self-contained presentation of SubOU pro-
cesses. Section 2.1 defines SubOU semigroups as Bochner’s subordinates of OU semigroups
and gives explicit expressions for their infinitesimal generators based on the application of R.S.
Phillips’ theorem. This material is classical (see Schilling et al. (2010) for an excellent recent
survey of Bochner’s subordination and Albeverio and Rudiger (2003), (2005) for the treatment
of SubOU semigroups in particular). Section 2.2 defines a class of SubOU Markov semimartin-
gales, gives their local characteristics, proves uniqueness of the associated martingale problem,
and proves the mean reversion property of their jumps. While the material in this section
follows from the general semimartingale theory (our presentation follows Jacod and Shiryaev
(2003)), it has not been presented in the literature in this form. Section 2.3 presents results
on equivalent measure transformations for SubOU processes. In particular, a class of locally
equivalent measure changes that transform one SubOU process into another SubOU process is
characterized, along with a detailed treatment of some special cases important in applications.
This section presents original results that, to the best of our knowledge, have not previously
appeared in the literature. It serves as the basis for financial applications, characterizing equiv-
alent martingale measures (EMMs) for this class of models. Section 2.4 presents the spectral
decomposition of the SubOU semigroup in L2(R,m), where m is the Gaussian measure, in terms
of Hermite expansions. The L2 spectral theory of SubOU semigroups has been previously given
by Albeverio and Rudiger (2003), (2005). We supplement it with pointwise convergence results
and truncation error bounds for the expansion that are important for options pricing.

The second part of the paper provides the development of our commodity futures model.
Section 3.1 defines the model for the commodity spot price as the exponential of a SubOU
process scaled and compensated so that, under Q, the mean spot price evolves along the fixed
initial futures curve. We then explicitly solve for the futures dynamics under Q in the form of a
martingale expansion with basis martingales associated with Hermite polynomials. Section 3.2
demonstrates Samuelson’s maturity effect in commodity futures in this class of models. Section
3.3 derives explicit analytical solutions for futures options in terms of Hermite expansions. In
section 4 we further time change SubOU processes to induce stochastic volatility and time
inhomogeneity and study the resulting commodity futures models. In particular, we derive
the futures price process, demonstrate Samuelson’s maturity effect, and obtain solutions for
futures options. In section 5 we discuss efficient model implementation based on recursions for
Hermite polynomials and present model calibration examples to futures options on a variety
of commodities, including metals, energies and agriculturals. Appendix A contains a number
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of results on the CIR process needed in the development of models with stochastic volatility.
Proofs are collected in Appendix B.

In the rest of this introduction we discuss relationships of models developed in this paper to
the literature. We start with a brief survey of the commodity derivatives modeling literature.
Mean reversion and jumps are two of the salient features of commodities prices (see monographs
Eydeland and Wolyniec (2003), Geman (2005), and Geman (2008) for introduction to commod-
ity and energy derivatives markets and modeling). Mean reversion in commodities markets
is well documented in numerous empirical studies in the literature (e.g., Bessembinder et al.
(1995), Pindyck (2001), Casassus and Collin-Dufresne (2005)). To capture the mean reversion
property, the classical commodity models are based on OU diffusions. The simplest such model
is the exponential OU model of Schwartz (1997). In this model the commodity spot price is
assumed to follow the exponential of an OU process with constant long-run mean level, rate of
mean reversion, and volatility. While the OU process itself lives on the whole real line, taking
the exponential leads to the positive process for the commodity spot price. The geometric OU
model plays the same role in commodity markets that the geometric Brownian motion model
plays in the equity markets, serving as the simplest analytically tractable commodity derivatives
pricing model. Being inherently the spot price model, the futures curve is derived endogenously
in this model and, hence, does not generally match the futures curve observed in the market.
This situation is similar to the Vasicek (1977) model of the short interest rate, where the yield
curve is derived endogenously in the model and does not generally match the market yield
curve. Similar to how the Vasicek model is extended to match an arbitrary market yield curve
by making the long-run mean level of the short rate time-dependent (e.g., Hull and White
(1993)), the exponential OU model can be extended to match an arbitrary market-observed
futures curve (e.g., Clelow and Strickland (1999)). In this model futures prices of all maturities
follow continuous martingales under Q.

Along with mean reversion, discontinuous price movements (jumps) are another salient
feature of commodity and energy markets. While jumps are a ubiquitous feature of all asset
prices and financial variables, from equities to foreign exchange to interest rates, commodity
and energy prices exhibit particularly large and frequent jumps, perhaps more so than other
asset classes (see, e.g., Hilliard and Reis (1999), Deng (1999), Geman and Roncoroni (2005)
for empirical evidence of jumps in commodity and energy prices). The question then arises as
to how to extend commodity models based on mean-reverting OU diffusions to jumps. The
first line of attack is to add a jump component to the diffusive mean-reverting component to
form a jump-diffusion process similar to Merton (1976) classical jump-diffusion model widely
used in equities. A variety of jump-diffusion models along these lines have been introduced in
commodity markets (e.g., Hilliard and Reis (1998), Hilliard and Reis (1999), Deng (1999), Yan
(2002), Benth and Šaltytė Benth (2004), Geman and Roncoroni (2005), Andersen (2008) and
Crosby (2008)). Virtually all of the jump-diffusion models in the literature, with the exception
of Geman and Roncoroni (2005) and Andersen (2008), add state-independent jumps to the
mean-reverting diffusion. The resulting models exhibit mean reversion due to the OU drift,
but do not have mean reversion in their jump measure that remains state-independent. That
is, upon arrival, the direction of the jump and the probability distribution of its amplitude are
independent of the current state of the process. The drift acting upon the process between
the jumps is forced to account for all of the mean reversion in these models. A model with
mean reverting jumps would, in contrast, feature state-dependent mean reverting jumps with
the jump direction and the jump amplitude dependent on the current state of the process.

In contrast to jump-diffusion models with state-independent jumps, Geman and Roncoroni
(2005) propose a jump-diffusion model with Poisson jumps independent of the diffusion com-
ponent but with jump direction dependent on the pre-jump state of the process. They show
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that such models capture some of the empirical properties of electricity price data. However,
analytical solutions for futures options have not been obtained in their model. Andersen (2008)
considers jump-diffusion processes with jumps driven by a continuous time Markov chain whose
states are interpreted as different market regimes. Jumps in this framework are dependent on
the regimes and, hence, are state dependent. However, option pricing in this regime-switching
framework is generally highly non-trivial unless some simplifying assumptions are made.

In this paper we take an alternative approach to the previous literature on commodity and
energy models with jumps. Instead of adding state-independent jumps to the mean-reverting
diffusion process, we time change the mean-reverting OU diffusion with a Lévy subordinator to
yield a pure jump or a jump-diffusion process (depending on whether or not the subordinator
has a positive drift) with state-dependent and mean reverting jumps. As such, our models can
be viewed as a commodity markets counterpart of the time-changed Lévy process-based models
in equity markets by Madan et al. (1998), Barndorff-Nielsen (1998), Geman et al. (2001), Carr
et al. (2003), and Carr and Wu (2004). However, since mean reversion is the crucial feature
of commodity markets, instead of time changing Brownian motion as in those references, we
time change OU diffusions and obtain pure jump or jump-diffusion Markov semimartingales
with state-dependent mean reverting jumps. Similar to Lévy-based models in equity markets,
our models based on SubOU processes calibrate well to a variety of implied volatility smiles in
commodity markets when the maturity is fixed.

To induce stochastic volatility (the need for stochastic volatility in energy markets has
been advocated by Eydeland and Geman (1998)), we further time change these jump processes
with the integral of an activity rate (stochastic volatility) that follows a CIR process. This
is similar to the approach of Carr et al. (2003) and Carr and Wu (2004), but in contrast to
those references we time change Markov jump processes that are generally not Lévy processes.
This yields pure jump or jump-diffusion models with stochastic volatility modulating jump
amplitudes. To additionally introduce explicit time dependence to capture the term structure
of at-the-money (ATM) volatilities observed in commodity futures options markets (e.g., the
seasonality effects in volatility, as well as the sharply declining term structure of ATM volatility
often seen in some commodity futures options), we add a purely deterministic function of time
to the CIR activity rate (turning it into the so-called CIR++ process, e.g., Brigo and Mercurio
(2006)). Such models with mean-reverting jumps, stochastic volatility, and time dependence
can be calibrated to the entire volatility surface across both the strike and maturity dimensions.

To conclude this introduction, we discuss analytical and computational aspects. While the
time changed Lévy models of Carr et al. (2003) lead to fast and efficient option pricing by means
of Fourier analysis (see Carr and Madan (1999) for the Fast Fourier Transform methodology and
Feng and Linetsky (2008) and Feng and Linetsky (2009) for the closely related Hilbert trans-
form methodology), our time changed OU models also lead to analytical option pricing, but by
different mathematical means. While in the context of Lévy processes one exploits the explicit
knowledge of the characteristic function, in the context of OU processes we exploit the explicit
knowledge of the eigenfunction expansion of the SubOU transition semigroup. The eigenfunc-
tion expansion method is a powerful tool for pricing contingent claims written on symmetric
Markov processes (see Linetsky (2004) and Linetsky (2007) for surveys). It is particularly well
suited to time changes since the time variable enters the eigenfunction expansion of the tran-
sition semigroup only through the exponentials e−λnt and, after the time change with a Lévy
subordinator, the eigenfunction expansion has the same form as for the original process, but
with e−λnt replaced with e−φ(λn)t, where φ(λ) is the Laplace exponent of the subordinator. We
note that the seminal paper by Bochner (1949) already contained this observation (see Eq.(11)
in Bochner (1949); further see Albeverio and Rudiger (2003), (2005) for the mathematical de-
velopment of subordination of symmetric Markov processes). In Mathematical Finance, this
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observation has been previously exploited by Albanese and Kuznetsov (2004) in the context of
volatility smile modeling for equities, by Boyarchenko and Levendorskĭi (2007) in the context
of interest rate modeling, and by Mendoza et al. (2010) in the context of unified credit-equity
modeling.

2 Subordinate Ornstein-Uhlenbeck Processes

2.1 SubOU Semigroups

We start with an OU semigroup (Pt)t≥0 defined on Bb(R) (the space of bounded Borel
measurable functions), where Ptf(x) =

∫
R f(y)p(t, x, y)dy with the OU transition kernel:

p(t, x, y) =
1√

πσ2

κ (1− e−2κt)
exp

{
−
(
y − x+ (x− θ)(1− e−κt)

)2
σ2

κ (1− e−2κt)

}
. (2.1)

p(t, x, y) is the transition density of an OU diffusion with the rate of mean reversion κ > 0, long-
run level θ ∈ R, and volatility σ > 0. (Pt)t≥0 is a strongly continuous contraction semigroup
on Bb(R). Restricted to C0(R) (the space of continuous functions vanishing at infinity), it
is a Feller semigroup, and C∞c (R) is a core of the domain D(G) of its infinitesimal generator
G acting on C2

c (R) (the subscript c stands for functions with compact support) by Gf(x) =
κ(θ − x)f ′(x) + 1

2σ
2f ′′(x) (c.f. Duffie et al. (2003) Theorem 2.7).

Consider a vaguely continuous convolution semigroup (qt)t≥0 of probability measures on
R+ (c.f. Schilling et al. (2010) Definition 5.1). For each t, qt ([0,∞)) = 1 (we consider only
conservative case in this paper), and its Laplace transform is given by the Lévy-Khintchine
formula with the Laplace exponent φ(λ) defined for all λ ≥ 0:∫

[0,∞)
e−λsqt(ds) = e−tφ(λ), φ(λ) = γλ+

∫
[0,∞)

(1− e−λs)ν(ds)

with drift γ > 0 and Lévy measure ν satisfying the integrability condition
∫

[0,∞)(s∧1)ν(ds) <∞.

(qt)t≥0 is the family of transition probabilities of a subordinator, i.e., a non-negative Lévy process
starting at the origin (c.f. Bertoin (1996) or Schilling et al. (2010)).

We define a subordinate semigroup (Pφt )t≥0 on Bb(R) as the Bochner integral:

Pφt f(x) :=

∫
[0,∞)

Psf(x)qt(ds).

This procedure is called Bochner’s subordination (c.f. Schilling et al. (2010) Definition 12.2).

From Schilling et al. (2010) Proposition 12.1, the subordinate semigroup (Pφt )t≥0 is also a
strongly continuous contraction semigroup on Bb(R). We call it the SubOU semigroup with

generating tuple (κ, θ, σ, γ, ν). The superscript φ in (Pφt )t≥0 signifies that it is constructed by
subordinating the semigroup (Pt)t≥0 with the convolution semigroup of a subordinator with the
Laplace exponent φ.

From Jacob (2001) Corollary 4.3.4, a Feller semigroup remains a Feller semigroup after

subordination. It implies that (Pφt )t≥0 restricted to C0(R) is Feller. Its infinitesimal generator
is given by Phillips’ Theorem (Sato (1999) Theorem 32.1). The assertion on its core comes from
Sato (1999) Proposition 32.5 (ii) and the fact that C∞c (R) is a core of D(G). We summarize
these results in the following.
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Theorem 2.1. (i) A SubOU semigroup with generating tuple (κ, θ, σ, γ, ν) is a Feller semigroup.
(ii)Let Gφ be its infinitesimal generator. Then C∞c (R) is a core of D(Gφ), C2

c (R) ⊆ D(Gφ), and
for any f ∈ C2

c (R),

Gφf(x) =
1

2
γσ2f ′′(x) + b(x)f ′(x) +

∫
y 6=0

(
f(x+ y)− f(x)− y1{|y|61}f

′(x)
)

Π(x, dy),

with the state-dependent Lévy measure Π(x, dy) = π(x, y)dy with density defined for all y 6= 0

π(x, y) =

∫
[0,∞)

p(s, x, x+ y)ν(ds), (2.2)

where p(t, x, y) is the OU transition density (2.1). The drift with respect to the truncation
function y1{|y|61} is

b(x) = γκ(θ − x) +

∫
[0,∞)

(∫
{|y|61}

yp(s, x, x+ y)dy

)
ν(ds).

Remark 2.1. (i) On C∞c (R), Gφ can be represented as a pseudo-differential operator (PDO) (see
for example Schnurr (2009) Corollary 1.21) Gφf(x) = −p(x,D)f(x) = −

∫
R p(x, ξ)f̂(ξ)eixξdξ,

where f̂(ξ) = 1
2π

∫
R e
−iξxf(x)dx is the Fourier transform of f(x), and p(x, ξ) is called the symbol

of the PDO and is expressed as p(x, ξ) = 1
2γσ

2ξ2−ib(x)ξ−
∫
y 6=0

(
eiξy − 1− iξy1{|y|61}

)
Π(x, dy).

Note that p(x, ξ) is a continuous negative definite function (CNDF) for each x (c.f. Jacob (2001)
Definition 3.6.5).
(ii) π(x, y) satisfies the condition

∫
y 6=0(y2 ∧ 1)π(x, y)dy <∞ for each x. This is a direct result

from the representation theorem for CNDF. See Jacob (2001) Theorem 3.7.7.
(iii) The Lévy measure of the SubOU semigroup has finite activity if and only if the Lévy
measure of the subordinator has finite activity, which is justified by interchanging the order of
integration in

∫
y 6=0

∫
[0,∞) p(s, x, x+ y)ν(ds)dy by Tonelli’s Theorem.

(iv) In general, it is not true that we can interchange the order of integration in∫
[0,∞)

∫
|y|≤1 yp(s, x, x+ y)dyν(ds). However, if the Lévy density satisfies the integrability condi-

tion
∫
|y|61 |y|π(x, y)dy < ∞, then the interchange is valid and the truncation is not needed. It

can be shown that this integrability condition is equivalent to
∫ 1

0

√
sν(ds) < ∞ (if x 6= θ) and∫ 1

0 ν(ds) <∞ (if x = θ). In this case the generator takes the simpler form on C2
c (R):

Gφf(x) =
1

2
γσ2f ′′(x) + γκ(θ − x)f ′(x) +

∫
R

(f(x+ y)− f(x))π(x, y)dy.

2.2 SubOU Processes as Markov Semimaringales

Definition 2.1. A time-homogeneous Markov process (Ω,F , (Ft)t≥0, X,Px)x∈R with state space
(R,B(R)) is called a subordinate OU (SubOU) process with generating tuple
(κ, θ, σ, γ, ν) if its semigroup is a SubOU semigroup with the same generating tuple.

Since a SubOU semigroup is Feller, a SubOU process is a Feller process. Every Feller process
has a càdlàg modification (c.f. Jacob (2005) Theorem 3.4.9 or Revuz and Yor (1999) Theorem
III.2.7), so immediately we have the following

Corollary 2.1. Every SubOU process admits a càdlàg modification.
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We will always consider càdlàg SubOU processes in this paper. From now on, without
explicit mention, we will assume that (X, (Px)x∈R) is the canonical realization of a given SubOU
semigroup defined on (Ω,F0, (F0

t )t≥0), where Ω = D(R) (the Skorohod space of càdlàg functions
with values in R, c.f. Jacod and Shiryaev (2003) Definition VI.1.1), F0

t = σ(Xs, s ≤ t), and
F0 =

∨
t≥0F0

t .
Schnurr (2009) gives an excellent discussion on the connection between càdlàg Feller pro-

cesses and semimartingales. The Feller property of the SubOU process together with C∞c (R) ⊆
D(Gφ) allows us to conclude that it is a semimartingale w.r.t. every Px with x ∈ R (c.f. Schnurr
(2009) Theorem 3.1). From Schnurr (2009) Theorem 3.14, the pseudo-differential operator rep-
resentation of the infinitesimal generator Gφ gives us the triplet (B,C,Π) of semimartingale
characteristics of the SubOU process. For the definition of semimartingale characteristics see
Jacod and Shiryaev (2003) Chapter II.

Theorem 2.2. (i) The SubOU process (Ω,F0, (F0
t )t≥0, X,Px)x∈R with generating tuple

(κ, θ, σ, γ, ν) is a semimartingale w.r.t. every Px and admits semimartingale characteristics
(B,C,Π) w.r.t to the truncation function h(x) = x1{|x|≤1}, where

Bt(ω) =

∫ t

0

[
γκ(θ −Xs−(ω)) +

∫ ∞
0

∫
{|y|≤1}

yp(u;Xs−(ω), Xs−(ω) + y)dyν(du)
]
ds,

Ct(ω) = γσ2t, Π(ω, dt, dy) = π(Xt−(ω), y)dtdy,

where π(x, y) is given in Theorem 2.1.
(ii) Denote by µX the integer-valued random measure associated with the jumps of X (c.f.
Jacod and Shiryaev (2003) Proposition II.1.16) and Xc the continuous local martingale part of
X. Then X has the following sample path decomposition (under the starting point x):

Xt(ω) = x+Bt(ω) +Xc
t (ω) + h(x) ∗ (µX −Π)t(ω) + (x− h(x)) ∗ µXt (ω) (2.3)

with the quadratic variation of the continuous part [Xc, Xc]t(ω) = Ct(ω) = γσ2t (∗ denotes
integration w.r.t. a random measure).

(iii) If X ′ is an R-valued semimartingale defined on some filtered probability space
(Ω′,F ′, (F ′t)t≥0,P′) with P′(X ′0 = x) = 1 and with the semimartingale characteristics (B′, C ′,Π′)
given in (1), where X is replaced by X ′, then P′ ◦X ′−1 = Px.

The proof of Part (iii) of Theorem 2.2 is given in Appendix B. It essentially says the solution
to the Martingale Problem in the canonical space setting as defined in Jacod and Shiryaev (2003)
Definition III.2.4 is unique. This is a key result for the study of locally equivalent measure
changes for SubOU processes in section 2.3.

Remark 2.2. (i) It is clear that the SubOU process is a jump-diffusion process if γ > 0 and a
pure jump process if γ = 0.
(ii) If

∫ 1
0

√
sν(ds) < ∞, then

∫
|y|61 |y|π(x, y)dy < ∞ for all x 6= θ. Hence |h(x)| ∗ Π ∈ A +

loc,

which implies h(x)∗(µX−Π) = h(x)∗µX−h(x)∗Π (c.f. Jacod and Shiryaev (2003) Proposition
II.1.28) and

Xt(ω) = x+

∫ t

0
γκ(θ −Xs−(ω))ds+Xc

t (ω) + x ∗ µXt (ω).

Hence, in this case, the jump part of the SubOU process is of finite variation.

A SubOU process is a process with mean-reverting jumps. The mean reversion property of
the state-dependent SubOU Lévy measure Π(x, ·) is characterized in the following.
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Theorem 2.3. For any y > 0, we have

(i) If x > θ, then π(x,−y) > π(x, y), and Π(x, (−∞,−y)) > Π(x, (y,∞)).

(ii) If x < θ, then π(x,−y) < π(x, y), and Π(x, (−∞,−y)) < Π(x, (y,∞)).

(iii) If x = θ, then π(x,−y) = π(x, y), and Π(x, (−∞,−y)) = Π(x, (y,∞)).

This theorem tells us that when the current state x is above (below) the long-run level θ, a
downward (upward) jump is more likely to occur. When x = θ, the intensity of downward and
upward jumps are equal. This mean-reverting nature of jumps makes SubOU processes a natural
candidate for modeling mean-reverting prices and other financial variables. If γ = 0, a SubOU
process is a pure jump process with mean-reverting jumps. If γ > 0, it is a jump-diffusion
process with mean-reverting diffusion drift and mean-reverting jumps.

Figure 1 plots SubOU Lévy densities when ν are Lévy measures of a compound Poisson
process with exponential jump sizes and an inverse Gaussian (IG) process.

Remark 2.3. Time Change Interpretation of Bochner’s Subordination The semigroup
(Pt)t≥0 gives rise to an OU diffusion process X. The vaguely continuous convolution semigroup
of probability measures (qt)t≥0 gives rise to a subordinator T . Assume that both X and T
are defined on the same probability space and are independent. Then the time changed or
subordinate process Xφ

t := XTt is again a Markov process. By independence of X and T , the
associated operator semigroup is given by

Pφt f(x) = E[f(XTt)] =

∫
[0,∞)

Ex[f(Xs)]qt(ds) =

∫
[0,∞)

Psf(x)qt(ds).

That is, Xφ
t is a SubOU process according to our definition, and Bochner’s subordination can

be interpreted as a stochastic time change with respect to an independent subordinator (cf.
Schilling, Song and Vondracek (2010) p.141).

Remark 2.4. SubOU Markov semimartingales admit a representation in terms of a Brownian
motion and an independent Poisson random measure. Explicit expressions follow from Cinlar
and Jacod (1981) Theorem 3.13 and are omitted due to space constraints.

2.3 Equivalent Measure Transformations for SubOU Processes

For building financial models based on SubOU processes, we are interested in locally equiv-
alent measure changes1 that transform a SubOU process with a given generating tuple into
another SubOU process with another generating tuple. We can then build financial models
with SubOU processes under both the physical and the risk-neutral measures, and determine
how the generating tuple of the SubOU process changes under the measure change.

As before, Ω is the space of all càdlàg functions taking values in R. In this section we follow
Jacod and Shiryaev (2003). In order to use their results, we use the right-continuous version of
the filtration (F̃t)t≥0 with F̃t = F0

t+ and F̃ =
∨
t≥0 F̃t = F0. Let X be the canonical process.

It is clear that if X is a SubOU process, it is also Markov and a SubOU process w.r.t. (F̃)t≥0.

We fix the truncation function h(x) = x1{x≤1}. Let P0 be a probability measure on (Ω, F̃0)
taken to be the initial distribution. Following Jacod and Shiryaev (2003) Definition III.2.4, we
call a probability measure P on (Ω, F̃ , (F̃t)t≥0) a solution to the martingale problem associated

with (F̃0, X) and (P0;B,C, ν), where (B,C, ν) are given semimartingale characteristics, if the

1Two probability measures P1 and P2 on a filtered probability space (Ω,F , (Ft)t≥0) are said to be locally
equivalent, if P1|Ft ∼ P2|Ft for each t ≥ 0, where P|Ft is the restriction of measure P on the σ-filed Ft.
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Figure 1: State-dependent Lévy densities of SubOU processes with θ = 0.2, κ = 1, and σ = 0.6
when ν is the Lévy measure of a compound Poisson process with exponential jumps (arrival
rate α = 2, reciprocal of mean jump size η = 1) and an inverse Gaussian process (mean rate
µ = 1, variance rate ν = 1) with x = −1, 0.2, 1. To emphasize the value of the current state,
the horizontal axis plots the post jump state (not the jump size).

8



following hold: (i) the restriction P|F̃0
= P0; (ii) X is a semimartingale on the stochastic

basis (Ω, F̃ , (F̃t)t≥0,P) with characteristics (B,C, ν) relative to the truncation function h. The
following proposition is crucial in proving the necessary and sufficient conditions for locally
equivalent measure change.

Proposition 2.1. Let (B,C,Π) be the SubOU semimartingale characteristics defined in The-
orem 2.2. The solution to the martingale problem (σ(X0), X|P0;B,C,Π) exists and is unique.
Moreover, local uniqueness holds.

See Jacod and Shiryaev (2003) Definition III.2.35 for the definition of local uniqueness. The
existence of the solution is quite obvious. Given a SubOU semigroup with generating tuple
corresponding to the given SubOU semimartingale characteristics (B,C, ν), we can construct
a time-homogeneous universal Markov process on the space of càdlàg functions taking values
in R. Such a process is a semimartingale with characteristics (B,C, ν) by Theorem 2.2 under
every Px, and set P(A) =

∫
Px(A)P0(dx) for any A ∈ F . The uniqueness follows from part (iii)

of Theorem 2.2. The local uniqueness is a result of uniqueness and the Markov property of the
process by Jacod and Shiryaev (2003) Theorem III.2.40. We then have the following.

Theorem 2.4. Let P and P′ be two probability measures on (Ω, F̃ , (F̃t)t≥0) such that the canon-
ical process is a SubOU process with generating tuples (κ, θ, σ, γ, ν) and (κ′, θ′, σ′, γ′, ν ′), respec-
tively, and with initial distributions P0 and P′0, respectively. Then the following two statements
are equivalent.

(1) P and P′ are locally equivalent, i.e., P|F̃t ∼ P′|F̃t for every t ≥ 0.

(2) The following conditions are satisfied:
(i) P0 ∼ P′0; (ii) γσ2 = γ′σ′2;

(iii) For every x ∈ R, the Hellinger condition
∫
y 6=0

(√
π′(x, y)−

√
π(x, y)

)2
dy <∞ holds,

where π(x, ·) and π′(x, ·) are defined as in Theorem 2.1.

(3) Furthermore, suppose these conditions are satisfied. Define

βt(ω) :=
(γ′κ′θ′ − γκθ)− (γ′κ′ − γκ)Xt−(ω)

γσ2
1{γ 6=0}, and Y (ω, t, y) :=

π′(Xt−(ω), y)

π(Xt−(ω), y)
.

Let Xc and µX denote the continuous martingale part of X and the jump measure associated
with X. Then N = β ·Xc + (Y − 1) ∗ (µX −Π) is a P-local martingale, and the Radon-Nikodym
density process D of P′ w.r.t. P equals to the Doleans-Dade stochastic exponential E (N) of N .

Remark 2.5. Define ϕ(x, y) := ln (π′(x, y)/π(x, y)). The Hellinger condition
∫
y 6=0

(√
π′(x, y) −√

π(x, y)
)2
dy <∞ is equivalent to the following (similar to Remark 33.3 of Sato (1999)):∫

{y:|ϕ(x,y)|≤1}
ϕ(x, y)2π(x, y)dy <∞,

∫
{y:ϕ(x,y)>1}

π′(x, y)dy <∞,
∫
{y:ϕ(x,y)<−1}

π(x, y)dy <∞.

Intuitively, when π and π′ both have infinite activity, the Hellinger condition says that the
region where large perturbations of the jump density occurs should not be arbitrarily close to
the origin.

Remark 2.6. The limiting case κ = 0 corresponds to the subordinate Brownian motion without
drift. Theorem 2.4 still holds when κ = 0 and/or κ′ = 0. When κ > 0 and κ′ = 0, it
characterizes locally equivalent measure transformations of SubOU processes into subordinate
Brownian motions without drift. When κ = κ′ = 0, Theorem 2.4 reduce to the special case of
Theorem 33.1 of Sato (1999) for Lévy processes specialized to the case of subordinate Brownian
motions.
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The general Hellinger condition is difficult to check. We wish to derive restrictions it places
on SubOU generating tuples that can be transformed into each other under locally equivalent
measure changes. It can be easily shown that: (i) If both ν and ν ′ are Lévy measures of finite
activity subordinators, then the Hellinger condition is automatically satisfied. (ii) If ν is a
Lévy measure of a finite activity subordinator and ν ′ is a Lévy measure of an infinite activity
subordinator (or vice versa), then the Hellinger condition is not satisfied. Thus, equivalent
measure changes cannot transform a SubOU process with a finite activity subordinator into a
SubOU process with an infinite activity subordinator, and vice versa.

We now investigate the case when ν and ν ′ are Lévy measures of infinite activity subordina-
tors. To verify the Hellinger condition in this case, we need to study the asymptotic behavior
of the SubOU Lévy density π(x, y) given in Eq.(2.2) as y → 0. The following proposition
shows that it is equivalent to the asymptotic behavior of the Lévy density of some subordinated
Brownian motion.

Proposition 2.2. Let π(x, y) be the Lévy density of a SubOU process with generating tuple
(κ, θ, σ, γ, ν). Suppose π(x, y) → ∞ as y → 0. For each fixed x ∈ R, let πx(y) be the Lévy
density of a subordinate Brownian motion starting at 0 with drift κ(θ− x), volatility σ, and the
same γ and ν. Then limy→0 π(x, y)/πx(y) = 1.

We can further show that the asymptotics of the Lévy density of subordinate Brownian
motion does not depend on drift. We then have.

Proposition 2.3. The asymptotics of π(x, y) as y → 0 does not depend on κ, θ, and x.

Hence, κ and θ can be freely changed by locally equivalent measure changes. In particular,
κ > 0 can be changed to κ = 0 by a locally equivalent measure change. The problem of
investigating the Hellinger condition now reduces to finding the asymptotics of the Lévy density
of a subordinate Brownian motion. Song and Vondraček (2009) is an excellent reference on the
potential theory of subordinate Brownian motions and provides many examples of subordinators
and asymptotics of the Lévy densities of subordinate Brownian motions. If the Lévy measure
ν of the subordinator has a density ν(s), then, in general, we have Proposition 2.4 to compute
the asymptotics of the Lévy density of the subordinate Brownian motion

π(y) :=

∫ ∞
0

1√
2πσ2s

e−
y2

2σ2s ν(s)ds (2.4)

as y → 0. Proposition 2.4 gives the asymptotics under two different types of sufficient conditions.
The first sufficient condition is based on Lemma 3.3 of Song and Vondraček (2009). The
applicability of their Lemma 3.3 is not restricted to Lévy densities of subordinators. However,
in this case some of their conditions are not necessary. Below we give a more general result for
this case. The second sufficient condition is a restriction of the Lévy density of the subordinator
to the class of completely monotone functions2 (see, for example Schilling et al. (2010) for its
characterization and properties). This result is proved in Theorem 2.6 in Kim et al. (2010).

Proposition 2.4. Let ν(s) be the Lévy density of a subordinator. Suppose there exist constants
c0 > 0 and 1

2 < β < 2 and a function ` : (0,∞)→ (0,∞) slowly varying at infinity3 such that

ν(s) ∼ c0

sβ`(1
s )

as s→ 0. (2.5)

Let π(y) be defined as in (2.4). Suppose one of the following two conditions is satisfied:

2A completely monotone function f : (0,∞) 7→ R is a C∞ function such that (−1)nf (n)(x) ≥ 0 for n =
0, 1, 2, · · · .

3A function ` defined in a neighborhood of infinity is called slowly varying at infinity if limx→∞
`(ax)
`(x)

= 1 for
all a > 0.
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(1) Let g : (0,∞)→ (0,∞) be a function such that
∫∞

0 sβ−
3
2 e−sg(s)ds <∞. Assume there is

also some ξ > 0 such that f`,ξ(y, s) ≤ g(s) for all y, s > 0, where the auxiliary function

f`,ξ(y, s) is defined by f`,ξ(y, s) :=
`( 1
y

)

`( 2σ2s
y

)
if y < s

ξ and 0 otherwise for any function `

slowly varying at infinity and any ξ > 0.

(2) ν(s) is a completely monotone function.

Then

π(y) ∼
c0Γ(β − 1

2)
√
π(2σ2)1−β

1

|y|2β−1`( 1
y2

)
as y → 0.

Remark 2.7. For slowly varying functions and regularly varying functions see Bingham et al.
(1987). Every regularly varying function4 at zero can be written in the form 1

xβ`( 1
x

)
for some real

number β and ` slowly varying at infinity (c.f. Bingham et al. (1987) Theorem 1.4.1). Hence,
the assumption on the asymptotics (2.5) is very general. Also note that from Bingham et al.
(1987) Proposition 1.3.6, 1

sβ`( 1
s

)
→ ∞ as s → 0, so we are dealing with subordinators whose

Lévy density tends to infinity at 0.

For a subordinator with Lévy density, if (2.5) is satisfied, there is a close connection be-
tween the Blumenthal-Getoor (BG) index and the parameter β in Proposition 2.4 when β ≥ 1.
For any subordinator with Lévy measure ν(ds) its BG index is defined by p := inf{α > 0 :∫
|s|≤1 s

αν(ds) <∞}.

Proposition 2.5. (1) Suppose (2.5) holds with β ≥ 1. Then the BG index is equal to β − 1.
(2) Suppose the conditions in Proposition 2.4 are satisfied for two subordinators with β ≥ 1 and
β′ ≥ 1. Then the Hellinger condition implies their BG indexes are equal.

We now apply Proposition 2.4 to the key example important in financial applications.

Example 2.1. Tempered Stable Subordinators. Consider the tempered stable family of
Lévy measures ν(s) = Cs−1−pe−ηs, where C > 0, p < 1, η > 0. The limiting stable family has
η = 0 and p ∈ (0, 1). The tempered stable cases with p ≥ 0 (p < 0) give rise to subordinators
with infinite activity (finite activity). Important special cases are the Gamma subordinator with
p = 0 (Madan et al. (1998)), the Inverse Gaussian (IG) subordinator with p = 1

2 (Barndorff-
Nielsen (1998)), and the compound Poisson subordinator with exponential jumps with p = −1
and η > 0. For this family, the Laplace exponent is given by the following.

φ(λ) =

{
γλ− CΓ(−p)[(λ+ η)p − ηp], p 6= 0

γλ+ C ln(1 + λ/η), p = 0
, (2.6)

where Γ(·) is the Gamma function.
For tempered stable subordinators with p > −1

2 , it is clear that Proposition 2.4 condition (1)
holds with c0 = C, β = 1 + p, `(x) = 1, g(s) = 1, and ξ chosen arbitrarily. Condition (2) also
holds because the Lévy density of the subordinator is completely monotone. Hence we have

π(y) ∼
CΓ(p+ 1

2)(2σ2)p
√
π|y|2p+1

as y → 0.

From Proposition 2.2, π(x, y) has the same asymptotics. It is now straightforward to show that
Theorem 2.4 reduces to the following result for SubOU processes with tempered stable subordi-
nators with drift.

4A function f defined in a neighborhood of infinity is called regularly varying at infinity with index ρ ∈ R if
limx→∞

f(λx)
f(x)

= λρ for all λ > 0. It is called regularly varying at 0 if f( 1
x

) is regularly varying at ∞.
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Corollary 2.2. Consider the setting in Theorem 2.4. Suppose ν and ν ′ belong to the tempered
stable family with parameters (C, p, η) and (C ′, p′, η′) with p, p′ ≥ 0, respectively. Then P|F̃t ∼
P′|F̃t for every t ≥ 0 if and only if P0 ∼ P′0 and the following equalities hold:

γσ2 = γ′σ′2, p = p′, Cσ2p = C ′σ′2p.

Thus, if we have SubOU processes with tempered stable subordinators with drift under
both the physical and the risk-neutral measure, the p parameter p must remain the same under
both measures, C and C ′ are related by C ′ = C(σ/σ′)2p, the subordinator drifts and the OU
volatilities are related by γ′σ′2 = γσ2, and the OU drift parameters θ and κ and θ′ and κ′ can
be arbitrarily changed.

For other examples of Lévy densities, where, e.g., `(x) = (ln(1 + x))α, one can also use
Proposition 2.4. See Song and Vondraček (2009) section 2 for examples of subordinators and
section 3 for the asymptotics of the Lévy density of subordinate Brownian motions. Replace
4 in their formulas by 2σ2 to coincide with our notation. Once the asymptotics of the Lévy
density is determined, the Hellinger condition can be reduced to a simple relationship for the
parameters similar to Corollary 2.2 for SubOU processes with tempered stable Lévy densities.

We are also interested in the following question: if under some measure P the semimartin-
gale X is a SubOU process with generating tuple (κ, θ, σ, γ, ν), characterize all measures P′
locally equivalent to P. In particular, we are interested in conditions on the semimartingale
characteristics of X under P′. The following result answers this question.

Theorem 2.5. Let P and P′ be two probability measures on (Ω, F̃ , (F̃t)t≥0) with initial distri-
butions P0 and P′0, respectively. Suppose under P, the canonical process X is a SubOU process
with generating tuple (κ, θ, σ, γ, ν) and local characteristics (B,C,Π). Suppose under P′, X is
a semimartingale with local characteristics (B′, C ′,Π′). If P′ and P are locally equivalent, then
there exists a nonnegative predictable function Y (ω, t, x) and a predictable process β such that:

B′t(ω) = Bt(ω) + γσ2

∫ t

0
βs(ω)ds+

∫
[0,t]×R

y1{|y|≤1}(Y (s, ω, y)− 1)π(Xs−(ω), y)dyds,

C ′t(ω) = γσ2t, Π′(ω, ds, dy) = Y (ω, s, y)Π(ω, ds, dy), (2.7)∫ t

0
|βs(ω)|ds <∞,

∫ t

0
β2
s (ω)ds <∞, (2.8)∫ t

0

∫
y 6=0
|y1{|y|≤1}(Y (s, ω, y)− 1)|π(Xs−(ω), y)dyds <∞, (2.9)∫ t

0

∫
y 6=0

(
√
Y (s, ω, y)− 1)2π(Xs−(ω), y)dyds <∞, (Hellinger condition) (2.10)

P′ and P-a.s. for all t ≥ 0. Define N = β ·Xc + (Y − 1) ∗ (µX − Π). Then the density process
Z of P′ w.r.t. P is the Doleans-Dade stochastic exponential E (N) of N .

2.4 The Spectral Representation of the SubOU Semigroup

The OU and SubOU processes are stationary with the Gaussian stationary density

m(x) =

√
κ

πσ2
e−

κ(θ−x)2

σ2 .

Consider the Hilbert space L2(R,m) with the inner product (f, g) =
∫
R f(x)g(x)m(x)dx, and

denote by ‖ · ‖ the L2-norm. The OU and SubOU semigroups are both symmetric semigroups
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in L2(R,m), i.e. (Ptf, g) = (f,Ptg) and (Pφt f, g) = (f,Pφt g) for any f, g ∈ L2(R,m). Their
spectral decompositions in L2(R,m) are available in closed form.

Theorem 2.6. (1) The OU semigroup has the following eigenfunction expansion in L2(R,m):

Ptf(x) =

∞∑
n=0

e−κntfnϕn(x), f ∈ L2(R,m), t ≥ 0, (2.11)

with the orthonormal eigenfunctions expressed in terms of Hermite polynomials (see, e.g., Lebe-
dev (1965))

ϕn(x) =
1√

2nn!
Hn

(√
κ

σ
(x− θ)

)
, n = 0, 1, · · · , (2.12)

and expansion coefficients fn = (f, ϕn).
(2) The SubOU semigroup has the following eigenfunction expansion in L2(R,m):

Pφt f(x) =
∞∑
n=0

e−φ(κn)tfnϕn(x), f ∈ L2(R,m), t ≥ 0 (2.13)

with the same eigenfunctions and expansion coefficients as the OU semigroup.

General results for the spectral representation of one-dimensional diffusions go back to the
fundamental work of McKean (1956). For each t, the OU transition semigroup operator Pt
has a purely discrete spectrum with eigenvalues {e−κnt, n = 0, 1, ...}. The explicit form of the
eigenfunction expansion of the OU semigroup in terms of Hermite polynomials is well known and
can be found in many references, including Wong (1964), Karlin and Taylor (1981), Schoutens
(2000), Bakry and Mazet (2004), Alberverio and Rüdiger (2003), Alberverio and Rüdiger (2005),
and Gorovoi and Linetsky (2004) p.62. The general spectral representation of the transition
semigroup of a symmetric Markov process can be found in Fukushima et al. (1994). Bochner
subordination replaces the eigenvalues e−λnt with e−φ(λn)t, where φ is the Laplace exponent
of the subordinator, while the eigenfunctions remain the same. Thus the eigenvalues of the
SubOU semigroup operator Pφt are {e−φ(κn)t, n = 0, 1, ...} with the same eigenfunctions. The
general spectral representation of the semigroup of a subordinate symmetric Markov process
can be found in Okura (2002) and in Alberverio and Rüdiger (2003) and Alberverio and Rüdiger
(2005), where subordinate OU processes and their semigroups are studied in the general setting
of symmetric Markov processes. Applications in finance can be found in Linetsky (2007),
Mendoza et al. (2010) and Mendoza and Linetsky (2010).

For t ≥ 0 the eigenfunction expansions on the RHS of (2.11) and (2.13) for the OU and

the SubOU semigroup converge to Ptf and Pφt f in the L2-norm for any f ∈ L2(R,m). In
financial applications, we are interested in pointwise convergence, as we need to compute values
at specific levels of the underlying variable. For t > 0 pointwise convergence results are available
for OU and SubOU semigroups.

Theorem 2.7. (1) The eigenfunction expansion (2.11) converges to Ptf(x) pointwise in x for
each t > 0 and each f ∈ L2(R,m).
(2) If either of the following condition is satisfied: (i) f(x) =

∑∞
n=0 fnϕn(x) converges absolutely

for all x ∈ R, or (ii)
∑∞

n=1 e
−φ(κn)tn−1/4 < ∞ for all t > 0, then the eigenfunction expansion

(2.13) converges to Pφt f(x) pointwise for all x ∈ R for each t > 0 and each f ∈ L2(R,m).

The eigenfunction expansion (2.11) for the OU semigroup converges pointwise without any
further conditions for each t > 0 and f ∈ L2(R,m). The eigenfunction (2.13) for the SubOU
semigroup converges pointwise for each t > 0 and f ∈ L2(R,m) under the mild sufficient
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condition on the Laplace exponent of the subordinator in (2) of Theorem 2.7. In practice
this condition is satisfied for all subordinators with drift γ > 0 due to the factor e−γκt. In
the pure jump case γ = 0, it is satisfied for all tempered stable subordinators with p > 0.
Furthermore, for subordinators for which it is not satisfied, while the eigenfunction expansion
(2.13) is not guaranteed to converge pointwise for each t > 0 and each f ∈ L2(R,m), it may
converge pointwise for some t > 0 and some functions f , depending on the rate of decay of the
coefficients fn as n increases.

We also have the following expansions for OU and SubOU transition densities.

Theorem 2.8. (1) The OU transition density (2.1) has the eigenfunction expansion

p(t, x, y) = m(y)
∞∑
n=0

e−κntϕn(x)ϕn(y) (2.14)

converging for all t > 0 uniformly in x, y on compacts.
(2) If the Laplace exponent of the subordinator satisfies

∑∞
n=1 e

−φ(κn)tn−
1
2 < ∞ for all t > 0,

the SubOU transition density has the eigenfunction expansion

pφ(t, x, y) = m(y)
∞∑
n=0

e−φ(κn)tϕn(x)ϕn(y) (2.15)

converging for all t > 0 uniformly in x, y on compacts.

In the numerical implementation one needs to truncate eigenfunction expansions after a
finite number of terms. Truncation error bounds of the expansion (2.15) in the L2 and the
pointwise sense can be easily derived. Here we present the pointwise error bound, as it is of
most interest in finance. L2 bounds can be derived similarly.

Theorem 2.9. Suppose that the Laplace exponent of the subordinator satisfies
∑∞

n=0 e
−φ(κn)t <

∞ for all t > 0. Then for any f ∈ L2(R,m), the truncation error has the following bound:∣∣∣∣∣
∞∑

n=M

e−φ(κn)tfnϕn(x)

∣∣∣∣∣ ≤ 1.0864‖f‖e
κ(x−θ)2

2σ2

∞∑
n=M

e−φ(κn)t.

If γ > 0, we can derive a particularly simple pointwise truncation error estimate:∣∣∣∣∣
∞∑

n=M

e−φ(κn)tfnϕn(x)

∣∣∣∣∣ ≤ 1.0864‖f‖e
κ(x−θ)2

2σ2
e−γκMt

1− e−γκt
.

From these estimates it is clear that the convergence rate is governed by the OU mean reversion
rate κ and time to maturity t, as well as the Laplace exponent of the subordinator. The greater
the κ and the longer the time to maturity, the faster the convergence. In particular, if γ > 0, the
convergence is exponential. In the pure jump case γ = 0 with tempered stable subordinators
with p > 0, the truncation error can similarly be shown to be O(etCΓ(−p)(κM)p) with Γ(−p) < 0
and C > 0. We note that these error bounds are conservative since they rely on the estimate
|fn| ≤ ‖f‖. Depending on the properties of f , the coefficients fn may converge to zero at a fast
rate, resulting in faster convergence than is implied by these estimates.

14



3 Commodity Models With Mean-Reverting Jumps

3.1 Futures Dynamics

We start with (Ω, F̃ , (F̃t)t≥0) as in section 2.3 endowed with a probability measure Q and
assume that, under Q, the canonical process X is a SubOU process with generating tuple
(κ, θ, σ, γ, ν) and starting point X0 = x0 ∈ R. Let {F (0, t), t ≥ 0} be the initial futures curve (a
given deterministic function of time). We take Q to be the risk-neutral pricing measure chosen
by the market and model the commodity spot price St under Q as the (scaled) exponential of
the SubOU process X:

St = F (0, t)eXt−G(t). (3.1)

The function G(t) is selected so that the expectation of the spot price under Q is equal to the
initial futures price, EQ[St] = F (0, t), which implies G(t) = lnEQ[eXt ].

To compute futures price dynamics, we need the following.

Lemma 3.1. The expansion of the exponential function in the eigenfunction basis (2.13) reads:

ex =
∞∑
n=0

fnϕn(x), fn = eθ+
σ2

4κ
1√
n!

(
σ√
2κ

)n
. (3.2)

The expansion converges absolutely for each x ∈ R.

We now compute the futures price process {F (s, t) = EQ[St|F̃s], s ∈ [0, t]} for each fixed
maturity t ≥ 0 using Lemma 3.1.

Theorem 3.1. (1) The function G(t) in the model (3.1) is given by:

eG(t) = EQ[eXt ] =
∞∑
n=0

e−φ(κn)tfnϕn(x0), (3.3)

where fn are given in (3.2), and the expansion converges absolutely for each x0 ∈ R, all t ≥ 0
and any Laplace exponent φ.
(2) For each fixed maturity time t > 0, the futures price F (s, t) is a martingale on [0, t] given
by:

F (s, t) = F (0, t)e−G(t)
∞∑
n=0

e−φ(κn)(t−s)fnϕn(Xs), s ∈ [0, t]. (3.4)

At time zero, s = 0, (3.4) reduces to the identity F (0, t) = F (0, t). At maturity, s = t, the
futures price is equal to the spot price and (3.4) reduces to (3.1) due to Eq.(3.2). Eq.(3.4) gives a
martingale expansion for the futures price. Note that for each n the process {eφ(κn)sϕn(Xs), s ≥
0} is a martingale due to the eigenfunction property:

EQ[ϕn(Xs)|Xt] = e−φ(κn)(s−t)ϕn(Xt).

Thus, Eq.(3.4) represents the futures price process as an expansion in martingales associated
with the eigenfunctions of the SubOU semigroup.

Since the process X can be expressed in terms of the spot price process S and the initial
futures curve by inverting (3.1),

Xs = ln (Ss/F (0, s))) +G(s), (3.5)

Eq.(3.4) expresses the dynamics of the futures price in terms of the spot price dynamics and
the initial futures curve. Alternatively, we can view Eq.(3.4) as the process for the futures price
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driven by the SubOU process X without any reference to the spot price S. In this interpretation,
our model can be viewed as the model for the evolution of the futures curve, rather than the
spot price model. Eq.(3.4) directly defines the martingale futures dynamics. The spot dynamics
(3.1) then follows as the limiting case.

Remark 3.1. The Case without Time Change. When Xt is an OU rather than SubOU
process, our model reduces to the standard exponential OU model:

St = F (0, t)eXt−x0e
−κt−θ(1−e−κt)−σ

2

4κ
(1−e−2κt).

By applying Itô’s formula, we obtain the spot price SDE: dSt = κ(Θ(t)−lnSt)Stdt+σStdBt with

Θ(t) = 1
κ

(
d
dt lnF (0, t) + σ2

4κ (1− e−2κt)
)

+ lnF (0, t). This is essentially the same SDE as the

Model 1 in Schwartz (1997) but with the long run level Θ(t) taken to be a deterministic function
of time completely determined by the initial futures curve. Using the generating function of
Hermite polynomials (Lebedev (1972) p.60),

∑∞
n=0

wn

n! Hn(z) = e2zw−w2
, when Xt is an OU

process (i.e., φ(λ) = λ), Eq.(3.4) reduces to:

F (s, t) = F (0, t) exp

{
Xse

−κ(t−s) − x0e
−κt − θ(e−κ(t−s) − e−κt)− σ2

4κ
(e−2κ(t−s) − e−2κt)

}
= F (0, t)

(
Ss

F (0, s)

)exp{−κ(t−s)}
exp

{
−σ

2

4κ
e−κt(e2κs − 1)(e−κt − e−κs)

}
.

This expression for the futures price dynamics in terms of the initial futures curve and the
spot price dynamics in the OU model can be found in Clewlow and Strickland (1999), Eq.(2.5).
Using Itô’s formula, one can show that

dF (s, t) = σe−κ(t−s)F (s, t)dBs, s ∈ [0, t]. (3.6)

We now discuss futures dynamics under the physical measure P. The form for the futures
process is still given by (3.4). However, the law of X changes under an equivalent measure

change. Let (B
P
, C

P
,Π

P
) be the semimartingale characteristics of X under P. Theorem 2.5

gives the general conditions on the semimartingale characteristics of (B
P
, C

P
,Π

P
). Any semi-

martingale satisfying these conditions can be chosen as a candidate driver for the commodity
model under P that leads to the model driven by the given SubOU process with generating tuple
(κ, θ, σ, γ, ν) under Q. In order to retain analytical tractability under P, we are interested in
equivalent measure transformations that transform a given SubOU process into another SubOU
process plus possibly a deterministic function of time. Using Theorem 2.4 and Theorem 2.5, we
obtain the following result.

Theorem 3.2. Consider the canonical process X on (Ω, F̃ , (F̃t)t≥0). Suppose under measure
Q with Q(X0 = x0) = 1 the canonical process X is a SubOU process with generating tuple
(κ, θ, σ, γ, ν) and under measure P with P(X0 = x0) = 1 it is a SubOU process with gener-
ating tuple (κP , θP , σP , γP , νP ) plus a deterministic function H(t). Then Q and P are locally
equivalent if and only if:

(1) H is absolutely continuous with H(0) = 0 if γ > 0, and H(t) = 0 for all t if γ = 0.

(2) γPσ
2
P = γσ2.

(3) the Hellinger condition
∫
y 6=0

(√
πP (x, y)−

√
π(x, y)

)2
dy <∞ is satisfied.
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The Hellinger condition (3) can be simplified using Proposition 2.4. For example, in the
case where the Lévy measures νP and νQ are both those of tempered stable subordinators, the
Hellinger condition (3) reduces to the conditions presented in Corollary 2.2.

If X under P is specified to be a SubOU process plus some deterministic drift given by the
function H(t), the model parameters can be estimated from the time series of futures prices
by filtering methods. In this case the transition density of the underlying SubOU process is
known explicitly and given by (2.15). The pure OU diffusion based model has been estimated
by Schwartz (1997). In that case, the noise term is Gaussian and the standard Kalman filter
can be used. In our SubOU case, the noise term for the transition equation is not Gaussian,
and the particle filter algorithm (or the extended particle filter or the unscented particle filter)
can be used since we know the transition density of X in closed form (see Haykin (2001) and
Javaheri et al. (2003)).

3.2 The Maturity Effect

The maturity effect (also known as the Samuelson hypothesis, see Samuelson (1965)) in the
commodities futures markets is the well-known increase in commodity futures price volatility
as the futures contract approaches maturity. The maturity effect implies that long term futures
are less volatile than short term futures, and is well documented in the empirical literature (see
Bessembinder et al. (1995), Kalev and Duong (2008) and references therein). The maturity
effect is obviously present in the pure OU model (3.6), where futures volatility σe−κτ decays
exponentially as time to maturity τ = t− s increases, with mean reversion rate controlling the
rate of decay. Here we investigate the maturity effect in our SubOU model.

We start with characterizing futures volatililty in the general semimartingale setting. For
a futures contract with maturity time t, define rts = ln F (s,t)

F (0,t) , s ∈ [0, t], the cumulative contin-

uously compounded return process over the time interval [0, s] with s ≤ t. Since F (s, t) is a
semimartingale, rt is also a semimartingale. We measure volatility of the futures return process
rt experienced over the time interval [0, s] by its quadratic variation (QV) [rt, rt]s (the square-
bracket process). This definition of volatility has been widely used in the econometric literature
(see Andersen et al. (2009)). With this definition, the maturity effect can be mathematically
defined as follows.

Definition 3.1. A futures model is said to exhibit the maturity effect almost surely if

P([rt1 , rt1 ]s > [rt2 , rt2 ]s) = 1 for any 0 < s < t1 < t2.

Remark 3.2. If P and Q are locally equivalent, then the QV of a semimartingale under P is
a version of the QV under Q (Jacod and Shiryaev (2003) Theorem III.3.13). Hence, if the
maturity effect is present in the futures dynamics under the physical measure, it is also present
under the risk-neutral measure. We will compute [rt, rt]s under Q.

Remark 3.3. In the pure OU model (3.6) the QV of futures return process is a deterministic

function [rt, rt]s = σ2

2κe
−2κt(e2κs − 1) decreasing in t for each fixed s, 0 < s < t.

Note that [rt, rt]s = [rtc, rtc]s +
∑

u≤s(∆r
t
u)2, where rtc denotes the continuous martingale

part of the process rt. From Eq.(3.4), rts = −G(t) + θ + σ2

4κ + ln g(Xs, s, t), where the function
g is:

g(x, s, t) :=

∞∑
n=0

e−φ(κn)(t−s)
( σ

2
√
κ

)n 1

n!
Hn

(√κ
σ

(x− θ)
)
.

Since we know the semimartingale characteristics of the SubOU process X, from Kallsen (2006)

Proposition 2.5 we know that [rtc, rtc]s = γσ2
∫ s

0

(
∂ ln g(Xu−,u,t)

∂x

)2
du = γσ2

∫ s
0

(
gx(Xu−,u,t)
g(Xu−,u,t)

)2
du
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and (∆rtu)2 = (rtu−rtu−)2 = (ln g(Xu, u, t)−ln g(Xu−, u−, t))2 =
( ∫ Xu∨Xu−

Xu∧Xu−
gx(x,u,t)
g(x,u,t) dx

)2
. There-

fore, [rt, rt]s = γσ2
∫ s

0

(
gx(Xu−,u,t)
g(Xu−,u,t)

)2
du+

∑
u≤s

( ∫ Xu∨Xu−
Xu∧Xu−

gx(x,u,t)
g(x,u,t) dx

)2
. Note that g(x, u, t) > 0

and gx(x, u, t) > 0 for each x, and g(x, u, t) depends only on t− u. We thus have the following
result.

Theorem 3.3. If gx(x, 0, t)/g(x, 0, t) is decreasing in t for each x, then the maturity effect holds
in the SubOU model.

While the condition in Theorem 3.3 is hard to check analytically since the function g is
given by the Hermite expansion, it can be easily checked numerically. We carried out extensive
numerical testing for a wide range of parameter scenarios in pure jump (γ = 0) and jump-
diffusion (γ > 0) cases and verified that it was indeed satisfied in all the cases. We thus
conjecture that the condition in Theorem 3.3 is satisfied, and the maturity effect holds for our
SubOU models.

Figure 2 illustrates the maturity effect as follows. We simulated 10,000 sample paths on the
time interval [0, 1/2] of pure jump (γ = 0) SubOU processes X with parameters θ = 0, σ = 0.5,
with the Inverse Gaussian subordinator with mean rate µ = 1 and variance rate ν = 1, and with
κ = 0.01, 0.1, and 1. We then constructed 10,000 sample paths of the futures price processes
with maturities 1/2, 1, 2, 3, 4 and 5 years for each of the underlying SubOU processes using the
model relationship (3.4) under Q, estimated realized quadratic variations of futures returns on
each sample path (the quadratic variation is the same under P and under Q), and verified that
[rt1 , rt1 ]0.5 > [rt2 , rt2 ]0.5 for t1 < t2 on each sample path. Figure 2 plots the estimated mean of
the quadratic variation of futures returns as functions of futures contract maturity for the three
values of the rate of mean reversion κ = 0.01, 0.1, and 1. The maturity effect is clearly seen in
the plot. As in the pure diffusion OU model, κ controls the maturity effect in pure jump and
jump-diffusion SubOU models.
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Figure 2: EQ{[rt, rt]0.5} as a function of futures maturity t for a SubOU Process with Inverse
Gaussian subordinator (with parameters κ = 0.01, 0.1, 1, θ = 0, σ = 0.5, γ = 0, mean rate
µ = 1, variance rate ν = 1).

To further illustrate, Figure 3 plots a sample path of the driving SubOU process in the jump-
diffusion case and the corresponding futures price process with 3 years to maturity at time zero.
The maturity effect is clearly seen in the sample path dynamics, as the futures price experiences
low realized volatility far away from maturity, and the realized volatility substantially increases
as the futures contract approaches maturity.
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Figure 3: A Sample Path of a SubOU Process and the corresponding futures price process with
the Inverse Gaussian subordinator (with parameters κ = 1, θ = 0, σ = 0.5, γ = 0.1, mean rate
µ = 1, variance rate ν = 1).

Remark 3.4. It is important to note that the rate of mean reversion κ that enters the expression
for the diffusion volatility in the pure diffusion OU case (3.6) and in the quadratic variation
process through the functional form (3.4) of the dependence of the futures price on the SubOU
process in the SubOU model is the rate of mean reversion under the risk-neutral pricing measure
Q. It is the risk-neutral rate of mean reversion that controls the maturity effect. That is, the
presence of the maturity effect in the futures time series under the physical measure P is governed
by the rate of mean reversion under the pricing measure. If there is no mean reversion under
the pricing measure Q, i.e., X is taken to be a subordinate Brownian motion under Q rather
than a subordinate OU process, there is no maturity effect under P. Thus, the presence of the
maturity effect under P requires X to be a SubOU process under Q, as futures models built on
subordinate Brownian motions (Lévy processes) do not possess the maturity effect. In contrast,
SubOU models are capable of modeling the maturity effect.

3.3 Futures Options Pricing

We consider pricing European put and call options on a futures contract. Suppose the strike
price is K. The underlying futures contract matures at time t∗ and the option expires at t < t∗.
The time τ = t∗− t varies across commodities, ranging from several days for natural gas to one
month for gold.

Here we only consider pricing the put option. The call option price is given by the put-call
parity. Alternatively, a similar eigenfunction expansion can be obtained for the call pricing
function, and the put-call parity can be verified directly. The put payoff at expiration t is
(K − F (t, t∗))+, where F (t, t∗) is the t∗-maturity futures price at time t. In our model it is
related to Xt by (3.4). It is convenient to write the payoff function as follows:

(K − F (x, t, t∗))+ = (K − F (x, t, t∗))1{x<x∗},

where x∗ is the unique solution of the equation F (x, t, t∗) = K, and F (x, t, t∗) is the t∗-maturity
futures price at time t as a function of the state variable Xt = x given by (3.4). Since F (x, t, t∗)
is a strictly increasing function of x, the solution to this equation is unique and can be easily
computed numerically using bisection or any other root bracketing algorithm. To price the put
option at time zero, we thus need to first find x∗ corresponding to the strike price K and then
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compute the expectation in:

P (t, t∗, F (0, t∗),K) = B(0, t)EQ
[
(K − F (Xt, t, t

∗))1{Xt<x∗}

]
,

where B(0, t) is the risk-free discount factor from the option expiration t to time zero.

Theorem 3.4. Let x∗ be the unique solution of the equation F (x, t, t∗) = K and define w∗ :=√
κ
σ (x∗ − θ), τ := t∗ − t, α := σ

2
√
κ

and F := F (0, t∗). Suppose the Laplace exponent of the

subordinator satisfies
∑∞

n=1 e
−φ(κn)tn−

1
4 <∞. Then the put price has the absolutely convergent

eigenfunction expansion:

P (t, t∗,K, F ) = B(0, t)
∞∑
n=0

e−φ(κn)tpn(t, t∗, w∗, F )ϕn(x0), (3.7)

pn(t, t∗, w∗, F ) =
1√
π2nn!

{
Kbn(w∗)− Feθ+

σ2

4κ
−G(t∗)

∞∑
m=0

e−φ(κm)τ α
m

m!
an,m(w∗)

}
, (3.8)

bn(w) =

∫ w

−∞
Hn(x)e−x

2
dx =

{√
πΦ(
√

2w), n = 0,

−Hn−1(w)e−w
2
, n = 1, 2, · · ·

, (3.9)

an,m(w) =

∫ w

−∞
Hm(x)Hn(x)e−x

2
dx =

min(n,m)∑
k=0

(
m

k

)(
n

k

)
2kk!bn+m−2k(w). (3.10)

The call price is given by the put-call parity C(t, t∗,K, F ) = B(0, t)(F −K) + P (t, t∗,K, F ).

Remark 3.5. The option written on the spot price is obtained by setting t = t∗ in (3.8).

Remark 3.6. The Case Without Time Change. In the pure diffusion OU model, the option
pricing formulas collapse to the Black-Scholes type formulas for the exponential OU diffusion
model obtained by Clelow and Strickland (1999):

P (t, t∗,K, F ) = B(0, t) [KΦ(−d−)− FΦ(−d+)] , C(t, t∗,K, F ) = B(0, t) [FΦ(d+)−KΦ(d−)] ,

d− =
ln
(
F
K

)
− σ2

4κe
−2κτ (1− e−2κt)

σ√
2κ
e−κτ
√

1− e−2κt
, d+ = d− +

σ√
2κ
e−κτ

√
1− e−2κt.

4 Stochastic Volatility and Time Inhomogeneity

Models based on SubOU processes described in the previous section can be calibrated to
fit a variety of volatility smile patterns observed in commodity options markets. However,
they are generally not flexible enough in order to fit the entire volatility surface across different
maturities. In this section we study a further extension of SubOU models to introduce stochastic
volatility and time inhomogeneity, such as seasonality in options’ implied volatility typical for
some commodities, such as natural gas.

We consider absolutely continuous time changes of the form

Tt =

∫ t

0

(
a(u) + Zu

)
du, (4.1)

where a(t) ≥ 0 is a deterministic function of time and Z is a CIR diffusion solving the SDE

dZt = κZ(θZ − Zt)dt+ σZ
√
ZtdBt, Z0 = z0,
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with parameters assumed to satisfy the Feller condition, 2θZκZ/σ
2
Z ≥ 1 to ensure that zero is

an inaccessible boundary.
The activity rate process a(t) +Zt has the form of the so-called CIR++ process well known

in the interest rate modeling literature (e.g., Brigo and Mercurio (2006)). The advantage of
the CIR process is in its analytical tractability. Its transition probability density, the Laplace
transform of its integral, and the Laplace transform conditional on the terminal state of the
process are all known in closed form. The relevant results are collected in Appendix A.

Define the process S to be the inverse of T , St := inf{u ≥ 0 : Tu > t}. Since T is a strictly
increasing continuous process, so is S. It is also clear that Tt = inf{u ≥ 0 : Su > t}.

Assume that on some complete probability space (Ω,F ,P) we have a càdlàg SubOU process
X with generating tuple (κ, θ, σ, γ, ν), X0 = x0 and an independent absolutely continuous time
change T of the form in (4.1). Let (Ft)t≥0 be the smallest right-continuous complete filtration
generated by the processes Xt, ZSt and St. Then Tt is a stopping time w.r.t. (Ft)t≥0 for every t,
and we can define the time changed filtration Gt := FTt . It is clear that T and Z are adapted to
(Gt)t≥0. Define a new process Y by Yt := XTt , with Y0 = y0 = x0. From Jacod (1979) Corollary
10.12, Y is a (Gt)-semimartingale, and from Kallsen and Shiryaev (2002) Lemma 5 it admits
the following local characteristics (B,C,Π):

Bt(ω) =

∫ t

0
(a(s) + Zs(ω))

[
γκ(θ − Ys−(ω)) +

∫ ∞
0

∫
|x|≤1

xp(u;Ys−(ω), Ys−(ω) + x)dxν(du)
]
ds,

Ct(ω) = γσ2

∫ t

0
(a(s) + Zs(ω))ds, Π(ω, dt, dx) = (a(t) + Zt(ω))π(Yt−(ω), x)dx,

where π(·, ·) is defined in Theorem 2.1 and here x is interpreted as the jump size. From these
expressions we see that the role of the absolutely continuous time change is to scale all the local
characteristics of the SubOU process with the stochastic activity rate or stochastic volatility.
The bivariate process (Y, Z) is also a (Gt)-semimartingale. We have the following result on its
cross-variation process.

Proposition 4.1. The cross-variation process [Y c, Zc]t = 0, where Y c and Zc are the continu-
ous local martingale parts of Y and Z respectively.

It is clear that (Y,Z) is also a Markov process w.r.t. the filtration (Gt)t≥0. Given Gt, the
distribution of Yt+s depends only on Tt+s − Tt and Yt, and Tt+s − Tt depends only on Zt. The
distribution of Zt+s depends only on Zt. Thus, conditional expectations of the form E[f(Yt)|Gs]
reduce to E[f(Yt)|Ys, Zs] by the Markov property. Using conditioning and the spectral represen-
tation of the SubOU semigroup, such expectations can be computed in terms of eigenfunction
expansions.

Theorem 4.1. For f ∈ L2(R,m), suppose one of the following two conditions is satisfied:

(1) The eigenfunction expansion f(x) =
∑∞

n=0 fnϕn(x), where fn = (f, ϕn), converges abso-
lutely for each x.

(2)
∑∞

n=0 e
−φ(κn)

∫ t
s a(u)duLCIR (t− s, φ(κn) |z )n−

1
4 <∞ for some z > 0 (and hence for all z;

it is straightforward to show this using (A.4)), where the Laplace transform LCIR (t, · |z )
is given in Appendix A.

Then E[f(Yt)|Ys, Zs] =
∑∞

n=0 e
−φ(κn)

∫ t
s a(u)duLCIR

(
t− s, φ(κn)

∣∣∣Zs)fnϕn(Ys).
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We can now introduce stochastic volatility and time inhomogeneity in commodity models.
Let Yt = XTt be the time changed SubOU process as above. Under the risk-neutral pricing
measure Q chosen by the market, we model the spot price as follows:

St = F (0, t)eYt−G(t), (4.2)

where the function G(t) is selected so that eG(t) = EQ[eYt ]. Applying Theorem 4.1 to the
exponential function, we obtain the futures price process.

Theorem 4.2. (1) eG(t) =
∑∞

n=0 e
−φ(κn)

∫ t
0 a(u)duLCIR

(
t, φ(κn)

∣∣∣z0

)
fnϕn(y0), where fn are

given in Lemma 3.1. The expansion converges absolutely for all z0 > 0, y0 ∈ R, and any
Laplace exponent φ.
(2) For each t > 0, the futures price is a martingale on [0, t] given by:

F (s, t) = F (0, t)e−G(t)
∞∑
n=0

e−φ(κn)
∫ t
s a(u)duLCIR

(
t− s, φ(κn)

∣∣∣Zs)fnϕn(Ys), s ∈ [0, t]. (4.3)

To investigate the maturity effect, we need to compute the QV process [rt, rt]s, which is

more involved in this case due to the extra state variable Z. From (4.3), rts = −G(t) + θ+ σ2

4κ +
ln g(Ys, Zs, s, t), where

g(y, z, s, t) =

∞∑
n=0

e−φ(κn)
∫ t
s a(u)duLCIR

(
t− s, φ(κn)

∣∣∣z)( σ

2
√
κ

)n 1

n!
Hn

(√κ
σ

(y − θ)
)
.

Again we use Kallsen (2006) Proposition 2.5 to compute [rtc, rtc]s from the local characteristics
of the semimartingale (Y, Z). Since the cross-variation is zero by Proposition 4.1, we do not
have cross derivative terms and obtain:

[rt, rt]s = [rtc, rtc]s+γσ
2

∫ s

0
(a(u)+Zu)

(gy(Yu−, Zu, u, t)
g(Yu−, Zu, u, t)

)2
du+σ2

Z

∫ s

0
Zu

(gz(Yu−, Zu, u, t)
g(Yu−, Zu, u, t)

)2
du

+
∑
u≤s

(∫ Yu∨Yu−

Yu∧Yu−

gy(y, z, u, t)

g(y, z, u, t)
dy
)2
.

Note that g and gy are positive, but gz is not necessarily so, and g(y, z, u, t) depends on u and
t only through t− u. It is thus clear that we have the following:

Theorem 4.3. If
gy(y,z,0,t)
g(y,z,0,t) and

(
gz(y,z,0,t)
g(y,z,0,t)

)2
are decreasing in t for any (y, z), then the maturity

effect holds.

As in the SubOU case in section 3.3, this condition is hard to check analytically, but can
be easily verified numerically. We have conducted extensive numerical experiments and verified
this condition for all parameter specifications we have tested.

For the model with stochastic volatility the option pricing formula is more involved since
the futures price F (t, t∗) at expiration of the option t is now determined by the values of two
state variables Yt and Zt at that time, F (t, t∗) = F (Yt, Zt, t, t

∗). We condition on the state of
the CIR process Zt at time t and reduce the problem to the SubOU case. One then has to
use the conditional Laplace transform (A.5) instead of (A.3), since we have conditioned on Zt.
Hence, the pricing formula is expressed as an integral with respect to the transition density of
the CIR process (A.2). An additional subtlety is that y∗ now depends on z. Namely, for each
fixed z > 0, there exists a unique y∗ = y∗(z) such that F (y∗, z, t, t∗) = K. Then the put payoff
function can be rewritten as (K − F (y, z, t, t∗))+ = (K − F (y, z, t, t∗))1{y<y∗(z)}.
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Theorem 4.4. For each fixed z > 0, let y∗(z) denote the unique solution of the equation
F (y, z, t, t∗) = K, where F (y, z, t, t∗) is the futures pricing function (4.3). Define w∗(z) :=√
κ
σ (y∗(z)− θ), τ := t∗ − t, α := σ

2
√
κ

and F := F (0, t∗). Suppose condition (2) of Theorem 4.1

and the following condition are satisfied:

∞∑
n=0

e−φ(κn)
∫ t
0 a(u)duLCIR (t, φ(λ) |z0, z )n−

1
4 <∞ for some z and hence for all z. (4.4)

(It is easy to show this using (A.6).) Then the put price is given by:

P (t, t∗,K, F ) = B(0, t) (4.5)

×
∫ ∞

0

{ ∞∑
n=0

e−φ(κn)
∫ t
0 a(u)duLCIR(t, φ(κn)|z0, zt)pn(t, t∗, w∗(zt), F )ϕn(y0)

}
pCIR(t, z0, zt)dzt,

where pCIR(t, z0, zt) is the CIR transition density (A.2) and

pn(t, t∗, w∗(z), F ) =
1√
π2nn!

(4.6)

×

{
Kbn(w∗(z))− Feθ+

σ2

4κ
−G(t∗)

∞∑
m=0

e−φ(κm)
∫ t∗
t a(u)duLCIR(τ, φ(κm)|zt)

αm

m!
an,m(w∗(z))

}
,

where bn(w) and an,m(w) are given by (3.9) and (3.10). The call price is given by the put-call
parity.

Remark 4.1. For options written on the spot price, in contrast to futures options, we only
need the Laplace transform of the time change instead of the conditional Laplace transform.

Furthermore, in this case y∗ = ln
(

K
F (0,t)

)
+ G(t) is independent of Zt. By setting t = t∗ and

using
∫∞

0 LCIR(t, φ(κn)|z0, zt)pCIR(t, z0, zt)dzt = LCIR(t, φ(κn)|z0), the put price becomes

P (t,K, F ) =

∞∑
n=0

e−φ(κn)
∫ t
0 a(u)duLCIR(t, φ(κn)|z0)pn(t, t, w∗, F )ϕn(y0).

5 Model Implementation and Calibration Examples

The models introduced in this paper were implemented in C++ on a PC. Hermite expansions
can be efficiently computed using the following classical recursion for Hermite polynomials
(Lebedev (1972) p.61):

H0(x) = 1, H1(x) = 2x, Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x), n > 2.

To compute the option pricing formula (3.7), we need to evaluate the coefficients bn and an,m.
From the equation (3.9), it is easy to see bn can be computed recursively using the recursion
for Hermite polynomials. Equation (3.10) is a closed-form formula for an,m, but it is not
convenient to use from a computational perspective. We have the following computationally
efficient approach for an,m.

Proposition 5.1. The coefficients an,m satisfy the following:

a0,0(x) =
√
πΦ(
√

2x), an,n(x) = 2nan−1,n−1(x)−Hn−1(x)Hn(x)e−x
2
, n ≥ 1, (5.1)

an,m(x) =
Hn(x)Hm+1(x)−Hm(x)Hn+1(x)

2(m− n)
e−x

2
, n 6= m,n ≥ 0,m ≥ 0. (5.2)
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To evaluate the option pricing formula (4.5) for the model with stochastic volatility, we first
truncate the integral in zt at some level M large enough that the probability of the CIR process
to exceed M at time t is less than the desired error tolerance. We then use the Simpson rule to
discretize the integral on the interval [0,M ]. The CIR transition density at each node zt(k) is
computed by (A.2), at each integration node zt(k) the value of y∗(k) is found by the bisection
algorithm, and the integrand is computed similar to the option pricing formula (4.5) in the
SubOU case (with the distinction that under the time changed SubOU the conditional Laplace
transform (A.5) enters the expression in place of the Laplace transform (A.3) in the SubOU
case).

CPU times generally depend on time to maturity t and the model parameters. For short
maturities (say, less than two weeks to expiration), one may have to use infinite-precision
arithmetics to achieve required accuracy in summing up the series. To compute short maturity
option prices we used the GNU MP Bignum library. For longer maturity options double precision
is sufficient. In our numerical experiments on a PC running Linux (Intel Core 2 Duo CPU at
2.53GHz with 2.00GB RAM), CPU times ranged from several milliseconds up to hundreds of
milliseconds per option for the SubOU model, depending on the combination of parameters,
and from hundreds of milliseconds up to several seconds per option for the SubOU model with
stochastic volatility.

We now present calibration examples of the SubOU model with the IG subordinator to
implied volatility smile curves extracted from market prices of options on six commodity futures.
We have also calibrated for other commodities, and the results are similar to what are displayed
here. However, due to space constraints, only six of them are shown. The commodities included
two metals (copper, gold), two energies (crude oil, natural gas), and two agriculturals (corn and
wheat). Market data on implied volatilities for this study were provided by Morgan Stanley’s
Commodity Stategies Group and were extracted from commodity futures options market prices
on July 2nd 2009. All options had approximately six months to expiration. The moneyness
defined as the ratio of the option strike price to the futures price ranged from 0.6 to 1.8 for all
commodities. To calibrate the model to market implied volatilities, we minimized the sum of
squared differences between the market and the model implied volatilities. There are a total
of six parameters in the SubOU model: three parameters of the background OU process and
three parameters of the inverse Gaussian subordinator with drift. Without loss of generality,
the starting SubOU state x0 was set to zero (it can always be set to zero by changing θ to
θ− x0 without affecting the option price). Our calibration results are presented in Figure 4. In
these instances the SubOU model with the IG subordinator provides an excellent fit to volatility
smiles for all eight commodities (well within the bid/ask spread for each option).

While the SubOU model calibrates well to commodity volatility smiles for a fixed matu-
rity, it may generally lack flexibility to capture the entire volatility surface across both the
maturity dimension and the strike (moneyness) dimension. The time changed SubOU model
with stochastic volatility and possible time inhomogeneity has additional flexibility to capture
time dependence in the shape and steepness of the volatility smile and time dependence in the
at-the-money volatility term structure. In Figure 5 we calibrate the SubOU model with the
inverse Gaussian subordinator time changed with the integral of the CIR process to the implied
volatility surfaces for zinc. We used four maturities (6 months, 1 year, 1.5 years and 2 years)
in our calibration. The deterministic activity rate component was taken to be a piecewise con-
stant function (constant between adjacent futures maturity dates). The time changed SubOU
model provided an excellent fit to this volatility surface (well within the bid/ask spreads for
all options). The deterministic activity rate allowed us to capture the sharp decay in the ATM
implied volatilities, the IG subordinator allowed us to capture steep smiles for shorter-dated
maturities, and the CIR stochastic volatility supported the longer-dated smiles. In contrast,
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Figure 4: SubOU Model Calibration Results to Implied Volatility Smiles for Commodities

25



SubOU models without stochastic volatility exhibit faster flattening of the volatility smile as
we go further out in maturity.

0.5

1

1.5

2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

0.38

0.4

0.42

0.44

0.46

0.48

0.5

 

option maturity (in years)

Zinc

moneyness (strike/forward) 

im
p

li
e

d
 v

o
la

ti
li

ty

market

model

Figure 5: Time Changed SubOU Volatility Surface Calibration Results For Zinc

6 Conclusion

This paper studied a class of subordinate OU processes, their sample path properties, equiv-
alent measure transformations, and the spectral representation of their transition semigroup.
As an application, we constructed a new class of commodity models with mean-reverting jumps
based on subordinate OU process. Further time changing by the integral of a CIR process plus
a deterministic function of time, we induced stochastic volatility and time inhomogeneity in the
models. We obtained analytical solutions for commodity futures options in terms of Hermite
expansions and showed that the models exhibit the maturity effect and are flexible enough
to capture a wide variety of implied volatility smile patterns observed in energy, metals, and
agricultural commodities futures options.

We are currently developing computational methods for American-style futures options in
these models. It turns out that the eigenfunction expansion approach to pricing European
options followed in this paper can be extended to Bermudan-style options with a finite number
of exercise opportunities. Richardson extrapolation can then be used to obtain solutions for
American-style options.

In future work we plan to extend this class of models to multi-commodity products, such
as spread options, and to path-dependent options such as Asian-style options. An extension
to American-style options is developed in Li and Linetsky (2011). We also anticipate that
subordinate OU processes studied in this paper will find other applications beyond commodities,
such as in interest rate modeling, volatility modeling, and real options.

26



A CIR Processes

Let {Zt, t ≥ 0} be a CIR diffusion starting from Z0 = z > 0 and solving the SDE

dZt = κ (θ − Zt) dt+ σ
√
ZtdBt. (A.1)

Assume the long run level θ, the rate of mean reversion κ, and the volatility parameter σ satisfy
the Feller condition d := 2θκ

σ2 ≥ 1 to ensure that the process stays strictly positive (zero is an
inaccessible boundary).

The CIR transition density pCIR(t, z0, z) is given by

pCIR(t, z0, z) =
2κ

σ2(1− e−κt)
e
− 2κ(z0e

−κt+z)
σ2(1−e−κt)

(
z

z0e−κt

) d−1
2

Id−1

(
4κ
√
z0ze−κt

σ2(1− e−κt)

)
, (A.2)

where Id−1(·) is the modified Bessel function of the first kind of order d− 1.

The Laplace transform LCIR(t, λ|z0) := Ez0
[
e−λ

∫ t
0 Zudu

]
is given by the CIR bond pricing

formula for the short rate process λZt:

LCIR(t, λ|z0) = C(t, λ)e−B(t,λ)z0 , (A.3)

where C(t, λ) =

(
2γ(λ)e(γ(λ)+κ)t/2

(γ(λ) + κ)(eγ(λ)t − 1) + 2γ(λ)

)d
, B(t, λ) =

2λ(eγ(λ)t − 1)

(γ(λ) + κ)(eγ(λ)t − 1) + 2γ(λ)
,

and γ(λ) =
√
κ2 + 2σ2λ. The function LCIR(t, λ|z0) has the following asymptotic behavior as

λ→∞:

LCIR(t, λ|z0) ∼ exp

{
−κθ
σ

√
2λt− z0

σ

√
2λ

}
. (A.4)

The Laplace transform conditional on the state of the process at time t, LCIR(t, λ|z0, zt) :=

Ez0
[
e−λ

∫ t
0 Zudu | Zt = zt

]
, is also known in closed form (Broadie and Kaya (2006)):

LCIR(t, λ|z0, zt) =
γ(λ)e−0.5(γ(λ)−κ)t(1− e−κt)

κ(1− e−γ(λ)t)

× exp

{
z0 + zt
σ2

(
κ(1 + e−κt)

1− e−κt
− γ(λ)(1 + e−γ(λ)t)

1− e−γ(λ)t

)}
Id−1

(
4γ(λ)

√
z0zt

σ2
e−0.5γ(λ)t

1−e−γ(λ)t

)
Id−1

(
4κ
√
z0zt
σ2

e−0.5κt

1−e−κt

) . (A.5)

The function LCIR(t, λ|z0, zt) has the following asymptotic behavior as λ→∞:

LCIR(t, λ|z0, zt) ∼ λ
d
2 exp

{
−κθ
σ

√
2λt− z0 + zt

σ

√
2λ

}
. (A.6)

B Proofs

Part (2) of Theorem 2.2. Denote the RHS of Gφ in Theorem 2.1 by G#. If X ′ admits
characteristics (B′, C ′,Π′), then from Itô’s Formula for semimartingales, for any f ∈ C2

c (R)

Mt := f(X ′t)− f(x)−
∫ t

0
G#f(X ′s−)ds

is a local martingale. Since G#f ∈ C0(R) (the space of continuous functions on R vanishing
at infinity), G#f is bounded. f(X ′t) − f(x) is also bounded for all t. Hence E[M∗t ] < ∞
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(M∗t := sups≤t |Ms|) for all t, and M is a martingale by Protter (2005) Chapter 1 Theorem
51. Note that from Theorem 2.1, C2

c (R) is a core of D(Gφ). Hence applying Ethier and Kurtz

(1986) Chapter 4 Theorem 4.1 to the martingale problem
(

(Gφ, C2
c (R)),Px

)
and Corollary 4.3,

it follows that P′ ◦X ′−1 = Px on the Skorohod space (Ω,F0).
Theorem 2.3. If x > θ, then for any y > 0, |−y+(x−θ)(1−e−κt)| < |y+(x−θ)(1−e−κt)|.

From (2.1), this implies p(t, x, x− y) > p(t, x, x+ y) for any t > 0. Hence from the definition of
π(x, ·), π(x,−y) > π(x, y) for any y > 0. By integrating π(x, ·) on (−∞,−y) and (y,∞), we also
get Π(x, (−∞,−y)) > Π(x, (y,∞)). The cases with x < θ and x = θ are proved similarly.

Theorem 2.4. Sufficiency. By replacing the Lévy measure used in Remark 33.3 of
Sato (1999) by our state-dependent Lévy measure, we can show that the Hellinger condition∫
y 6=0

(√
π′(x, y)−

√
π(x, y)

)2
dy <∞ implies that∫

|y|≤1
|y| · |π′(Xs−(ω), y)− π(Xs−(ω), y)|dy <∞, (B.1)

so h(x)(Y − 1) ∗Π is finite. We first show that∫
[0,∞)

∫
|y|≤1

yp′(u;Xs−(ω), Xs−(ω) + y)dyν ′(du)−
∫

[0,∞)

∫
|y|≤1

yp(u;Xs−(ω), Xs−(ω) + y)dyν(du)

=

∫
|y|≤1

y
[
π′(Xs−(ω), y)− π(Xs−(ω), y)

]
dy.

Note that∫
[0,∞)

∫
|y|≤1

yp′(u, x, x+ y)dyν ′(du)−
∫

[0,∞)

∫
|y|≤1

yp(u, x, x+ y)dyν(du)

= lim
n→∞

(∫
[0,∞)

∫
1/n≤|y|≤1

yp′(u, x, x+ y)dyν ′(du)−
∫

[0,∞)

∫
1/n≤|y|≤1

yp(u, x, x+ y)dyν(du)

)

= lim
n→∞

(∫
1/n≤|y|≤1

y(π′(x, y)− π(x, y))dy

)
=

∫
|y|≤1

(π′(x, y)− π(x, y))dy,

where the last equality comes from the Dominated Convergence Theorem since we have (B.1).
So for all ω we have B′ = B + γσ2β · t+ h(x)(Y − 1) ∗Π, C ′ = C, Π′ = Y ·Π.

Since Π(ω, t, dx) = 0, it is clear that σJS =∞, where σJS is defined in Jacod and Shiryaev
(2003) (JS) III.5.6. The process H defined in JS III.5.7 becomes the following in our case:

Ht(ω) =

∫ t

0
γσ2βs(ω)2ds+

∫ t

0

∫
y 6=0

(√
π′(Xs−(ω), y)−

√
π(Xs−(ω), y)

)2
dyds

It is clear that the integrand in the above expression is càdlàg for every ω. This implies that
Ht(ω) <∞ for every ω and t. Hence the process H does not jump to infinity as defined in JS
III.5.8. This fact together with σJS =∞ implies that Hypothesis III.5.29 of JS holds.

P′ is the unique solution to the martingale problem (σ(X0), X|P′0, B′, C ′,Π′). As remarked
before, local uniqueness also holds. Note that P′0 4 P0. Now all conditions stated in JS Theorem
III.5.34 are satisfied, which implies P′ 4 P locally. By interchanging the role of P′ and P and
similarly defining β′ and H ′, we can prove P0 4 P′0 implies P′ 4 P locally. Hence P′ ∼ P locally.

Necessity. If P′ ∼ P locally, then (i) holds, and (ii) is implied by JS Theorem III.3.24.
The uniqueness of the solution to the martingale problem (σ(X0), X|P0, B,C,Π) implies the P-
martingale representation property w.r.t. X (JS Theorem III.4.29), hence JS Theorem III.5.19
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holds, which further implies JS IV.3.32. Now the conditions in JS Theorem IV.3.35 are satisfied,
and this theorem implies that the Hellinger process of order 1

2 (see JS Definition IV.1.24) is
given by

h
1
2
t (ω) =

1

8

∫ t

0
γσ2βs(ω)2ds+

1

2

∫ t

0

∫
y 6=0

(√
π′(Xs−(ω), y)−

√
π(Xs−(ω), y)

)2
dyds.

JS Theorem IV.2.1 says that h
1
2
t (ω) <∞ both P and P′-a.s., hence there exists x0 ∈ R such that∫

y 6=0

(√
π′(x0, y) −

√
π(x0, y)

)2
dy < ∞. But one can show that the tail behavior at y = 0 of√

π′(x, y)−
√
π(x, y) does not depend on x (see Proposition 2.3, whose proof does not depend

on Theorem 2.4), so we have
∫
y 6=0

(√
π′(x, y)−

√
π(x, y)

)2
dy <∞ for any x.

Therefore, the process H defined in the proof of the sufficiency part does not jump to infinity.
This together with σJS = ∞ allows us to apply JS Corollary III.5.22 (ii) which gives the form
of the density process.

Proposition 2.2. Define q(s, 0, y) := 1√
πσ2s

exp
{
− (y−κ(θ−x)s)2

2σ2s

}
, the transition density of

Brownian motion starting at 0 with drift κ(θ − x) and volatility σ. It is easy to see that

lim
s→0

p(s, x, x+ y)

q(s, 0, y)
= 1

uniformly for y on any compact interval. We wish to prove that

lim
y→0

∫
[0,∞) p(s, x, x+ y)ν(ds)∫

[0,∞) q(s, 0, y)ν(ds)
= 1. (B.2)

Note that

lim
y→0

∫
[0,δ) p(s, x, x+ y)ν(ds)∫
[0,∞) p(s, x, x+ y)ν(ds)

= 1 (B.3)

for any δ > 0. This is because for s > δ, p(s, x, x+ y) is bounded in s, and
∫

[δ,∞) ν(ds) <∞, so
applying the Dominated Convergence Theorem

lim
y→0

∫
[δ,∞)

p(s, x, x+ y)ν(ds) =

∫
[δ,∞)

lim
y→0

p(s, x, x+ y)ν(ds)

=

∫
[δ,∞)

1√
πσ2

κ (1− e−2κs)
exp

{
− (θ − x)2(1− e−κs)

σ2

κ (1 + e−κs)

}
ν(ds),

which is finite, and hence limy→0

∫
[δ,∞) p(s,x,x+y)ν(ds)∫
[0,∞) p(s,x,x+y)ν(ds)

= 0. (B.3) is also true when p(s, x, x + y)

is replaced by q(s, 0, y) for the same reason.
Fix an interval [−M,M ] for y. Then for any ε > 0, there exists some δ > 0, such that for

any y ∈ [−M,M ], 1− ε < p(s,x,x+y)
q(s,0,y) < 1 + ε if s < δ. Hence

1− ε <

∫
[0,δ) p(s, x, x+ y)ν(ds)∫

[0,δ) q(s, 0, y)ν(ds)
< 1 + ε

for any y ∈ [−M,M ]. Now letting y → 0 we have

1− ε ≤ lim
y→0

∫
[0,δ) p(s, x, x+ y)ν(ds)∫

[0,δ) q(s, 0, y)ν(ds)
≤ 1 + ε.
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Equation (B.3) and limy→0

∫
[0,δ) q(s,0,y)ν(ds)∫
[0,∞) q(s,0,y)ν(ds)

= 1 imply that

lim
y→0

∫
[0,∞) p(s, x, x+ y)ν(ds)∫

[0,∞) q(s, 0, y)ν(ds)
= lim

y→0

∫
[0,δ) p(s, x, x+ y)ν(ds)∫

[0,δ) q(s, 0, y)ν(ds)
.

Hence

1− ε ≤ lim
y→0

∫
[0,∞) p(s, x, x+ y)ν(ds)∫

[0,∞) q(s, 0, y)ν(ds)
≤ 1 + ε

for any ε. Now letting ε→ 0, (B.2) is proved.
Proposition 2.3. Now we prove that the asymptotic of the Lévy density π(y) of a SubBM

does not depend on the drift. Suppose the drift and diffusion coefficients are µ and σ respectively.
Then we have

π(y) =

∫
[0,∞)

1√
2πσ2s

exp
{
− (y − µs)2

2σ2s

}
ν(ds).

Similar to the proof in Proposition 2.2, it is straightforward to show that

lim
y→0

π(y) = lim
y→0

∫
[0,∞)

1√
2πσ2s

exp
{
− y2

2σ2s

}
ν(ds),

which does not depend on µ.
Proposition 2.4. We prove the case with condition (1) here. The case with condition (2)

is proved in Kim et al. (2010). We can write:

π(y) =

∫ 1
2σ2ξ

0

1√
2πσ2s

exp
{
− y2

2σ2s

}
ν(s)ds+

∫ ∞
1

2σ2ξ

1√
2πσ2s

exp
{
− y2

2σ2s

}
ν(s)ds.

Similar to the proof in Proposition 2.2, the second integral on the RHS is finite as y → 0, so we
only need to be concerned with the first integral. The rest of the proof is similar to Song and
Vondraček (2009). Let u = y2/(2σ2s). Then∫ 1

2σ2ξ

0

1√
2πσ2s

exp
{
− y2

2σ2s

}
ν(s)ds =

|y|
2σ2
√
π

∫ ∞
ξy2

u−
3
2 e−uν(

y2

2σ2u
)du

=
(2σ2)β−1

√
π|y|2β−1`( 1

y2
)

∫ ∞
ξy2

uβ−
3
2 e−u

ν( y2

2σ2u
)

h(y, u)

`( 1
y2

)

`(2σ2u
y2

)
du,

where h(y, u) := 1

( y2

2σ2u
)β`( 2σ2u

y2
)
. From assumption (2.5), there is a constant c > 0 such that for

all u > ξy2, we have
ν( y2

2σ2u
)

h(y,u) < c. Note that `( 1
y2

)/`(2σ2u
y2

) = f`,ξ(y
2, u) for u > ξy2. So it follows

from the assumption that we have uβ−
3
2 e−u

ν( y2

2σ2u
)

h(y,u)

`( 1
y2

)

`( 2σ2u
y2

)
≤ cuβ−

3
2 e−ug(u). By the Dominated

Convergence Theorem,

lim
y→0

∫ ∞
ξy2

uβ−
3
2 e−u

ν( y2

2σ2u
)

h(y, u)

`( 1
y2

)

`(2σ2u
y2

)
du = c0

∫ ∞
0

uβ−
3
2 e−udu = c0Γ(β − 1

2
).

So the claim in Proposition 2.4 follows.
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Proposition 2.5. Let p = β − 1. For any 0 < α < p we have that β − α > 1. 1
sβ−α`( 1

s
)

is

not integrable near zero because lims→0
1

sβ−α`( 1
s

)

/
1
s = lims→0

1
sβ−α−1`( 1

s
)

=∞ by Bingham et al.

(1987) Proposition 1.3.6.
For any α > p we have that β − α < 1. There is a value γ such that β − α < γ < 1.

So lims→0
1

sβ−α`( 1
s

)

/
1
sγ = lims→0

1
sβ−α−γ`( 1

s
)

= 0, again from Bingham et al. (1987) Proposition

1.3.6. Therefore 1
sβ−α`( 1

s
)

is integrable near 0 for any α > p.

Together we have the BG index is β − 1. The assertion for the second part follows from the
asymptotic implied by Proposition 2.4.

Theorem 2.5. The proof is entirely similar to the proof of the necessity part of Theo-
rem 2.4. First, JS Theorem III.3.24 implies (2.7), (2.8) and (2.9). To prove the (2.10) and

the form of the density process, replace
∫ t

0

∫
y 6=0

(√
π′(Xs−(ω), y) −

√
π(Xs−(ω), y)

)2
dyds by∫ t

0

∫
y 6=0(

√
Y (s, ω, y)− 1)2π(Xs−(ω), y)dyds and the rest remains the same.

Theorem 2.7. (1) First we notice two facts. (1) On any compact interval I ∈ R, there
exists a constant C depending on I, such that for n ≥ 1 (c.f. Nikiforov and Uvarov (1988) p.54
Eq. (28a))

|ϕn(x)| ≤ Cn−1/4, x ∈ I. (B.4)

(2) |fn| ≤ ‖f‖ for all n by the Cauchy-Schwartz inequality.

For t > 0, on one hand, the RHS of (2.11) is bounded by |f0|+C‖f‖
∑∞

n=1 e
−κntn−

1
4 , which

is finite due to the rapid decay of e−κnt. This expansion converges absolutely for each x and
uniformly in x on compacts, thus it defines a continuous function. On the other hand, the
function Ptf(x) is infinitely differentiable in x. In fact, if x is replaced with a complex variable
z, Ptf(z) is an entire function (see Theorem 3.1 in Thangavelu (2006)). The L2-convergence
implies convergence almost everywhere in this case. To be more precise, let S(x) denotes the
RHS of (2.11), and Sn(x) its n-th partial sum. Convergence of Sn(x) to Ptf(x) in L2 implies
that there is a subsequence Skn(x) converging to Ptf(x) almost everywhere. But the limit of
Skn(x) is S(x), so S(x) = Ptf(x) almost everywhere. Furthermore, since both sides of (2.11)
are continuous functions, they must agree at every point. Therefore, for the OU semigroup, the
eigenfunction expansion in (2.11) is valid pointwise for each f ∈ L2(R,m) and t > 0.

(2) For the SubOU semigroup, when the eigenfunction expansion on the RHS of (2.13)

converges absolutely for each x, the spectral representation (2.13) for Pφt f(x) is valid for each
x, as the following calculation can be justified:

Pφt f(x) =

∫
[0,∞)

Psf(x)qt(ds) =

∫
[0,∞)

∞∑
n=0

e−κnsfnϕn(x)qt(ds)

=
∞∑
n=0

∫
[0,∞)

e−κnsqt(ds)fnϕn(x) =
∞∑
n=0

e−φ(κn)tfnϕn(x).

In the above, we first use the definition of the SubOU semigroup, then represent Psf(x) by the
eigenfunction expansion which also converges pointwise, interchange the summation and expec-
tation justified by the absolute convergence of the expansion and the dominated convergence
theorem, and use the Laplace transform of the convolution semigroup.

For t > 0, either condition (i) or (ii) in Theorem 2.7 ensures the absolute convergence of the
expansion for each x, and thus the eigenfunction expansion for the SubOU semigroup converges
pointwise.

Theorem 2.8. Convergence of the expansion in the RHS of (2.14) to the RHS of (2.1)
follows from the well-known Mehler formula for Hermite polynomials (e.g., Thangavelu (2006)
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Proposition 2.3). Part (2) follows from the estimate (B.4) for the eigenfunctions.

Theorem 2.9. We first notice that for all n and all real x, |ϕn(x)| ≤ 1.0864e
κ(x−θ)2

2σ2 .
This bound is given in Boyd (1984) and is shown there to be tight. Therefore we have∣∣∑∞

n=M e−φ(κn)tfnϕn(x)
∣∣ ≤ 1.0864e

κ(x−θ)2

2σ2
∑∞

n=M e−φ(κn)t|fn|. Using |fn| ≤ ‖f‖ and assuming

that
∑∞

n=0 e
−φ(κn)t <∞ is satisfied for all t > 0, we obtain the estimate in Theorem 2.9.

Lemma 3.1 and Theorem 3.1. First, note that the function ex ∈ L2(R,m), so the
spectral representation theorem applies and

fn =

∫ ∞
−∞

ex
1√

2nn!
Hn

(√
κ

σ
(x− θ)

)√
κ

πσ2
e−

κ(θ−x)2

σ2 dx

= eθ+
σ2

4κ
1√
π2nn!

∫ ∞
−∞

e
−(y− σ

2
√
κ

)2
Hn(y)dy = eθ+

σ2

4κ
1√
n!

(
σ√
2κ

)n
,

where we used the identity
∫∞
−∞ e

−(y−z)2Hn(y)dy =
√
π(2z)n (Prudnikov et al. (1986) p.488

No.17 of 2.20.3). It can be shown by using the estimate of the eigenfunctions (B.4) that
the Hermite expansion of the exponential function is absolutely convergent for each x, hence
condition (i) in Theorem 2.7 is satisfied. The results in Theorem 3.1 are obtained by applying
(2.13) to ex.

Theorem 3.2. Necessity. Let (BP , CP ,ΠP ) be the semimartingale characteristics of the
SubOU process with generating tuple (κP , θP , σP , γP , νP ). Then (BP + H,CP ,ΠP ) is the set
of characteristics for X under P. Since P and Q are locally equivalent, Theorem 2.5 implies
condition (2) and (3), and that there exists some deterministic function β such

BP
t (ω) +H(t) = Bt(ω) + γσ2

∫ t

0

(
βs(ω) + β(s)

)
ds

+

∫
[0,t]×R

y1{|y|≤1}
(
πP (Xs−(ω), y)− π(Xs−(ω), y)

)
dyds,

where βs(ω) = (γP κP θP−γκθ)−(γP κP−γκ)Xs−(ω)
γσ2 1{γ 6=0}. Thus if γ > 0, then H is an absolutely

continuous function of time, and H(0) = 0. If γ = 0, then H(t) = 0 for all t.
Sufficiency. If γ = 0, then the conclusion is directly implied by Theorem 2.4. If γ > 0,

then using Theorem 2.4, we can first find a measure P̃ locally equivalent to Q, and under P̃, X
is a SubOU process with generating tuple (κP , θP , σP , γP , νP ). Let Xc be the continuous local

martingale part ofX under P̃. SinceH is absolutely continuous, we can define λ(t) := 1
γP σ

2
P

dH(t)
dt .

Then define a measure P by dP
dP̃

= E (λ ·Xc). This is a Radon-Nikodym density process because
the Novikov condition is satisfied, so the stochastic exponential is a true martingale. Now P
and P̃ are locally equivalent. Under P, the first component of the semimartingale characteristics
becomes BP

t +
∫ t

0 λsγPσ
2
Pds = BP

t + H(t). Thus, X is a SubOU process with the generating
tuple (κP , θP , σP , γP , νP ) plus a deterministic function H(t).

Theorem 3.4. Since the put payoff is bounded and the measure is Gaussian, it belongs to
L2(R,m). The expansion coefficients are computed as follows:∫ ∞

−∞
(K − F (x, t, t∗))+ϕn(x)m(x)dx =

∫ ∞
−∞

(K − F (x, t, t∗))1{x<x∗}ϕn(x)m(x)dx.

∫ ∞
−∞

K1{x<x∗}ϕn(x)m(x)dx =
K√
π2nn!

∫ √
κ
σ

(x∗−θ)

−∞
Hn(x)e−x

2
dx =

K√
π2nn!

bn(w∗).
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The integral in (3.9) is given in Prudnikov et al. (1986). For the second integral,∫ ∞
−∞

F (x, t, t∗)1{x<x∗}ϕn(x)m(x)dx =

∫ x∗

−∞
Fe−G(t∗)

∞∑
m=0

e−φ(κm)τfmϕm(x)ϕn(x)m(x)dx

= Fe−G(t∗)
∞∑
m=0

e−φ(κm)τfm

∫ x∗

−∞
ϕm(x)ϕn(x)m(x)dx =

1√
π2nn!

Feθ+
σ2

4κ
−G(t∗)

∞∑
m=0

e−φ(κm)τ α
m

m!
an,m(w∗).

The interchange of integration and summation is justified by the Dominated Convergence The-
orem due to the estimate:∣∣∣∣∣

∫ x∗

−M
ϕm(x)ϕn(x)m(x)dx

∣∣∣∣∣ 6
∫ ∞
−∞
|ϕm(x)ϕn(x)|m(x)dx 6 ||ϕm|| · ||ϕn|| = 1,

and
∑∞

m=0 e
−φ(κm)τfm < ∞. With some further simplifications we obtain (3.7). The integral

in (3.10) is calculated as follows. Consider the integral JLn,m(x) :=
∫ x
−∞Hn(z)Hm(z)e−z

2
dz. By

the identity Hn(z)Hm(z) =
∑min(n,m)

k=0

(
m
k

)(
n
k

)
2kk!Hn+m−2k(z) (Prudnikov et al. (1986) p.640

No.11 of 4.5.1), we have

JLn,m(x) =

min(n,m)∑
k=0

(
m

k

)(
n

k

)
2kk!

∫ x

−∞
Hn+m−2k(z)e

−z2dz =

min(n,m)∑
k=0

(
m

k

)(
n

k

)
2kk!bn+m−2k(x).

Theorem 4.1.

E[f(Yt)|Ys, Zs] = E
[
E[f(XTt)|Tt − Ts, Ys, Zs]

∣∣∣Ys, Zs] = E
[ ∞∑
n=0

e−φ(κn)(Tt−Ts)fnϕn(Ys)
∣∣∣Zs]

=
∞∑
n=0

E[e−φ(κn)
∫ t
s (a(u)+Zu)du|Zs]fnϕn(Ys) =

∞∑
n=0

e−φ(κn)
∫ t
s a(u)duLCIR

(
t− s, φ(λ)

∣∣∣Zs)fnϕn(Ys),

where condition (1) or (2) in Theorem 4.1 justify the interchange of summation and expectation.

Proposition 4.1. Define Z̃t = ZcSt , where S is the inverse of T . Then Zct = Z̃Tt . Since the
time change S is continuous, Zc is adapted to S (see Jacod (1979) Definition X.13 for adaption
to a time change), and by Jacod (1979) Theorem X.16, Z̃ is a continuous local martingale
w.r.t. (Ft)t≥0. Now [Y c, Zc]t = [Xc

T , Z̃T ]t = [Xc, Z̃]Tt , where the second equality is from Jacod
(1979) Theorem X.17. Since X and Z are independent, Xc and Z̃ are independent. Because
the cross-variation of two independent continuous local martingale is 0, we have [Xc, Z̃]t = 0
for all t, hence [Xc, Z̃]Tt = 0, and the claim is proved.

Theorem 4.4. Conditioning on the terminal state Zt of the CIR process, we have:

E
[
(K − F (Yt, Zt, t, t

∗))+] =

∫ ∞
0

E
[
(K − F (Yt, zt, t, t

∗))+ |Zt = zt] pCIR(t, z0, zt)dzt

=

∫ ∞
0

E

[ ∞∑
n=0

e−φ(κn)Ttpn(t, t∗, w∗, F )ϕn(y0)

∣∣∣∣∣Zt = zt

]
pCIR(t, z0, zt)dzt

=

∫ ∞
0

{ ∞∑
n=0

E
[
e−φ(κn)Tt

∣∣∣Zt = zt

]
pn(t, t∗, w∗, F )ϕn(y0)

}
pCIR(t, z0, zt)dzt

=

∫ ∞
0

{ ∞∑
n=0

e−φ(κn)
∫ t
0 a(u)duLCIR(t, φ(κn)|z0, zt)pn(t, t∗, w∗, F )ϕn(y0)

}
pCIR(t, z0, zt)dzt.
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The interchange of expectation and summation is justified by the assumption.
Proposition 5.1. Using the recursion for Hermite polynomials, for n ≥ 1, m ≥ 0,

an+1,m+1(x) =

∫ x

−∞
Hn+1(y)Hm+1(y)e−y

2
dy =

∫ x

−∞
[2yHn(y)− 2nHn−1(y)]Hm+1(y)e−y

2
dy

= −
∫ x

−∞
Hn(y)Hm+1(y)de−y

2 − 2nan−1,m+1(x)

= −Hn(y)Hm+1(y)e−y
2 |x−∞ +

∫ x

−∞
[H ′n(y)Hm+1(y) +Hn(y)H ′m+1(y)]e−y

2
dy − 2nan−1,m+1(x)

= −Hn(y)Hm+1(y)e−y
2

+

∫ x

−∞
[2nHn−1(y)Hm+1(y) + 2(m+ 1)Hn(y)Hm(y)]e−y

2
dy − 2nan−1,m+1(x)

= 2(m+ 1)an,m(x)−Hn(x)Hm+1(x)e−x
2
.

It is easy to verify that this recursion is also true for n = 0. Therefore we have

an+1,m+1(x) = 2(m+ 1)an,m(x)−Hn(x)Hm+1(x)e−x
2
, n ≥ 0,m ≥ 0. (B.5)

In particular, an,n(x) = 2nan−1,n−1(x) − Hn−1(x)Hn(x)e−x
2
, n ≥ 1. Noting the symmetry

an,m(x) = am,n(x), we also obtain the following by exchanging the role of n and m in (B.5):

am+1,n+1(x) = 2(n+ 1)an,m(x)−Hm(x)Hn+1(x)e−x
2
, m ≥ 0, n ≥ 0. (B.6)

If m 6= n, subtracting (B.6) from (B.5), we obtain:

an,m(x) = e−x
2
(Hn(x)Hm+1(x)−Hm(x)Hn+1(x))/(2(m− n)) (n 6= m,n ≥ 0,m ≥ 0).
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Bertoin, J. (1996). Lévy Processes. Cambidge University Press.
Bessembinder, H., J. F. Coughenour, P. J. Seguin, and M. M. Smoller (1995). Mean rever-

sion in equilibrium asset prices: evidence from the futures term structure. The Journal of
Finance 50 (1), 361–375.

34



Bingham, N. H., C. M. Goldie, and J. L. Teugels (1987). Regular Variation. Cambridge
University Press.

Bochner, S. (1949). Diffusion equations and stochastic processes. Proceedings of the National
Academy of Sciences of the United States of America 35, 368–370.
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