

< □ > < 同 > < 回 > < 回 > < 回 >

## Predicting Path Failure In Time-Evolving Graphs

Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, Lujia Pan

> The Chinese University of Hong Kong Noah's Ark Lab, Huawei Technologies

## Overview

### Introduction

### Problem Definition

- Methodology
  - Framework
  - Time-Evolving Graph Modeling
  - Self-Attentive Path Embedding
- Experimental Results
  - Data
  - Baselines
  - Results and Interpretation

### Onclusion

э

< □ > < □ > < □ > < □ > < □ > < □ >

### Graphs are used to model real-world entities and their relationship.

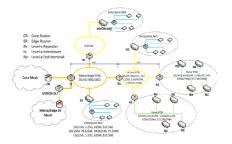


Figure: telecommunication network



Figure: traffic network

イロト イポト イヨト イヨト

э

## Structure dynamics and temporal dependency

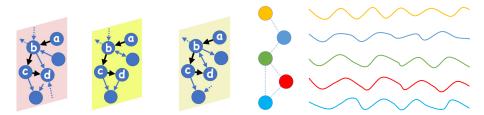


Figure: graph structures are evolving

Figure: time series are observed on each node

In this work, we focus on *path classification in a time-evolving graph*, which predicts the status of a path in the near future.

## Definition

### Time-evolving graph

Denote the adjacency matrix  $A^t \in \mathbb{R}^{N \times N}$  and the observed signals  $X^t \in \mathbb{R}^{N \times d}$  as a graph snapshot at time t, a sequence of graph snapshots over time steps  $0, 1, \ldots, t$  is defined as a *time-evolving graph*.

#### Path availability

Denote a *path* as a sequence  $p = \langle v_1, v_2, \ldots, v_m \rangle$  of length *m* in the time-evolving graph. For the same path, we use  $s^t = \langle x_1^t, x_2^t, \ldots, x_m^t \rangle$  to represent the observations of the path nodes at time *t*. We utilize the past *M* time steps to predict the availability of this path in the next *F* time steps.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



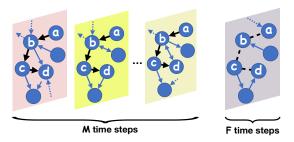


Figure: A time-evolving graph in which four nodes a, b, c, d correspond to four switches in a telecommunication network. Given the observations and graph snapshots in the past M time steps, we want to infer if path  $\langle a, b, c, d \rangle$  will fail or not in the next F time steps.

< □ > < 同 > < 回 > < 回 > < 回 >

## Path classification

We formulate this prediction task as a classification problem and our goal is to learn a function  $f(\cdot)$  that can minimize the cross-entropy loss  $\mathcal{L}$  over the training set D.

$$\arg\min \mathcal{L} = -\sum_{\mathbf{P}_j \in D} \sum_{c=1}^{C} Y_{jc} \log f_c(\mathbf{P}_j), \tag{1}$$

where  $\mathbf{P}_j = ([s_j^{t-M+1}, \dots, s_j^t], p_j, [A^{t-M+1}, \dots, A^t])$  is a training instance,  $Y_j \in \{0, 1\}^C$  is the training label representing the availability of this path in the next F time steps,  $f_c(\mathbf{P}_j)$  is the predicted probability of class c, and C is the number of classes.

## Three properties

- Node correlation: Observations on nodes are correlated;
- **Graph structure dynamics**: Observations on nodes are influenced by the changes on the graph structure;
- **Temporal dependency**: The time series recorded on each node demonstrates strong temporal dependency.

< ロ > < 同 > < 回 > < 回 > < 回 > <

### Framework

Our model uses a two-layer LRGCN, to obtain the hidden representation of each node. Then it utilizes a self-attentive mechanism to learn the node importance and encode it into a unified path representation.

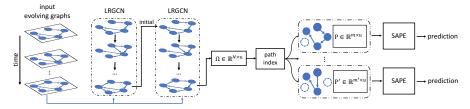


Figure: Framework of the proposed model for path classification.

# Static graph modeling

Relational GCN (R-GCN) by Kipf et al. is developed to deal with multi-relational static graphs.

**R-GCN** 

$$Z = \sigma(\sum_{\phi \in R} (D_{\phi}^t)^{-1} A_{\phi}^t X^t W_{\phi} + X^t W_0),$$

$$\begin{aligned} R &= \{in, out\}. \ \left(D_{\phi}^{t}\right)_{ii} = \sum_{j} \ \left(A_{\phi}^{t}\right)_{ij}. \\ A_{in}^{t} &= A^{t} \text{ represents the incoming relation.} \\ A_{out}^{t} &= (A^{t})^{T} \text{ represents the outgoing relation.} \end{aligned}$$

< □ > < 同 > < 回 > < 回 > < 回 >

(2)

We view the effect of self-connection normalization as a linear combination of incoming and outgoing normalization.

Simplified R-GCN  

$$Z_{s} = \sigma(\sum_{\phi \in R} \tilde{A}_{\phi}^{t} X^{t} W_{\phi}), \qquad (3)$$
where  $\tilde{A}_{\phi}^{t} = (\hat{D}_{\phi}^{t})^{-1} \hat{A}_{\phi}^{t}$ .  $\hat{A}_{\phi}^{t} = A_{\phi}^{t} + I_{N}$ .  $(\hat{D}_{\phi}^{t})_{ii} = \sum_{j} (\hat{A}_{\phi}^{t})_{ij}$ .

< □ > < 同 > < 回 > < 回 > < 回 >

#### Two-hop simplified R-GCN

$$\Theta_{s} \star g X^{t} = \sum_{\phi \in R} \tilde{A}^{t}_{\phi} \sigma(\sum_{\phi \in R} \tilde{A}^{t}_{\phi} X^{t} W^{(0)}_{\phi}) W^{(1)}_{\phi}.$$

$$\tag{4}$$

where  $\Theta_s$  represents the parameter set used in the static graph modeling,  $W_{\phi}^{(0)} \in \mathbb{R}^{d \times h}$  is an input-to-hidden weight matrix for a hidden layer with h feature maps.  $W_{\phi}^{(1)} \in \mathbb{R}^{h \times u}$  is a hidden-to-output weight matrix,  $\star g$  stands for this two-hop graph convolution operation and shall be used thereafter.

(日)

## Adjacent graph snapshots modeling

Before diving into a sequence of graph snapshots, we first focus on two adjacent time steps t - 1 and t.

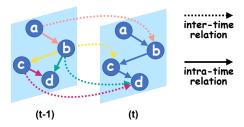


Figure: Plot of intra-time relation (in solid line) and inter-time relation (in dotted line) modeled for two adjacent graph snapshots.

< □ > < □ > < □ > < □ > < □ > < □ >

There are four types of relations, i.e., intra-incoming, intra-outgoing, inter-incoming and inter-outgoing relations. This operation is named time-evolving graph  $G_{-}$ unit, which has a similar role of unit in RNN.

time-evolving graph unit

$$G_{-unit}(\Theta, [X^t, X^{t-1}]) = \sigma(\Theta_s \star g \ X^t + \Theta_h \star g \ X^{t-1}).$$
(5)

where  $\Theta_h$  stands for the parameter set used in inter-time modeling, and it does not change over time. For  $\Theta_h \star g X^{t-1}$ ,  $\tilde{A}_{\phi}^{t-1}$  is used to represent the graph structure.

< □ > < □ > < □ > < □ > < □ > < □ >

# The proposed LRGCN model

We first design a RNN-style neural network working on a time-evolving graph.

$$H^t = \sigma(\Theta_H \star g \ [X^t, H^{t-1}]).$$

(6)

where  $\Theta_H$  includes  $\Theta_s$  and  $\Theta_h$ .

イロト イポト イヨト イヨト

We propose a Long Short-Term Memory R-GCN. LRGCN utilizes three gates to achieve the long-term memory or accumulation.

$$^{t} = \sigma(\Theta_{i} \star g \ [X^{t}, H^{t-1}])$$
(7)

$$f^{t} = \sigma(\Theta_{f} \star g \ [X^{t}, H^{t-1}])$$
(8)

$$\mathbf{o}^{t} = \sigma(\Theta_{o} \star g \ [X^{t}, H^{t-1}])$$
(9)

$$\mathbf{c}^{t} = \mathbf{f}^{t} \odot \mathbf{c}^{t-1} + \mathbf{i}^{t} \odot \tanh(\Theta_{c} \star g [X^{t}, H^{t-1}])$$
(10)

$$H^t = \mathbf{o}^t \odot \mathbf{c}^t \tag{11}$$

イロト 不得 トイヨト イヨト

where  $\odot$  stands for element-wise multiplication,  $\mathbf{i}^t$ ,  $\mathbf{f}^t$ ,  $\mathbf{o}^t$  are input gate, forget gate and output gate at time *t* respectively.

## Two challenges

For the final path classification task, however, we still identify several challenges:

- **Size invariance**: How to produce a fixed-length vector representation for any path of arbitrary length?
- **Node importance**: How to encode the importance of different nodes into a unified path representation?

< □ > < □ > < □ > < □ > < □ > < □ >

### **SAPE**

We propose a self-attentive path embedding method, called SAPE, to address the challenges listed above.

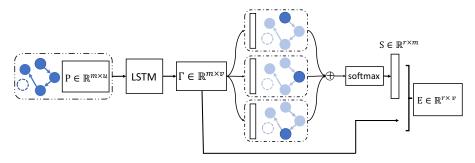


Figure: The proposed self-attentive path embedding method SAPE.

In SAPE, we first utilize LSTM to sequentially take in node representation of a path. Then we use the self-attentive mechanism to learn the node importance and transform a path of variable length into a fixed-length embedding vector.

$$\Gamma = \mathsf{LSTM}(P) \tag{12}$$

$$S = \operatorname{softmax}(W_{h2} \operatorname{tanh}(W_{h1} \Gamma^{T}))$$
(13)

$$E = S\Gamma \tag{14}$$

イロト イヨト イヨト ・

where  $\Gamma \in \mathbb{R}^{m \times v}$ .  $W_{h1} \in \mathbb{R}^{d_s \times v}$  and  $W_{h2} \in \mathbb{R}^{r \times d_s}$  are two weight matrices. *E* is size invariant since it does not depend on the number of nodes *m*. We validate our model on two real-world data sets: (1) predicting path failure in a telecommunication network, and (2) predicting path congestion in a traffic network.

|                           | Telecom          | Traffic           |
|---------------------------|------------------|-------------------|
| No. of failure/congestion | 385,896          | 85,083            |
| No. of availability       | 6,821,101        | 346,917           |
| Average length of paths   | $7.05{\pm}~4.39$ | $32.56 \pm 12.48$ |

Table: Statistics of path instances

イロト イヨト イヨト イヨト



Figure: Sensor distribution in District 7 of California. Each dot represents a sensor station.

æ

- DTW, does not use graph structure.
- FC-LSTM, does not use graph structure.
- DCRNN, it works on a static graph.
- STGCN, it works on a static graph.
- LRGCN, it works on a static graph.
- LRGCN-SAPE (static), which is similar to LRGCN except that we replace the path representation method LSTM with SAPE.
- LRGCN-SAPE (evolving), which is similar to LRGCN-SAPE (static) except that the underlying graph structure evolves over time.

#### Table: Comparison of different methods on path failure prediction on Telecom

|   | Algorithm             | Precision | Recall  | Macro-F1 |
|---|-----------------------|-----------|---------|----------|
| 1 | DTW                   | 15.47%    | 9.63%   | 53.23%   |
| 2 | FC-LSTM               | 13.29 %   | 52.27 % | 53.78 %  |
| 3 | DCRNN                 | 13.97 %   | 57.81 % | 54.42 %  |
|   | STGCN                 | 16.35 %   | 52.53 % | 56.29 %  |
|   | LRGCN                 | 17.38 %   | 61.34 % | 57.70 %  |
| 4 | LRGCN-SAPE (static)   | 17.67 %   | 65.28 % | 60.55 %  |
| 4 | LRGCN-SAPE (evolving) | 19.23 %   | 65.07 % | 61.89 %  |

æ

イロン イ理 とく ヨン イ ヨン

Table: Comparison of different methods on path congestion prediction on Traffic

|   | Algorithm             | Precision | Recall  | Macro-F1 |
|---|-----------------------|-----------|---------|----------|
| 1 | DTW                   | 12.05%    | 39.12%  | 51.62%   |
| 2 | FC-LSTM               | 54.44 %   | 87.97 % | 76.55 %  |
| 3 | DCRNN                 | 63.05 %   | 88.55 % | 82.60 %  |
|   | STGCN                 | 64.52 %   | 86.15 % | 82.41 %  |
|   | LRGCN                 | 65.15 %   | 87.65 % | 83.74 %  |
| 4 | LRGCN-SAPE (static)   | 67.74 %   | 88.44%  | 84.84 %  |
|   | LRGCN-SAPE (evolving) | 71.04 %   | 88.50 % | 86.74 %  |

æ

イロン イ理 とく ヨン イ ヨン

## Benefits of graph evolution modeling

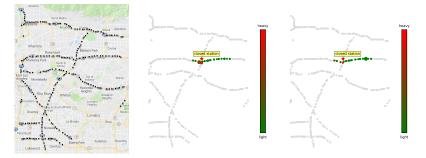


Figure: Visualization of learned attention weights of a path on Traffic (left: the original map; middle: attention weights by LRGCN-SAPE (evolving); right: attention weights by LRGCN-SAPE (static)).

. . . . . . . .

# Training efficiency

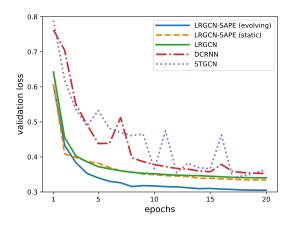


Figure: Learning curve of different methods. LRGCN-SAPE (evolving) achieves the lowest validation loss.

- 4 回 ト - 4 三 ト

## Path embedding visualization

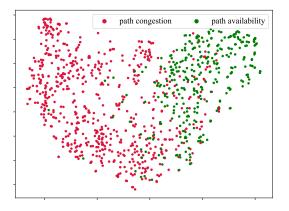


Figure: Two-dimensional visualization of path embeddings on Traffic using SAPE.

イロト イボト イヨト イヨト

## Conclusion

• We study path classification in time-evolving graphs.

• We design a new dynamic graph neural network LRGCN, which views node correlation within a graph snapshot as intra-time relations, and views temporal dependency between adjacent graph snapshots as inter-time relations.

< □ > < □ > < □ > < □ > < □ > < □ >

#### Data and code:

https://github.com/chocolates/Predicting-Path-Failure-In-Time-Evolving-Graphs

Thank you.

æ

イロト イヨト イヨト イヨト