
Predicting Path Failure In Time-Evolving Graphs

Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang,
Jianfeng Zhang, Lujia Pan

The Chinese University of Hong Kong
Noah’s Ark Lab, Huawei Technologies

J. Li et al. LRGCN 1 / 29



Overview

1 Introduction

2 Problem Definition

3 Methodology

Framework
Time-Evolving Graph Modeling
Self-Attentive Path Embedding

4 Experimental Results

Data
Baselines
Results and Interpretation

5 Conclusion

J. Li et al. LRGCN 2 / 29



Introduction

Graphs are used to model real-world entities and their relationship.

Figure: telecommunication network Figure: traffic network

J. Li et al. LRGCN 3 / 29



Introduction

Structure dynamics and temporal dependency

Figure: graph structures are evolving
Figure: time series are observed on each
node

In this work, we focus on path classification in a time-evolving graph,
which predicts the status of a path in the near future.

J. Li et al. LRGCN 4 / 29



Problem Definition

Definition

Time-evolving graph

Denote the adjacency matrix At ∈ RN×N and the observed signals
X t ∈ RN×d as a graph snapshot at time t, a sequence of graph snapshots
over time steps 0, 1, . . . , t is defined as a time-evolving graph.

Path availability

Denote a path as a sequence p = 〈v1, v2, . . . , vm〉 of length m in the
time-evolving graph. For the same path, we use st = 〈x t1, x t2, . . . , x tm〉 to
represent the observations of the path nodes at time t. We utilize the past
M time steps to predict the availability of this path in the next F time
steps.

J. Li et al. LRGCN 5 / 29



Problem Definition

Example

M time steps

{

F time steps

{…

a
b

c d
c

a
b

c d

a
b

c d

a
b

c d

Figure: A time-evolving graph in which four nodes a, b, c , d correspond to four
switches in a telecommunication network. Given the observations and graph
snapshots in the past M time steps, we want to infer if path 〈a, b, c , d〉 will fail or
not in the next F time steps.

J. Li et al. LRGCN 6 / 29



Problem Definition

Path classification

We formulate this prediction task as a classification problem and our goal
is to learn a function f (·) that can minimize the cross-entropy loss L over
the training set D.

arg minL = −
∑

Pj∈D

C∑
c=1

Yjc log fc(Pj), (1)

where Pj = ([st−M+1
j , . . . , stj ], pj , [A

t−M+1, . . . ,At ]) is a training instance,

Yj ∈ {0, 1}C is the training label representing the availability of this path
in the next F time steps, fc(Pj) is the predicted probability of class c , and
C is the number of classes.

J. Li et al. LRGCN 7 / 29



Methodology Framework

Three properties

Node correlation: Observations on nodes are correlated;

Graph structure dynamics: Observations on nodes are influenced by
the changes on the graph structure;

Temporal dependency: The time series recorded on each node
demonstrates strong temporal dependency.

J. Li et al. LRGCN 8 / 29



Methodology Framework

Framework

Our model uses a two-layer LRGCN, to obtain the hidden representation of
each node. Then it utilizes a self-attentive mechanism to learn the node
importance and encode it into a unified path representation.

…

tim
e

…

input
evolving	graphs

LRGCN

…

initial

LRGCN

Ω ∈ ℝ$×& path
index

SAPE prediction

SAPE prediction

…

P ∈ ℝ(×&

P) ∈ ℝ(*×&

Figure: Framework of the proposed model for path classification.

J. Li et al. LRGCN 9 / 29



Methodology Time-Evolving Graph Modeling

Static graph modeling

Relational GCN (R-GCN) by Kipf et al. is developed to deal with
multi-relational static graphs.

R-GCN

Z = σ(
∑
φ∈R

(Dt
φ)
−1

At
φX

tWφ + X tW0), (2)

R = {in, out}. (Dt
φ)

ii
=
∑

j (At
φ)

ij
.

At
in = At represents the incoming relation.

At
out = (At)T represents the outgoing relation.

J. Li et al. LRGCN 10 / 29



Methodology Time-Evolving Graph Modeling

We view the effect of self-connection normalization as a linear combination
of incoming and outgoing normalization.

Simplified R-GCN

Zs = σ(
∑
φ∈R

Ãt
φX

tWφ), (3)

where Ãt
φ = (D̂t

φ)−1Ât
φ. Ât

φ = At
φ + IN . (D̂t

φ)ii =
∑

j (Ât
φ)ij .

J. Li et al. LRGCN 11 / 29



Methodology Time-Evolving Graph Modeling

Two-hop simplified R-GCN

Θs?g X t =
∑
φ∈R

Ãt
φσ(
∑
φ∈R

Ãt
φX

tW
(0)
φ )W

(1)
φ . (4)

where Θs represents the parameter set used in the static graph modeling,

W
(0)
φ ∈ Rd×h is an input-to-hidden weight matrix for a hidden layer with h

feature maps. W
(1)
φ ∈ Rh×u is a hidden-to-output weight matrix, ?g

stands for this two-hop graph convolution operation and shall be used
thereafter.

J. Li et al. LRGCN 12 / 29



Methodology Time-Evolving Graph Modeling

Adjacent graph snapshots modeling

Before diving into a sequence of graph snapshots, we first focus on two
adjacent time steps t − 1 and t.

c`̀

a a
bb

cc
dd

(t-1) (t)

inter-time 
relation

intra-time 
relation

Figure: Plot of intra-time relation (in solid line) and inter-time relation (in dotted
line) modeled for two adjacent graph snapshots.

J. Li et al. LRGCN 13 / 29



Methodology Time-Evolving Graph Modeling

There are four types of relations, i.e., intra-incoming, intra-outgoing,
inter-incoming and inter-outgoing relations.
This operation is named time-evolving graph G unit, which has a similar
role of unit in RNN.

time-evolving graph unit

G unit(Θ, [X t ,X t−1]) = σ(Θs?g X t + Θh?g X t−1). (5)

where Θh stands for the parameter set used in inter-time modeling, and it
does not change over time. For Θh?g X t−1, Ãt−1

φ is used to represent the
graph structure.

J. Li et al. LRGCN 14 / 29



Methodology Time-Evolving Graph Modeling

The proposed LRGCN model

We first design a RNN-style neural network working on a time-evolving
graph.

Ht = σ(ΘH?g [X t ,Ht−1]). (6)

where ΘH includes Θs and Θh.

J. Li et al. LRGCN 15 / 29



Methodology Time-Evolving Graph Modeling

We propose a Long Short-Term Memory R-GCN. LRGCN utilizes three
gates to achieve the long-term memory or accumulation.

it = σ(Θi?g [X t ,Ht−1]) (7)

ft = σ(Θf ?g [X t ,Ht−1]) (8)

ot = σ(Θo?g [X t ,Ht−1]) (9)

ct = ft � ct−1 + it � tanh(Θc?g [X t ,Ht−1]) (10)

Ht = ot � ct (11)

where � stands for element-wise multiplication, it , ft , ot are input gate,
forget gate and output gate at time t respectively.

J. Li et al. LRGCN 16 / 29



Methodology Self-Attentive Path Embedding

Two challenges

For the final path classification task, however, we still identify several
challenges:

Size invariance: How to produce a fixed-length vector representation
for any path of arbitrary length?

Node importance: How to encode the importance of different nodes
into a unified path representation?

J. Li et al. LRGCN 17 / 29



Methodology Self-Attentive Path Embedding

SAPE

We propose a self-attentive path embedding method, called SAPE, to
address the challenges listed above.

P ∈ ℝ$×&

≈ç

≈ç

≈ç

+ softmax

E ∈ ℝ(×	*

Γ ∈ ℝ$×*

S ∈ ℝ(×$

LSTM

Figure: The proposed self-attentive path embedding method SAPE.

J. Li et al. LRGCN 18 / 29



Methodology Self-Attentive Path Embedding

In SAPE, we first utilize LSTM to sequentially take in node representation
of a path. Then we use the self-attentive mechanism to learn the node
importance and transform a path of variable length into a fixed-length
embedding vector.

Γ = LSTM(P) (12)

S = softmax
(
Wh2tanh(Wh1ΓT )

)
(13)

E = SΓ (14)

where Γ ∈ Rm×v . Wh1 ∈ Rds×v and Wh2 ∈ Rr×ds are two weight matrices.
E is size invariant since it does not depend on the number of nodes m.

J. Li et al. LRGCN 19 / 29



Experiment Data

We validate our model on two real-world data sets: (1) predicting path
failure in a telecommunication network, and (2) predicting path congestion
in a traffic network.

Table: Statistics of path instances

Telecom Traffic

No. of failure/congestion 385,896 85,083
No. of availability 6,821,101 346,917

Average length of paths 7.05± 4.39 32.56± 12.48

J. Li et al. LRGCN 20 / 29



Experiment Data

Figure: Sensor distribution in District 7 of California. Each dot represents a sensor
station.

J. Li et al. LRGCN 21 / 29



Experiment Baselines

DTW, does not use graph structure.

FC-LSTM, does not use graph structure.

DCRNN, it works on a static graph.

STGCN, it works on a static graph.

LRGCN, it works on a static graph.

LRGCN-SAPE (static), which is similar to LRGCN except that we
replace the path representation method LSTM with SAPE.

LRGCN-SAPE (evolving), which is similar to LRGCN-SAPE (static)
except that the underlying graph structure evolves over time.

J. Li et al. LRGCN 22 / 29



Experiment Results and Interpretation

Table: Comparison of different methods on path failure prediction on Telecom

Algorithm Precision Recall Macro-F1

1 DTW 15.47% 9.63% 53.23%

2 FC-LSTM 13.29 % 52.27 % 53.78 %

3
DCRNN 13.97 % 57.81 % 54.42 %
STGCN 16.35 % 52.53 % 56.29 %
LRGCN 17.38 % 61.34 % 57.70 %

4
LRGCN-SAPE (static) 17.67 % 65.28 % 60.55 %

LRGCN-SAPE (evolving) 19.23 % 65.07 % 61.89 %

J. Li et al. LRGCN 23 / 29



Experiment Results and Interpretation

Table: Comparison of different methods on path congestion prediction on Traffic

Algorithm Precision Recall Macro-F1

1 DTW 12.05% 39.12% 51.62%

2 FC-LSTM 54.44 % 87.97 % 76.55 %

3
DCRNN 63.05 % 88.55 % 82.60 %
STGCN 64.52 % 86.15 % 82.41 %
LRGCN 65.15 % 87.65 % 83.74 %

4
LRGCN-SAPE (static) 67.74 % 88.44% 84.84 %

LRGCN-SAPE (evolving) 71.04 % 88.50 % 86.74 %

J. Li et al. LRGCN 24 / 29



Experiment Results and Interpretation

Benefits of graph evolution modeling

closed station

heavy

light

closed station

heavy

light

Figure: Visualization of learned attention weights of a path on Traffic (left: the
original map; middle: attention weights by LRGCN-SAPE (evolving); right:
attention weights by LRGCN-SAPE (static)).

J. Li et al. LRGCN 25 / 29



Experiment Results and Interpretation

Training efficiency

1 5 10 15 20
epochs

0.3

0.4

0.5

0.6

0.7

0.8

va
lid

at
io

n 
lo

ss

LRGCN-SAPE (evolving)
LRGCN-SAPE (static)
LRGCN
DCRNN
STGCN

Figure: Learning curve of different methods. LRGCN-SAPE (evolving) achieves
the lowest validation loss.

J. Li et al. LRGCN 26 / 29



Experiment Results and Interpretation

Path embedding visualization

path congestion path availability

Figure: Two-dimensional visualization of path embeddings on Traffic using SAPE.

J. Li et al. LRGCN 27 / 29



Conclusion

Conclusion

We study path classification in time-evolving graphs.

We design a new dynamic graph neural network LRGCN, which views
node correlation within a graph snapshot as intra-time relations, and
views temporal dependency between adjacent graph snapshots as
inter-time relations.

J. Li et al. LRGCN 28 / 29



Conclusion

Data and code:
https://github.com/chocolates/Predicting-Path-Failure-In-Time-Evolving-
Graphs

Thank you.

J. Li et al. LRGCN 29 / 29


	Introduction
	Problem Definition
	Methodology
	Framework
	Time-Evolving Graph Modeling
	Self-Attentive Path Embedding

	Experiment
	Data
	Baselines
	Results and Interpretation

	Conclusion

