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Abstract We propose a new family of inexact sequential quadratic approxi-
mation (SQA) methods, which we call the inexact regularized proximal Newton
(IRPN) method, for minimizing the sum of two closed proper convex functions,
one of which is smooth and the other is possibly non-smooth. Our proposed
method features strong convergence guarantees even when applied to prob-
lems with degenerate solutions while allowing the inner minimization to be
solved inexactly. Specifically, we prove that when the problem possesses the
so-called Luo-Tseng error bound (EB) property, IRPN converges globally to
an optimal solution, and the local convergence rate of the sequence of iterates
generated by IRPN is linear, superlinear, or even quadratic, depending on the
choice of parameters of the algorithm. Prior to this work, such EB property
has been extensively used to establish the linear convergence of various first-
order methods. However, to the best of our knowledge, this work is the first
to use the Luo-Tseng EB property to establish the superlinear convergence
of SQA-type methods for non-smooth convex minimization. As a consequence
of our result, IRPN is capable of solving regularized regression or classifica-
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tion problems under the high-dimensional setting with provable convergence
guarantees. We compare our proposed IRPN with several empirically efficient
algorithms by applying them to the `1-regularized logistic regression problem.
Experiment results show the competitiveness of our proposed method.

Keywords convex composite minimization · sequential quadratic approxi-
mation · proximal Newton method · error bound · superlinear convergence

1 Introduction

A wide range of tasks in machine learning and statistics can be formulated as
a non-smooth convex minimization problem of the form1

min
x∈Rn

{F (x) := f(x) + g(x)} , (1)

where f, g : Rn → (−∞,+∞] are closed proper convex functions with f be-
ing twice continuously differentiable on an open subset of Rn containing the
effective domain dom(g) of g and g being non-smooth. A popular choice for
solving problem (1) is the sequential quadratic approximation (SQA) method
(also called the proximal Newton method). Roughly speaking, in iteration k
of a generic SQA method, one computes an (approximate) minimizer x̂k+1 of
a quadratic model qk of the objective function F at xk, where

qk(x) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THk(x− xk) + g(x) (2)

and Hk is a positive definite matrix approximating the Hessian ∇2f(xk) of
f at xk. A step size αk is obtained by performing a backtracking line search
along the direction dk := x̂k+1 − xk, and then xk+1 := xk + αkd

k is returned
as the next iterate. Since in most cases, the (approximate) minimizer x̂k+1

of (2) does not admit a closed-form expression, an iterative algorithm, which
we shall refer to as the inner solver in the sequel, is invoked. Throughout the
paper, we will call the problem of minimizing the quadratic model (2) the
inner problem and its solution the inner solution. We will also refer to the
task of minimizing (2) as inner minimization.

There are three important ingredients that, more or less, determine an
SQA method: the approximate Hessian Hk, the inner solver for minimizing
qk, and the stopping criterion of the inner solver to control the inexactness
of the approximate inner solution x̂k+1. Indeed, many existing SQA methods
and their variants that are tailored for special instances of problem (1) can
be obtained by specifying the aforementioned ingredients. Friedman et al. [13]
developed the GLMNET algorithm for solving the `1-regularized logistic re-
gression, where Hk is set to be the exact Hessian ∇2f(xk) and a coordinate
minimization method is used as the inner solver. Yuan et al. [45] improved
GLMNET by replacing Hk with ∇2f(xk) + νI for some constant ν > 0 and

1 Some authors refer to this as a convex composite minimization problem.
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adding a heuristic adaptive stopping strategy for inner minimization. This al-
gorithm, called newGLMNET, is now the workhorse of the well-known LIBLIN-
EAR package [10] for large-scale linear classification. Hsieh et al. [15] proposed
the QUIC algorithm for solving sparse inverse covariance matrix estimation,
which makes use of a quasi-Newton model to form the quadratic model (2).
Similar strategies have also been employed in Olsen et al. [29], where the inner
problem is solved by the fast iterative soft-shrinkage algorithm (FISTA) [1].
Other SQA variants can be found, e.g., in [36,2,48].

Although the numerical advantage of the algorithms mentioned above has
been well documented, their global convergence and convergence rate guar-
antees require the inner problems to be solved exactly. Such requirement is
rarely satisfied in practice. To address this issue, Lee et al. [17] and Byrd et
al. [4] proposed several families of SQA methods along with stopping criteria
for the inner problem and showed that they are globally convergent and have
a local superlinear convergence rate. However, all these convergence guaran-
tees require the strong convexity of f . In fact, the strong convexity property
is needed not only in the analyses but also for the well-definedness of the pro-
posed methods.2 Unfortunately, such a property is absent in many applications
of interest. For example, consider the `1-regularized least squares regression
problem, whose objective function takes the form

F (x) =
1

m

m∑
i=1

(
aTi x− bi

)2
+ µ‖x‖1, µ > 0.

Observe that the smooth part x 7→ 1
m

∑m
i=1

(
aTi x− bi

)2
is strongly convex if

and only if the data matrix A := [a1 · · · am] ∈ Rn×m has full row rank. The
latter cannot be ensured in most applications and is even impossible in the
high-dimensional (i.e., n� m) setting. In addition, the authors of [17] did not
provide any global convergence result for the inexact version of their proposed
method, while those of [4] considered only the case where g(x) = c · ‖x‖1 for
some constant c > 0. On another front, Scheinberg and Tang [35] proposed an
inexact SQA-type method and analyzed its global complexity. Although their
analysis does not require the strong convexity of f , it only yields a sublinear
convergence rate for the proposed method. In view of the above discussion,
the theoretical study of existing SQA methods is rather incomplete, and we
are motivated to develop an algorithm for solving problem (1) that does not
require an exact inner solver or the strong convexity of f but can still be shown
to converge globally and possess a local superlinear convergence rate.

In this paper, we propose a new family of inexact SQA methods, which we
call the inexact regularized proximal Newton (IRPN) method, that are capable
of solving non-strongly convex instances of problem (1) without using an ex-
act inner solver. In iteration k, IRPN takes Hk to be the regularized Hessian
Hk = ∇2f(xk) + µkI, where µk = c · r(xk)ρ > 0 for some constants c > 0,

2 For instance, the exact Hessian Hk = ∇2f(xk) is used in [17]. If f is not strongly
convex, then neither is the quadratic model (2). As such, the inner problem can have multiple
minimizers and the next iterate xk+1 is not well defined.
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ρ ∈ [0, 1], and r is an easily computable residual function that measures the
proximity of xk to the optimal solution set (see Section 2.2 for details). The
inner problem is solved up to an accuracy that is determined by an adaptive
inexactness condition, which also depends on the residue r(xk) and the pa-
rameter ρ. It is worth noting that the idea of regularization is not new for
second-order methods. Indeed, Li et al. [18] investigated the regularized New-
ton method for solving smooth convex minimization problems with degener-
ate solutions. The well-known Levenberg-Marquardt (LM) method for solving
nonlinear equations is essentially a regularized Gauss-Newton method [25,42].
The algorithm that is closest in spirit to ours is newGLMNET [45], which aims
at solving problems of the form (1) and also uses a regularized Hessian, albeit
the regularization parameter remains constant throughout the entire execu-
tion; i.e., µk = ν for all k with ν > 0. Hence, it may be seen as a special case
(ρ = 0) of IRPN. However, the constant ν is chosen empirically and a heuristic
stopping rule is adopted for the inner solver.

Another motivation of this research comes from the seminal paper [24] of
Luo and Tseng, in which a certain error bound (EB) property was introduced.
The Luo-Tseng EB property is provably a less stringent requirement on the
objective function F of problem (1) than strong convexity and has been shown
to hold for a wide range of F ’s; see Fact 3. Since its introduction, the Luo-Tseng
EB property has played an important role in the convergence rate analysis
of various first-order methods. Specifically, it has been utilized to establish
the linear convergence of the projected gradient descent, proximal gradient
descent, coordinate descent, and block coordinate descent methods for solving
possibly non-strongly convex instances of problem (1); see [24,39,38,14,47]. It
is interesting to note that if the objective function F of problem (1) satisfies the
Luo-Tseng EB property, then it also satisfies the so-called Kurdyka- Lojasiewicz
(KL) property with exponent 1/2 [19].3 The latter can also be used to establish
the linear convergence of various first-order methods; see, e.g., [19,21] and the
references therein.

Following the great success of EB-based analysis of first-order methods, it is
natural to ask whether one can develop an EB-based analysis of second-order
methods for solving problem (1). Such an analysis is highly desirable, as it
would advance our understanding of the strength and limitation of SQA-type
methods and more accurately capture the interplay between the algorithmic
and geometric properties of problem (1). It turns out that some partial answers
in this direction are available. Li et al. [18] proposed a regularized Newton
method along with inexactness conditions for solving smooth convex mini-
mization problems and proved its global convergence and local quadratic con-
vergence based on an EB property. Unfortunately, their analysis relies heavily
on the eigenvalue perturbation properties of the Hessian of the smooth objec-
tive function and hence cannot be directly extended to second-order methods
for solving the non-smooth minimization problem (1). Tseng and Yun [39] pro-

3 In [16] the authors considered global versions of the Luo-Tseng EB and KL properties
and showed that they are equivalent. However, none of the scenarios listed in Fact 3 except
(S1) are known to possess the global Luo-Tseng EB property stated in [16].
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posed the (block) coordinate gradient descent (CGD) method, which includes
the SQA method as a special case, for solving problem (1) with non-convex
f and non-smooth convex g that has a separable structure. Although their
analysis utilizes the Luo-Tseng EB property, their proposed CGD method re-
quires the sequence of approximate Hessians {Hk}k≥0 to be uniformly lower
bounded—i.e., λmin(Hk) ≥ λ for all k, where λ > 0 is some constant—and
the provable local convergence rate is only linear. Another important contri-
bution along this direction is the work [11] by Fischer, in which he studied an
abstract iterative framework for solving a class of generalized equations and
proved that it has a local superlinear convergence rate. Besides requiring an
EB-type property and an inexactness condition, the result requires the dis-
tance between two consecutive iterates to be linearly bounded by the distance
between the current iterate and the set of solutions X to the generalized equa-
tion; i.e., ‖xk+1 − xk‖ = O(dist(xk,X )). However, for a concrete algorithm,
establishing such an estimate is usually a non-trivial task. Moreover, the it-
erative framework in [11] does not involve regularization (see displayed equa-
tions (3) and (4) of [11]). Hence, it is not obvious how our proposed method
can be put into that framework. Recently, the authors of [7,8,12] studied an
inexact Newton-type method for solving constrained systems of equations and
proved its global convergence and local quadratic convergence based on an
EB property. As the set of optimal solutions to problem (1) can be character-
ized as the set of solutions to a certain system of equations (see Fact 2 and
the discussion following it), their algorithm can also be applied to solve prob-
lem (1). However, their method is fundamentally different from ours, as the
inner problem of their method involves solving a linear program, while that of
ours involves solving an unconstrained strongly convex minimization problem
(see Section 3 for details). Interestingly, in the context of problem (1), the
EB property considered by them also coincides with ours. Nevertheless, the
convergence analysis of their proposed method assumes that the linear pro-
gram defining the inner problem satisfies a so-called uniform inf-boundedness
property in a neighborhood of an optimal solution to problem (1); see [8, As-
sumption 3]. Although several sufficient conditions for such assumption to hold
are developed in [8, Section 3], they do not apply to some of the instances of
problem (1) that we are interested in.

Our contributions in this paper can be summarized as follows. First, we
propose a new family of inexact SQA methods called IRPN for solving the
non-smooth convex minimization problem (1). The proposed method has a
parameter ρ ∈ [0, 1] and comes with a stopping criterion for inner minimization
that allows us to solve the inner problem inexactly. Second, we establish the
global convergence and local convergence rate of IRPN. More precisely, we
prove that each accumulation point of the sequence of iterates generated by
IRPN is optimal for problem (1). Furthermore, when problem (1) possesses
the Luo-Tseng EB property, the sequence converges to an optimal solution,
and the local convergence rate is at least R-linear if ρ = 0, Q-superlinear if
ρ ∈ (0, 1), and Q-quadratic if ρ = 1 (see [27, Appendix A.2] for the definitions
of these different types of convergence). Our analysis is novel and establish, for
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the first time, the superlinear convergence of inexact SQA-type methods when
applied to instances of problem (1) that possess the Luo-Tseng EB property.

The paper is organized as follows. In Section 2, we set the stage for our
theoretical development by stating the basic assumptions and reviewing the
relevant existing results. We also discuss the Luo-Tseng EB property in the
context of problem (1) and some other related regularity conditions. In Sec-
tion 3, we detail our proposed IRPN, including the specification of the regular-
ized Hessian and inexactness condition for inner minimization. In Section 4,
we establish the global convergence and local convergence rate of IRPN. We
then present some numerical results in Section 5. Finally, we conclude our
paper in Section 6.

Notation. We denote the optimal value of and the set of optimal solutions
to problem (1) by F ∗ and X , respectively. We use ‖ ·‖ to denote the Euclidean
norm for vectors and the operator norm (see [3, Exercise I.2.4]) for matrices.
Given a set C ⊆ Rn, we denote by dist(x,C) the distance from x to C; i.e.,
dist(x,C) = inf{‖x − u‖ | u ∈ C}. For a closed convex function h, we denote
by ∂h the subdifferential of h. If h is continuously differentiable (resp. twice
continuously differentiable), we denote by ∇h (resp. ∇2h) the gradient (resp.
Hessian) of h.

2 Preliminaries

Consider the convex minimization problem (1). We assume that f, g are closed
proper convex functions with f being twice continuously differentiable on an
open subset of Rn containing dom(g) and g being possibly non-smooth. To
avoid ill-posed problems, we assume that the set of optimal solutions X to
problem (1) is non-empty, so that the optimal value F ∗ of problem (1) is
finite. Furthermore, we make the following assumptions.

Assumption 1. The function f in problem (1) satisfies the following:

(a) The gradient ∇f is Lipschitz continuous on an open set U containing
dom(g); i.e., there exists a constant L1 > 0 such that

‖∇f(y)−∇f(z)‖ ≤ L1‖y − z‖ ∀y, z ∈ U .

(b) The Hessian ∇2f is Lipschitz continuous on an open set U containing
dom(g); i.e., there exists a constant L2 > 0 such that

‖∇2f(y)−∇2f(z)‖ ≤ L2‖y − z‖ ∀y, z ∈ U .

The above assumptions are standard in the analysis of Newton-type methods.
As we will see in Sections 4 and 5, Assumption 1(a) is crucial to the global
convergence analysis of IRPN, while Assumption 1(b) is needed for the local
convergence analysis. The following result is a direct consequence of Assump-
tion 1; see, e.g., [26, Lemma 1.2.2].
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Fact 1. Under Assumption 1(a), for any x ∈ dom(g), we have

λmax(∇2f(x)) ≤ L1.

2.1 Optimality Conditions and Residual Functions

We now introduce the optimality condition of problem (1). Given a closed
proper convex function h : Rn → (−∞,+∞], the so-called proximal operator
proxh : Rn → Rn of h is defined by

proxh(v) := argmin
u∈Rn

{
1

2
‖u− v‖2 + h(u)

}
.

The proximal operator is the building block of many first-order methods for
solving problem (1), including the proximal gradient method and its accel-
erated versions [32] and (block) coordinate gradient descent methods [39].
Moreover, the proximal operators of many non-smooth functions, such as the
indicator function of a closed convex set, the `1-norm, the grouped LASSO
regularizer, the elastic net regularizer, and the nuclear norm, have closed-form
representations; see, e.g., [32, Chapter 6]. As is well known, the set of optimal
solutions to problem (1) can be characterized using the proximal operator.
The following result, which can be found, e.g., in [5, Proposition 3.1], will play
an important role in our subsequent development.

Fact 2. A vector x ∈ dom(g) is an optimal solution to problem (1) if and only
if for any τ > 0,

x = proxτg(x− τ∇f(x)).

Let R : dom(g)→ Rn be the map given by

R(x) := x− proxg(x−∇f(x)). (3)

Fact 2 suggests that we can take r(x) := ‖R(x)‖ as a residual function for
problem (1); i.e., the function r satisfies r(x) ≥ 0 for all x ∈ dom(g) and
r(x) = 0 if and only if x ∈ X . In addition, the following proposition shows
that both R and r are Lipschitz continuous on dom(g) if Assumption 1(a)
holds.

Proposition 1. Suppose that Assumption 1(a) holds. Then, for any y, z ∈
dom(g), we have

|r(y)− r(z)| ≤ ‖R(y)−R(z)‖ ≤ (L1 + 2)‖y − z‖.

Proof. The first inequality is a direct consequence of the triangle inequality.
We now prove the second one. Using the definition of R, we compute

‖R(y)−R(z)‖ = ‖y − proxg(y −∇f(y))− z + proxg(z −∇f(z))‖
≤ ‖y − z‖+ ‖proxg(y −∇f(y))− proxg(z −∇f(z))‖
≤ 2‖y − z‖+ ‖∇f(y)−∇f(z)‖
≤ (L1 + 2)‖y − z‖,
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where the second inequality follows from the non-expansiveness of the proximal
operator (see, e.g., [5, Lemma 2.4]) and the last is by Assumption 1(a). tu

2.1.1 Inner Minimization

Recall that in the k-th iteration of an SQA method, one (approximately)
minimizes the quadratic model qk in (2). By letting

fk(x) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THk(x− xk),

the inner problem reads

min
x∈Rn

{qk(x) := fk(x) + g(x)} , (4)

which is also a convex minimization problem of the form (1) with the smooth
part being quadratic. Therefore, both the optimality condition and residual
function studied earlier for problem (1) can be adapted to the inner prob-
lem (4). The following corollary is immediate from Fact 2 and the fact that
∇fk(x) = ∇f(xk) +Hk(x− xk).

Corollary 1. A vector x ∈ dom(g) is an optimal solution to problem (4) if
and only if for any τ > 0,

x = proxτg(x− τ∇fk(x)) = proxτg
(
(I − τHk)x− τ(∇f(xk)−Hkx

k)
)
.

Similar to the map R in (3), we define the map Rk : dom(g)→ Rn by

Rk(x) := x−proxg(x−∇fk(x)) = x−proxg
(
(I −Hk)x− (∇f(xk)−Hkx

k)
)
.

Furthermore, parallel to the residual function r defined for problem (1), we
can define the residual function for problem (4) as rk(x) := ‖Rk(x)‖. Now,
following the lines of the proof of Proposition 1, we can easily show that both
Rk and rk are Lipschitz continuous.

Corollary 2. For any y, z ∈ Rn, we have4

|rk(y)− rk(z)| ≤ ‖Rk(y)−Rk(z)‖ ≤ (λmax(Hk) + 2)‖y − z‖.

2.2 The Luo-Tseng Error Bound Property

A prevailing assumption in existing convergence analyses of SQA methods for
solving problem (1) is the strong convexity of the smooth function f [17,4].
However, such assumption is invalid in many applications (see the discussion
in Section 1). Instead of assuming strong convexity, our analysis of IRPN is
based on the following local EB property.

4 Note that Assumption 1(a) is not required for Corollary 2 to hold; cf. Proposition 1.
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Assumption 2. (Luo-Tseng EB Property) Let r be the residual function
defined in Section 2.1. For any ζ ≥ F ∗, there exist scalars κ > 0 and ε > 0
such that

dist(x,X ) ≤ κ · r(x) whenever F (x) ≤ ζ and r(x) ≤ ε. (5)

EBs have long been an important topic and permeate in all aspects of mathe-
matical programming [31,9]. The Luo-Tseng EB property (5) for problem (1)
was studied and popularized in a series of papers by Luo and Tseng [22–24].5 In
particular, many useful subclasses of problem (1) have been shown to possess
the Luo-Tseng EB property. The early results (see, e.g., [24] and the refer-
ences therein) mainly focus on the case where the non-smooth function g has
a polyhedral epigraph. It is only recently that the validity of the Luo-Tseng
EB is established for instances of problem (1) with a non-polyhedral g [38,50]
or even with a non-polyhedral optimal solution set [49]. We briefly summarize
these results below and refer the readers to the recent work of Zhou and So [49]
for a more detailed review of the developments of the Luo-Tseng EB.

Fact 3. For problem (1), the Luo-Tseng EB (Assumption 2) holds in any of
the following scenarios:

(S1) ([39, Theorem 4]; cf. [30, Theorem 3.1]) f is strongly convex, ∇f is Lip-
schitz continuous, and g is a closed proper convex function.

(S2) ([39, Lemma 7]; cf. [23, Theorem 2.1]) f takes the form f(x) = h(Ax) +
〈c, x〉, where A ∈ Rm×n and c ∈ Rn are given, h : Rm → (−∞,+∞) is a
continuously differentiable function with h being strongly convex and ∇h
being Lipschitz continuous on any compact convex subset of Rn, and g
has a polyhedral epigraph.

(S3) ([50, Corollaries 1 and 2]; cf. [38, Theorem 2] and [47, Theorem 1]) f
takes the form f(x) = h(Ax), where A ∈ Rm×n, h : Rm → (−∞,+∞)
are as in scenario (S2), and g is the `1,p-norm regularizer with p ∈ [1, 2]∪
{+∞} (i.e., g(x) =

∑
J∈J ωJ‖xJ‖p, where J is a partition of the index

set {1, . . . , n}, xJ ∈ R|J| is the sub-vector obtained by restricting x ∈ Rn
to the entries in J ∈ J , and ωJ ≥ 0 is a given parameter; see [50] and
the references therein for some background on the `1,p-norm regularizer).

(S4) ([49, Proposition 12]) f takes the form f(X) = h(A(X)) + 〈C,X〉, where
A : Rn×p → Rm is a linear mapping, C ∈ Rn×p is a given matrix, h :
Rm → (−∞,+∞) is as in scenario (S2), g is the nuclear norm regularizer
(i.e., g(X) equals the sum of all the singular values of X; see [49] and the
references therein for some background on the nuclear norm regularizer),
and there exists an X∗ ∈ X such that the following strict complementary-
type condition holds (here, ri denotes the relative interior):

0 ∈ ∇f(X∗) + ri(∂g(X∗)).

5 A similar EB property has been studied by Pang [30] for linearly constrained variational
inequalities.
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Note that in scenarios (S2)–(S4), the assumptions on h are the same and can
readily be shown to be satisfied by h(y) = 1

2‖y−b‖
2, which corresponds to least

squares regression, and h(y) =
∑m
i=1 log(1 + e−biyi) with b ∈ {−1, 1}m, which

corresponds to logistic regression. The assumptions on h are also satisfied by
loss functions that arise in maximum likelihood estimation (MLE) for learning
conditional random fields [48] and MLE under Poisson noise [34]. It follows
from Fact 3 that many problems of the form (1) possess the Luo-Tseng EB
property, even though they may not be strongly convex.

Prior to this work, the Luo-Tseng EB property (5) has been used to estab-
lish the local linear convergence of a number of first-order methods for solving
problem (1); see the discussion in Section 1. It has also been used to prove that
certain primal-dual interior-point path following methods converge superlin-
early [37]. However, all the methods in question are quite different in nature
from the SQA methods considered in this paper. In Section 4, we show how
the Luo-Tseng EB property (5) can be used to establish the local superlinear
convergence of our proposed IRPN, thus further demonstrating its versatility
in convergence analysis.

2.3 Other Regularity Conditions

Besides the Luo-Tseng EB property (5), other regularity conditions have been
used to establish the superlinear convergence of SQA methods for solving
problem (1). Let us briefly review some of those conditions here and explain
why they are too stringent for the scenarios that we are interested in.

Yen et al. [43] and Zhong et al. [48] introduced the constant nullspace strong
convexity (CNSC) property of a smooth function. They showed that when the
smooth function f possesses the CNSC property and the non-smooth function
g satisfies some other regularity conditions, the proximal Newton and prox-
imal quasi-Newton methods in [17] converge quadratically and superlinearly,
respectively. Nonetheless, their convergence results are different from those ob-
tained in this paper. Indeed, let {xk}k≥0 be the sequence of iterates generated
by the above methods and zk be the projection of xk onto the subspace asso-
ciated with the CNSC property. The results in [43,48] imply that the sequence
{zk}k≥0 converges to a point z∗ quadratically or superlinearly. However, the
convergence rate of {xk}k≥0 remains unclear. In fact, there is no guarantee
that {xk}k≥0 or {zk}k≥0 converges to an optimal solution to the problem. We
also remark that neither the inexactness of the inner minimization nor the
global convergence of the methods was addressed in [43,48].

Dontchev and Rockafellar [6] developed a framework for solving generalized
equations, which coincides with the standard SQA method when specialized to
the optimality condition 0 ∈ ∇f(x) + ∂g(x) of problem (1). The correspond-
ing convergence results require the set-valued mapping ∇f + ∂g to be either
metrically regular or strongly metrically sub-regular ; see [6, Chapter 6C]. How-
ever, both of these regularity conditions are provably more restrictive than the
Luo-Tseng EB property (5). In particular, they require that the problem at



Inexact SQA Methods and Error Bound-Based Convergence Analysis 11

hand has a unique optimal solution, which is not satisfied by many instances
of problem (1) that are of interest. For example, consider the following two-
dimensional `1-regularized least squares regression problem:

min
x1,x2∈R

{
1

2
(x1 + x2 − 2)2 + |x1|+ |x2|

}
.

This problem possesses the Luo-Tseng EB property (5), as it belongs to sce-
nario (S2) in Fact 3. However, it can be verified that the set-valued mapping
associated with the optimality condition of this problem is neither metrically
regular nor strongly metrically sub-regular.

3 The Inexact Regularized Proximal Newton Method

We now describe in detail our proposed algorithm—the inexact regularized
proximal Newton (IRPN) method. The algorithm takes as input an initial iter-
ate x0 ∈ Rn, a constant ε0 > 0 that controls the solution precision, constants
θ ∈ (0, 1/2), ζ ∈ (θ, 1/2), η ∈ (0, 1) that are used to specify the inexactness
condition and line-search parameters, and constants c > 0, ρ ∈ [0, 1] that are
used to form the regularized Hessians {Hk}k≥0. As we will see in Section 4,
the local convergence rate of IRPN largely depends on the choice of ρ.

At the current iterate xk, we first construct a quadratic approximation of
F at xk by

qk(x) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THk(x− xk) + g(x),

where Hk = ∇2f(xk) +µkI with µk = c · r(xk)ρ and r is the residual function
defined in Section 2.1 for problem (1). Since f is convex and µk > 0, the matrix
Hk is positive definite for all k. Hence, the quadratic model qk is strongly
convex and has a unique minimizer. However, since the exact minimizer does
not admit a closed-form expression in most cases, an iterative algorithm, such
as a coordinate minimization method, the coordinate gradient descent method,
or the accelerated proximal gradient method, is typically called to find an
approximate minimizer x̂k+1 of the quadratic model qk. To ensure that the
method has the desired convergence properties, we require the vector x̂k+1 to
satisfy

rk(x̂k+1) ≤ η ·min{r(xk), r(xk)1+ρ}, (6a)

qk(x̂k+1)− qk(xk) ≤ ζ
(
`k(x̂k+1)− `k(xk)

)
, (6b)

where rk is the residual function defined in Section 2.1.1 for the inner prob-
lem (4) and `k is the first-order approximation of F at xk:

`k(x) := f(xk) +∇f(xk)T (x− xk) + g(x).

We will show in Lemma 1 that the inexactness condition (6) can be satisfied
by vectors that are sufficiently close to the exact minimizer of qk. After finding
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the approximate minimizer x̂k+1, we perform a backtracking line search along
the direction dk := x̂k+1 − xk to obtain a step size αk > 0 that can guarantee
a sufficient decrease in the objective value. The algorithm then steps into the
next iterate by setting xk+1 := xk+αkd

k. Finally, we terminate the algorithm
when r(xk) is less than the prescribed precision ε0. We summarize the details
of IRPN in Algorithm 1.

Algorithm 1 Inexact Regularized Proximal Newton (IRPN) Method

1: Input: initial iterate x0 ∈ Rn, constants ε0 > 0, θ ∈ (0, 1/2), ζ ∈ (θ, 1/2), η ∈ (0, 1),
c > 0, ρ ∈ [0, 1], and β ∈ (0, 1).

2: for k = 0, 1, 2, . . . do {outer iteration}
3: compute the value of the residue r(xk)
4: if r(xk) ≤ ε0, terminate the algorithm and return xk

5: form the quadratic model qk with Hk = ∇2f(xk) + µkI and µk = c · r(xk)ρ

6: {inner iteration} call an inner solver and find an approximate minimizer x̂k+1 of
qk that satisfies

rk(x̂k+1) ≤ η ·min{r(xk), r(xk)1+ρ} and qk(x̂k+1)−qk(xk) ≤ ζ
(
`k(x̂k+1)− `k(xk)

)
(6)

7: set the search direction dk := x̂k+1−xk and find the smallest integer i ≥ 0 such that

F (xk)− F (xk + βidk) ≥ θ
(
`k(xk)− `k(xk + βidk)

)
(7)

8: set the step size αk = βi and the next iterate xk+1 = xk + αkd
k

9: end for

The inexactness condition (6) is similar to that proposed in [4]. However,
the analysis in [4] cannot be applied to study the convergence behavior of
IRPN. Indeed, the global convergence analysis therein requires that Hk � λI
with λ > 0 for all k, while the local convergence rate analysis requires ∇2f to
be positive definite at the limit point x∗ of the sequence {xk}k≥0. However,
for many of the instances of problem (1) that we are interested in, neither of
these requirements are guaranteed to be satisfied.

One advantage of our proposed IRPN lies in its flexibility. Indeed, for SQA
methods that use regularized Hessians, it is typical to let the regularization
parameter µk be of the same order as the residue r(xk) [18,33]; i.e., µk =
c ·r(xk). By contrast, we can adjust the order of µk according to the parameter
ρ. Therefore, IRPN is a tunable family of algorithms parametrized by ρ ∈ [0, 1].
As we will see in Sections 4 and 5, the parameter ρ plays a dominant role in
the local convergence rate of IRPN. Even more, IRPN allows one to choose the
inner solver. With the objective being the sum of a strongly convex quadratic
function and a non-smooth convex function, each inner problem is a well-
structured convex minimization problem. Hence, one can exploit the structure
of∇2f and g to design special inner solvers to speed up the inner minimization.

Before we discuss the convergence properties of IRPN, we need to show
that it is well defined. Specifically, we need to argue that the inexactness
condition (6) is always feasible and the line search procedure will terminate in
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a finite number of steps. We first present the following lemma, which ensures
that in each iteration, the inexactness condition (6) is satisfied by vectors that
are close enough to the exact minimizer of the inner problem. The proof is
identical to [4, Lemma 4.5], but we present it here for completeness.

Lemma 1 For any iteration k of Algorithm 1, the inexactness condition (6)
is satisfied by any vector x that is sufficiently close to the exact minimizer
x̃k+1 of the quadratic model qk.

Proof. Consider the iterate xk in the k-th iteration. We may assume that
xk is not optimal for problem (1), for otherwise the algorithm would have
terminated. The continuity of rk and the fact that rk(x̃k+1) = 0 imply that
condition (6a) is satisfied by any x that is sufficiently close to x̃k+1. Now, let
us consider condition (6b). Since qk(x) = `k(x) + 1

2 (x − xk)THk(x − xk) and
x̃k+1 is the minimizer of qk, we have Hk(xk − x̃k+1) ∈ ∂`k(x̃k+1). This leads
to xk 6= x̃k+1, for otherwise we would have 0 ∈ ∂`k(xk), which would imply
that xk is an optimal solution to problem (1). Moreover, by the convexity of
`k, we have

`k(xk) ≥ `k(x̃k+1) + (x̃k+1 − xk)THk(x̃k+1 − xk). (8)

Since Hk = ∇2f(xk) + µkI for some µk > 0, Hk is positive definite. This,
together with the fact that xk 6= x̃k+1, implies that `k(xk) > `k(x̃k+1). Fur-
thermore, we have

qk(x̃k+1)− qk(xk) = `k(x̃k+1) +
1

2
(x̃k+1 − xk)THk(x̃k+1 − xk)− `k(xk)

≤ 1

2

(
`k(x̃k+1)− `k(xk)

)
< ζ

(
`k(x̃k+1)− `k(xk)

)
,

where the first inequality is due to (8) and the last is due to ζ ∈ (θ, 1/2) and
`k(xk) > `k(x̃k+1). Therefore, by the continuity of qk and `k, condition (6b)
is satisfied by any x that is close enough to x̃k+1. tu

We next show that the backtracking line search is well defined.

Lemma 2 Suppose that Assumption 1(a) holds. Then, for any iteration k of
Algorithm 1, there exists an integer i ≥ 0 such that the descent condition (7)
is satisfied. Moreover, the step size αk obtained from the line search strategy
satisfies

αk ≥
β(1− θ)µk
(1− ζ)L1

.

Proof. By definition, we have

qk(x̂k+1)− qk(xk) = `k(x̂k+1)− `k(xk) +
1

2
(x̂k+1 − xk)THk(x̂k+1 − xk).
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Since the approximate minimizer x̂k+1 satisfies the inexactness condition (6),
the above implies that

`k(xk)− `k(x̂k+1) ≥ 1

2(1− ζ)
(x̂k+1 − xk)THk(x̂k+1 − xk)

≥ µk
2(1− ζ)

‖x̂k+1 − xk‖2. (9)

Due to the convexity of `k, for any α ∈ [0, 1], we have

`k(xk)− `k(xk + αdk) ≥ α
(
`k(xk)− `k(xk + dk)

)
.

Combining the above two inequalities and noting that x̂k+1 = xk + dk, we
obtain

`k(xk)− `k(xk + αdk) ≥ αµk
2(1− ζ)

‖dk‖2. (10)

Moreover, since ∇f is Lipschitz continuous by Assumption 1(a), we have

f(xk + αdk)− f(xk) ≤ α∇f(xk)T dk +
α2L1

2
‖dk‖2,

which, by the definition of `k, leads to

F (xk)− F (xk + αdk) ≥ `k(xk)− `k(xk + αdk)− α2L1

2
‖dk‖2.

It then follows from the above inequality and (10) that

F (xk)− F (xk + αdk)− θ
(
`k(xk)− `k(xk + αdk)

)
≥ (1− θ)

(
`k(xk)− `k(xk + αdk)

)
− α2L1

2
‖dk‖2

≥ (1− θ)αµk
2(1− ζ)

‖dk‖2 − α2L1

2
‖dk‖2

=
α

2

(
1− θ
1− ζ

µk − αL1

)
‖dk‖2.

Hence, as long as α satisfies α < (1−θ)µk/(1−ζ)L1, the descent condition (7)
is satisfied. Since the backtracking line search multiplies the step length by
β ∈ (0, 1) after each trial, the line search strategy will output an αk that
satisfies αk ≥ β(1− θ)µk/(1− ζ)L1 in a finite number of steps. tu

Combining Lemmas 1 and 2, we conclude that IRPN is well defined.
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4 Convergence Analysis of IRPN

In this section, we establish the global convergence and local convergence rate
of IRPN. Let {xk}k≥0 be the sequence of iterates generated by Algorithm 1.
We first present the following result, which shows that the residues {r(xk)}k≥0
eventually vanish.

Proposition 2. Suppose that Assumption 1(a) holds. Then, we have

lim
k→∞

r(xk) = 0.

In particular, every accumulation point of the sequence {xk}k≥0 is an optimal
solution to problem (1).

Proof. From (10), we obtain

`k(xk)− `k(xk + αdk) ≥ αµk
2(1− ζ)

‖dk‖2 ≥ 0.

Hence, due to the descent condition (7) and the assumption that F ∗ > −∞,
we have limk→∞

(
`k(xk)− `k(xk + αkd

k)
)

= 0. This, together with (10) again,
implies that

lim
k→∞

αkµk‖dk‖2 = 0. (11)

On the other hand, we have rk(x̂k+1) ≤ η · r(xk) from the inexactness condi-
tion (6). It then follows that

(1− η)r(xk) ≤ r(xk)− rk(x̂k+1)

= rk(xk)− rk(x̂k+1)

≤ (λmax(Hk) + 2)‖dk‖
≤ (L1 + µk + 2)‖dk‖, (12)

where the first equality follows from rk(xk) = r(xk), the second inequality is
by Corollary 2, and the last inequality is due to Fact 1. By combining (11)
and (12) with Lemma 2, we obtain

lim
k→∞

µ2
k

(L1 + µk + 2)2
r(xk)2 = 0.

Since µk = c · r(xk)ρ, we conclude that limk→∞ r(xk) = 0. tu

Although Proposition 2 and the Luo-Tseng EB property (5) together im-
ply that dist(xk,X ) → 0, the latter does not guarantee the convergence of
the sequence {xk}k≥0. Hence, some extra arguments are needed to estab-
lish the global convergence of IRPN. As it turns out, by invoking the Luo-
Tseng EB property (5), we can bound the local rate at which the sequence
{dist(xk,X )}k≥0 tends to zero, from which we can establish not only the con-
vergence but also the local rate of convergence of the sequence {xk}k≥0. To
begin, let us present the following result, whose proof can be found in Sec-
tion 4.2.
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Proposition 3. Suppose that Assumptions 1 and 2 hold. Then, for sufficiently
large k, we have

(i) dist(xk+1,X ) ≤ γ ·dist(xk,X ) for some γ ∈ (0, 1) if we take ρ = 0, c ≤ κ
4 ,

and η ≤ 1
2(L1+3)2 ;

(ii) dist(xk+1,X ) ≤ O(dist(xk,X )1+ρ) if we take ρ ∈ (0, 1);
(iii) dist(xk+1,X ) ≤ O(dist(xk,X )2) if we take ρ = 1, c ≥ κL2, and η ≤

κ2L2

2(L1+1) .

As remarked previously, the setting of Proposition 3 precludes the use of
techniques that are based on either the positive definiteness of the Hessian of f
at an optimal solution or the uniqueness of the optimal solution to prove it. Our
techniques, which heavily exploit the Luo-Tseng EB property (5), are different
from those in [17,4] and should find further applications in the convergence
rate analysis of other second-order methods in the absence of strong convexity.

Using Proposition 3, we can then prove that the sequence of iterates gen-
erated by IRPN converges to an optimal solution to problem (1) and establish
the local rate of convergence.

Theorem 1 (Global Convergence and Local Rate of Convergence of IRPN).
Suppose that Assumptions 1 and 2 hold. Then, in all three cases of Proposi-
tion 3, the sequence {xk}k≥0 converges to some x∗ ∈ X . Moreover, the con-
vergence rate is at least

(i) R-linear if ρ = 0, c ≤ κ
4 , and η ≤ 1

2(L1+2)2 ;

(ii) Q-superlinear with order 1 + ρ if ρ ∈ (0, 1);

(iii) Q-quadratic if ρ = 1, c ≥ κL2, and η ≤ κ2L2

2(L1+1) .

Remarkably, Theorem 1 shows that IRPN can attain a superlinear or even
quadratic rate of convergence without strong convexity. The proof of Theo-
rem 1 can be found in Section 4.3.

Although Theorem 1 shows that a larger ρ will result in a faster convergence
rate with respect to the outer iteration counter k, it does not necessarily
mean that a larger ρ will lead to a better overall complexity. The reason is
that a larger ρ results in a more stringent inexactness condition (see (6)) and
thus the time consumed by each iteration is longer. Hence, despite the faster
convergence rate, the best choice of ρ ∈ [0, 1] depends on the problem and the
inner solver (see also Section 5). Nonetheless, Theorem 1 provides a complete
characterization of the convergence rate of IRPN in terms of ρ and facilitates
the flexibility of IRPN. Developing an empirical or analytic approach to tuning
ρ is definitely a topic worth pursuing.

Since Proposition 3 plays a crucial role in obtaining our convergence results
and its proof is rather tedious, let us give an overview of the proof here.
Let x̄k be the projection of xk onto the optimal solution set X . Also, let
x̃k+1 and x̂k+1 be the exact and approximate minimizers of the quadratic
model qk, respectively; see Figure 1. Our goal is to show that dist(xk+1,X ) =
O(dist(xk,X )1+ρ). Towards that end, we first prove that the distances ‖x̃k+1−
xk‖ and ‖x̃k+1 − x̂k+1‖ are comparable, in the sense that they are both of
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O(dist(xk,X )); see Lemmas 4 and 5. This implies that ‖x̂k+1 − xk‖ is also
of O(dist(xk,X )). Then, we show that eventually the step sizes computed by
Algorithm 1 will all equal 1, which means that xk+1 = x̂k+1 for all sufficiently
large k; see Lemma 6. As a result, we have ‖xk+1 − xk‖ = O(dist(xk,X )) for
all sufficiently large k. Finally, we show that r(xk+1) = O(‖xk+1 − xk‖1+ρ)
and invoke the Luo-Tseng EB property (5) to conclude that

dist(xk+1,X ) ≤ κ · r(xk+1) = O(‖x̂k+1 − xk‖1+ρ) = O(dist(xk,X )1+ρ).

Fig. 1: Illustration of the geometry in the proof of Proposition 3.

The rest of this section is devoted to proving Proposition 3 and Theo-
rem 1. We first prove some technical lemmas in Section 4.1. Then, we prove
Proposition 3 and Theorem 1 in Sections 4.2 and 4.3, respectively.

4.1 Technical Lemmas

Throughout this subsection, Assumptions 1 and 2 are in force. Recall that x̄k

is the projection of xk onto the optimal solution set X ; x̃k+1 and x̂k+1 are the
exact and approximate minimizers of the quadratic model qk, respectively.

Lemma 3 It holds for all k that

‖x̃k+1 − x̄k‖ ≤ 1

µk
‖∇f(x̄k)−∇f(xk)−Hk(x̄k − xk)‖.

Proof. If x̃k+1 = x̄k, then the inequality holds trivially. Hence, suppose that
x̃k+1 6= x̄k. As x̄k ∈ X , we have 0 ∈ ∇f(x̄k)+∂g(x̄k). Moreover, the definition
of x̃k+1 yields 0 ∈ ∇f(xk) +Hk(x̃k+1 − xk) + ∂g(x̃k+1). Using these and the
monotonicity of the subdifferential mapping ∂g of the closed proper convex



18 M.-C. Yue, Z. Zhou, A. M.-C. So

function g, we obtain

0 ≤
〈
∇f(xk)−∇f(x̄k) +Hk(x̃k+1 − xk), x̄k − x̃k+1

〉
=
〈
∇f(xk)−∇f(x̄k)−Hk(xk − x̄k), x̄k − x̃k+1

〉
−
〈
Hk(x̄k − x̃k+1), x̄k − x̃k+1

〉
≤ ‖∇f(xk)−∇f(x̄k)−Hk(xk − x̄k)‖ · ‖x̄k − x̃k+1‖ − µk‖x̄k − x̃k+1‖2,

which yields the desired inequality. tu

We remark here that we did not use any special structure of Hk in the proof
of Lemma 3 except the positive definiteness of Hk. Therefore, the same result
will hold for any positive definite approximate Hessian Hk, with µk replaced
by the minimum eigenvalue λmin(Hk) of Hk.

Lemma 4 It holds for all k that

‖x̃k+1 − xk‖ ≤
(
L2

2µk
dist(xk,X ) + 2

)
dist(xk,X ).

Proof. Using the triangle inequality, the definition of µk, and Assumption 1(b),
we compute

‖∇f(x̄k)−∇f(xk)−Hk(x̄k − xk)‖
≤ ‖∇f(x̄k)−∇f(xk)−∇2f(xk)(x̄k − xk)‖+ µk‖x̄k − xk‖

≤ L2

2
‖x̄k − xk‖2 + µk‖x̄k − xk‖.

This, together with Lemma 3, yields

‖x̃k+1 − xk‖ ≤ ‖x̃k+1 − x̄k‖+ dist(xk,X )

≤ 1

µk
‖∇f(x̄k)−∇f(xk)−Hk(x̄k − xk)‖+ dist(xk,X )

≤ L2

2µk
‖x̄k − xk‖2 + ‖x̄k − xk‖+ dist(xk,X )

=

(
L2

2µk
dist(xk,X ) + 2

)
dist(xk,X ),

as desired. tu

Lemma 5 It holds for all k that

‖x̂k+1 − x̃k+1‖ ≤ η(L1 + |1− µk|)
c

r(xk) + η · r(xk)1+ρ.

Proof. The inequality holds trivially if x̂k+1 = x̃k+1. Hence, we assume that
x̂k+1 6= x̃k+1. Recall that Rk(x̂k+1) = x̂k+1−proxg(x̂

k+1−∇fk(x̂k+1)). Thus,

Rk(x̂k+1)−∇fk(x̂k+1) ∈ ∂g
(
x̂k+1 −Rk(x̂k+1)

)
.
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Since qk = fk + g, we have

Rk(x̂k+1) +∇fk
(
x̂k+1 −Rk(x̂k+1)

)
−∇fk(x̂k+1) ∈ ∂qk

(
x̂k+1 −Rk(x̂k+1)

)
.

Using the fact that ∇fk(x) = ∇f(xk) +Hk(x− xk), the above leads to

(I −Hk)Rk(x̂k+1) ∈ ∂qk(x̂k+1 −Rk(x̂k+1)).

On the other hand, we have 0 ∈ ∂qk(x̃k+1). Since qk is µk-strongly convex,
the subdifferential mapping ∂qk is µk-strongly monotone and thus

〈
(I −Hk)Rk(x̂k+1), x̂k+1 −Rk(x̂k+1)− x̃k+1

〉
≥ µk‖x̂k+1−Rk(x̂k+1)−x̃k+1‖2.

Upon applying the Cauchy-Schwarz inequality to the above, we obtain

‖x̂k+1 −Rk(x̂k+1)− x̃k+1‖ ≤ 1

µk

∥∥(I −Hk)Rk(x̂k+1)
∥∥

≤ 1

µk
‖∇2f(xk)− (1− µk)I‖ · rk(x̂k+1)

≤ η(L1 + |1− µk|)
µk

r(xk)1+ρ

≤ η(L1 + |1− µk|)
c

r(xk),

where the third inequality is due to Fact 1 and the inexactness condition (6),
and the last is due to the definition of µk. Hence, we obtain

‖x̂k+1 − x̃k+1‖ ≤ ‖x̂k+1 −Rk(x̂k+1)− x̃k+1‖+ ‖Rk(x̂k+1)‖

≤ η(L1 + |1− µk|)
c

r(xk) + η · r(xk)1+ρ,

as desired. tu

Next, we show that Algorithm 1 eventually takes a unit step size; i.e.,
αk = 1 and xk+1 = xk + dk for all sufficiently large k.

Lemma 6 Suppose that Assumptions 1 and 2 hold. Then, there exists an in-
teger k0 ≥ 0 such that αk = 1 for all k ≥ k0 in either of the following cases:

(i) ρ ∈ [0, 1).
(ii) ρ = 1 and c, η satisfy 2ηL2(L1 + 2) + κ2L2

2 + 2cκL2 ≤ 6c2.

The inequality in (ii) is satisfied if we take c ≥ κL2 and η ≤ κ2L2

2(L1+1) .
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Proof. By the Fundamental Theorem of Calculus and Assumption 1(b), we
compute

f(x̂k+1)− f(xk)

=

∫ 1

0

∇f
(
xk + t(x̂k+1 − xk)

)T
(x̂k+1 − xk) dt

=

∫ 1

0

[
∇f

(
xk + t(x̂k+1 − xk)

)
−∇f(xk)

]T
(x̂k+1 − xk) dt

+∇f(xk)T (x̂k+1 − xk)

=

∫ 1

0

∫ 1

0

t(x̂k+1 − xk)T
[
∇2f

(
xk + st(x̂k+1 − xk)

)
−∇2f(xk)

]
(x̂k+1 − xk) ds dt

+

∫ 1

0

t(x̂k+1 − xk)T∇2f(xk)(x̂k+1 − xk) dt+∇f(xk)T
(
x̂k+1 − xk

)
≤ L2

6
‖x̂k+1 − xk‖3 +

1

2
(x̂k+1 − xk)T∇2f(xk)(x̂k+1 − xk) +∇f(xk)T (x̂k+1 − xk).

Therefore, we have

F (x̂k+1)− F (xk) + qk(xk)− qk(x̂k+1)

= f(x̂k+1)− f(xk)−∇f(xk)T (x̂k+1 − xk)

−1

2
(x̂k+1 − xk)T∇2f(xk)(x̂k+1 − xk)− µk

2
‖x̂k+1 − xk‖2

≤ L2

6
‖x̂k+1 − xk‖3 − µk

2
‖x̂k+1 − xk‖2. (13)

It then follows from (6b), (9), and (13) that

F (x̂k+1)− F (xk)

=
(
F (x̂k+1)− F (xk) + qk(xk)− qk(x̂k+1)

)
+
(
qk(x̂k+1)− qk(xk)

)
≤ L2

6
‖dk‖3 − µk

2
‖dk‖2 + ζ

(
`k(x̂k+1)− `k(xk)

)
=
L2

6
‖dk‖3 − µk

2
‖dk‖2 + θ

(
`k(x̂k+1)− `k(xk)

)
+ (ζ − θ)

(
`k(x̂k+1)− `k(xk)

)
≤ L2

6
‖dk‖3 + θ

(
`k(x̂k+1)− `k(xk)

)
−
(

1 +
ζ − θ
1− ζ

)
µk
2
‖dk‖2.

In particular, if

‖dk‖ = ‖x̂k+1 − xk‖ ≤
(

1 +
ζ − θ
1− ζ

)
3c · r(xk)ρ

L2
, (14)

then F (x̂k+1) − F (xk) ≤ θ
(
`k(x̂k+1)− `k(xk)

)
, which, according to the line

search strategy in Algorithm 1, would lead to a unit step size αk = 1. Hence,
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it remains to determine for what choices of the parameters c, η would inequal-
ity (14) hold. By Lemmas 4 and 5, for all sufficiently large k,

‖x̂k+1 − xk‖ ≤ η(L1 + |1− µk|)
c

r(xk) + η · r(xk)1+ρ

+

(
L2

2c · r(xk)ρ
dist(xk,X ) + 2

)
dist(xk,X )

≤ η(L1 + |1− µk|)
c

r(xk) + η · r(xk)1+ρ

+
κ2L2

2c
r(xk)2−ρ + 2κ · r(xk).

Hence, a sufficient condition for inequality (14) to hold is

η(L1 + |1− µk|)
c

r(xk) + η · r(xk)1+ρ +
κ2L2

2c
r(xk)2−ρ + 2κ · r(xk)

≤
(

1 +
ζ − θ
1− ζ

)
3c · r(xk)ρ

L2
. (15)

If ρ ∈ [0, 1), then since r(xk) → 0, we see that inequality (15) holds for all
sufficiently large k. On the other hand, if ρ = 1, then since ζ > θ and µk ∈ (0, 1)
for all sufficiently large k, inequality (15) holds for all sufficiently large k if

η(L1 + 1)

c
+
κ2L2

2c
+ 2κ ≤ 3c

L2
,

which can be satisfied by taking c ≥ κL2 and η ≤ κ2L2

2(L1+1) . tu

4.2 Proof of Proposition 3

By Lemma 6, in all three cases of Proposition 3, we have αk = 1 and hence
x̂k+1 = xk+1 for all sufficiently large k. Consequently, all the results derived
in Section 4.1 will continue to hold if we replace x̂k+1 by xk+1 when k is
sufficiently large. From Proposition 1, we have

‖xk+1 − xk‖ ≤ η(L1 + |1− µk|)
c

r(xk) + η · r(xk)1+ρ

+

(
L2

2c · r(xk)ρ
dist(xk,X ) + 2

)
dist(xk,X )

≤

(
η(L1 + |1− µk|)(L1 + 2)

c
+ η(L1 + 2)r(xk)ρ

+
L2

2c · r(xk)ρ
dist(xk,X ) + 2

)
dist(xk,X ). (16)
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By the Luo-Tseng EB property (5), we have dist(x,X ) ≤ κ·r(x) whenever r(x)
is sufficiently small. Since r(xk)→ 0, we see from (16) that for all sufficiently
large k,

‖xk+1 − xk‖ = O(dist(xk,X )).

Using the non-expansiveness of proxg and the fact that∇fk(xk+1) = ∇f(xk)+

Hk(xk+1 − xk), we have

‖proxg(x
k+1 −∇f(xk+1))− proxg(x

k+1 −∇fk(xk+1))‖
≤ ‖∇f(xk+1)−∇f(xk)−Hk(xk+1 − xk)‖. (17)

It follows that for all sufficiently large k,

dist(xk+1,X ) ≤ κ · r(xk+1)

≤ κ
(
‖R(xk+1)−Rk(xk+1)‖+ ‖Rk(xk+1)‖

)
≤ κ‖proxg(x

k+1 −∇f(xk+1))− proxg(x
k+1 −∇fk(xk+1))‖

+κη · r(xk)1+ρ

≤ κ‖∇f(xk+1)−∇f(xk)−Hk(xk+1 − xk)‖+ κη · r(xk)1+ρ

≤ κL2

2
‖xk+1 − xk‖2 + κµk‖xk+1 − xk‖+ κη · r(xk)1+ρ

≤ κL2

2
‖xk+1 − xk‖2 + cκ(L1 + 2)ρdist(xk,X )ρ‖xk+1 − xk‖

+κη(L1 + 2)1+ρdist(xk,X )1+ρ (18)

≤ O(dist(xk,X )1+ρ), (19)

where the third inequality is due to the inexactness condition (6), the fourth
follows from (17), the sixth is due to the definition of µk and Proposition 1,
and the last follows from (16).

For the case where ρ = 0, in order to establish the linear convergence of the
sequence {dist(xk,X )}k≥0, we need the constant in the big-O notation in (19)
to be strictly less than 1. Upon inspecting (16) and (18), we see that this can
be guaranteed if

κη(L1 + 2) + cκ

(
η(L1 + |1− c|)(L1 + 2)

c
+ η(L1 + 2) + 2

)
< 1.

The above inequality can be satisfied by taking c ≤ κ
4 and η ≤ 1

2(L1+3)2 . tu

4.3 Proof of Theorem 1

By the Luo-Tseng EB property (5) and Proposition 2, we have dist(xk,X )→ 0.
This implies that in all three cases of Proposition 3, there exists an integer
K1 ≥ 0 such that dist(xk+1,X ) ≤ γ·dist(xk,X ) for all k ≥ K1, where γ ∈ (0, 1)
is the constant in case (i) of Proposition 3. In addition, by (16), there exist a
real number σ > 0 and an integerK2 ≥ 0 such that ‖xk+1−xk‖ ≤ σ·dist(xk,X )
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for all k ≥ K2. Lastly, since dist(xk,X )→ 0, given any ε > 0, there exists an
integer K3 ≥ 0 such that dist(xk,X ) ≤ (1−γ)ε/σ for all k ≥ K3. Upon taking
K = max{K1,K2,K3}, we have

‖xk1 − xk0‖ ≤
k1−1∑
i=k0

‖xi+1 − xi‖ ≤ σ
k1−1∑
i=k0

dist(xi,X )

≤ σ
∞∑
i=0

γi · dist(xk0 ,X ) ≤ σ

1− γ
· dist(xk0 ,X ) ≤ ε

for all k1 ≥ k0 ≥ K. It follows that {xk}k≥0 is a Cauchy sequence and hence
converges to some x∗. This, together with dist(xk,X ) → 0 and the fact that
X is closed, implies that x∗ ∈ X .

Now, it remains to establish the convergence rate of the sequence {xk}k≥0
in cases (i), (ii), and (iii). From the above analysis, it is immediate that

‖xk+i − xk+1‖ ≤ σ

1− γ
· dist(xk+1,X )

for all integers i ≥ 1 and k ≥ K. Upon taking i→∞, we have

‖xk+1 − x∗‖ ≤ σ

1− γ
· dist(xk+1,X ). (20)

In case (i), Proposition 3 implies that the sequence {dist(xk+1,X )}k≥0 con-
verges R-linearly to 0. Hence, by (20), the sequence {xk}k≥0 converges R-
linearly to x∗. In case (ii), using Proposition 3 and (20), we obtain

‖xk+1 − x∗‖ = O(dist(xk,X )1+ρ) ≤ O(‖xk − x∗‖1+ρ),

which implies that the sequence {xk}k≥0 converges Q-superlinearly to x∗ with
order 1 + ρ. The same arguments show that the sequence {xk}k≥0 converges
Q-quadratically to x∗ in case (iii). This completes the proof. tu

5 Numerical Experiments

In this section, we study the numerical performance of our proposed IRPN
and compare it with some existing algorithms. We focus on the `1-regularized
logistic regression problem, which takes the following form:

min
x∈Rn

{
F (x) =

1

m

m∑
i=1

log
(
1 + exp(−bi · aTi x)

)
︸ ︷︷ ︸

f(x)

+λ‖x‖1︸ ︷︷ ︸
g(x)

}
. (21)

Here, a1, . . . , am ∈ Rn are given data samples; b1, . . . , bm ∈ {1,−1} are given
labels; λ > 0 is a given regularization parameter. Problem (21) arises in linear
classification tasks in machine learning and is a standard benchmark problem
for testing the efficiency of different algorithms for solving problem (1). In
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our experiments, we use the data sets colon-cancer, rcv1, and news20 from [20]
and set λ = 5 × 10−4. The sizes of and the numbers of non-zero entries in
these data sets are listed in Table 1. Since m < n in all three data sets, the
corresponding objective functions F in (21) are not strongly convex. However,
due to Fact 3, problem (21) possesses the Luo-Tseng EB property (5). Hence,
both Assumptions 1 and 2 are satisfied by problem (21) and our convergence
analysis of IRPN applies.

Table 1: Tested data sets.

Data set n m # of nnz

colon-cancer 2000 62 124000

rcv1 47236 20242 1498952

news20 1355191 19996 9097916

All experiments are coded in MATLAB (R2017b) and run on a Dell desktop
with a 3.50-GHz Intel Core E3-1270 v3 processor and 32 GB of RAM.6 We
next present the list of tested algorithms and discuss their implementation
details below.

FISTA: The description of this algorithm can be found in [1]. In our ex-
periments, we use the constant step size 1/L1, where L1 = ‖A‖2/(4m) and
A = [a1 · · · am] ∈ Rn×m.7 It can be verified that L1 is the Lipschitz constant of
∇f in (21). In addition, we restart the algorithm if (yk−1−xk)T (xk−xk−1) > 0
for some k, where yk−1 is the extrapolation point in iteration k. Such restart-
ing strategy has been found to be empirically efficient [28,40] and it indeed
improves the performance of FISTA for solving problem (21) in our experi-
ments.

SpaRSA: This algorithm is a non-monotone proximal gradient method,
whose description can be found in [41]. Following the notations in [41], we
set in our experiments σ = 10−4, αmin = 10−8, αmax = 108, M = 5, α0 = 1,
and

αk = max

{
αmin,min

{
αmax,

‖∆x‖2

|∆GT∆x|

}}
for k ≥ 1, where ∆x = xk − xk−1 and ∆G = ∇f(xk)−∇f(xk−1).

CGD: This algorithm is the coordinate gradient descent method, whose
general description can be found in [39]. It has been successfully applied to
solve problem (21); see, e.g., [44,46]. Given the current iterate xk, we randomly
choose a coordinate index ik ∈ {1, . . . , n} and compute a descent direction
dk ∈ Rn by letting dki = 0 for all i 6= ik and

dkik = argmin
s∈R

{
1

2
Hikiks

2 + giks+ λ|xkik + s|
}
,

6 The code can be downloaded from https://github.com/ZiruiZhou/IRPN.
7 ‖A‖2 is computed via the MATLAB code lambda = eigs(A*A’,1,’LM’).
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where Hikik = [∇2f(xk)]ikik + ν with ν = 10−6 and gik = [∇f(xk)]ik . Then,
we choose αk to be the largest element in {βj}j≥0 satisfying

F (xk + αkd
k) ≤ F (xk) + σαk

(
∇f(xk)T dk + λ‖xk + αkd

k‖1 − λ‖xk‖1
)
,

where we set β = 0.25 and σ = 0.5 in our experiments, and set xk+1 =
xk + αkd

k. To make the number of iterations of CGD comparable to those of
FISTA and SpaRSA, we refer to every n coordinate updates as an iteration of
CGD. In addition, while the operations in each iteration of FISTA and SpaRSA
can be vectorized in MATLAB, those of CGD cannot and require a for loop,
which is inefficient in MATLAB. To remedy this issue, we implement CGD in
MATLAB as a C source MEX-file.

IRPN: This is the family of inexact SQA methods proposed in this paper,
whose description can be found in Algorithm 1. In our experiments, we set
θ = β = 0.25, ζ = 0.4, c = 10−6, and η = 0.5. We test the three values 0,
0.5, and 1 for ρ, which, according to Theorem 1, result in the local linear,
superlinear, and quadratic convergence of IRPN, respectively. Notice that in
the context of problem (21), each inner problem of IRPN is to minimize the sum
of a strongly convex quadratic function and the non-smooth convex function
λ‖x‖1. Hence, it can be solved using the coordinate descent algorithm with
simple updates; see, e.g., [45]. Due to the same reason as CGD, we code the
inner solver of IRPN in MATLAB as a C source MEX-file. Moreover, we refer
to every n coordinate updates as an iteration of the inner solver; i.e., an inner
iteration of IRPN.

newGLMNET: The description of this algorithm can be found in [45]. In
our experiments, we implement it as a special case of IRPN. In particular, we
set c = 10−12 as suggested in [45] and ρ = 0 in Algorithm 1. Moreover, instead
of the stopping criterion (6), newGLMNET uses a heuristic stopping criterion
for the inner problem [45]. Specifically, in the k-th iteration, the inner solver
is terminated when rk(x̂k+1) ≤ εin, where εin = 0.1 initially and εin = εin/4 if
the stopping criterion is satisfied after only one inner iteration.

It is worth mentioning the computation of the Hessian-vector product for
the logistic loss function, which is explained in detail in [45] and is crucial to
the success of Newton-type methods for solving problem (21). For the logistic
loss function f in (21), one can verify by a direct computation that ∇2f(x) =
ADAT , where A = [a1 · · · am] ∈ Rn×m and D is a diagonal matrix with

Dii =
exp(−bi · aTi x)(

exp(−bi · aTi x) + 1
)2 , i = 1, . . . ,m.

Notice that A is sparse in many real data sets such as colon-cancer, rcv1, and
news20. Hence, ∇2f(x)v for any v ∈ Rn can be evaluated efficiently in our
experiments.

We initialize all the tested algorithms by the same point. In order to see the
impact of different initial points on the performance of these algorithms, we
choose x0 = 0 and x0 = 10ξ, where the entries of ξ are sampled i.i.d. from the
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standard normal distribution. All the algorithms are terminated if the iterate
xk satisfies r(xk) ≤ ε0, where ε0 = 10−4, 10−6, and 10−8 in our experiments.

The computational results on the data sets colon-cancer, rcv1, and news20
are presented in Tables 2, 3, and 4, respectively. Each table has two sub-
tables, which show the results with the two initial points x0 = 0 and x0 = 10ξ,
respectively. In each sub-table, we record the number of outer iterations, the
number of inner iterations, and the CPU time (in seconds) of all the tested
algorithms for achieving the required accuracy. We note that FISTA is the only
one among these algorithms that requires the Lipschitz constant L1. The time
for computing L1 is added to the time of FISTA and can be found at the bottom
of each table. From Tables 2, 3, and 4, we can see that the SQA methods
(newGLMNET and IRPN) perform the best among all the tested algorithms.
In particular, we have the following observations:

(a) The SQA methods substantially outperform FISTA.

(b) SpaRSA and CGD are competitive with the SQA methods when ε0 = 10−4,
while the SQA methods outperform SpaRSA and CGD when ε0 = 10−6

and 10−8.

(c) As the parameter ρ in IRPN increases from 0 to 1, the number of outer
iterations needed by IRPN decreases, while the number of inner iterations
within each outer iteration increases. The overall performance of ρ = 0 is
competitive with that of ρ = 0.5 and better than that of ρ = 1.

It is worth noting that the number of inner iterations needed by CGD is con-
sistently the least among the tested algorithms. However, since it requires a
line search procedure after every coordinate update, its overall performance
is worse than that of the SQA methods, which only require one line search
procedure in each outer iteration. Such drawback of CGD is also noted in [45].

Before we end this section, we present in Figure 2 the convergence behav-
ior of IRPN with ρ ∈ {0, 0.5, 1} for the data sets rcv1 and news20. The left
two sub-figures show the convergence of the sequence of residues {r(xk)}k≥0
against the number of outer iterations, where {xk}k≥0 is the sequence of it-
erates generated by IRPN. It can be observed that the sequence {r(xk)}k≥0
exhibits a linear convergence rate when ρ = 0 and a superlinear rate when
ρ = 0.5 and 1. This, together with the Luo-Tseng EB property (5), implies
that the sequence {dist(xk,X )}k≥0 converges at least linearly when ρ = 0 and
at least superlinearly when ρ = 0.5 and 1, which corroborates our results in
Proposition 3. Nonetheless, a faster convergence rate of the outer iterates does
not imply a better overall performance of IRPN, as a larger ρ leads to a more
stringent inexactness condition (see (6)) and hence requires more inner itera-
tions within each outer iteration. With that being said, we present the right
two sub-figures in Figure 2 for comparing the overall performance of IRPN
with ρ ∈ {0, 0.5, 1}. In particular, we show the convergence behavior of the
sequence of residues {r(xk)}k≥0 against the CPU time used, where {xk}k≥0 is
the sequence of all iterates (including both the inner and outer ones) gener-
ated by IRPN. It can be observed that in terms of overall performance, IRPN
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Table 2: Computational results on colon-cancer.

(a) x0 = 0

Tol. Index FISTA∗ SpaRSA CGD newG.
IRPN IRPN IRPN

ρ = 0 ρ = 0.5 ρ = 1

10−4

outer iter. – – – 10 6 4 4

inner iter. 904 104 18 33 26 37 87

time 0.41 0.03 0.08 0.03 0.02 0.03 0.06

10−6

outer iter. – – – 19 14 5 5

inner iter. 3856 397 55 92 84 85 183

time 1.78 0.13 0.32 0.06 0.06 0.06 0.13

10−8

outer iter. – – – 25 24 6 6

inner iter. 5202 756 100 144 162 142 273

time 2.30 0.23 0.40 0.08 0.14 0.10 0.18

(b) x0 = 10ξ

Tol. Index FISTA∗ SpaRSA CGD newG.
IRPN IRPN IRPN

ρ = 0 ρ = 0.5 ρ = 1

10−4

outer iter. – – – 14 11 10 7

inner iter. 1185 124 33 39 39 110 126

time 0.43 0.04 0.13 0.03 0.03 0.09 0.19

10−6

outer iter. – – – 25 17 9 8

inner iter. 3536 422 71 101 85 113 268

time 1.50 0.12 0.32 0.08 0.06 0.09 0.27

10−8

outer iter. – – – 25 24 6 6

inner iter. 4932 727 100 173 175 118 373

time 2.18 0.25 0.43 0.11 0.13 0.08 0.30

* The time for computing the Lipschitz constant L1 in FISTA is 0.04.

with ρ = 0 and 0.5 are comparable to each other, and they both outperform
IRPN with ρ = 1.

6 Conclusions

In this paper, we proposed a new family of inexact SQA methods called the
inexact regularized proximal Newton (IRPN) method for minimizing the sum
of two closed proper convex functions, one of which is smooth and the other
is possibly non-smooth. Compared with some prior SQA methods, IRPN is
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Table 3: Computational results on rcv1.

(a) x0 = 0

Tol. Index FISTA∗ SpaRSA CGD newG.
IRPN IRPN IRPN

ρ = 0 ρ = 0.5 ρ = 1

10−4

outer iter. – – – 9 5 3 3

inner iter. 113 30 8 20 19 20 34

time 39.13 0.29 0.46 0.32 0.27 0.26 0.42

10−6

outer iter. – – – 17 11 5 5

inner iter. 377 280 35 55 48 36 106

time 45.42 2.60 2.05 0.77 0.64 0.48 1.21

10−8

outer iter. – – – 23 16 5 5

inner iter. 697 549 61 90 77 61 126

time 46.67 5.08 3.51 1.18 1.03 0.70 1.32

(b) x0 = 10ξ

Tol. Index FISTA∗ SpaRSA CGD newG.
IRPN IRPN IRPN

ρ = 0 ρ = 0.5 ρ = 1

10−4

outer iter. – – – 12 8 5 5

inner iter. 308 50 15 25 23 27 44

time 41.58 0.48 0.88 0.41 0.35 0.37 0.57

10−6

outer iter. – – – 19 12 7 7

inner iter. 595 286 47 54 47 57 112

time 45.25 2.65 2.77 0.77 0.66 0.68 1.24

10−8

outer iter. – – – 26 19 8 8

inner iter. 1009 591 67 101 87 97 141

time 51.31 5.47 3.85 1.34 1.17 1.14 1.54

* The time for computing the Lipschitz constant L1 in FISTA is 36.14.

more flexible and has a much more satisfying convergence theory. In partic-
ular, IRPN does not require an exact inner solver or the strong convexity of
the smooth part of the objective function. Moreover, it can be shown to con-
verge globally to an optimal solution and the local convergence rate is linear,
superlinear, or even quadratic, depending on the choice of parameters of the
algorithm. The key to our analysis is the Luo-Tseng error bound property.
Although such property has played a fundamental role in establishing the lin-
ear convergence of various first-order methods, to the best of our knowledge,
this is the first work to exploit such property to establish the superlinear
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Table 4: Computational results on news20.

(a) x0 = 0

Tol. Index FISTA∗ SpaRSA CGD newG.
IRPN IRPN IRPN

ρ = 0 ρ = 0.5 ρ = 1

10−4

outer iter. – – – 9 5 3 3

inner iter. 182 48 33 41 37 54 127

time 77.68 5.63 12.13 4.92 4.16 5.68 12.87

10−6

outer iter. – – – 17 12 4 4

inner iter. 566 220 98 115 100 107 223

time 131.01 25.31 36.21 12.58 10.99 10.99 22.40

10−8

outer iter. – – – 23 18 4 4

inner iter. 978 580 155 189 170 157 248

time 188.77 67.62 57.23 20.15 18.51 16.36 24.84

(b) x0 = 10ξ

Tol. Index FISTA∗ SpaRSA CGD newG.
IRPN IRPN IRPN

ρ = 0 ρ = 0.5 ρ = 1

10−4

outer iter. – – – 13 7 6 5

inner iter. 647 296 57 76 67 89 95

time 150.79 35.31 21.10 7.74 7.40 9.06 9.60

10−6

outer iter. – – – 20 14 7 6

inner iter. 1055 302 108 166 154 155 179

time 207.24 35.88 40.04 16.41 16.17 15.41 17.54

10−8

outer iter. – – – 26 21 7 7

inner iter. 1430 946 182 212 189 191 286

time 258.89 108.36 67.34 21.03 19.72 18.72 27.77

* The time for computing the Lipschitz constant L1 in FISTA is 51.85.

convergence of SQA-type methods for non-smooth convex minimization. We
compared our proposed IRPN with several popular and efficient algorithms by
applying them to the `1-regularized logistic regression problem. Experiment
results indicate that IRPN achieves the desired levels of accuracy in shorter
training time and less number of iterations than the other algorithms. This
shows that IRPN not only has strong theoretical guarantees but also a superior
numerical performance.
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Fig. 2: Convergence behavior of IRPN with ρ ∈ {0, 0.5, 1}.
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25. J. J. Moré. The Levenberg–Marquardt Algorithm: Implementation and Theory. In G. A.
Watson, editor, Numerical Analysis, volume 630 of Lecture Notes in Mathematics, pages
105–116. Springer-Verlag, Berlin Heidelberg, 1978.



32 M.-C. Yue, Z. Zhou, A. M.-C. So

26. Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic Publishers, Boston, 2004.

27. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer Science+Business Media LLC, New York,
second edition, 2006.

28. B. O’Donoghue and E. Candès. Adaptive Restart for Accelerated Gradient Schemes.
Foundations of Computational Mathematics, 15(3):715–732, 2015.

29. P. A. Olsen, F. Oztoprak, J. Nocedal, and S. Rennie. Newton–Like Methods for Sparse
Inverse Covariance Estimation. In F. C. N. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25:
Proceedings of the 2012 Conference, pages 755–763, 2012.

30. J.-S. Pang. A Posteriori Error Bounds for the Linearly–Constrained Variational In-
equality Problem. Mathematics of Operations Research, 12(3):474–484, 1987.

31. J.-S. Pang. Error Bounds in Mathematical Programming. Mathematical Programming,
79(1-3):299–332, 1997.

32. N. Parikh and S. Boyd. Proximal Algorithms. Foundations and Trends R© in Optimiza-
tion, 1(3):127–239, 2014.

33. H. Qi and D. Sun. A Quadratically Convergent Newton Method for Computing the
Nearest Correlation Matrix. SIAM Journal on Matrix Analysis and Applications,
28(2):360–385, 2006.

34. S. Sardy, A. Antoniadis, and P. Tseng. Automatic Smoothing with Wavelets for a Wide
Class of Distributions. Journal of Computational and Graphical Statistics, 13(2):399–
421, 2004.

35. K. Scheinberg and X. Tang. Practical Inexact Proximal Quasi–Newton Method with
Global Complexity Analysis. Mathematical Programming, Series A, 160(1–2):495–529,
2016.

36. M. Schmidt, E. van den Berg, M. P. Friedlander, and K. Murphy. Optimizing Costly
Functions with Simple Constraints: A Limited–Memory Projected Quasi–Newton Al-
gorithm. In Proceedings of the 12th International Conference on Artificial Intelligence
and Statistics (AISTATS 2009), pages 456–463, 2009.

37. P. Tseng. Error Bounds and Superlinear Convergence Analysis of Some Newton–Type
Methods in Optimization. In Nonlinear Optimization and Related Topics, volume 36
of Applied Optimization, pages 445–462. Springer Science+Business Media, Dordrecht,
2000.

38. P. Tseng. Approximation Accuracy, Gradient Methods, and Error Bound for Structured
Convex Optimization. Mathematical Programming, Series B, 125(2):263–295, 2010.

39. P. Tseng and S. Yun. A Coordinate Gradient Descent Method for Nonsmooth Separable
Minimization. Mathematical Programming, Series B, 117(1–2):387–423, 2009.

40. B. Wen, X. Chen, and T. K. Pong. Linear Convergence of Proximal Gradient Algorithm
with Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems. SIAM
Journal on Optimization, 27(1):124–145, 2017.

41. S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse Reconstruction by Separable
Approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

42. N. Yamashita and M. Fukushima. On the Rate of Convergence of the Levenberg–
Marquardt Method. In G. Alefeld and X. Chen, editors, Topics in Numerical Analysis,
volume 15 of Computing Supplement, pages 239–249. Springer–Verlag, Wien, 2001.

43. I. E.-H. Yen, C.-J. Hsieh, P. K. Ravikumar, and I. S. Dhillon. Constant Nullspace
Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional
Settings. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 27: Proceedings of
the 2014 Conference, pages 1008–1016, 2014.

44. G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. A Comparison of Optimization
Methods and Software for Large–Scale L1–Regularized Linear Classification. Journal
of Machine Learning Research, 11(Nov):3183–3234, 2010.

45. G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An Improved GLMNET for L1–Regularized
Logistic Regression. Journal of Machine Learning Research, 13(1):1999–2030, 2012.

46. S. Yun and K.-C. Toh. A Coordinate Gradient Descent Method for `1–Regularized
Convex Minimization. Computational Optimization and Applications, 48(2):273–307,
2011.



Inexact SQA Methods and Error Bound-Based Convergence Analysis 33

47. H. Zhang, J. Jiang, and Z.-Q. Luo. On the Linear Convergence of a Proximal Gradient
Method for a Class of Nonsmooth Convex Minimization Problems. Journal of the
Operations Research Society of China, 1(2):163–186, 2013.

48. K. Zhong, I. E.-H. Yen, I. S. Dhillon, and P. Ravikumar. Proximal Quasi–Newton
for Computationally Intensive `1–Regularized M–Estimators. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27: Proceedings of the 2014 Conference, pages
2375–2383, 2014.

49. Z. Zhou and A. M.-C. So. A Unified Approach to Error Bounds for Structured Convex
Optimization Problems. Mathematical Programming, Series A, 165(2):689–728, 2017.

50. Z. Zhou, Q. Zhang, and A. M.-C. So. `1,p–Norm Regularization: Error Bounds and
Convergence Rate Analysis of First–Order Methods. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML 2015), pages 1501–1510, 2015.


