
Mixed-Integer Semidefinite Relaxation of Joint
Admission Control and Beamforming: An

SOC-Based Outer Approximation Approach with
Provable Guarantees

Sherry Xue-Ying Ni
Department of Syst. Eng. and Eng. Manag.

The Chinese Univ. of Hong Kong
Hong Kong SAR, China

xyni@se.cuhk.edu.hk

Anthony Man-Cho So
Department of Syst. Eng. and Eng. Manag.

The Chinese Univ. of Hong Kong
Hong Kong SAR, China

manchoso@se.cuhk.edu.hk

Abstract—We consider the joint admission control and multi-
cast downlink beamforming (JABF) problem, which is a funda-
mental problem in signal processing and admits a natural mixed-
integer quadratically constrained quadratic program (MIQCQP)
formulation. One popular approach to tackling such MIQCQP
formulation is to develop convex relaxations of both the binary
and continuous variables. However, most existing convex relax-
ations impose rather weak relationships between the binary and
continuous variables and thus do not yield high-performance
solutions. To overcome this weakness, we propose to keep the
binary constraints intact and apply the semidefinite relaxation
(SDR) technique to continuous variables. Although the resulting
relaxation takes the form of a mixed-integer semidefinite program
(MISDP) and is theoretically intractable in general, by exploiting
the fact that such MISDP arises as a mixed-integer SDR of an
MIQCQP and harnessing recent computational advances in solv-
ing large-scale mixed-integer second-order cone programming
(MISOCP) problems, we develop a novel, practically efficient
algorithm that provably converges to an optimal solution to the
MISDP in a finite number of steps. The key idea of our algorithm
is to construct successively tighter second-order cone (SOC) outer
approximations of the constraints in the MISDP and solve a
sequence of MISOCPs to obtain an optimal solution to the
MISDP. Our work also provides, to the best of our knowledge, the
first general framework for solving MISDPs that arise as mixed-
integer SDRs of MIQCQPs. Next, we show that by applying a
Gaussian randomization procedure to the optimal solution to the
MISDP, we obtain a feasible solution to the JABF problem whose
approximation accuracy is on the order of M , the number of
users in the network. This improves upon the approximation
accuracy guarantee of an existing convex relaxation method.
Lastly, we present numerical results to demonstrate the viability
of our proposed approach.

Index Terms—admission control, downlink beamform-
ing, mixed-integer QCQP, mixed-integer SDP, outer
approximation, approximation bound.

I. INTRODUCTION

Downlink beamforming is among the fundamental problems
in signal processing. Considering a cellular network in which
multiple single-antenna users are served by a multi-antenna
transmitter, one basic version of the problem is multicast

beamforming, in which the goal is to design a beamformer
that minimizes the transmit power while guaranteeing a certain
level of quality of service (QoS) to each user [1]. However,
when the user number is large, concurrently satisfying the
QoS constraints for all users is generally impossible; hence
admission control is indispensable in identifying a subset of
users who can be served at the required QoS levels. As
is well known, the user selection process can be modeled
by discrete variables and incorporated into the optimization
formulation of the beamformer design. This gives rise to
a mixed-integer quadratically constrained quadratic program
(MIQCQP) formulation of the joint admission control and
beamforming (JABF) problem; see, e.g., [2]. In fact, many
beamforming problems that integrate admission control or
resource allocation, such as joint base-station activiation and
multicast beamforming [3], [4], can also be formulated as
MIQCQPs. Although MIQCQPs are non-convex and difficult
to solve in general, their wide applicability in signal pro-
cessing have generated much interest in developing practi-
cally efficient methods to tackle them. One popular approach
is to apply convex relaxation techniques to the MIQCQP.
This typically entails relaxing the discrete variables to lie
in continuous intervals and applying the semidefinite relax-
ation (SDR) technique [5] to the quadratic constraints and
objective. The resulting convex relaxation, which takes the
form of a semidefinite program (SDP), can be solved by
standard solvers. Subsequently, a post-processing procedure is
employed to retrieve a feasible solution to the MIQCQP [6]–
[8]. Nevertheless, the convex relaxations obtained from such
approach are often too loose for the original MIQCQP, as the
relationship between the integer and continuous variables is
lost in the relaxation process. Moreover, there are very few
theoretical results on the approximation quality of the solution
obtained from such approach (the only one that we are aware
of is in [7]). By contrast, the approximation quality of the
SDR of many QCQPs that arise in signal processing is fairly
well understood [5].



In view of the above, we propose a novel approach to tack-
ling MIQCQPs. The idea of our approach is extremely simple:
we apply the SDR technique to the quadratic constraints and
objective and keep the integer constraints intact. The resulting
formulation, which takes the form of a mixed-integer semidef-
inite program (MISDP), is a relaxation of the MIQCQP.
Unfortunately, it is still challenging to solve the MISDP. One
recent attempt is a branch-and-bound framework by Gally et
al. [9] for solving a certain class of MISDPs. However, the
framework does not cover the class of MISDPs that arise from
the mixed-integer SDR of MIQCQPs. On another front, we
note that both hardware and algorithmic developments over
the past few decades have significantly advanced our capa-
bility in solving mixed-integer linear programming (MILP)
and mixed-integer second-order cone programming (MISOCP)
problems. Indeed, although these two classes of problems
remain theoretically intractable, they have been shown to be
practically tractable via commercial solvers such as CPLEX
[10] and Gurobi [11]; see, e.g., [12]–[15]. Recently, Lubin
et al. [16] have exploited such capability and introduced a
polyhedral outer approximation (P-OA) approach for solving
general mixed-integer convex programming (MICP) problems.
The idea is to approximate the convex constraints in the MICP
by successively tighter polyhedral sets and solve a sequence of
MILPs to obtain an optimal solution to the MICP. However,
when applied to MISDPs, the P-OA approach can be very
slow, as the positive semidefinite (PSD) constraints cannot be
well approximated by polyhedra.

To make our proposed approach viable, we exploit the fact
that the MISDPs we are interested in arise as relaxations of
MIQCQPs and hence the PSD constraints admit good second-
order conic (SOC) outer approximations [17]. Consequently,
we are able to extend the P-OA approach in [16] and develop a
new, practically efficient, and provably convergent SOC-based
outer approximation (OA) algorithm to solve such MISDPs.
Our approach also allows us to establish theoretical guarantees
on the approximation quality of the MISDP solution with
respect to the optimal MIQCQP solution. To the best of
our knowledge, this work is the first to give such guarantee
for mixed-integer SDRs of MIQCQP. Although our approach
applies to a general class of MIQCQPs, for the sake of
concreteness and clarity, we shall present the technical de-
velopments of our algorithm and the numerical results in the
context of JABF in the sequel.

Our notations are standard. Throughout the paper, we denote
the set {1, . . . ,M} by [M ]; the Hermitian transpose by (·)H ;
the inner product of vectors or matrices by •; the Frobenius
norm by ‖ · ‖; the n × n identity matrix by In; the sets of
n-dimensional integer, complex, and nonnegative real vectors
by Zn, Cn, and Rn

+, respectively; the set of n× n Hermitian
matrices by Hn; the set of n × n Hermitian PSD matrices
by X � 0 or X ∈ Hn

+; the circularly symmetric complex
Gaussian distribution with mean vector 0 and covariance
matrix W by CN (0,W ).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network consisting of a single n-antenna
transmiter and M single-antenna users. To fix ideas, we focus
on the multicast setting, in which all users receive the same
information from the transmitter. Let hi ∈ Cn be the channel
vector between the transmitter and the i-th user and w ∈ Cn

be the beamforming vector at the transmitter. Assuming that
the additive noise power at user i is σ2

i , the signal-to-noise
ratio (SNR) at user i is given by SNRi = |wHhi|2/σ2

i . If
user i is served by the transmitter, then the QoS constraint
SNRi ≥ γi should be satisfied, where γi > 0 is a given
threshold. Since it is generally not possible to satisfy the
QoS constraints of all the users when the number of users
is large, user admission control is needed to select a subset
of users to serve. In this paper, we consider the strategy of
selecting a subset of Q (where 1 ≤ Q ≤ M ) users to serve.
By redefining hi by hi/σ

√
γi, we can formulate such joint

admission control and multicast beamforming problem as the
following MIQCQP [7]:

v∗JABF = min
w∈Cn, β∈ZM

‖w‖2 (JABF)

s.t. |wHhi|2 ≥ βi, for i ∈ [M ],
M∑
i=1

βi ≥ Q, βi ∈ {0, 1}, for i ∈ [M ].

Here, we use the binary vector β to model the selection
process. Note that (JABF) is easy when M = 1 or n = 1,
as it reduces to a maximum eigenvalue problem. Hence, we
shall assume that M,n > 1 throughout the paper. Besides, we
note that (JABF) is, in general, NP-hard, due to the fact that
it is already NP-hard when Q =M [18].

A popular approach to tackling (JABF) is to derive SDRs
of both the non-convex quadratic constraints and the binary
constraints [6]–[8]. This can be achieved by first expressing
the binary constraints as quadratic constraints (e.g., by writing
βi ∈ {0, 1} as βi(βi − 1) = 0 or transforming βi ∈ {0, 1} to
β̂i ∈ {−1, 1} and writing the latter as β̂2

i = 1) and then
applying the SDR technique [5] to the resulting formulation.
Although such an approach yields an SDP that can be solved
in polynomial time, the solution quality is often poor, as
the relaxations obtained from such an approach often impose
rather weak relationships between the binary variable β and
the continuous variable w. To overcome this weakness, we
propose to keep the binary constraints intact and apply SDR
only to the quantities that involve the continuous variable w.
Specifically, by using the equivalence W = wwH ⇐⇒W �
0, rank(W ) ≤ 1 and writing Hi = hih

H
i , we obtain the

following mixed-integer SDR of (JABF):

v∗MISDR = min
W∈Hn

+, β∈ZM
In •W (MISDR)

s.t. Hi •W ≥ βi, for i ∈ [M ],
M∑
i=1

βi ≥ Q, βi ∈ {0, 1}, for i ∈ [M ].



Although (MISDR) yields a tighter relaxation of (JABF) than
those in the literature, it involves binary constraints and is in
theory intractable. Nevertheless, in the next section, we show
that by exploiting the structure of (MISDR) and harnessing
recent computational advances in MISOCP, it is possible to
develop a practically efficient algorithm that provably con-
verges to an optimal solution to (MISDR) in a finite number
of steps. Once we obtain an optimal solution to (MISDR),
we can apply the standard Gaussian randomization procedure
(see [5]) to extract a feasible solution to (JABF).

III. MIXED-INTEGER SDR FRAMEWORK FOR
SOLVING (JABF)

A. An SOC-Based Outer Approximation Algorithm for Solving
Mixed-Integer SDRs of MIQCQPs

As mentioned in the Introduction, existing algorithms for
solving MISDPs are not well suited for solving (MISDR), as
they do not exploit the fact that (MISDR) arises as a mixed-
integer SDR of the MIQCQP (JABF). To exploit such structure
in algorithm design, we first observe that by letting

Ĩn =

[
In 0
0H 0

]
∈ Hn+1

+ , H̃i =

[
Hi 0
0H 0

]
∈ Hn+1

+ ,

we can reformulate (MISDR) as follows:

v∗MISDR = min
W̃∈Hn+1

+ , β∈ZM
Ĩn • W̃ (MISDR-E)

s.t. H̃i • W̃ ≥ βi, for i ∈ [M ], (1a)
M∑
i=1

βi ≥ Q, βi ∈ {0, 1}, for i ∈ [M ], (1b)

W̃ =

[
W w
wH 1

]
∈ Hn+1

+ . (1c)

Now, observe that constraint (1c) is equivalent toW−wwH ∈
Hn

+, which in turn is equivalent to (W −wwH) •Y =W •
Y −wHY w ≥ 0 for all Y ∈ Hn

+ by the self-duality of the
PSD cone; see, e.g., [17]. In particular, for any T ⊂ Hn

+, the
constraint

W • Y −wHY w ≥ 0, ∀ Y ∈ T

is an outer approximation of the constraint (1c). Hence, for
any T ⊂ Hn

+, the following problem is an outer approximation
for (MISDR-E):

v∗OA(T ) = min
W̃∈Hn+1, W∈Hn,

w∈Cn, β∈ZM

Ĩn • W̃ (OA(T ))

s.t. (1a) and (1b) hold, (2a)

W̃ =

[
W w
wH 1

]
, (2b)

W • Y −wHY w ≥ 0, ∀ Y ∈ T . (2c)

Next, observe that for each Y ∈ Hn
+ with Y = UUH , U ∈

Cn×n, the constraint W •Y −wHY w ≥ 0 can be expressed
as the SOC constraint∥∥∥∥( 1− Y •W

2UHw

)∥∥∥∥ ≤ 1 + Y •W .

Thus, if we choose T in (2c) to be a finite subset of Hn
+,

then (OA(T )) is an MISOCP, which can be well tackled by
commercial solvers such as Gurobi [11]. Besides, it is clear
that v∗MISDR ≥ v∗OA(T ) for any T ⊂ Hn

+.
After obtaining an optimal solution (W̃ ∗

T ,β
∗
T ) to (OA(T )),

let us consider fixing the binary variable β in (MISDR-E) to
β∗T . Then, we obtain the following inner approximation of
(MISDR-E):

v∗IA(β
∗
T ) = min

W̃∈Hn+1
+ , W∈Hn

+, w∈Cn
Ĩn • W̃ (IA(β∗T ))

s.t. H̃i • W̃ ≥ [β∗T ]i, for i ∈ [M ], (3a)

W̃ =

[
W w
wH 1

]
. (3b)

Note that (IA(β∗T )) is an SDP and hence can be solved
by standard solvers such as those in CVX [19]. Moreover,
we have v∗IA(β

∗
T ) ≥ v∗MISDR. From the above discussion,

we see that when the integrality gap v∗IA(β
∗
T ) − v∗OA(T )

is zero, then we obtain an optimal solution to our original
problem (MISDR). This motivates us to devise a strategy
to update T iteratively so that the integrality gap can be
decreased in each iteration. Towards that end, consider the
dual of (IA(β∗T )):

sup
Z̃∈Hn+1

+ , λ∈RM
+

λ • β∗T (DIA(β∗T ))

s.t. Ĩn −
M∑
i=1

λiH̃i − Z̃ � 0.

It is easy to verify that Slater’s condition holds for (IA(β∗T )).
This, together with the fact that (IA(β∗T )) is bounded below,
implies that strong duality between (IA(β∗T )) and (DIA(β∗T ))
holds. As it turns out, the dual variable Z̃ can be used to
update T to reduce the integrality gap.

Proposition 1. Let T ⊂ Hn
+ be fixed. Consider the prob-

lem (IA(β∗T )) and its dual (DIA(β∗T )).
(a) (Optimality Cut) If (IA(β∗T )) is feasible, then there ex-

ists an optimal solution (Z̃∗,λ∗) to the dual (DIA(β∗T )).
Moreover, if we let

Z̃∗ =

[
Z z
zH z

]
, (5)

then for any W̃ ∈ Hn+1 satisfying (3a), (3b), and W •
Z −wHZw ≥ 0, we have Ĩn • W̃ ≥ v∗IA(β∗T ).

(b) (Feasibility Cut) If (IA(β∗T )) is infeasible, then there
exists a λ∗ such that Z̃∗ =

∑M
i=1 λ

∗
i H̃i � 0 and λ∗ •

(β∗T + s) < 0 for any s ≥ 0. Moreover, if we let Z
be as in (5), then for any W̃ ∈ Hn+1 satisfying (3a)
and (3b), we have W •Z −wHZw < 0.

Now, if the integrality gap is non-zero (i.e., v∗IA(β
∗
T ) >

v∗OA(T )), then by setting T ′ ← T ∪ {Z}, Proposition 1
suggests that we can eliminate the binary solution β∗T from
further consideration in (OA(T ′)). This is because in (a)
(resp. in (b)), such a solution can only increase the objective



value (resp. is not feasible). Thus, in essence, the dual variable
Z̃ generates a nonlinear optimality or feasibility cut to the
orignal outer approximation (OA(T )). The above process can
then be repeated with T replaced by T ′. We summarize our
proposed procedure for solving (MISDR) in Algorithm 1.

The proof of Proposition 1 is mainly based on Schur com-
plement and strong duality between (IA(β∗T )) and (DIA(β∗T )).
The existence of λ∗ in Proposition 1(b) can be verified by
separation theorem. Due to space limitation, we defer the full-
length proof to the full version of this paper. Nevertheless,
it is worth mentioning that Proposition 1 implies the binary
solutions obtained during the course of Algorithm 1 are all
distinct unless we have termination. Since there is only a finite
number of binary solutions, we obtain the following result:

Theorem 1 (Finite Convergence of SOC-OA). The SOC-OA
algorithm will converge to an optimal solution to (MISDR) (if
one exists) in a finite number of steps.

Our algorithm is primarily inspired by the P-OA approach
proposed in [16], which uses polyhedral outer approximations
to solve MICPs. We improve upon P-OA by providing much
tighter SOC-based outer approximations of PSD constraints
that arise from SDRs of quadratic constraints. It should be
emphasized that although our development focuses on the
mixed-integer SDR of (JABF), the techniques can be applied
to general mixed-integer SDRs of MIQCQPs.

Algorithm 1 SOC-based Outer Approximation (SOC-OA)
1: Initialization: φU ← ∞, φL ← −∞, Opt← ∅, T ← ∅ ,

Tol = ε.
2: while φU − φL > Tol do
3: if (OA(T )) is infeasible then
4: (MISDR) is also infeasible, terminate.
5: end if
6: Solve (OA(T )). Let (W̃ ∗

T ,β
∗
T ) be an optimal solution

with optimal value v∗OA(T ). Update φL ← v∗OA(T ).
7: Solve (IA(β∗T )).
8: if (IA(β∗T )) is feasible then
9: Let W̃ ∗ and (Z̃∗,λ∗) be the optimal solutions

to (IA(β∗T )) and (DIA(β∗T )), respectively, with opti-
mal value v∗IA(β

∗
T ). Construct Z according to Propo-

sition 1(a).
10: if v∗IA(β∗T ) < φU then
11: Update φU ← v∗IA(β

∗
T ); Opt ← (W̃ ∗,β∗T ).

12: end if
13: else
14: Construct Z according to Proposition 1(b).
15: end if
16: Update T ← T ∪ {Z}.
17: end while

B. JABF Solution Extraction and Approximation Accuracy
Analysis

After obtain an optimal solution (W ∗,β∗) ∈ Hn
+ × ZM

to (MISDR) using Algorithm 1, we adopt the Gaussian ran-

domization procedure shown in Algorithm 2 to obtain a feasi-
ble solution (ŵ,β∗) to (JABF) with objective value v(ŵ,β∗).
In experiments, we repeat the random sampling and select
the one that yields the best objective as our returned feasible
solution. Naturally, we are interested in the approximation
accuracy of the solution (ŵ,β∗). This is given below:

Theorem 2 (Approximation Accuracy of Algorithm 2). Let
(ŵ,β∗) be the solution returned by the randomization proce-
dure in Algorithm 2. Then, with probability at least 1/6, we
have v(ŵ,β∗) ≤ 8M · v∗JABF.

In other words, Theorem 2 shows that the transmit power
used by the solution returned by Algorithm 2 is at most O(M)
times the optimum. This improves upon the O(Q(M − Q +
1)) approximation accuracy established in [7] for a convex
relaxation approach. The proof of Theorem 2 follows the lines
of [18, Lemma 3]; see also [5], [20]. Due to the page limit,
we omit the proof here.

Algorithm 2 Randomization Procedure for JABF
1: Solve (MISDR) using Algorithm 1 to get (W ∗,β∗).
2: Define the index set I , {i ∈ [M ] : β∗i = 1}.
3: Generate a random vector ξ ∼ CN (0,W ∗). Set ŵ = tξ,

where t = max
i∈I

{
(ξHHiξ)

−1/2}.

4: Return the feasible solution (ŵ,β∗) for (JABF).

IV. NUMERICAL EXPERIMENTS

In this section we provide simulations to demonstrate the
efficacy of the proposed scheme. The experimental setup is
as follows: the dimension of beamformer is n = 4, 8; the
number of users is M = 8, 12, 16; the number of users selected
to serve is Q = 1

4M, 12M, 34M . Channels are generated by
hi ∼ CN (0, In) independently. In both figures, we averaged
300 channel realizations to obtain the plots. The number of
Gaussian randomization is set to be 1000. All MISOCP sub-
problems are solved by Gurobi [11] and convex subproblems
are solved by CVX [19].

In Figure 1, we show the minimal power required to satisfy
QoS constraints of a fixed proportion of users as M varies but
n fixed. Specifically, we compare against the semidefinite ap-
proximation (SDA) method proposed in [7]. While we directly
solve (MISDR) for (W ∗,β∗), SDA approach consists of two
steps. They first solve an approximate continuous relaxation
by replacing (1b) with

∑M
i=1 βi = Q and βi ∈ [0, 1] for

i ∈ [M ] to obtain (W ∗
SDA,βSDA) ∈ Hn

+×RM ; and then adopt
a heuristic to retrieve the integer part β∗SDA. In simulations, we
further refine the continuous part of their solution by solving
another convex subproblem for WR

SDA with the integer part
fixed at β∗SDA. Subsequently, we do randomization for both
methods with the beamformer generated by CN (0,W ∗) and
CN (0,WR

SDA), respectively. In the legend, “SOC-OA bound”
and “SDA bound” denote the power budgets obtained by the
two methods before rounding, respectively; “SOC-OA” and
“SDA” refer to the actual powers required by the beamformer
produced by the randomization procedure, respectively. Figure
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Fig. 1. Averaged minimal power budget with respect to the number of users
M . Fix n = 4 and Q = 3/4M .
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Fig. 2. Averaged minimal power budget with respect to the proportion of
users selected to serve. Fix n = 4 and M = 16.

1 shows that the optimal values of SOC-OA serve as upper
bounds of SDA prior to rounding, as we consider a tighter
relaxation of (JABF) than SDA. On the other hand, SOC-OA
scheme needs a lower power budget than the refined SDA
approach after rounding, indicating that we acquire a better
integer solution. From the plots, SOC-OA achieves tighter
approximation ratios than SDA. The observation is consistent
with the analytical results concerning approximation accuracy.
To further investigate the performance of SOC-OA, we provide
Figure 2 where n and M are fixed while the proportion of
users selected changes. We see that when Q is less than or
equal to half of the users, the approximation ratios achieved
by SOC-OA are almost one, which reveals that SDR of (JABF)
with respect to the beamformer variables is tight given β∗. In
the future, it would be interesting to further reduce the time
complexity of our proposed method.
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