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Abstract—Being the predominant air interface of next-
generation wireless standards, orthogonal frequency division
multiple access (OFDMA) is well known for its flexibility in
allocating subcarriers to different mobile users according to
their different fast channel variations. Numerous research studies
have demonstrated that OFDMA can bring substantial capacity
gain when the subcarriers are optimally allocated. Nonetheless,
practical systems can hardly afford optimal subcarrier alloca-
tion, because frequent re-optimization performed at the same
timescale as fast fading variation would lead to excessively high
computational and signaling costs. As a result, most practical
systems settle for low-complexity schemes that operate far from
the optimum, thus making them unable to enjoy the large
capacity gain predicted by theoretical studies. To address this
problem, we propose a novel alternative, termed the slow adaptive
OFDMA, to drastically reduce the computational and signaling
costs. The proposed scheme adapts subcarrier allocation at a
much slower timescale than that of channel fading variation,
yet achieves similar system capacity and quality of service
(QoS) levels as the optimal fast adaptive OFDMA. Moreover,
it possesses several attractive features. First, neither prediction
of channel state information nor specification of channel fading
distribution is needed for subcarrier allocation. As such, the
algorithm is robust against any mismatch between actual channel
state/distributional information and the one assumed. Secondly,
although the optimization problem arising from our proposed
scheme is non-convex in general, based on recent advances in
chance-constrained optimization, we show that it can be approx-
imated by a certain linear program with provable performance
guarantees. In particular, we only need to handle an optimization
problem that has the same structure as the fast adaptive OFDMA
problem, yet we are able to enjoy lower computational and
signaling costs. Last but not the least, instead of relying on
standard but abstract linear program solvers such as the interior-
point method to solve the aforementioned linear program, we
can exploit its special structure and design a provably efficient
algorithm for solving it. Consequently, the proposed algorithm
not only has a transparent engineering interpretation but is also
easy to implement at the base stations of practical systems.

Index Terms—OFDMA, Adaptive resource allocation, Stochas-
tic optimization, Chance-constrained programming

I. INTRODUCTION

A. Motivation

Various next-generation broadband wireless systems, such

as IEEE WiMax, 3GPP-LTE and LTE-advanced, have con-
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verged to adopt orthogonal frequency division multiple ac-

cess (OFDMA), the multiuser version of the popular OFDM

scheme, as the main air interface. To extract the utmost

efficiency out of limited radio resources, tremendous research

efforts have been invested in the study of adaptive OFDMA

(see, e.g., [14], [16]), which dynamically allocates subcarriers

to different users according to their instantaneous channel

fading conditions. It has been convincingly demonstrated that

adaptive OFDMA can greatly enhance spectrum and energy

efficiency if subcarriers are optimally allocated to fully exploit

the fast variation of wireless channel fading.

To keep track of the fast fading variation, adaptive OFDMA

must re-optimize subcarrier allocation at least as often as

channel coherence time (which is in the order of milliseconds),

thus resulting in excessively high computational complexity.

Moreover, control signaling has to be sent frequently between

the BS and mobile users in order to keep the users informed

of the latest allocation decision. The overhead thus incurred is

likely to negate the diversity gain obtained by the adaptation

schemes. As a result, most if not all practical systems settle for

low-complexity heuristics that operate far from the optimum,

which makes them unable to enjoy the large capacity gain

predicted by theoretical studies.

To enhance the practicality of adaptive OFDMA without

compromising the capacity gain, we propose a novel alterna-

tive called the slow adaptive OFDMA. As the name suggests,

the proposed scheme adapts subcarrier allocation on a much

slower timescale than that of fading fluctuation, thus substan-

tially reducing the computational cost and signaling overhead.

The key challenge here is to achieve similar system capacity

and quality of service (QoS) levels as the fast adaptation

scheme, now that the channel fading condition can fluctuate

drastically in between two successive subcarrier allocations.

B. Advantage over Slow Adaptation Schemes Based on Sta-

tistical Averages

The idea of slow adaptation has recently been pursued in

different contexts, including slow adaptive modulation [5],

[10] and slow adaptive power control [13]. The concept of

slow adaptive OFDMA was introduced for the first time in

our recent work [8]. In these papers, adaptation decisions are

made solely based on the long-term average channel conditions

instead of fast channel fading. Specifically, random channel

parameters are replaced by their mean values, resulting in

a deterministic rather than stochastic optimization problem.

However, such approaches fail to exploit the diversities that

potentially reside in higher order channel statistics (e.g.,
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channel variance). Moreover, QoS can only be guaranteed in

a long-term average sense, since the short-term fluctuation of

channel is completely ignored in the problem formulation. On

the other hand, fast adaptation schemes are able to provide

short-term QoS (e.g., short-term data rate) guarantee, which

is important to delay-sensitive applications, such as wireless

multimedia applications.

In contrast to [5], [8], [10], [13], our proposed scheme

incorporates statistical properties of the channel into the re-

source allocation decisions. In particular, it aims at maximizing

the long-term system throughput, while satisfying short-term

data rate requirements with probability at least 1 − ǫ, where

ǫ ∈ [0, 1) is a user-defined outage tolerance parameter. In

the special case where ǫ = 0, the formulation reduces to

the well-studied robust optimization formulation. By allowing

ǫ to pass from 0 to a small positive number, one can have

a tradeoff between system performance and QoS levels, a

flexibility that is absent in previous schemes. This formulation,

which contains probabilistic constraints on short-term data rate

requirements, is particularly well suited for next-generation

broadband applications that require high throughput and strin-

gent short-term QoS, yet can typically tolerate occasional

outages. Moreover, the formulation can be explicitly expressed

as a probabilistic or chance-constrained programming prob-

lem. Solving the chance-constrained programming problem,

however, is mathematically challenging, for the problem is

non-convex in general [11].

C. Distributional Robustness and Simple Implementation

To deal with probabilistic constraints, one typically would

need some information about the probability distribution of

the underlying random data. In our recent work on slow

adaptive OFDMA with probabilistic short-term QoS [9], we

assume that the channel follows the Rayleigh fading model

and formulate a convex approximation of the non-convex

probabilistic constraint. In practice, however, the precise chan-

nel distribution information is difficult to obtain. Very often,

channel distributions that arise from simplifying models such

as Rayleigh fading may not match the reality perfectly [6],

[7]. Such misspecification of distributional information may

compromise the optimality of the solution.

In contrast to [9], the scheme proposed in this paper does

not require any explicit knowledge of the channel fading

distribution. Instead, it only assumes that the channel fading

process can be sampled. As such, the scheme is robust

against any misspecification of the probability distribution of

channel fading. Note that most wireless systems are constantly

estimating the channel coefficients for coherent detection and

adaptive modulation. In other words, the system is already

“sampling” channel fading process as part of the operation.

Thus, the above sampling assumption can be easily justified.

Another appealing aspect of the proposed scheme is that

subcarrier allocation decisions are obtained as solutions to

a linear program. Such a linear program approximates the

original chance-constrained programming formulation, and

the approximation quality can be rigorously established. To

further simplify the implementation, instead of relying on

standard linear program solvers to solve the aforementioned

linear program, we present an intuitive yet provably efficient

solution algorithm called the “Biggest Bang for the Buck”

(BBB). The BBB algorithm involves only simple operations

and has a transparent engineering interpretation. As such, it

is well suited for implementation at base stations. Our results

show that the proposed slow adaptive OFDMA can achieve

a significant portion of the fast adaptive OFDMA throughput

with drastically lower implementation cost. Depending on the

channel fading distribution, slow adaptive OFDMA may even

achieve higher throughput than the fast adaptation scheme,

thanks to its low control signaling overhead.

The rest of the paper is organized as follows. In Section

II, we discuss the channel model and problem formulation. In

Section III, we present the proposed linear programming based

slow adaptive OFDMA scheme and establish its soundness and

performance. In Section IV, we develop the BBB algorithm

for solving the linear programs arising from the adaptive

schemes. In Section V, we investigate the performance of the

proposed scheme through numerical simulations and discuss

the possibility of reducing the number of samples. We end

with some concluding remarks in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a single-cell multiuser OFDM

system with K users and N subcarriers. Let h
(t)
k,n be the

random variable representing the instantaneous channel coef-

ficients of user k on subcarrier n at time t, and g
(t)
k,n =

∣

∣h
(t)
k,n

∣

∣
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be the instantaneous channel gain. Depending on the nature of

the radio propagation channel, the random variable h
(t)
k,n may

follow different kinds of distributions. Among the commonly

adopted channel statistical models are Rayleigh, Rician, Nak-

agami, and Weibull distributions. In this paper, however, we

shall not make any assumption on the channel distribution.

For simple implementation, we assume that the transmission

power pt on each subcarrier is fixed1. The transmission rate

of user k on subcarrier n is adapted as

r
(t)
k,n = W log2

(

1 +
ptg

(t)
k,n

ΓN0

)

,

where W is the bandwidth of a subcarrier, N0 is the power

spectral density of Gaussian noise, and Γ is the capacity gap

that is related to the target bit error rate (BER) and coding-

modulation schemes. Without loss of generality, we assume

that W = 1 and Γ = 1 for the rest of this paper.

B. Problem Formulation

In traditional fast adaptive OFDMA systems, subcarrier

allocation (SCA) decisions are made at the base station (BS)

1Needless to say, system performance can be further enhanced if trans-
mission power is also variable. However, varying transmission power not
only adds to the computational complexity of finding the optimal allocation
solution, but also complicates the hardware implementation. Moreover, it has
been shown that power adaptation does not bring much additional gain if
mobile users are already assigned “good” channels. Thus, we keep the power
fixed in this paper.
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according to the instantaneous channel gains in order to

maximize a system-wide efficiency metric. For simplicity, we

adopt system throughput as the efficiency metric in this paper.

Since the transmission power (hence the energy consumption

per unit time) is fixed in our system, maximizing system

throughput also maximizes the energy efficiency (in terms of

number of bits transmitted per unit energy consumption) of

the system. Nonetheless, the idea of slow adaptive OFDMA

can be extended to other objective functions.

Assuming that the BS knows the instantaneous channel gain

g
(t)
k,n (and hence r

(t)
k,n), a fast adaptive OFDMA system solves

at time t the following linear programming problem:

Pfast : max
{x

(t)
k,n

}

K
∑

k=1

N
∑

n=1

x
(t)
k,nr

(t)
k,n (1a)

s.t.

N
∑

n=1

x
(t)
k,nr

(t)
k,n ≥ qk, ∀k, (1b)

K
∑

k=1

x
(t)
k,n ≤ 1, ∀n,

x
(t)
k,n ≥ 0, ∀k, n,

where x
(t)
k,n is the fraction of airtime assigned to user k on

subcarrier n. The objective function in (1a) represents the

total system throughput at time t, and (1b) represents the data

rate constraint of user k at time t, where qk is the minimum

required data rate. Note that one has to solve Pfast every time

the channel gain g
(t)
k,n (and hence r

(t)
k,n) changes in order to

keep the SCA decisions optimal. In practice, g
(t)
k,n varies on

the order of channel coherence time, which ranges from a

few milliseconds to tens of milliseconds. Thus, fast adaptive

OFDMA schemes can be extremely costly in practice.

One effective way to overcome the practicality issue of

fast adaptive OFDMA systems is to adopt a slow adaptation

scheme, in which SCA decisions are only updated once in

every “adaptation window” of length T [9]. More precisely,

an SCA decision is made at the beginning of each adaptation

window, and the allocation remains unchanged till the next

window. In this case, the SCA variable becomes xk,n ∈
[0, 1] (i.e., there is no superscript (t) as opposed to the fast

adaptation formulation), because SCA here is no longer a

function of t during an adaptation window. Unlike in fast-

adaptive systems where the BS needs exact CSI for resource

allocation, in a slow adaptive OFDMA system, the BS does

not have the luxury of foreseeing the channel realizations over

the entire adaptation window when it performs SCA at the

beginning of the window. Thus, it has to rely on information

about the channel fading distribution to make the optimal

subcarrier allocation decision. More precisely, for any given

{xk,n}, the quantity
∑N

n=1 xk,nr
(t)
k,n, which appears in both the

objective and constraint functions, is now a random variable.

A fundamental problem here is to understand what constitutes

a “good” SCA decision for each window and how such a

decision can be computed.

Suppose that the duration T of a window is large compared

with the fast fading fluctuation so that the channel fading

process over the window is ergodic, yet small compared

with the large-scale variation of path loss and shadowing

so that the probability distribution of the channel remains

unchanged during a window. Then, the system throughput

during a window [t0, t0 + T ] is given by

1

T

∫ t0+T

t0

(

K
∑

k=1

N
∑

n=1

xk,nr
(t)
k,n

)

dt =

K
∑

k=1

N
∑

n=1

xk,nE

{

r
(t)
k,n

}

,

where the equality is due to the ergodicity of channel fading

over the window, and the expectation is taken over the random

channel process r = {r
(t)
k,n}, for t ∈ [t0, t0 + T ]. Note that

E

{

r
(t)
k,n

}

does not vary with t for t ∈ [t0, t0 + T ], because

the distribution of the channel remains unchanged during a

window.

As in the fast adaptation scenario, we wish to satisfy each

user’s short-term data rate requirement qk for each time t. To

circumvent the randomness in
∑N

n=1 xk,nr
(t)
k,n and considering

the fact that many wireless applications allow a small outage

probability in their QoS requirements, we replace the short-

term data rate constraint by the probabilistic constraint

Pr

{

N
∑

n=1

xk,nr
(t)
k,n ≥ qk ∀k

}

≥ 1− ǫ, ∀t ∈ [t0, t0 +T ], (2)

where ǫ ∈ [0, 1) is the maximum tolerable system outage

probability2. In the special case where ǫ = 0, the constraint (2)

becomes a robustness constraint, i.e., the instantaneous data

rate constraints must be satisfied at all times. In practice,

we can choose ǫ depending on the QoS requirement of the

particular application.

With the above considerations, the slow adaptive OFDMA

problem can be formulated as follows:

Pslow : max
{xk,n}

K
∑

k=1

N
∑

n=1

xk,nE

{

r
(t)
k,n

}

s.t. Pr

{

N
∑

n=1

xk,nr
(t)
k,n ≥ qk ∀k

}

≥ 1− ǫ, (3a)

K
∑

k=1

xk,n ≤ 1, ∀n,

xk,n ≥ 0, ∀k, n.

Pslow is a so-called chance-constrained program because it

contains the chance constraint (3a).

Before leaving this subsection, we should emphasize that

many slow adaptation schemes simply replace
∑N

n=1 xk,nr
(t)
k,n

by its mean
∑N

n=1 xk,nE {rk,n} in the data rate constraint. Al-

though such an approach still gives linear data rate constraints,

those constraints are only imposed on long-term average data

rates. By contrast, the chance constraints in (3a) allow us

to work on short-term data rate requirements, which are

important for many wireless applications.

2The system is said to be in outage if there is a user whose instantaneous
data rate is below the prescribed threshold qk.
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C. Challenges

Optimization problems with chance constraints are gener-

ally computationally intractable, as the feasible set defined by

chance constraints is most likely non-convex. In fact, even

verifying the feasibility of a solution is hard except for a few

special cases. In our previous work [9], we tackled the problem

by finding a safe tractable approximation of (3a) using the

Bernstein approximation theorem. Specifically, the potentially

non-convex constraint (3a) is replaced by a convex constraint

H, which has the property that every solution that is feasible

for H is also feasible for (3a). A potential problem with the

safe tractable approximation approach in [9] is that it requires

the calculation of the cumulant generation function of r
(t)
k,n.

Thus, the quality of the approximation depends crucially on

the accuracy of our knowledge about the channel fading distri-

bution. Of course, we may adopt simplified channel statistical

models such as Rayleigh or Rician fading. However, this

may lead to suboptimal or even infeasible resource allocation

solutions when there is a mismatch between the actual channel

distribution and the one assumed. In the next section, we will

develop an alternative approach that does not require explicit

information about the channel fading distribution. In particular,

our approach is robust against misspecification of channel

distribution.

Another challenge concerns the implementation of the so-

lution algorithm at cellular base stations. Although the results

in [9] showed that Pslow can be converted into a convex

optimization problem, deploying a convex program solver at

base stations could still be non-trivial3. With this in mind,

we will present a “Biggest Bang for the Buck” algorithm

for solving Pslow in Section IV. As we shall see, the BBB

algorithm not only has a transparent engineering interpretation,

but is also provably efficient.

III. LINEAR PROGRAMMING BASED SLOW ADAPTIVE

OFDMA SCHEME

To handle the chance constraints (3a), we adopt the scenario

approximation approach, which has been extensively studied

in the Operations Research community; see, e.g., [12]. In

particular, the non-convex chance-constrained problem will be

converted into a linear programming problem, which is much

easier to solve.

To begin, suppose that we can draw J independent samples

of the random vector (rk,n), say (r̄1k,n), . . . , (r̄
J
k,n)

4. Then, we

can replace the chance constraint (3a) by the following system

of linear constraints:

N
∑

n=1

xk,nr̄
j
k,n ≥ qk, ∀k, j.

In other words, consider the following linear programming

problem, which serves as an approximation to the original

3Note that most current base stations do not have the ability to solve convex
optimization problems.

4Since the distribution of the channel remains unchanged for all t belonging

to the same window, we may drop the superscript t in r
(t)
k,n

.
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Fig. 1. Sampling procedure in the proposed slow adaptive OFDMA scheme.

chance-constrained problem Pslow:

P̂J
slow : max

{xk,n}

K
∑

k=1

N
∑

n=1

xk,nE {rk,n}

s.t.

N
∑

n=1

xk,nr̄
j
k,n ≥ qk, ∀k, j, (4a)

K
∑

k=1

xk,n ≤ 1, ∀n,

xk,n ≥ 0, ∀k, n.

Before we study the accuracy of the approximating con-

straints (4a), we would like to emphasize that in practical wire-

less systems, the samples (r̄1k,n), . . . , (r̄
J
k,n) can be obtained

almost at no extra costs, as long as the channel distribution

does not vary much across adjacent adaptation windows5. This

is because most practical wireless systems constantly estimate

the channel coefficients for coherent detection and adaptive

modulation. Thus, it is not uncommon for the BS to know

the CSI of the current time. In other words, the BS is already

“sampling” (rk,n) as part of the system operation. Assuming

that the distribution of the channel does not vary rapidly, we

can always make use of the latest J samples of (rk,n) to

perform SCA at the beginning of an adaptation window. This

is illustrated in Fig. 1.

Now, let x̄
J = (x̄J

k,n) ∈ R
NK
+ be an optimal solution to

P̂J
slow. Intuitively, if the number of samples J is reasonably

large, then the J samples would constitute a set of significant

measure. Thus, if x̄
J satisfies the linear constraints (4a),

it should also satisfy the chance constraint (3a) with high

confidence.

It turns out that the above intuition can be made precise.

For notational simplicity, let us denote by V : ∆→ [0, 1] the

left-hand side of the chance constraint (3a):

V (x) = Pr

{

N
∑

n=1

xk,nrk,n ≥ qk ∀k

}

,

where

∆ =

{

x ∈ R
NK
+ :

K
∑

k=1

xk,n ≤ 1 ∀n

}

.

Suppose for the moment that the optimal solution x̄
J to P̂J

slow

is unique. We are now interested in determining V (x̄J ). By

definition, if V (x̄J ) ≥ 1− ǫ, then x̄
J satisfies the chance con-

straint (3a). However, note that V (x̄J ) is a random variable,

5In general, the distribution of the channel stays nearly constant during
a time span of seconds or tens of seconds, although the actual channel
realizations fluctuate wildly at a much smaller timescale.
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since x̄
J depends on the J random samples (r̄1k,n), . . . , (r̄

J
k,n).

Thus, it is more appropriate to study the quantity Pr{V (x̄J ) ≥
1 − ǫ}, where the probability is computed over all possible

realizations of the J-tuple ((r̄1k,n), . . . , (r̄
J
k,n)). The following

theorem establishes the soundness and performance of the

proposed scheme.

Theorem 1. Let x̄J be the unique solution to P̂J
slow, and let

ǫ ∈ (0, 1) be the maximum tolerable system outage probability.

Then, we have

Pr{V (x̄J ) ≥ 1− ǫ} ≥ 1−
NK−1
∑

i=0

(

J

i

)

ǫi(1− ǫ)J−i, (5)

where the probability is computed over all possible realiza-

tions of the J-tuple ((r̄1k,n), . . . , (r̄
J
k,n)). In particular, for any

β ∈ (0, 1), if J ≥ J∗, where

J∗ ≡

⌈

1

ǫ

(

NK − 1 + ln
1

β
+

√

2(NK − 1) ln
1

β
+ ln2

1

β

)⌉

,

(6)

then Pr{V (x̄J ) ≥ 1− ǫ} ≥ 1− β.

Proof: The bound in (5) follows from the result in [3]. To

derive (6), we first recall the following well-known fact due

to Chernoff [4] (cf. [1]):

Fact 1. For any ǫ ∈ (0, 1) and d ≤ ǫJ , we have

d
∑

i=0

(

J

i

)

ǫi(1− ǫ)J−i ≤ exp

[

−
(ǫJ − d)2

2ǫJ

]

.

Using Fact 1 and (5), we see that if

exp

[

−
(ǫJ −NK + 1)2

2ǫJ

]

≤ β,

then Pr{V (x̄J ) ≥ 1 − ǫ} ≥ 1 − β. By taking logarithm on

both sides and solving for J , we obtain (6).

As it turns out, Theorem 1 holds even when there is more

than one solution to P̂J
slow. We refer the interested reader to [3]

for details.

Theorem 1 shows that if we use J ≥ J∗ samples to form

the linear program P̂J
slow, then with probability at least 1− β,

the solution obtained will be feasible for Pslow. In particular,

by setting β to a very small value, say 10−10, the solution

to P̂J
slow will almost surely be feasible for Pslow. Notably, the

number of samples needed would not increase too much as

β decreases, since J∗ only has a logarithmic dependence on

1/β.

The formulation described above provides a tractable way

to handle the chance constraint (3a). Moreover, it has several

advantages over the convex programming formulation in [9]:

1) We do not need to know the explicit channel distribution

model in order to solve P̂J
slow. All we need are samples

of channel realizations, which are readily available as

part of the operation of current wireless systems. In

particular, our scheme is more distributionally robust

and much simpler to describe than that in [9].

2) Our formulation shows that the optimization prob-

lems involved in both fast and slow adaptive OFDMA

schemes can be of the same class (recall that Pfast is

also a linear programming problem). In particular, our

proposed slow adaptive OFDMA scheme P̂J
slow can be

solved using standard linear program solvers, which

already makes its implementation much simpler than that

in [9].

3) Although both the fast and slow adaptive systems are

based on solving linear programs, it should be noted

that the former needs to solve an instance of Pfast every

few milliseconds, while the latter only needs to solve

one instance of P̂J
slow for each adaptation window. Thus,

the complexity gain of our scheme could be substantial.

To illustrate this, recall that the complexity of solving a

general linear program with v variables and m inequality

constraints is O((m + v)3/2v2) (see, e.g., [2, Section

6.6.1]). Suppose that a fast adaptive scheme needs to

solve Pfast Λ times for each adaptation window. Since

Pfast has NK variables and N + K + NK inequality

constraints, it follows that for each adaptation window,

the complexity of the fast adaptive scheme is

Cfast = O(Λ(NK)2(N +K + 2NK)3/2).

On the other hand, our slow adaptive scheme needs to

solve only one P̂J
slow for each adaptation window. Since

P̂J
slow has NK variables and N + JK +NK inequality

constraints, the complexity of our slow adaptive scheme

is

Cslow = O((NK)2(N + JK + 2NK)3/2).

In particular, for J = J∗, we see that if

Λ ≥

(

1 +
(J − 1)K

N +K + 2NK

)3/2

= Ω((K/ǫ)3/2), (7)

then Cslow ≤ Cfast
6. The approximation in (7) is due

to the fact that ln(1/β) is typically much smaller than

NK even for β as small as 10−10. In practice, K , the

number of users that are grouped together for subcarrier

allocation, is usually small (e.g., not exceeding 10).

Hence, Cslow is in general much lower than Cfast for any

practical systems.

In the next section, we will consider some practical issues

concerning the implementation of the linear programming

based slow adaptive scheme.

IV. “BIGGEST BANG FOR THE BUCK” ALGORITHM

Although the linear programs Pfast and P̂J
slow can be solved

by standard interior-point algorithms, implementing such algo-

rithms at base stations could be a challenging task. Thus, it is

desirable to have easy-to-implement and intuitive algorithms

to solve the linear programs arising from the fast and slow

adaptive schemes. In this section, we will present one such al-

gorithm and provide a theoretical analysis on its performance.

The crucial observation underlying our approach is that both

Pfast and P̂J
slow are instances of a so-called mixed packing and

covering linear program, which means that they can be tackled

6Recall that f(n) = Ω(g(n)) if there exist constants c > 0 and n0 ≥ 1
such that f(n) ≥ c · g(n) for all n ≥ n0.
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by the algorithmic framework developed in [15]. To illustrate

this approach and fix ideas, let us focus on problem P̂J
slow and

note that the treatment for problem Pfast is similar. Consider

the following parametric formulation of P̂J
slow:

P̂J
slow(τ) : find x = (xk,n) ∈ R

NK

s.t. γ̃0(x) ≡
K
∑

k=1

N
∑

n=1

xk,nE {rk,n} ≥ τ, (8a)

γ̃k,j(x) ≡
N
∑

n=1

xk,nr̄
j
k,n ≥ qk, ∀k, j, (8b)

π̃n(x) ≡
K
∑

k=1

xk,n ≤ 1, ∀n, (8c)

xk,n ≥ 0, ∀k, n, (8d)

where τ ≥ 0 is a parameter. Observe that an optimal solution

to P̂J
slow can be found simply by binary searching on τ and

solving a sequence of linear feasibility problems {P̂J
slow(τ)}.

Thus, it suffices to develop an efficient method to solve

P̂J
slow(τ) for any given τ ≥ 0. Towards that end, note that the

choice of x is dictated by two opposing criteria. On one hand,

we would like to increase the components of x so that the

target system throughtput (8a) and data rates (8b) are achieved.

On the other hand, such an increase is limited by the airtime

allocation constraint (8c). The above observation suggests the

following intuitive strategy for finding a solution to P̂J
slow(τ):

Starting with an arbitrary x, at each step, identify the variable

xk,n whose increment would make the most progress towards

satisfying the throughput and data rate constraints (“the biggest

bang for the buck”). More concretely, at each step, choose the

index (k̄, n̄) such that the ratio

C̃(x+ δek̄,n̄)− C̃(x)

P̃ (x+ δek̄,n̄)− P̃ (x)
(9)

is maximized, where the functions C̃, P̃ : RNK
+ → R+ are

given by

C̃(x) = min

{

γ̃0(x),min
k,j

γ̃k,j(x)

}

, P̃ (x) = max
n

π̃n(x),

δ > 0 is a step size, and ek̄,n̄ ∈ R
NK is the vector that has an 1

on the (k̄, n̄)-th entry and 0 elsewhere. Unfortunately, despite

its intuitive appeal, the above strategy is not easy to analyze,

as the piecewise linear nature of C̃ and P̃ makes it difficult

to determine an appropriate step size δ in each step. However,

not all is lost, as one can apply smoothing to C̃ and P̃ , and

the resulting smoothed version of the “the biggest bang for the

buck” strategy can be analyzed using the techniques developed

in [15]. In particular, we will show that the algorithm obtained

by smoothing can find an almost feasible solution to P̂J
slow(τ)

in O(m logm) iterations, where m = N+JK+1 is the total

number of constraints excluding the non-negativity constraints

(8d), and each iteration can be implemented in O(m) time.

To begin, let us rewrite Problem (8) as follows:

find x = (xk,n) ∈ R
NK

s.t. γ0(x) ≡
K
∑

k=1

N
∑

n=1

xk,n

(

Θ

τ
E {rk,n}

)

≥ Θ, (10a)

γk,j(x) ≡
N
∑

n=1

xk,n

(

Θ

qk
r̄jk,n

)

≥ Θ, ∀k, j, (10b)

πn(x) ≡
K
∑

k=1

xk,nΘ ≤ Θ, ∀n,

xk,n ≥ 0, ∀k, n,

where Θ > 0 is a parameter to be determined. Note that

Problem (10) has identical right-hand sides, a fact that will

facilitate our analysis later. Since we will only increase the

components of x during the course of our algorithm, once a

throughput or data rate constraint in (10) is satisfied, we can

drop it from further consideration. To facilitate bookkeeping,

we will use the index set S ⊂ S̄ ≡ {0} ∪ {(k, j) : k =
1, . . . ,K; j = 1, . . . , J} to keep track of the unsatisfied

throughput and data rate constraints.

Now, for each S ⊂ S̄, define the functions CS , P : RNK
+ →

R+ by

CS(x) = − ln

(

∑

s∈S

exp(−γs(x))

)

,

P (x) = ln

(

∑

n

exp(πn(x))

)

.

Note that CS and P are obtained by applying the standard

log exp smoothing to the min and max functions. In particular,

they satisfy

CS(x) ≤ min
s∈S

γs(x) for each S ⊂ S̄, P (x) ≥ max
n

πn(x).

Moreover, the partial derivatives ∂CS(x)/∂xk,n and

∂P (x)/∂xk,n, which are essential in the development of our

algorithm, admit the following explicit formulae:

∂CS(x)

∂xk,n
=

∑

s∈S(∂γs(x)/∂xk,n) exp(−γs(x))
∑

s∈S exp(−γs(x))
, (11)

∂P (x)

∂xk,n
=

Θexp(πn(x))
∑

n exp(πn(x))
, (12)

where

∂γs(x)

∂xk,n
=











ΘE{rk,n}/τ if s = 0,

Θr̄jk,n/qk if s = (k, j),

0 otherwise.

We are now ready to describe the BBB algorithm for finding

an approximate solution to P̂J
slow(τ) as formulated in (10);

see Algorithm 1. The “biggest bang for the buck” strategy is

implemented in line 7, where we increment the variable xk,n

that maximizes the ratio (∂CS(x)/∂xk,n)
/

(∂P (x)/∂xk,n)
(cf. (9)), subject to the condition that the rate at which

P increases is at most 1 + η times that at which CS in-
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creases. Roughly speaking, this latter condition ensures that

the progress towards satisfying the throughput and data rate

constraints is not paid by an excessive allocation of airtime.

It also ensures that the solution x output by the algorithm has

the stated approximation guarantee.

Algorithm 1 The BBB Algorithm for Finding an Approximate

Solution to P̂J
slow(τ)

Input: data defining P̂J
slow(τ), accuracy η ∈ (0, 1]

Output: a solution x̄ ≥ 0 that satisfies (10a), (10b) and
∑

k x̄k,n ≤ 1 + O(η) for all n; or declare the problem

infeasible

1: set x ←− 0, S ←− S̄ and Θ ←− (lnm)/η, where m =
N + JK + 1 is the number of constraints

2: while mins∈S γs(x) < Θ do

3: if mink,n
{

(∂P (x)/∂xk,n)
/

(∂CS(x)/∂xk,n)
}

> 1
then

4: return “infeasible”

5: end if

6: set S ←− S \ {s ∈ S : γs(x) ≥ Θ} // remove

satisfied throughput and data rate constraints

7: let // “biggest bang for the buck”, cf. (9)

(k̄, n̄) = argmax
k,n

{

∂CS(x)/∂xk,n

∂P (x)/∂xk,n
:

∂P (x)

∂xk,n
≤ (1 + η)

∂CS(x)

∂xk,n

}

8: set δ > 0 such that // determine the step size

max

{

max
s∈S

γs(δek̄,n̄), max
n

πn(δek̄,n̄)

}

= η

9: set x←− x+ δek̄,n̄
10: end while

11: return x

To analyze the performance of the BBB algorithm, we adopt

the framework developed in [15]. First, let us show that line 3

of the algorithm is well defined:

Proposition 1. If P̂J
slow(τ) is feasible, then for all x ∈ R

NK
+ ,

there exists (k′, n′) such that

∂P (x)/∂xk′,n′

∂CS(x)/∂xk′,n′

≤ 1.

Proof: Let x ∈ R
NK
+ be arbitrary, and let x̄ ∈ R

NK
+ be

feasible for P̂J
slow(τ). Then, by (12) and the fact that

0 ≤
∑

k

x̄k,nΘ ≤ Θ,
exp(πn(x))

∑

n exp(πn(x))
≥ 0,

we have

∑

k,n

x̄k,n
∂P (x)

∂xk,n
=
∑

n

(

∑

k

x̄k,nΘ

)

exp(πn(x))
∑

n exp(πn(x))
≤ Θ.

Similarly, using (11), it can be shown that

∑

k,n

x̄k,n
∂CS(x)

∂xk,n
≥ Θ.

Hence, there exists (k′, n′) such that

∂P (x)

∂xk′,n′

≤
∂CS(x)

∂xk′,n′

,

as required.

Next, we study the effect of incrementing x on the functions

CS and P . Towards that end, we need the following result,

whose proof is standard and can be found, e.g., in [15, Lemma

1]:

Lemma 1. For any v, ζ ∈ R
l
+ such that 0 ≤ ζi ≤ η ≤ 1 for

i = 1, . . . , l, the following inequalities hold:

ln

(

l
∑

i=1

exp(vi + ζi)

)

≤ ln

(

l
∑

i=1

exp(vi)

)

+ (1 + η)

l
∑

i=1

ζi
exp(vi)

∑l
j=1 exp(vj)

,

− ln

(

l
∑

i=1

exp(−(vi + ζi))

)

≥ − ln

(

l
∑

i=1

exp(−vi)

)

+
(

1−
η

2

)

l
∑

i=1

ζi
exp(−vi)

∑l
j=1 exp(−vj)

.

Armed with Lemma 1, we can prove the following result:

Proposition 2. Suppose that in an iteration of the BBB

algorithm, we increment x to x+ δek̄,n̄. Then,

P (x+ δek̄,n̄)− P (x) ≤
(1 + η)2

1− η/2

[

CS(x+ δek̄,n̄)− CS(x)
]

.

Proof: By line 8 of the algorithm, we have

maxn πn(δek̄,n̄) ≤ η. Hence, by Lemma 1 and (12),

P (x+ δek̄,n̄) = ln

(

∑

n

exp(πn(x) + πn(δek̄,n̄))

)

≤ P (x) + (1 + η)
∑

n

πn(δek̄,n̄)
exp(πn(x))

∑

n exp(πn(x))

= P (x) + (1 + η)δ
∂P (x)

∂xk̄,n̄

.

Similarly, using (11), it can be shown that

CS(x+ δek̄,n̄) ≥ CS(x) +
(

1−
η

2

)

δ
∂CS(x)

∂xk̄,n̄

.

Now, by line 7 of the algorithm,

∂P (x)

∂xk̄,n̄

≤ (1 + η)
∂CS(x)

∂xk̄,n̄

.



8

It follows that

P (x+ δek̄,n̄)− P (x)

≤ (1 + η)2δ
∂CS(x)

∂xk̄,n̄

≤
(1 + η)2

1 − η/2

[

CS(x+ δek̄,n̄)− CS(x)
]

,

as required.

Finally, using Proposition 2, we can establish the correctness

and runtime of the BBB algorithm.

Theorem 2. Suppose that P̂J
slow(τ) is feasible. Then, the BBB

algorithm will return a solution x̄ with the stated properties

in O(η−2m logm) iterations. Moreover, each iteration can be

implemented in O(m) time.

Proof: Let us first show that x̄ has the stated properties.

Consider the function Φ : RNK
+ × 2S̄ → R given by

Φ(x, S) = P (x) −
(1 + η)2

1− η/2
CS(x).

Initially, we have x = 0 and S = S̄. Hence, the initial value

of Φ is given by

Φ(0, S̄) = lnN +
(1 + η)2

1− η/2
ln(JK+1) ≤ ηΘ+

(1 + η)2

1 − η/2
ηΘ.

By Proposition 2, all increments in subsequent iterations do

not increase the value of Φ. Moreover, since CS(x) ≥ CS′(x)
for all S ⊂ S′ ⊂ S̄ and x ∈ R

NK
+ , removing the satisfied

throughput and data rate constraints in line 6 will not increase

the value of Φ either. Thus, we have Φ(x, S) ≤ Φ(0, S̄) for

all x ∈ R
NK
+ and S ⊂ S̄ that arise during the course of

the algorithm. Now, just before the last increment, we have

CS(x) ≤ mins∈S γs(x) < Θ by line 2. This implies that

max
n

πn(x) ≤ P (x) ≤ Φ(0, S̄) +
(1 + η)2

1− η/2
CS(x)

≤ ηΘ+
(1 + η)3

1− η/2
Θ = (1 +O(η))Θ.

Moreover, by line 8, the last increment increases maxn πn(x)
by at most η. It follows that when the algorithm terminates,

the solution x̄ satisfies (10a) and (10b) (because the condition

in line 2 no longer holds), and
∑

n x̄k,n ≤ 1 + O(η) for all

n, as required.

Next, we bound the number of iterations of the algorithm.

Define the function Ψ : RNK
+ × 2S̄ → R by

Ψ(x, S) =
∑

n

πn(x) +
∑

s∈S

(γs(x) −Θ− η).

Initially, we have Ψ(0, S̄) ≥ −(JK + 1)(Θ + η). By line

8 of the algorithm, each increment increases Ψ by at least η.

Moreover, if S is the index set of the remaining throughput and

data rate constraints before an increment, then for all s ∈ S,

we have γs(x) < Θ before the increment and γs(x) < Θ+ η
after the increment. Thus, the constraint removal step in line

6 can only further increase the value of Ψ. Finally, when the

algorithm terminates, we have Ψ(x̄, S) ≤ Ψ(x̄, ∅) ≤ (1 +
O(η))NΘ. Hence, the number of iterations required is at most

(1+O(η))(N + JK +1)Θ/η, which by definition of Θ is of

order O(η−2m logm).
Finally, it is clear that each iteration can be implemented in

O(m) time. This completes the proof of Theorem 2.

Although the BBB algorithm is designed to find an almost

feasible solution to P̂J
slow(τ) for a fixed τ ≥ 0, we can use it to

find a good feasible solution to the original chance-constrained

program Pslow (see (3)) by performing a binary search on τ ∈
[0, U ], where U =

∑K
k=1

∑N
n=1 E{rk,n}. Specifically, for any

given α > 0, we call the BBB algorithm O(log(U/α)) times

to obtain an x̄ ∈ R
NK
+ that satisfies

K
∑

k=1

N
∑

n=1

x̄k,nE {rk,n} ≥ OPT− α,

N
∑

n=1

x̄k,nr̄
j
k,n ≥ (1 +O(η))qk, ∀k, j,

K
∑

k=1

x̄k,n ≤ 1 +O(η), ∀n,

where OPT is the optimal value of P̂J
slow with {qk} replaced

by {(1 + O(η))qk}. Now, by scaling down each component

of x̄ by a factor of 1 + O(η), we obtain a feasible airtime

allocation vector x̄
′ ∈ R

NK
+ that is approximately optimal,

i.e.,

K
∑

k=1

N
∑

n=1

x̄′
k,nE {rk,n} ≥

OPT− α

1 +O(η)
,

N
∑

n=1

x̄′
k,nr̄

j
k,n ≥ qk, ∀k, j,

K
∑

k=1

x̄′
k,n ≤ 1, ∀n

(recall that α, η > 0 are parameters that can be chosen to be

arbitrarily small). Moreover, by Theorem 1, the vector x̄′ will

be feasible for the original chance-constrained program Pslow

with high probability.

Finally, in terms of the dependence on N (number of

subcarriers), K (number of users) and ǫ (maximum system

tolerable outage probability), the complexity of the BBB

algorithm scales like (N2K4/ǫ2) log(NK/ǫ) for each fixed

α, η > 0 when J = J∗ (recall that J∗ is of order NK/ǫ; see

(6)), which is competitive against the N7/2K5/ǫ3/2 scaling

of general interior-point algorithms. Thus, the BBB algorithm

can be used to develop an alternative, provably efficient yet

intuitive method for implementing our proposed slow adaptive

OFDMA scheme.

V. PERFORMANCE EVALUATION

In this section, we investigate the performance of the

proposed linear programming based slow adaptive OFDMA

schemes through numerical simulations. Throughout this sec-

tion, we assume that there are 4 users and 256 subcarriers.

The users are assumed to be uniformly distributed in a cell of
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radius R = 50m. Each user k has a minimum requirement on

its short-term data rate qk = 64 bits per OFDM symbol, and

the tolerable system outage probability ǫ is 0.1. Furthermore,

suppose that β is set to be 0.01.

Suppose that the path-loss exponent is equal to 4, and the

small-scale channel fading varies once every 1ms. Meanwhile,

the length of the adaptation window for slow adaptation is

chosen to be T = 1s, implying that SCA is adapted 1000

times less frequently in slow adaptive OFDMA than in fast

adaptive OFDMA. We further suppose that the control sig-

naling overhead consumes 10% of communication bandwidth

every time SCA is updated. Note that with our system setting,

the control signaling for slow adaptation occupies 1000 times

less spectrum resource than that for fast adaptation.

A. Spectrum Efficiency and Comparison with Fast Adaptation

In Fig. 2 and Fig. 3, the wireless channel is assumed

to be Rayleigh faded. In Fig. 2, we compare the spectral

efficiency of slow-adaptive OFDMA with that of fast adaptive

OFDMA over 100 independent adaptation windows, where

spectral efficiency is defined as the data rate per user per

OFDM symbol. Suppose that the transmission power of the

BS on each subcarrier is such that the average received

signal-to-noise ratio (SNR) at the boundary of the cell is

6dB. It can be seen that although slow adaptive OFDMA

updates subcarrier allocation 1000 times less frequently than

fast adaptive OFDMA, it can achieve on average 91% of the

spectral efficiency.

In Fig. 3, the average spectrum efficiencies for slow and

fast adaptation schemes are plotted against the average SNR

at the cell edge. The figures shows that slow adaptive OFDMA

achieves around 72% to 95% of the spectral efficiency of

fast adaptive OFDMA when the average SNR at the cell

edge ranges between 0 to 10dB. Considering the substantially

lower computational complexity and signaling overhead, slow

adaptive OFDMA holds significant promise for deployment in

real-world systems.

For comparison, we also plot in Fig. 3 the performance

of the slow adaptive OFDMA system proposed in [9]. Note

that the probabilistic data rate constraints in [9] are slightly

different from those in this paper. Therein, the constraints are

imposed on individual users separately, i.e.,

Pr

{

N
∑

n=1

xk,nr
(t)
k,n ≥ qk

}

≥ 1− ǫk, ∀k, t, (13)

while in (2), the outage probability is defined jointly on all

users. For fair comparison, we set ǫk = 0.1/K = 0.025 in

(13), so that the joint system outage probability is close to 0.1

by the union bound. It can be seen that the scheme proposed

in this paper outperforms that in [9] by a big margin. This is

because the quality of the convex approximation in [9] depends

crucially on the shape of the original feasible set and can be

quite conservative at times.

In Fig. 4 and Fig. 5, we repeat the simulations by assuming

the channel fading is Rician distributed. In Fig. 4, the K-

factor, defined as the ratio between the signal power in the

line-of-sight (LOS) path and the scattered path, is set to be
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Fig. 2. Comparison of spectrum efficiencies of slow adaptive OFDMA and
fast adaptive OFDMA under Rayleigh fading channel.
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Fig. 3. Comparison of spectrum efficiencies of slow adaptive OFDMA and
fast adaptive OFDMA under Rayleigh fading channel.

0.5. It can be seen that the gap between the throughput of

slow and fast adaptation systems is slightly narrowed to 26%
and 4% when the average SNR at the cell edge is 0 and 10dB,

respectively. This is due to the existence of deterministic line-

of-sight component in Rician fading, which reduces the need

for fast adaptation. As we increase K to 1 in Fig. 5, the gap

is further narrowed to 24% and 3% when the cell-edge SNR

is 0 and 10dB, respectively.

In Fig. 6, we investigate the system performance when the

channel fading is Nakagami distributed with shape parameter

m = 2. With Nakagami fading, the amplitude of received

signal is a result of m-branch maximum ratio combining of

Rayleigh-faded signals. From the figure, it can be seen that

the gap between the spectrum efficiency of the slow and fast

adaptation is much narrower than that in the Rayleigh fading

channel. In particular, slow adaptation achieves 82% through-

put of the fast adaptation when the cell-edge SNR is 0dB,

and 99.6% when the cell-edge SNR is 8dB. This is because

with m-branch maximum ratio combining, the fluctuation of

the channel gain is reduced compared with Rayleigh fading,

thus eliminating the advantage of fast adaptation. Noticeably,
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Fig. 4. Comparison of spectrum efficiencies of slow adaptive OFDMA and
fast adaptive OFDMA under Rician fading channel with K = 0.5.
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Fig. 5. Comparison of spectrum efficiencies of slow adaptive OFDMA and
fast adaptive OFDMA under Rician fading channel with K = 1.

slow adaptive OFDMA even starts to outperform fast adaptive

OFDMA when the cell-edge SNR is 10dB. This is due to the

significant reduction in control signaling overhead in the slow

adaptation scheme.

Before leaving this subsection, we would like to note that

the reduced computational complexity due to slow adaptation

also leads to a reduction in the energy consumption of hard-

ware processing units. Thus, the overall energy efficiency may

turn out to be comparable to or even higher than that of fast

adaptive OFDMA.

B. Outage Probability and the Potential of Reducing the

Sample Size

The proposed slow adaptive OFDMA scheme ensures that

the short-term data rate of each user is satisfied with a

high probability 1 − ǫ, even though SCA is performed on a

much larger time scale. Fig. 7 investigates the system outage

probabilities of the slow adaptation schemes, where an outage

is said to have occurred as long as there is a user whose short-

term data rate falls below the requirement qk. It can be seen
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Fig. 6. Comparison of spectrum efficiencies of slow adaptive OFDMA and
fast adaptive OFDMA under Nakagami fading channel with m = 2.

that the slow adaptive OFDMA scheme leads to SCA solutions

that satisfies the outage probability requirement in different

channel fading scenarios. The approach, however, seems to be

conservative in general, as the outage probability is about 60%
of ǫ.

The conservatism observed in Fig. 7 suggests that we may

be able to reduce the number of samples J while still fulfilling

the outage probability requirement. After all, the a priori

bound J∗ given in (6) is derived regardless of the probability

distribution of the channel7. In practice, the wireless fading

distributions may possess certain features, such as having light

tails, that could reduce the number of samples required to

construct a significant measure. In Fig. 8, we plot the outage

probability as a function of the number of samples J under

Rayleigh fading channel when the cell-edge SNR is 10dB.

The figure shows that we can safely reduce the number of

samples J to 5J∗/8 without violating the outage probability

requirement. Note that J is directly related to the size of the

linear programming problem P̂J
slow. Thus, we have a strong

incentive to reduce this number. It would be an interesting

future research topic to derive a tighter bound on J∗ by

exploiting the specific features of wireless fading distributions.

VI. CONCLUSION

In this paper, we proposed an efficient and distributionally

robust slow adaptive OFDMA scheme that can significantly

enhance the practicality of adaptive OFDMA. By exploring

a chance-constrained formulation, the proposed scheme can

guarantee users’ short-term data rate requirements while max-

imizing long-term system throughput. Through scenario ap-

proximation methods, the potentially hard chance-constrained

programming problem is converted into a linear program,

which can be efficiently solved using off-the-shelf linear pro-

gram solvers. Moreover, the proposed scheme is distribution-

ally robust, namely, it does not require the precise knowledge

7We must emphasize that the dependence on ǫ and β of the bound J∗

given in (6) is tight in the worst case. Indeed, it can be proven that in
general there does not exist a sample complexity bound that scales better
than O(ǫ−1 lnβ−1).
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Fig. 8. Probability of outage against the number of samples when ǫ = 0.1.

of channel fading distribution. For practical implementation,

we presented a “Biggest Bang for the Buck” (BBB) algorithm,

which is provably efficient and has a transparent engineering

interpretation.

Our simulation results showed that the proposed slow adap-

tive OFDMA scheme could achieve a significant portion of

the throughput of the fast adaptive OFDMA scheme with

much lower computational complexity. Interestingly, in some

scenarios, e.g., Nakagami fading with m = 2, slow adaptive

OFDMA may achieve even higher throughput than its fast

adaptation counterpart, thanks to the drastically lower control

signaling overhead. Its high performance and low implemen-

tation cost make slow adaptive OFDMA a strong competitor

of the popular fast adaptive OFDMA scheme.
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