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Abstract— In this paper, we study amplify-and-forward (AF)
schemes to for multigroup multicast information delivery between
long-distance users. The target scenario is a two-hop distributed
one-way relay network where the transmitters, relays and re-
ceivers are all equipped with a single antenna. Assuming that
channel state information (CSI) is perfectly known, our goal
here is to design the AF weights at the relays so that the system
rate performance can be optimized. A classic AF scheme in this
context is to employ a rank-one beamformed AF (BF-AF) strategy
with a max-min-fair (MMF) achievable rate objective. In this
way, the semidefinite relaxation (SDR) technique is widely used
to provide an (approximate) solution for the MMF problem. It
is known that the achievable rate performance of the SDR-based
BF-AF scheme tends to degrade seriously with the number of
users served in the relay network. This motivates us to propose
stochastic beamformed AF (SBF-AF) schemes to improve the
achievable rate performance. The salient feature of the SBF-
AF schemes is that it employs time-varying AF weights and
bypass some inherent issues in the SDR-based BF-AF scheme.
Our theoretical analysis and numerical results both show that
the SBF-AF schemes can outperform the BF-AF scheme.

Index Terms—one-way relay, stochastic beamforming, amplify-
and-forward (AF), multigroup multicast, SDR.

I. INTRODUCTION

It is well known that for facilitating information delivery
between long-distance users, one can introduce relay nodes
in the wireless network. In this work, we are particularly
interested in the scenario where amplify-and-forward (AF)
schemes are used, and the transmitters, relays and receivers
are all with a single antenna. Such a scenario setting is
common in military communication or in device-to-device
(D2D) communication in a cellular network, where the two
ends of the link are usually limited by the apparatus and power.
It is worth mentioning that the relay network we considered
here can be seen as a special example of the cloud relay
network (C-RN) in [1], where channel state information (CSI)
is shared in processing units (PUs) pool and data information
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is isolated among different relays due to the limited fronthaul-
backhaul link capacity; see an example of the C-RN in Figure
1. This results in the so called distributed (or cooperative) relay
network in the literature.

In this paper, we consider physical-layer multigroup mul-
ticasting in the aforementioned relay scenario. Prior to this
work, there are many works that study AF designs in dis-
tributed relay networks [2]–[7]. A popular approach therein
is to let relays perform a beamformed amplify-and-forward
(BF-AF) scheme [2], [5]. Then, a fractional quadratically con-
strained quadratic problem (QCQP) is formulated from a max-
min-fair (MMF) quality-of-service (QoS) perspective, which
is NP-hard in general [8]–[10]. By applying the semidefinite
relaxation (SDR) technique [9], the MMF problem can be
approximated by a fractional SDR. Our provable result in this
work reveals that the achievable rate of the BF-AF scheme
degrades at a rate of logM , where M is the number of
users served in the network. This motivates us to develop the
stochastic beamformed AF (SBF-AF) schemes to improve the
achievable rate performance. Specifically, instead of applying
a fixed rank-one AF weight, SBF-AF schemes adopt time-
varying random AF weights, and exploit the temporal degree
of freedom to capture the non-rank-one nature of the SDR
solution. In particular, we introduce two types of SBF-AF
schemes, which are guided by Gaussian and elliptic distribu-
tions, respectively. Theoretically, we prove that the SBF-AF
schemes can yield SBF rates that are at most 0.83 bits/s/Hz
worse than the rate associated with the SDR optimal solution.
Our simulation results further demonstrate the superiority
of the SBF. It is worth mentioning that the idea of SBF
first appears in [11] for single-group multicasting (without
relaying) [11], [12]. This paper is the first attempt to apply
SBF in relay networks, and we extend the scope to multigroup
multicasting.

II. THE MULTIGROUP MULTICAST MODEL AND THE
BEAMFORMED AF SCHEME

We consider a multigroup multicast scenario in the dis-
tributed relay network as depicted in Figure 2, where there



Fig. 1. An example of the cloud relay network.
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Fig. 2. The two-hop distributed one-way relay network.

are G single-antenna transmitters (sources) sending G inde-
pendent information to G groups of single-antenna receivers
(destinations, or users). Assume that in group-k, there are
mk users, who request the same information, while users
in different groups request different information. In total, we
have

∑G
k=1mk = M users in the distributed relay network.

There are L single-antenna relays distributively located in the
network. We assume that there is no direct link between the
transmitters and receivers, and the relays amplify and forward
the received signals in a collaborative manner. The whole
transmission consists of two phases:
1) Phase I: sources send information to relays. Assume that
the channels from transmitters to relays are frequency-flat and
quasi-static. The received signal at the relays can be modeled
as

r(t) =

G∑
j=1

fjsj(t) + n(t), (1)

where r(t) = [r1(t), ..., r`(t), ..., rL(t)]T with r`(t) =∑G
j=1 f

`
j sj(t) + n`(t) being the received signal at relay-

`; sj(t) is the common information for group-j (j =
1, ..., G) with E[|sj(t)|2] = Pj , where Pj is the transmit
power at the transmitter-j; fj = [f1j , ..., f

`
j , ..., f

L
j ]
T with

f `j being the channel from transmitter-j to relay-`; n(t) =
[n1(t), ..., n`(t), ..., nL(t)]T with n`(t) being the Gaussian
noise at relay-` with zero mean and variance σ2

` .
2) Phase II: relays amplify and forward the received signals
to destinations. A popular approach under this model is to AF
the received signals by beamforming [2]. In this approach, the

AF process at the relay side is written as

x(t) = Diag(w)r(t), (2)

where w = [w1, ..., w`, ...wL]
T is the AF weight with w`

being the AF coefficient at relay-` and Diag(w) is a diagonal
matrix parametrized with the elements of w. Note that the
AF weight matrix here is a diagonal matrix, since each relay
can only AF the signal received by its own. Based on the
transmit model (2), and assuming frequency-flat and quasi-
static channels from the relays to the destinations, the received
signal for user-i in group-k is expressed as

yk,i(t) = g
H
k,ix(t) + vk,i(t) k = 1, ..., G, i = 1, ...,mk, (3)

=

G∑
j=1

L∑
`=1

(g`k,i)
∗w`f

`
j sj(t) +

L∑
`=1

(g`k,i)
∗w`n

`(t) + vk,i(t),

where gk,i = [g1k,i, ..., g
`
k,i, ..., g

L
k,i]

T is the channel from the
relays to user-(k, i) with g`k,i being the channel from relay-
` to user-(k, i); vk,i(t) is the Gaussian noise at user-(k, i)
with mean zero and variance σ2

k,i. We assume that channels
are perfectly known in the relay network. Then, the signal-
to-interference-plus-noise ratio (SINR) for user-(k, i) can be
written as

Pk|
L∑
`=1

f `k(g
`
k,i)
∗w`|2

∑
m 6=k

Pm|
L∑
`=1

f `m(g`k,i)
∗w`|2 +

L∑
`=1

|σ2
` (g

`
k,i)
∗w`|2 + σ2

k,i

,

and the relay signal power is given by E[‖x(t)‖2] = wHDw,
where

D =

G∑
j=1

PjDiag(fjf
H
j ) + Diag(σ2

1 , ..., σ
2
L). (4)

In this way, the design problem for the distributed relay
network can be formulated as

(BF) w? = arg max
w∈CL

min
i=1,...,mk
k=1,...,G

wHAk,iw

wHCk,iw + 1

subject to wHDw ≤ P,
where P is the total power limit of the AF signal and

Ak,i =Pk(fk � (gk,i)
∗)(fk � (gk,i)

∗)H/σ2
k,i, (5)

Ck,i =
∑
m 6=k

Pm(fm � (gk,i)
∗)(fm � (gk,i)

∗)H/σ2
k,i (6)

+Diag(|g1k,i|2σ2
1 , |g2k,i|2σ2

2 , ..., |gLk,i|2σ2
L)/σ

2
k,i.

Problem (BF) is a fractional QCQP, which is NP-hard in
general [2], [8]–[10]. A popular way to tackle (BF) is to apply
the SDR technique [9]. That is, by letting W = wwH and
then dropping the non-convex rank constraint, we obtain a
fractional SDR form of (BF) as follows

(SDR) W? =arg max
W∈HL

+

γ(W)

subject to D ·W ≤ P, (7)



where
γ(W) = min

k=1,...,G;
i=1,...,mk

Ak,i ·W
Ck,i ·W + 1

with · being the matrix inner product operator and HL+ being
the set of all L × L positive semidefinite matrices. It is
well known that (SDR) can be solved by a bisection method
wherein semidefinite programming (SDP) problems are solved
in each iteration [8], [10]. In this way, (BF) can be optimally
solved when (SDR) has rank-one solutions. If rank(W?) > 1,
then a Gaussian randomization algorithm [8], [10], [13] is
typically used to generate an approximate rank-one solution
ŵ from W?. From an achievable rate perspective,

rBF = log(1 + γ
(
ŵŵH

)
)

is the BF achievable rate associated with the SDR approximate
solution ŵ, and for analysis purpose, we define

rSDR = log(1 + γ(W?))

as the SDR rate associated with the SDR optimal solution W?.
It is obvious that we have rSDR ≥ rBF. The other way round
relationship between rBF and rSDR is shown in the following
proposition.

Proposition 1. Let M denote the total number of users
in the distributed relay network. When M ≤ 3, we always
have rBF = rSDR. When M > 3, for non-rank-one cases,
let ŵ be the solution returned by the Gaussian randomization
Algorithm and N be the number of randomizations. Then, with
probability at least 1− (5/6)N , we have

rSDR − rBF ≤ (4.2 + logM) nats/s/Hz. (8)

A sketch of the proof is as follows. We first get the SDR
approximation bounds in terms of SINRs from the results in
[8], [10], and then apply the logarithm relation between SINRs
and achievable rates to obtain (8). Proposition 1 implies that
the rate gap between the SDR rate and the BF-AF rate will
be enlarged as M increases. In other words, the SDR-based
BF-AF scheme may not work well when M is large.
Remark 1: In practice, it would be more practical to consider
per-relay power constraints, rather than the total relay power
constraint, which is adopted in (BF). Due to page limit, we
defer this to the full version of this paper. Concisely speaking,
with the per-relay power constraints, it can be shown that the
rate gap in (8) becomes even worse — increasing at a rate of
logM + log log(L), where L is the number of relays.

III. THE STOCHASTIC BEAMFORMED AF SCHEMES IN THE
DISTRIBUTED ONE-WAY RELAY NETWORK

In view of the drawback of the BF-AF scheme, in this
section, we develop SBF-AF schemes for improving the
achievable rate performance. The essence of the SBF-AF
scheme is to adopt time-varying random AF weights, rather
than a fixed one in the BF-AF scheme, so that the non-rank-
one nature of the SDR optimal solution can be captured by
averaging over the random AF weights. To be specific, the

source-to-relay link remains the same as the previous BF-AF
model, while the relay-to-destination link is modified as

x(t) = Diag(w(t))r(t),

where w(t) = [w1(t), ..., w`(t), ...wL(t)]
T with w`(t) being

the AF weight at relay-` for time t. Note that, unlike the
BF-AF scheme, where w is fixed for a whole data frame
transmission, here we let the AF weightw(t) change randomly
with time following some prescribed distributions (to be
specific shortly). The purpose of adopting the time-varying
AF weights is to exploit the temporal degree-of-freedom to
mimic a rank-r beamforming. In this way, the receive signal
at receiver-(k, i) can be written as

yk,i(t) =

L∑
`=1

(g`k,i)
∗w`(t)f

`
ksk(t) + (9)

G∑
j 6=k

L∑
`=1

(g`k,i)
∗w`(t)f

`
j sj(t) +

L∑
`=1

(g`k,i)
∗w`(t)n

`(t) + vk,i(t).

It is not difficult to see that we are actually dealing with
multi-user interfering fast fading channels where the fading
coefficients comes from the SBF fluctuations. A popular
processing is to treat interference as noise [14]–[18]. Thus,
in (9), we may as such treat all the interference as noise and
define the SBF-AF rate for user-(k, i) as

rSBF = min
k=1,...,G;
i=1,...,mk

E
[
log

(
1 +

wH(t)Ak,iw(t)

E[Ik,i(t)] + 1

)]
. (10)

where Ik,i(t) is the interference term given by Ik,i(t) =
wH(t)Ck,iw(t). Note that different from the fixed AF weight
in BF-AF, w(t) in (10) is i.i.d. in time, and herein we take the
expectation of Ik,i(t) as the noise variance. In this way, rSBF
could be analyzed and later on we will show by simulations
that the proposed SBF-AF schemes can indeed achieve a
relatively good rate by applying random channel codes, e.g.,
turbo code or LDPC code.

Now, the remaining issue is how to determine the distri-
butions for generating w(t). In general, it is hard to find the
optimal distribution of the random AF weights for maximizing
rSBF. Thus, we consider two heuristic ways to generate the
random AF weights, which are easy to implement and allow
for tractable analysis. First of all, we introduce the Gaussian
SBF-AF scheme by generating the AF weights following a
complex Gaussian distribution; i.e.,

w(t) ∼ CN (0,W?),

where W? is the optimal solution to (SDR). We call this SBF-
AF scheme as the Gaussian SBF-AF. Since herein we have
E[w(t)w(t)H ] = W?, the power constraint is satisfied on
average. In Proposition 2, we show a relationship between the
Gaussian SBF-AF rate and the SDR rate.

Proposition 2. For the Gaussian SBF-AF scheme, we have

rSDR − rSBF ≤ 0.5772.



We provide the proof in the Appendix. Proposition 2 quantifies
an upper bound for the rate gap between the SDR rate and the
Gaussian SBF rate. It says that, the Gaussian SBF-AF scheme
is at most 0.83 bits/s/Hz (0.5772 nats/ log 2 = 0.8317 bits)
worse than the SDR rate associated with the SDR optimal
solution, irrespective of any other factors, such as the number
of users and the transmit power. Thus, in a sharp contrast to
Proposition 1, the SBF-AF rate is insensitive to M and exhibits
the same scaling as the SDR rate.

We see that the Gaussian SBF-AF rate is within less than 1
bit/s/Hz of the SDR rate. However, from a practical viewpoint,
it has a high peak-to-average power ratio (PAPR) since the
Gaussian distribution usually has a large spread. Therefore, we
are motivated to develop better SBF-AF schemes with smaller
power spread. Towards this end, we introduce the elliptic SBF-
AF scheme. For the elliptic SBF-AF scheme, we generate the
AF weights by

w(t) =
LHα(t)

‖α(t)‖/
√
r
, α(t) ∼ CN (0, Ir), (11)

where r = rank(W?) and L ∈ Cr×L is a square root
decomposition of W?, i.e., LHL = W?. According to [19],
such AF weights are limited by the instantaneous power and
follow a complex elliptic distribution with covariance matrix
E[w(t)w(t)H ] = W?. It is easy to check that the power
constraint is also satisfied. Moreover, in Proposition 3, we
prove that the rate gap between the elliptic SBF-AF rate and
the SDR rate is always bounded by a constant.

Proposition 3. For the elliptic SBF-AF scheme, we have

rSDR − rSBF ≤
r−1∑
k=1

1

k
− log(r) ≤ 0.5772,

where r = rank(W?).

We skip the proof of Proposition 3 due to page limit. This
proposition implies that the elliptic SBF-AF rate is insensitive
to the number of users and thus it can work well for large-scale
systems. Moreover, an important corollary of Proposition 3 is
that the worst-case rate gap of the elliptic SBF-AF scheme is
no worse than that of the Gaussian SBF-AF scheme. A similar
result has been proven in [11] for single-group multicasting.
Now we show that it is also true for distributed relay networks.
Remark 2: To implement the SBF-AF schemes, the decision
center (which could be the transmitters or PUs pool in the
C-RN) sends a random seed and the covariance W? to all the
relays and receivers. Therefore, relays can generate the same
AF weight by the guide of W? and pick its own coefficient
to AF the received signals. At the receivers’ side, by knowing
the random seed and W?, each receiver can perform coherent
detection. The proposed SBF-AF schemes are just as efficient
as the BF-AF scheme in terms of implementation complexity.
Remark 3: It is worth mentioning that for both BF-AF and
SBF-AF, channel coding is needed to resist the Gaussian
noise and SBF fluctuations. Theoretically, we need to apply
a random channel code with a relatively long codelength for

approaching the achievable rates. Our numerical experience is
that, an LDPC code or turbo code with a moderate codelength
should be efficient enough, and SBF-AF always outperforms
BF-AF. Such numerical results will be shown in the next
section.

IV. SIMULATION RESULTS AND CONCLUSIONS

In this section, we provide numerical results to demonstrate
the effectiveness of our proposed schemes. To set up the sim-
ulations, we assume that each group has an equal number of
users, i.e., mj =

M
G ; the channels are independently generated

by fj , gk,i ∼ CN (0, I); the noise power at relays and at
users are both set to be 0.25; and the signal power at each
transmitter is 0dB. We averaged 300 channel realizations to get
the plots for each AF scheme. The number of randomizations
for generating BF-AF weights is 1, 000.

Figure 3 shows the worst user’s BF-AF rate and SBF-
AF rates scaling w.r.t. the total number of users served in
the distributed relay network when P = 6dB. Herein the
number of relays is L = 8, and the number of group is
G = 2. From the figure, we see that the rates of BF-AF
and SBF-AF are upper bounded by the SDR rate. Moreover,
the BF-AF rate diverges from the SDR rate as the number
of users M increases. It shows that the Gaussian SBF-AF
scheme outperforms the BF-AF scheme when M > 10, while
the elliptic SBF-AF scheme outperforms the BF-AF scheme
for all values of M . The SBF-AF schemes exhibit the same
scaling as the SDR rate, which is consistent with Propositions
2 and 3. In Figure 4, we compare the coded bit error rate
(BER) performances for the case of M = 12 to further
demonstrate the efficacy of the SBF-AF schemes. Herein, the
SDR bound is obtained by assuming that there exists an SISO
channel where the SINR is equal to the optimal SDR objective.
For all the other AF schemes, we simulate the actual AF
process. That is, for each time slot, we generate sj(t), n`(t)
according to the SISO model (3), then detect and decode
sj(t) at each receiver. In our simulations, to fully demonstrate
the effectiveness of SBF-AF, we adopt a gray-coded QPSK
modulation scheme and a rate-1/3 turbo code in [20] with
two different codelengths 576 and 2, 880. For each channel
realization, we simulate 100 code blocks and thus the BER
reliability level is 10e−4. From the plot, we see that the actual
BER performances of the SBF-AF schemes outperform the
SDR-based BF-AF scheme almost in all power region, and
the elliptic scheme attains the best BER performance, which
is consistent with the results in Figure 3. This verifies that the
SBF-AF schemes can indeed achieve a relatively good rate.

To conclude, in this paper we have considered relay AF
schemes in a distributed one-way relay network, where the
received signals cannot be shared among relays. We proposed
two SBF-AF schemes which adopt time-varying AF weights
to explore the temporal degree of freedom to perform a rank-
r beamforming. The proposed SBF-AF schemes outperform
the traditional rank-one BF-AF scheme, especially when the
number of users served in the system is large. We prove
that, in the worst case, the proposed SBF-AF schemes are



only 0.83 bits/s/Hz worse than the SDR rate. The actual BER
performance comparisons further validate the superiority of
the proposed SBF-AF schemes.

V. APPENDIX

For Gaussian SBF-AF, we have E[Ik,i(t)] = Ck,i ·W?.
Then, letting ρmin = mink,i

Ak,i·W?

Ck,i·W?+1 , we have

rSDR − rSBF = log(1 + min
k,i

Ak,i ·W?

Ck,i ·W? + 1
)

−Ew(t)[log(1 + min
k,i

wH(t)Ak,iw(t)

Ck,i ·W? + 1
)]

= log(1 + ρmin)− Eξ[log(1 + ρminξ)],

where ξ follows an exponential distribution with unit mean.
Let g(ρmin) = rSDR − rSBF, which is a function of ρmin. We
have

g′(ρmin) ≥
(

1

1 + ρmin
− Eξ[ξ]

1 + ρminEξ[ξ]

)
ρmin = 0,

which means that g(ρmin) is non-decreasing w.r.t. ρmin. Ob-
serve that 0 ≤ ρmin < +∞. Therefore, we must have

rSDR − rSBF ≤ g(+∞) = 0.5772,

where the equality comes from the derivation of Theorem 1
in [11], which completes the whole proof.
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