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ABSTRACT

This paper proposes a penalty alternating direction method of mul-
tipliers (ADMM) to minimize the summation of convex composite
functions over a decentralized network. Each agent in the network
holds a private function consisting of a smooth part and a nonsmooth
part, and can only exchange information with its neighbors during
the optimization process. We consider a penalized approximation of
the decentralized optimization problem; but unlike the existing pen-
alty methods, here the penalty parameter can be very small such that
the approximation error is negligible. On the other hand, the small
penalty parameter makes the penalized objective ill-conditioned,
such that the popular proximal gradient descent method has to use a
small step size, and is hence slow. To address this issue, we propose
to solve the penalized formulation with ADMM. We further utilize
the composite structures of the private functions through linearizing
the smooth parts so as to reduce computational costs, and handling
the nonsmooth parts with proximal operators. The proposed penalty
ADMM (abbreviated as PAD) is provably convergent when the pri-
vate functions are convex, and linearly convergent when the smooth
parts are further strongly convex. Numerical experiments corro-
borate the theoretical analyses, and demonstrate the advantages of
PAD over existing state-of-the-art algorithms, such as DL-ADMM,
PG-EXTRA and NIDS.

Index Terms— decentralized optimization, alternating direction
method of multipliers (ADMM), composite optimization

1. INTRODUCTION

This paper focuses on the following decentralized composite opti-
mization problem defined over an undirected and connected network
with n agents, in the form of

n

min = 3 (fi(e) + g:()), (1)

i=1

where f; : RP — R U {400} and ¢g; : R? — R U {+o0} are
two convex functions privately owned by agent . We assume that f;
is convex and smooth, while g; is convex, nonsmooth and its prox-
imal mapping is easy to solve. Every agent aims to obtain an op-
timal solution #* of (I) via local computation and communication
with its neighbors. Such decentralized composite optimization pro-
blems appear in various fields, including network optimization [[1,2]],
optimization-based cooperative control [3[, machine learning [4}/5],
to name a few.

Decentralized optimization methods have been widely studied
in the literature. They usually operate in either primal or dual dom-
ain. For the primal domain methods, distributed gradient descent
(DGD) and subsequent extensions are studied in [|6-9]]. With a fixed

step size, DGD converges fast but to a neighborhood of an optimal
solution, and the size of the neighborhood is proportional to the step
size [|6,[7]. Similar local convergence result also holds for the non-
convex case [8]. With a diminishing step size, DGD is able to con-
verge to an optimal solution, but the speed is slow [9]. The inaccu-
racy is due to the fact that DGD is essentially a gradient descent
method to solve a penalized approximation of (I), where the step
size determines the penalty parameter, and hence the approxima-
tion error [[7]. Second-order methods are also applicable to solving
the penalized approximation, with the same accuracy-speed trade-
off [[10}[11].

The dual domain methods include decentralized alternating di-
rection method of multipliers (ADMM) [12415]], decentralized aug-
mented Lagrangian-based algorithms [16], dual accelerated sche-
mes [17], and so on. All of these algorithms rewrite @) to an equi-
valent form with consensus constraints, and solve it in the dual dom-
ain. The use of fixed step sizes enables them to have fast and exact
convergence. When the local functions are smooth, some of these
algorithms are proven to linearly converge to an exact optimal solu-
tion [[13H17]. When the local functions are nonsmooth and have a
composite form as in (I, proximal decentralized linearized ADMM
(DL-ADMM) is proposed in [|18] with convergence guarantee. Its
ergodic convergence rate O(%) where £ is the number of iterations,
is established in [[19]].

There also exist some other decentralized methods that do not
explicitly operate in the dual domain, but are still able to converge
to an exact optimal solution with fixed step sizes [20H25]. To be
specific, the EXTRA algorithm in [20] considers the case that the lo-
cal functions only have the smooth parts. When the local functions
are composite, [21] proposes PG-EXTRA and [22] proposes NIDS,
which converge to an optimal solution at the rates of O( ) and o(3),
respectively. A recent work [23] establishes a linear convergence
rate, but assuming that the smooth parts are common across all the
agents. For decentralized nonconvex composite and constrained op-
timization problems, [24] and [25] develop gradient-tracking met-
hods with local convergence guarantee.

In this paper, we also consider solving a penalized approxima-
tion of (T) like the primal domain methods. However, our approach
differs from them since we allow the penalty parameter to be very
small such that the approximation error is negligible. Since the small
penalty parameter makes the penalized objective ill-conditioned, the
popular proximal gradient descent method has to use a small step
size, and is hence slow. To address this issue, we propose to solve
the penalized formulation with ADMM. We further utilize the com-
posite structures of the private functions through linearizing the
smooth parts so as to reduce computational costs, and handling the
nonsmooth parts with proximal operators. The proposed penalty
ADMM (abbreviated as PAD) is provably convergent when the pri-
vate functions are convex, and linearly convergent when the smooth



parts are further strongly convex. We also demonstrate the con-
nection between PAD and the dual domain method EXTRA. When
the nonsmooth parts of the local functions are absent, EXTRA is
shown to be a special case of PAD. Numerical experiments cor-
roborate the theoretical analyses, and demonstrate the advantages
of PAD over several existing state-of-the-art algorithms, such as
DL-ADMM, PG-EXTRA and NIDS.

Notations. Consider a bidirectionally connected graph G =
(N, &), where N = {1,...,n} denotes the set of agents (nodes),
and £ denotes the set of directed communication links (edges). Let
N; 2{j € N:(i,5) € €and (j,i) € £} denote the set of neig-
hboring agents of i € N. 15x, € R?*" represents the matrix with
all ones, and I € R™*™ is the identity matrix. Amin(+) and Amax ()
denote the minimum and maximum eigenvalues of a square matrix,
respectively.

2. ALGORITHM DEVELOPMENT

In the algorithm development and convergence analysis, we make
the following assumptions on the smooth and nonsmooth parts of
the local functions.

Assumption 1. Each g; is convex and nonsmooth. The proximal
mapping of g; is given as

. 1
prox,, (z) 2 argmin, {g:(y) + 5 [ly — 2},

where ¢ > 0 is a scalar. We assume the proximal mapping can be
computed easily.

Assumption 2. Each f;(x) is convex and differentiable with a Lip-
schitz continuous gradient such that

IVfi(z) = Vi)l < Lyllz = yll, Yo,y € R,
where Ly > 0 is the Lipschitz constant.

The proposed algorithm is going to utilize the composite struc-
ture of the local functions. We will show its convergence under As-
sumptions [1| and 2| To show its linear convergence, we also need
another assumption.

Assumption 3. Each f;(x) is strongly convex such that

<$ - yavfl(x) - vfl(y)> 2 )ufo - yH27 vay € Rpa
where jiy > 0 is the strong convexity constant.

We begin with a consensus-constrained reformulation of (T). Let
each agent 4 hold a local variable x; € R?. Define x € R™*? whose
i-th row is 7 . We say that x is consensual if all the rows are iden-
tical, i.e., 7 = --- = 2L To characterize this consensus property,
we introduce weight w;; between agents ¢ and j, and collect all the
weights in a mixing matrix W = [w;;] € R™*". We make the
following assumption on W, which is standard in decentralized op-
timization.

Assumption 4. (Mixing matrix): W is symmetric and doubly sto-

chastic, i.e., W = W7T and W1lnx1 = laxi. The null space of

I—Wisspan (1nx1). Further, i # j and (i,j) ¢ &, thenw;; = 0;
otherwise, w;; > 0.

According to the Perron-Frobenius theorem [26], Assumption
implies that the eigenvalues of W lie in (—1, 1] and the multi-
plicity of eigenvalue 1 is one. Because the null space of I — W

is span (1, x1), so is its square root (I — W)% Therefore, (I —

W)%x = 0if and only if 27 = ... = z. The mixing matrix
W satisfying Assumption ] can be generated by the ways introdu-
ced in [27]], when the underlying network is connected. Also define
functions f(x) £ Y7 | fi (z;) and g(x) £ Y7, gi (z:). Then,
(T is equivalent to the following constrained problem

Nl

%" =argmin f(x)+g(x), st (I—-W)2x=0. (2
X

Penalized Approximation Formulation. Instead of solving the

constrained problem (2)), we consider its penalized approximation in

the form of

L

Cla=wyxx @

x' = argmin f(x) + g(x) +
where || - || # denotes the Frobenius norm and € > 0 is the penalty
parameter. The approximation error, i.e., the gap between X* and x*,
is controlled by €. When ¢ is sufficiently small, the approximation
error is negligible.

When g(x) = 0, (3) can be solved with gradient descent

X = xE -y (V") + %(I - w)x"), @

where v > 0 is the step size. However, when € is very small, the
Lipschitz constant of the gradient V f(x) + 1(I — W)x is in the
order of O(1), which suggests that v must be in the order of O(e)
to guarantee convergence [28]. In fact, setting v = € recovers the
DGD update x*** = Wx* — eV f(x"®) [6,/7). However, such a
small step size makes DGD converges slowly, although to a very
small neighborhood of %*. This dilemma demonstrates the unfavo-
rable accuracy-speed tradeoff of DGD. The same statement holds
true when we apply the proximal gradient method to handle the case
of g(x) # 0 [22].
Algorithm Development. To address this issue, we propose an
ADMM-based algorithm to solve (3) — note that ADMM is a po-
pular dual domain method for decentralized optimization, but here
we apply it to the penalized approximation formulation in the pri-
mal domain. By introducing an auxiliary variable z € R™*?, (@) is
equivalent to

* * . 1
(x",2%) = argmin f(x) +g(x) + o||z],
> € (%)
s.t. (I — W)%x =z

The augmented Lagrangian function of @) is La(x,2,1I) £
FGO)+9(x) + 5 123+ (1L, (1= W) 2x —z) + 5| (1~ W) #x—
z||%, where IT € R™*? is the Lagrange multiplier and o > 0 is the
penalty parameter. ADMM minimizes the augmented Lagrangian
function over the primal variables x and z in an alternating direction
manner, followed by updates the dual variable II through dual gra-
dient ascent. However, on account of the nonsmooth term g(x) and
the coefficient (I — W)% in the quadratic term in L. (x, z, IT), the
subproblem w.r.t. x does not have a closed-form solution. Thus, we
utilize the composite structure to inexactly update x through linea-
rizing the smooth part and calculating the proximal mapping of the
nonsmooth part, as follows.

Update of x. We separate L, (x,z" I1F) as a smooth part
La(x, 2", 11%) 2 f(x) + 5|2 |5 + (%, (1 = W) 2x) + 5 [|(1 -
W)%x — z"||% plus a nonsmooth part g(x). Replace the smooth
part L, (x, 2", II*) by a quadratic approximation L, (x, z", IT*) ~
Lo (x*, 2", 11%) + <V,J:a(xk, 25 101%),x —x") + Lx —x"||F



Algorithm 1 PAD run by agent ¢

Require: Choose the parameters €, o and c. Initialize the local va-
riables to 2, Z° and 7.
1: fork=1,2,--- do

2: Update local variable xf“ by
xf+1 =Dprox,,, (mf—c[vfi (mf)—i—a(xf— Z w,’jxf—if)—kﬁ'ﬂ )
JEN;
3: Transmit 7/ receive ac?"‘l from neighbors j € N;.
4: Update local auxiliary variable 2“1 by
k41 1 k+1 k+1
Z; = T + Oé Wi; T
— [ -,
€ JEN;
5: Update local dual variable 7?’““ by
A o7k a@ o S wyekt) — 2.
JEN;
6: end for

centered at x*, where ¢ > 0 is a parameter and VxLa (x, z*, Hk)
is the gradient of ia(x, zk,Hk) w.r.t. x. Using this approxi-
mation in miny L (x, z" H’“) leads to the primal update x***
arg miny g(x)+ Lo (x*, 2", T1¥) + <Vxl~/a(xk7zk,ﬂk),x—xk>+
2 ||x — x*||%, which is the proximal mapping of g(x) and has a
closed-form solution

xM = prox.,, (Xk *C[Vf(xﬁ + Q(I*W)%

k (6)
((I—W)Exk—zk+%)]).

Update of z. Update z"*' from z"™' = argmin, --||z|% +
(TTF, (I-W) 2 x g 4 || (T = W) 2 T
to

—z||%. Itis equivalent

k11 1kt
z _70&7[11 +a(l —W)2x""]. (7

€

Update of T1. Finally, the update of IT**1 is given by
MH = T 4 (T — W) 2Tt — 241 ®)

The updates in (), (7) and (8) can be simplified by introducing
% 2 (I — W)2TI* and 2* 2 (I — W)2z*. With these notati-
ons and splitting the updates to the agents, we outline the proposed
penalty ADMM (PAD) in Algorithmm

Connection between PAD and EXTRA. Although PAD solves the
penalized approximation formulation (@) (and @) equivalently) that
is often considered in designing the primal domain methods, below
we show that the dual domain method EXTRA [20] is a special case
of PAD when g(x) = 0. It will be verified that PAD recovers EX-
TRA after eliminating Z and IT and choosing suitable parameters.

Combining (8) and (7) to eliminate (I — W)%xk“, we get
%zkﬂ = II""'. When the variables are also initialized as %zo =
¥ = TI* and consequently, %Zk = TI*. When
g(x) = 0, substituting %Zk = TI* into (@) yields

P = xF — C[Vf(xk) +a(l -W)x" 4+ (1 - ae)lz[k}, )
and

2 1
xFt2 = kt

I1°, we have %z

— [V 4 a(l - W)x T 4+ (1 — ae)TFH].

10)

Subtracting (T0) by (9) and eliminating TT*** —TT* by (8}, we obtain

1
kt2_ e {((2+a6 — 2ca)] + 2caW)x"+ (11)

- [I—ca(I—W)]xk—c[(]—&—ae)vf(xkﬂ) —Vf(xk)}}.

Note that the update of EXTRA is
<2 —(I +W)x k1 ik — [Vf( k+1)_vf( k)}

where W = 1 +W and c is the step size. Comparlng it with (TT)), we
observe that PAD recovers EXTRA if ca = 5 and e=0. Actually, €
can never be zero; it tunes the accuracy-speed tradeoff. In addition,
ca can be set to other values than % These flexibilities enable PAD
to converge faster than EXTRA, as we will illustrate in the numerical
experiments.

3. CONVERGENCE AND RATE OF CONVERGENCE

This section analyzes convergence and rate of convergence for PAD.
Instead of considering the simplified sequence {z"} and {I1*}, we
analyze the sequences {z"} and {TT*} generated by (@), {7) and (8},
because they are equivalent and the sequence {xk} is identical. The
proofs are left in a longer version of this paper.

Convergence Analysis under General Convexity. Define a triple
u® £ (x* 2 11%) and u* £ (x*,2*,11*) where x*, z* and IT*
are the optimal primal and dual solutions of (3). To characterize
the convergence, define a matrix Q = I — ac(I — W) and a triple
P £ (£Q, ;“I, oL 1) of matrices. Define [[u* — u*||3 = ||x* —
R YR Lo G

from u” to u*. In the following lemma, we show that ||u® — u*||%
decreases sufficiently fast when the parameters are properly chosen.

x" HiQ as the squared distance
2¢c

Lemma 1. UnderAysumplionsm |Z|and if the parameters o and
care chosen such that 5~ [I —ac(I—W)] — f I > 0, then it holds
forall k > 1 that ||[u* —u*||% —||u*** —u Hp > Bllu* —u* |3,
where 3 > 0 is some positive constant.

With Lemmal {|lu* —u* H%} converges to 0. Because @ > 0

given that - [I ac(I —W)] — f I = 0, we conclude that {u*}
converges to u”, stated as follows.

Theorem 1. Under Assumptions[I] 2| and H] if the parameters are
chosen as in Lemma then the sequence {u"} generated by (€), (1)
and (8) from any initial point u® converges to the optimal solution
u* of the penalized problem (3).

Theorem |I| shows the convergence of PAD to the optimal solu-
tion of the penalized problem (3) (and (3) equivalently). Note that it
holds true for any €. Therefore, we can choose a sufficiently small
€ so that the approximation error between (3) and (@) is negligible.
Theorem|[T]also provides guidelines for setting the parameters c and
. The condition o [/ — ac(I — W)] — 4T > 0 implies that
1> 0Amax(I = W) + Ly, where Amax(I — W) is the largest
eigenvalue of I — W.

Linear Convergence Rate under Strongly Convexity. The follo-
wing theorem shows that PAD is linearly convergent under the as-
sumption of strong convexity.

Theorem 2. Under Assumption for any constant § £ 1 —
L3¢
W > 0, where Amin(Q) is the smallest eigenvalue of Q,

the sequence {xk,zk} generated by @ (@) and @) converges to
+1

(x*,2%), as [|x* —x"*|E +[|z" — =z < n(lx" —x"g +
. . 2_2
llz* — 2*||%), in which n £ max{m,#zgll} < 1 and

A

A mpd
€2 = T aman(Q) 4re two constants.
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Fig. 1: Relative error of DGD (with e = 10~ 2) and PAD (withe = 1073, ¢ = 1076
and e = 10712, respectively) in the decentralized logistic regression problem. For
DGD, its step size is v = €. For PAD, a = 0.6 and ¢ = 0.032 according to the
condition in Theorem(T}
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Fig. 2: Relative error of PG-EXTRA, NIDS, DL-ADMM and PAD in the decentralized
quadratic programminﬁpmblem. For PAD, ¢ = 1072, & = 1.2 and ¢ = 0.2 as
2}

For PG-EXTRA, the step size o = PminW) g 17 =

suggested in Theorem Iy

I+2W as suggested in [21]. For NIDS, the step size is o« = %;’ as suggested in [23]].

The parameters of DL-ADMM are hand-optimized.

4. NUMERICAL EXPERIMENTS

We conduct numerical experiments over a randomly generated con-
nected network with n agents and %71) undirected edges, where
7 € (0,1] is the connectivity ratio. We compare PAD with se-
veral state-of-the-art algorithms, DGD [6], DL-ADMM [18]], PG-
EXTRA [21] and NIDS [23]]. The mixing matrix W is generated
with the Metropolis-Hastings rule. Performance is evaluated by the
relative error ||x" — %*||7/||x° — %*|| 7, where X* is the optimal
solution of (@) calculated by CVX.

Decentralized Logistic Regression. Each agent 7 holds local
training data (M;);,ya);) € RP x {=1,+1}, j = 1,---,m;
where M(;); is j-th feature data of agent 4 and y;); is the cor-
responding binary label. Entries of each M;); (except for the
last one that is set as 1) are generated according to the standard
normal distribution, followed by changing its magnitude such that
/\max(M(Ti) M ;y) =30. Each label y;; is generated according to the
uniform distribution. The problem is ming - >°7" ; { 327 In (1 +
exp(—(M);2)y(i);)) }- We set n = 30, 7 = 0.5, p = 10 and
m; =5, Vi. As shown in Fig. |1} PAD and DGD with a fixed step size
all converge to a neighborhood of X*, whose size is proportional
to e. However, since € is small, the step size of DGD must be in
the same order and the convergence speed is very slow. For PAD,
it converges with fast speed under different e. The smaller € brings
higher accuracy.

Decentralized Quadratic Programming. Each agent i has a lo-
cal quadratic function f;(z) = %xTQix+hiTx and a local linear

09 b

0.85 ]

0.8 4

percentage of correct predictions

0.75. I 4
10° 10° 102
number of iterations

Fig. 3: Percentage of correct predictions of PAD in the classification for breast cancer
data. We set e=10""2%, & =0.2 and ¢ = 0.9 by hand-optimization.

constraint aX z < b;, where Q; € RP*? = 0, h; € RP,a; € RP,
and b; € R. The nonsmooth function is defined as g;(z) = 0 if
al'x<b;, and g;(x) = +oo otherwise. We setn = 10, 7 = 0.4 and
p = 50. The matrices {Q;} are generated such that the Lipschitz
gradient and the strongly convex constants of each f; are Ly = 1
and py = 0.5, respectively.

Fig. [2] shows that PAD needs less than 450 iterations to attain
1072 relative error, while the others need at least two times of itera-
tions to attain the same accuracy. PAD converges linearly, which is
consistent with Theorem
Application in Classification for Breast Cancer Data. There are
683 samples among which 458 are benign and 341 are malignant
[29]. Each sample features 9 pieces of cell information and a bi-
nary outcome. The outcomes are transfered to be —1 (benign) or
+1 (malignant) and all the features are min-max normalized. We
randomly choose 650 samples, among which 500 are training data
and 150 are testing data. Set n = 50 and 7 = 0.5. Each node
i evenly holds m; = 10 training samples (M;y;,yy;) € RP x
{-1,+1},5 = 1,---,m;. The last entry of M;); is set as 1 so
that p = 10. The decentralized logistic regression with ¢, regula-
rization is min, + 37| S0 In (1 + exp (— (M) yaiy;)) +
LS Aillll1, where i = %L is the regularization parameter.
For the testing, each agent ¢ randomly holds 3 testing samples and
uses its own z} to predict. At each iteration, the total number of cor-
rect predictions from all 50 nodes are divided by 150 to compute the
percentage of correct predictions. Fig. [3] shows that PAD achieves
100% correct predictions within 10 iterations.

5. CONCLUSION

In this paper, we proposed a consensus-based decentralized algo-
rithm called PAD to solve the penalized approximation of the decen-
tralized composite problem. Unlike the existing penalized methods,
the proposed PAD is fast even with a very small penalty coefficient
so that the approximation error caused by penalization is negligible.
The proposed PAD is provably convergent when the private functi-
ons are convex, and linearly convergent when the smooth parts are
further strongly convex. Numerical experiments demonstrate the ad-
vantages of PAD over existing state-of-the-art algorithms, such as
PG-EXTRA and NIDS.
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